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ABSTRACT
Claims with high severity and low probability constitute a high risk for the 
insurance market. One tool to deal with this kind of event is the Extreme 
Value Theory (EVT). The main goal of this article is to apply the EVT to 
Actuarial Science using a different estimator for parameters, allowing the 
calculation of pure reinsurance premiums and the choice for the retention 
limit for insurance companies. The execution was split into two parts: (i) 
comparing the estimators through simulations, and; (ii) using data from 5 
SUSEP lines of business with different natures, intending to estimate some 
extreme value statistics. In simulation studies, the Pickands estimator was 
very promising, but the limited amount of data resulted in a great variance 
when applied to real cases. Lastly, we concluded that the EVT is a powerful 
tool for insurance, capturing the behavior of extreme clams amount better 
than traditional models. 
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We are living on the edge: gerenciando  
sinistros de extrema severidade usando  
a Teoria de Valores Extremos

RESUMO 
Ocorrências de altíssimo valor monetário e baixíssima probabilidade constituem grandes riscos 
no mercado segurador. Uma ferramenta para análise de eventos dessa natureza é a Teoria de 
Valores Extremos (TVE). O objetivo deste trabalho é aproximar a TVE das Ciências Atuariais, 
utilizando diferentes estimadores de parâmetros, possibilitando o cálculo de prêmios de resseguro 
e a escolha do limite de retenção ideal para seguradoras. A execução foi em duas etapas: (i) 
comparando os estimadores em simulações, e; (ii) usando microdados reais oriundos de 5 ramos 
SUSEP de naturezas distintas, com o intuito de estimar estatísticas de valores extremos. Em 
geral, o estimador de Momentos foi o mais consistente de todos. O estimador de Pickands nas 
simulações apresentou resultados promissores, mas a quantidade restrita de dados e sua grande 
variância o tornam inconstante na aplicação aos dados reais. Finalmente, observou-se que a 
TVE é um poderoso ferramental para a área de seguros, melhor capturando o comportamento 
de sinistros extremos do que métodos tradicionais.

PALAVRAS-CHAVE
Seguros, Valores extremos, Expected shortfall, Estimação em altos quantis

1. INTRODUCTION
Risks that cannot be avoided should be transferred or retained (Vaughan & Vaughan, 2013). 

Usually, the transferred kind of risks have low probability and high severity. For individuals, the 
process is simple: they buy insurance, and the insurance company takes on the responsibility to 
pay for eventual losses. However, insurance companies are also subject to catastrophic events, 
making it necessary to buy reinsurance. From an individual perspective, transferring risks is 
just an instrument to deal with losses, but for insurance companies it is the core business. If the 
designing process is not done precisely, the company may be under or over protected (Dempster 
et al., 2003; Dietz & Walker, 2019).

Low probability and high severity events are inherent to the insurance process, and typically 
happens when several unities with high financial value are damaged at the same time or have some 
dependency structure between them (Chen & Yuan, 2017; Gatto, 2020; Tanaka & Carvalho, 
2019). In such cases, the company may face negative income and generate future solvency 
problems (Carvalho & Cardoso, 2021; Damasceno & Carvalho, 2021; Euphasio Junior & 
Carvalho, 2022; Ramsden & Papaioannou, 2019; Wüthrich, 2015).

To illustrate the dimension of such a problem, two catastrophic situations may be taken as 
examples. The first one is regarding the Mariana dam tragedy which occurred in 2015: a study 
from Terra Brasis (2017) showed that the disaster had an estimated impact of R$26.2 billions in 
damages, but only R$2.25 billions were insured. This kind of event, if not properly transferred, 
could lead the company Vale to bankruptcy. In a more general sense, according to SUSEP, in 
the same year, about R$95 billions were issued as insurance premiums (both Non-Life and Life). 
This means that just one event represented 2.1% of the total premium value for every line of 
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business combined, demonstrating the importance of estimation of catastrophic losses. As an 
international example. according to a study made by Aon (2018), the damage caused by natural 
disasters has high variance throughout the years. In some years, climate and anthropogenic 
events can be more prone to generating insurance payments (Mendes-Da-Silva et al., 2021). 
Therefore, estimating the frequency and severity of such occurrences is crucial to the insurance 
activity, so that companies may plan how to better handle transference and make adequate their 
risk management policies (Cummins & Weiss, 2014; Kasumo et al., 2018).

One of the available tools to deal with high-risk and low-frequency events is the Extreme 
Value Theory (EVT). It is a methodology originated from the natural sciences and was adopted 
by several areas of finance by the early 1990s. It consists in a set of techniques that aim to 
model the distribution of maximum from collections of random variables, to estimate tails of 
distributions, and to measure the probability of occurrences in high quantiles. Applied to the 
Actuarial Science, it allows one to model the minimum solvency capital, calculate reinsurance 
premiums, and is also important to evaluating the estimation bias of parameters, dependence 
between observations, and to choose the ideal retention limit for risks by an insurer (McNeil, 
1997). Although the development of EVT is not recent, and its spectrum of application is quite 
wide, in Brazil there are few articles that use this technique for Actuarial Science (Melo, 2006).

The main goal of this study is to obtain the best adjustments of claim’s distribution tails using 
different parameter estimators provided by EVT. First, the efficiency of the methodology is 
evaluated through simulations in controlled scenarios. Then, the tested models will be used to 
estimate the tail of claims amount from 5 lines of business (LoB) with different characteristics, 
from light to heavy tails, in order to estimate the Expected Shortfall (ES), a summary statistic of 
extreme values. The results will be discussed according to each line of business nature, which EVT 
model best fit the data, and the consistency and reliability of the methods used. A comparison 
between the EVT and traditional models used in claims adjustment will also be made.

2. THEORETICAL BACKGROUND
One of the EVT’s main approaches consists of splitting the distribution function into two 

disjointed domains, fitting a model for each subdomain. Many authors are more concerned 
with high quantiles than common occurrences because it is in the tail that events with greater 
impact can materialize and demand more careful risk management strategies. For example, Haan 
(1990) applied EVT to model sea levels in order to make decisions regarding the optimal size of 
dams in the Netherlands, a country where approximately 40% of the territory is below sea level.

Along with the development of heavy-tailed distributions in probability theory, some statistics 
were proposed to infer how frequent the extreme values of a distribution are. The estimator 
proposed by Hill (1975) for the Pareto distribution is commonly applied due to its simplicity 
and its useful statistical properties, such as being asymptotically Normal (Haeusler & Teugels, 
1985) and converging to the smallest possible variance (Hall & Welsh, 1984). Brazauskas and 
Serfling (2000) suggested an estimator based on the sample median of Hill estimators, and 
compared its efficiency with other widely applied estimators, evaluating the impact that sample 
outliers may have.

Another historically important approach to study distribution tails was given by Pickands 
(1975) for the Generalized Pareto and it was based in order statistics. Estimators of this kind 
are generally less susceptible to bias than Hill’s, but their variance is usually higher (Yun, 2000). 
To compensate for this disadvantage, Taylor and Falk (1994) considered a convex combination 
between two Pickands estimators, while Drees (1995) generalized this process to an arbitrary 
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number of combinations. Yun (2000), on the other hand, approached the Pickands estimator 
using other order statistics, resulting in variance up to 10% lower.

In finance, EVT models are mainly used in the analysis of VaR (Value at Risk), which is a 
measure of investment portfolios exposed to severe losses, being constantly compared to results 
obtained by time series models. Daníelsson and Morimoto (2000) compared the application of 
GARCH models with EVT in Japanese market indices in the calculation of VaR, and concluded 
that, in addition to being more stable, the EVT methods exhibited better precision and lower 
variance. When modelling exchange rates, Iglesias (2012) proposed an estimator and made a 
comparison with Hill by using the Hausman test. He concluded that Hill is better in most cases 
in relation to his new estimator. Stupfler and Yang (2018), while seeking for an approach that 
captures higher levels of risk aversion in post-crisis situations, used the EVT for the pricing of 
CAT Bonds, securities that back catastrophic risks issued by insurance companies.

One of the main criticisms of this application of the EVT is the usual existence of correlation 
within the data, which could lead to a greater bias in estimates. Furthermore, there is no efficient 
method to determine the optimal threshold in which EVT is valid. For this reason, Haan et al. 
(2016) proposed an estimator that seeks to solve the previously mentioned problems, and their 
results point to greater efficiency when applied to the Dow Jones index.

Only recently, researchers in Actuarial Sciences started using EVT for insurance. In some cases, 
it may be necessary to model claims whose development has not yet completed, thus having 
a portion of their value estimated. Beirlant et al. (2018) adjusted several EVT estimators for a 
sample of car claims, in which part of the claim is still unknown. The authors concluded that 
the proposed estimator has reduced the bias. In life insurance, Huang et al. (2020) used EVT 
methods to complete actuarial tables at advanced ages. As few people reach ages beyond 100 
years, these cases are commonly approximated or even excluded in conventional tables, which 
makes it difficult to estimate large losses in the case of retirement plans.

McNeil (1997) modeled Danish fire insurance data using the maximum likelihood estimator 
(MLE) along with complementary graphical methods. The author concluded that EVT should 
be more explored by actuaries because it is a useful tool in analyzing risks at higher quantiles, 
but the parameters may have high uncertainty because of the choice of the retention limit. This 
study, due to its impact as one of the first applications of EVT at Actuarial Science, was revisited 
by Resnick (2014) with new techniques developed during this period. In it, the author concluded 
that the assumptions of independence between observations made by McNeil (and, in general, 
in insurance modeling) are accurate, in addition to the estimators pointing to similar models 
in both articles. However, the sensitivity regarding the choice of the tail’s threshold remains a 
problem to be explored.

In the Brazilian case, Melo (2006) used the EVT for tail modeling. The author’s approach 
aimed for reinsurance in the comprehensive condominium and business insurance against fire, 
lightning, and explosions. The objective was to compare distributions traditionally used to fit 
claims value, such as Gamma and Log Normal, to others that could be more adequate (EVT) 
in modeling tails. The author concluded that the EVT models produced better results when 
estimating high quantiles, which agrees with the existing literature. Thus, based on the conclusion 
about EVT models and the wide existence of estimators, our intention is to expand the author’s 
results when considering different methods of adjustment for the EVT models, especially the 
Generalized Pareto Distribution.
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3. METHODOLOGICAL PROCEDURES
In this section, we will define the problem to be studied in a mathematical way. Then a small 

review of the EVT will be presented, a summary of the main results that gives us a basis for 
discussing the different estimators. Finally, we will give an overview about the simulation process. 

3.1. Peaks over Threshold

Let Y1, ..., Yn be a collection of random variables from a common distribution FY(.), that 
represents claims in a given period of time. Consider U as a retention limit, yf the supreme of this 
random variable support and let Yn:i be the order statistics as the i-th greatest term. The tail of a 
distribution is defined as each Borel set to the right from U, i.e., X=(Y-U)+>0. It is important to 
make clear the difference between Y and X. The first represents the total amount of claim, and 
the latter is the exceeding value given a retention limit U, the theoretical reinsurance liability.

The Peaks Over Threshold (POT) method is a tool to model the Y distribution. It consists in 
dividing FY(.) into two subdomains and modeling only the portion to the right-hand side of a 
given value, the portion pertaining to extreme values, as described in Equation 1. The method’s 
advantage is that the data is often influenced by different phenomena, which could make a single 
distribution to have bias and unable to capture the entirety of the event. Using just a single model, 
it may fit the central part of the distribution better, but the extremes are more prone to errors. 
In this study, we focused into estimating FX(.).

( ) ( ) ( )  ( ) ( ) 0{ , 1  ˆ ˆ , Y Y Y Y X
y UF y F y F U F U F y U

y U
≤ ≤ = + − × −  >

3.2. The Extreme Value Distribution

The first approach to extreme values is through the distribution of random maximum. Consider 
m < n and define Mm=Max(Y1, ..., Ym). Knowing FY(.), it is possible to model Mm as equation 2:

{ }( ) ( ) ( ) ( )1 1, , m m
m m m YP M Max Y Y y P Y y Y y P Y y F y= … < = < ∩…∩ < = < =

Taking the limit when m → ∞:

( )
1,
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≥
=  <

In other words, the maximum distribution converges to a degenerate distribution and does 
not bring any useful information regarding the model. Thus, to obtain some relevant estimate for 
high values of the distribution we may consider transformations to rescale the random variable. 
According to Gnedenko (1943), if exists sequences {am}, {bm} such that bm>0 for every m satisfying:

( ) ( )
  

   
m
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m
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and if H(.) is not degenerate then it will be:
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The H(.) function is called Extreme Value Distribution (EVD), and its format only depends 
on the shape parameter γ, called the extreme value index. The function H(.) falls into 3 different 
domains: if γ<0, H is a Weibull distribution; when γ=0 is the occurrence of a Gumbel; and, finally, 
with γ>0 it becomes a Fréchet. Each family is related to one of the cases cited above, in which it 
is said to belong to a certain domain of attraction of H(.), with γ less than, equal to or greater 
than 0. If there are two distinct pairs of sequences {am},{bm} e {am*},{bm*} for which H(.) is non-
degenerate, then the final γ leads to the same domain of attraction (Resnick, 1971).

3.3. The Generalized Pareto Distribution

Another approach to study rare occurrences is to evaluate tail convergence properties. The 
objective is to find a limiting distribution that approximates the tail FX(.). An important result 
was obtained by Pickands (1975). Let 0<U<yf be a retention limit. Then:

( ) ( )
( ) ( ) ( ) ( )  0

1
Y Y

X
Y

F x U F U
supr G x supr F x G x

F U
+ −

− = − =
−

with
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1 1 , 0
 

1 , 0
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x
G x

e

γ

σ
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γ

σ

γ

−

−


  − + ≠ =   


 − =

In Equation 7, σ is a scale parameter and the G(.) distribution is called Generalized Pareto 
Distribution (GPD), and, just like the H(.) function, it unifies three families of distributions with 
different properties. When γ<0, G(.) corresponds to a Beta, used to model tailless or light tail 
random variables, having limited support (yf<∞) and all moments defined. Distributions contained 
in this case are Uniform and Weibull. For γ=0, the limiting distribution is an Exponential, having 
no heavy tail, finite moments, and infinite support. This family encompasses the largest number 
of functions, with Normal, Log-Normal and Gamma being the main representatives. Lastly, 
when γ>0, we have the Pareto distribution, which encompasses heavy-tailed distributions, with 
occasional undefined moments and power-law decay of the tail. Among its representatives are 
Log-Gama, Cauchy, and Burr. The Pareto family is usually chosen for modeling tails in insurance 
because it is more conservative to estimate high quantiles.

Pickands (1975) also defined a parametric estimator for location and scale of this distribution 
based in order statistics. Consider k integer such that 0<4k<n. The estimators are:

( ) 1 : :2

:2 :4

2P n k n k
k

n k n k

X Xln ln
X X

γ −  −
=  − 

( )
2

:2 :4
0

/
P

k

ln
uP

k n k n kX X e duγσ = − ∫

The same Greek letter γ was used in both the H(.) and G(.) distributions for the extreme value 
index because this indicator denotes the same domain of attraction (Pickands, 1975). We also 
calculated the maximum likelihood estimator of the GPD by maximizing the differentiation of 
equation (7) from the sample’s perspective.

(6)

(7)

(8)

(9)
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3.3.1. The Pareto Distribution

The case γ>0 (Pareto) is the most important. In general, distributions that converge to this 
domain of attraction can be represented by L(x), a slowly varying function:

( ) ( )1XF x x L xα−= − ×

where α is related to GPD through the ratio α=1/γ. When L(x)=c, a real-value constant, the 
MLE can be computed according to Hill’s (1975) likelihood maximization procedure. The 
difference between Hill’s procedure and the one cited in section 3.3 is that Hill considers only 
the γ parameter and has an analytical solution, while the one in section 3.3 considers γ and σ 
simultaneously. The mathematical formulation of the Hill index is given by:

1 :
1

:1/

k n i
i

n kH H
k k

Xln
X

k
γ α

−

=

 
 
 = =

∑

A generalization of the Hill estimator proposed by Dekkers, Einmahl and Haan (1989) will 
also be used in this article. The Moments estimator has convergence properties similar to Hill, 
but with the advantage of being more reliable in non-heavy tail scenarios (Resnick, 2014). Its 
functional form is quite similar to Equation 11:
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X

M
k

−

=

 
 
 =

∑

( )
121
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2

kM M
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M
M

M
γ α

−
 
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 
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Estimators from this family have good statistical properties. However, they are subject to the 
variance vs. bias tradeoff: i.e., the more observations are used in the estimation, the greater the 
bias is and the smaller is the variance of the estimator, a fact that makes choosing the beginning 
of the tail a sensitive process (Caeiro et al., 2020).

3.4. Simulation Method

The execution will be split into two parts. Initially, the algorithms will be tested in controlled 
scenarios by simulations to observe the differences between the methods, and results obtained. 
Afterwards, the techniques will be applied to real anonymized data from an insurance company.

In the simulations, the data will be generated from a GPD with different magnitudes of the γ 
parameter and sample sizes. The main goal is to assess whether the estimators capture the correct 
domain of attraction and how close they get to the fixed γ. The algorithm process is described as:

1.	Generate a random sample of n observations from claim amounts Y with distribution FY(y);
2.	From the sample, obtain Horror Plots (HP) to assess the estimators’ behavior of convergence 

as a function of the number of observations;
3.	Plot the histogram of each estimator and summarize some statistics in tables;
4.	Determine which method came closer to the true value;

(10)

(11)

(12)

(13)
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3.5. Other Analysis Tools

The HP of a sample consists of values sorted in descending order, and, starting from the i-th 
element, calculate the respective estimator for the subset between the first and the i-th element. 
The objective is to evaluate the convergence of estimates for tails, depending on the number of 
available observations used to calculate. 

The Expected Shortfall (ES) is defined as the expected loss beyond a threshold u, and its 
behavior is determined by the domain of attraction of the Generalized Pareto. For positive 
(negative) γ, it has an increasing (decreasing) behavior as a function of u, i.e., the expected loss 
increases (decreases) according to the threshold. When γ=0, the Generalized Pareto becomes an 
Exponential, which ES assumes a constant value due to the memoryless property. Thus, graphs 
of ordered pairs described by Equation 14 can be used to search for regions with homogeneous 
tail behavior and to define the retention limit.

( )1
: :1

: ,  , 2
1

k
n i n ki

n k

Y Y
Y k n

k

−

=
  −   ≤ ≤ −    

∑

It is important to notice that multiplying the ES by the probability 1-FY(u) of exceeding the 
threshold constitutes the actuarial pure excess-damage reinsurance premium. Because an actuarial 
pure premium is the amount to be paid for a (re)insurance policy equivalent to the mathematical 
expectation of the future claims present values to which an economic agent is subject (Bowers 
et al., 1997; Landes, 2015).

Sample QQ-Plots against an exponential distribution with the same mean, representing the 
domain of attraction in which γ=0, will also be used. The objective is to indicate whether the 
data has a heavier (lighter) tail than an exponential, which would indicate a positive (negative) γ.

4. SIMULATION RESULTS
Figure 1 has the HP for the three tested estimators of a sample with 2,500 observations 

generated from a GPD with γ=1.5 and σ=100. It is observed that the Hill estimator requires 
a low number of data points in its estimation, otherwise the presence of bias becomes more 
intense. The Moments estimator follows the same trend as Hill, but its bias is lower. The Pickands 
estimator has the greatest variance of them; but it does not have bias, thus the need to use all 
available data for its calculation. The MLE does not need to be presented, due to its nature of 
being directly calculated, not being subject to bias due to the fact we know the density function.

(14)

Figure 1. Resulting HP for different estimators simulated from a GPD with γ=1.5; σ=100; 2,500 observations.
Source: own elaboration.
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In a second approach, 5,000 random samples of size 2,500 were generated and the 4 estimators 
fit for each, given a number of order statistics as a parameter. The histograms of the results with 
parameters γ=1.5 and σ=100 can be found in Figure 2, and in Table 1 we show the descriptive 
statistics. From Figure 2, the distribution of each estimator is close to a Gaussian. Table 1 shows 
that there is some difference between the actual value of the parameters and those obtained 
by the Hill and Moments estimators, highlighting the problem of variance vs. bias. The larger 
the sample is, the greater the bias present in its estimation and the smaller the variance of the 
estimator. However, the Moments estimator still achieves better results than Hill, both in terms 
of bias and standard deviation, when comparing Moments with n=300 and Hill with n=125.

Hill with n=500 is a scenario in which the variance and mean were very similar to the Moments 
estimator with n=700, and also the greatest bias, around 0.05. In this scenario, the estimator 
obtained would be the most conservative, as they indicate a heavier tail than the real one, in a 
scenario in which the variance of losses is not well defined (because γ>1). In contrast, because 
the sample contains a lot of observations, the Pickands estimator achieves a low amount of 
standard deviation, slightly smaller than Moments with 300 and Hill with 125 observations, while 
maintaining zero bias. As for the MLE, because the data was generated by its own function, it 
was the best scenario both in terms of bias and standard deviation, as expected. However, caution 

Figure 2. Resulting Histograms for different estimators simulated from a GPD with γ=1,5; σ=100; 2500 
observations.
Source: own elaboration.

Table 1 
Comparison between the estimators for γ from a GPD with parameters γ=1,5; σ=100; 2,500 observations

Estimator Hill Hill Moments Moments Pickands MLE

Used Data (n) 500 125 700 300 2,500 2,500
Mean γ 1.5529 1.4969 1.5530 1.5039 1.4975 1.4993
Standard Deviation 0.0687 0.1334 0.0707 0.1054 0.0987 0.0499
Bias 0.0529 0.0031 0.0603 0.0039 -0.0025 0.0007

Source: own elaboration.
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is needed when considering this estimator as most adequate, because it was being tested on its 
own distribution. In practice, the true tail distribution is unknown.

The same exercise was replicated for samples of size 2,500 obtained from Generalized Pareto 
with parameters γ=0.1; σ=10. The results of an illustrative replication are presented in Figure 3. 
In this case, Hill had a very intense bias, even when almost no data was being used in its estimation 
due to its heavy tail estimation nature. The same comment applies to the Moments estimator, 
as its bias grows much faster than the previous scenario. Pickands is extremely volatile at the 
beginning but manages to stabilize at the end.

In the experiment of successive extractions of samples, due to space limitations the histograms 
were omitted because the formats were not very different from the previous case and the Normal 
approximation is still valid. Table 2 brings the descriptive statistics of this experiment. The Hill 
estimator bias is evident, because even while using only n=12 or 25 (amount of data in which the 
estimator still presents stability at some level), the difference between the estimated coefficient 
and the actual one was around 0.1. The Pickands estimator was again more efficient than the 
Moments estimator, since that to obtain the same bias, the standard deviation of the Moments 
estimator needed to be higher. If the objective is the same variance, however, then there will be 
a bias of 0.04. The MLE had once more results similar to Pickands in terms of mean, but its 
standard deviation was smaller.

It is worth noticing that, besides MLE, whose good results were already expected as it is a 
direct estimation method, Pickands in every controlled experiment was always the closest to the 
true γ coefficient value. In the unbiased cases, the Pickands variance was similar or smaller than 
Hill and Moments. However, when some bias is tolerated, it was possible to obtain estimates of 
lower variance as in the case γ=1.5 using Hill and Moments. Another important fact is that Hill 
and Moments were better applicable for larger values of γ, otherwise the bias can be significant 
due to the bias vs. variance trade-off aforementioned. However, the deviation always occurred 
towards being more conservative, and such situation may be preferable than incurring a greater 
variance. Especially in situations in which risk overpricing (generating potential opportunity 
costs) is less harmful than exposure to company’s ruin.

Figure 3. Resulting HP for different estimators simulated from a GPD with γ=0.1; σ=10; 2,500 observations. 
Source: own elaboration.

Table 2 
Comparison between the estimators for γ from a GPD with parameters γ=0.1; σ=10; 2,500 observations

Estimator Hill Hill Moments Moments Pickands MLE

Used Data (n) 12 25 62 225 2,500 2,500
Mean γ 0.1959 0.2270 0.1057 0.1397 0.0999 0.0993
Standard Deviation 0.0555 0.0422 0.1292 0.0700 0.0737 0.0217
Bias 0.0959 0.1270 0.0057 0.0397 -0.0001 -0.0007

Source: own elaboration.
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5. APPLIED RESULTS
In this section, we will present the results obtained when applying the different methods of 

estimation to a database obtained from a multinational insurance company that operates in 
Brazil. The claims were incurred and settled between January/2006 and May/2012. Five lines of 
business (LoB) with different characteristics were used for comparison purposes: 0196 (Large and 
Operational Risks), 0167 (Engineering), 0351 (General Civil Liability), 0531 (Automobile) and 
0993 (Group Life). All monetary values expressed in constant currency as May/2012, allowing 
direct comparison. Table 3 presents the descriptive statistics.

The ES and QQ-Plot for each LoB are presented at Figure 4. In LoB 0531, a tendency to light 
tails may be observed, as the QQ-Plot is below the Exponential distribution and ES suddenly drops. 
As for LoB 0993, its ES is increasing and its QQ-Plot is above the Exponential line, but there is a 
tendency towards stabilization at high quantiles. This may indicate a distribution without a heavy 
tail: i.e., for both cases it is not expected that there will be expressive gains from EVT adoption.

From Table 3, LoB 0196 has the greatest dispersion. This can be seen in Figure 4, as it is a 
LoB that traditionally presents high-magnitude claims and requires different model for extreme 
values. There is an important detachment of the QQ-Plot relative to the Exponential and the 
ES is increasing. However, an apparent stabilization in the tail of this LoB happens, as in 0993. 
This occurs because the last 3 observations were very close (R$36,827,195 and R$35,086,290). 
Lastly, in LoB 0351 and 0167, both QQ-Plot and ES indicate distributions with heavy tails.

As the determination of the “extreme values” threshold is discretionary for each case, a tail 
cutoff value was determined solely based on the QQ-Plot and ES behaviors. This cutoff can be 
understood as the retention limit at the reinsurance contract in the excess of loss modality, with 
the excess claim paid to the insurer by a reinsurer. We looked for region where there is greater 
stability in the most extreme observations in both elements (QQ-Plot and ES). The only exception 
was in LoB 0196, in which there is no well-defined behavior for both criteria, so HP1 was used.

The comparison of the models was done by using the sum of squared errors (SSE), a measure 
defined as the difference between the observed and estimated accumulated function, as in Equation 
16. For the plots and calculation of SSE of Pickands and MLE, the estimated scale parameter σ 
was calculated from their respective method described at section 3. Since Hill and Moments does 
not describe a way to obtain σ, the one that minimizes the SSE was used (numeric approach). 
A Gamma distribution was also fitted as a baseline model, to allow comparison between EVT 
and more traditionally used distributions.

1	 Every HP was plotted, but because of space limitation, only LoB 0196 was shown due its importance. If the reader is 
interested, the authors can share the HP of the others LoB upon request.

Table 3 
Descriptive statistics for each LoB

LoB 0531 0993 0196 0351 0167

Number Observations 38,783 1,375 414 441 34

Mean(R$) 10,165 18,186 577,989 29,570 221,195

Standard-Deviation(R$) 14,878 27,733 3,504,142 176,032 800,037

Maximum(R$) 126,601 344,748 39,261,086 3,576,987 4,649,752

Minimum(R$) 1,000 1,004 1,015 1,009 1,250

Source: own elaboration.
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Figure 4. QQ-Plots and ES plot for each LoB.
Source: own elaboration.
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The results obtained for each LoB were compiled at Table 4, and the graphs comparing the 
empirical and theoretical cumulative functions are shown in Figure 5.

In LoB 0531, the threshold U=100,000 was chosen, making 190 observations be above this 
limit. It is possible to infer that the tail in this case is light because the Moments, Pickands 
and MLE indicate a negative γ̂ . Among all models, the one that came closest was Moments 
(SSE=0.0570), followed by Pickands (SSE=0.1686) and Maximum Likelihood (SSE=0.2497) 
and Gamma (SSE=0.4083). On the other hand, Hill’s estimator did not capture the light tail 
effect, being the only estimator to present a positive γ̂ .

For LoB 0993, U=30,000 with 244 observations was chosen. This threshold was defined based 
on the ES graph, as the behavior is approximately linear within this subdomain. In this case, 
basically just two behaviors were observed: Moments and MLE with a low γ̂  and a better SSE 

(15)

Table 4 
Fit results for each LoB

LoB Exceeding 
Data

Retantion 
Limit Statistic Hill Moments Pickands ML Gamma*

0531 190 100,000

γ̂ 0.0755 -0.6169 -0.9408 -0.3804 α=1.4429; 
β=5502

Var 0.0055 0.1013 0.2567 0.045 –
SSE 1.1982 0.057 0.1686 0.2497 0.4083
ES 8313 7831 7757 7726 7939

0993 244 30,000

γ̂ 0.6108 0.2904 0.5923 0.1744 α=0.8784; 
β=38053

Var. 0.0391 0.0667 0.2538 0.0752 –
SSE 0.2441 0.1423 0.2459 0.1734 0.2251
ES 54020 35645 56729 33490 33428

0196 137 15,000

γ̂ 2.0375 2.0228 1.8271 2.2245 α=0.2152; 
β=7999620

Var. 0.1741 0.1928 0.4539 0.2755 –
SSE 0.0424 0.0443 0.1013 0.0275 2.7369
ES ∞ ∞ ∞ ∞ 1721734

0351 105 20,000

γ̂ 0.9694 0.8117 0.3358 0.6669 α=0.4800; 
β=178,814

Var. 0.0946 0.1257 0.3708 0.1627 –
SSE 0.0783 0.0449 0.0798 0.0310 1.0036
ES 749910 130749 48794 79757 85827

0167 34 0

γ̂ 3.057 2.1584 1,0908 1.2289 α=0.3217

Var. 0.5247 0.4080 0.7814 0.3823 β=687500
SSE 0.3608 0.1269 0,1112 0.0318 0.6772
ES ∞ ∞ ∞ ∞ 221195

Note: *Maximum likelihood; **For Gamma, instead γ̂  and its variance, the table contains it estimated parameters. 
Source: own elaboration.
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statistic (0.15); Hill and Pickands with a higher γ̂  and lower SSE (0.24), a result similar to the 
Gamma distribution. In the second case, as discussed in section 4, Hill has the characteristic of 
greater bias and overestimation of the tail for low values of γ̂ .

In LoB 0196, the limit chosen was U=15,000, with 137 observations remaining, based on the 
HP from Figure 6. In this case, neither the QQ-Plot nor the ES exhibited well-defined behaviors. 
At the HP for Hill and Moments, a tendency for stabilization between 100 and 150 observations 
can be seen, hence the threshold U definition. From the results compiled at Table 4, the best 
estimate was given by the MLE (SSE=0.0275), followed by Moments and Hill with similar SSE 
(around 0.043), and lastly Pickands (SSE=0.1013). The coefficient γ̂ ≈2 implies a heavy tail 
distribution without defined moments, being a potentially risk for the insurance activity given 
that its mean is unstable. The Gamma distribution had much worse fit than every Generalized 
Pareto estimator, indicating that traditional models fail to capture heavy tails. This is more evident 
when evaluating the residuals, which show a strong positive and then negative trend.

Figure 5. The fit (left) and the residuals (right) for each LoB and method
Source: own elaboration.
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In LoB 0351, the threshold U=20,000 and n=105 was chosen for the same reason as the 
previous LoB 0993: the ES is approximately linear, and some low values residuals are eliminated. 
Once more, the MLE and Moments achieve best results (SSE=0.0310 and 0.0449 respectively), 
while Hill (SSE=0.0783) overestimates and Pickands (SSE=0.0798) underestimates the tail. 
However, regardless of the chosen estimator, it is possible to infer that the tail of this distribution 
is slightly heavy with a defined mean, given that the coefficient never exceeded 1. In this LoB, 
the Gamma distribution was the worst fit again, having the highest SSE.

For LoB 0167, no retention limit was imposed due to limited amount of data. The estimators’ 
variances in this case was quite high, and even Hill oscillated around 0.5. If another threshold 
was used, it would increase the variance even more, making the method unreliable. Once more, 
from Table 4, MLE was the most accurate (SSE=0.0318), followed by Pickands (SSE=0.1112), 
Moments (SSE=0.1269) and Hill (SSE=0.3608). At the fit graphs, it can be seen that Moments 
and Hill tended to overestimate the quantiles for the higher values of the distribution but was also 
more appropriate for lower quantiles. On the other hand, Pickands and MLE were the opposite: 
they underestimated the beginning of the distribution to better capture higher quantiles. The 
Gamma distribution had the worst performance again.

The theoretical ES were also calculated in Table 4 using each method. The ES of the sample 
and the Gamma distribution are the same because the α and β parameters were obtained through 
the moments generating function. In general, LoB with high γ̂  made the ES were not well 
defined: the LoB 0196 and 0167 have 4 infinite ES, which reinforces the heavy nature of these 
tails. On the other hand, LoB 0351 had a high variance in its γ̂ , which is also reflected at the 
high dispersion of the ES. In this case, the highest estimate (Hill) is more than 15 times higher 
than the lowest (Pickands). In LoB with light or slightly heavy tails (0531 and 0993), there were 
no large variations between the theoretical ES estimates.

5.1. Adherence of fits by different estimators

In order to verify the adherence of the fits, the SSE obtained by varying the retention limit 
for each LoB were also computed. The results are shown in Figure 7.

In LoB 0531, the Pickands and Moments estimators have the best SSE throughout the 
tested interval. The MLE and the Gamma distribution at first shown a high SSE. However, for 
U>100000, the SSE approaches Moments and Pickands. Hill is always higher.

For LoB 0993, the Gamma distribution presented similar results to MLE and Moments 
when U>30000. On the other hand, Hill and Pickands have great variation at the tested range, 
although they are not totally inadequate for the interval 30000<U<35000.

Figure 6. HP for LoB 0196– Named and Operational Risks.
Source: own elaboration.
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As for LoB 0196 and 0351, in both cases the Gamma distribution always had a high SSE, for 
the most of tested threshold interval. These LoB have a heavy tail nature and this distribution 
cannot capture this effect, making it inappropriate to use.

At last, the LoB 0167 does not have enough data for this analysis.

6. ESTIMATION OVER TIME
As a final way of analyzing the data, the time dimension was considered. To assess the estimates’ 

sensitivity to arrival of new information, the data was arranged longitudinally. The objective is to 
identify the impact that claims of high severity, especially those that exceed the current maximum, 
have on the estimates derived from the different methods. Due to space limitations, LoB 0531 
will be disregarded, because its tail is already limited (due to the imposition of a maximum 
indemnity limit), and also 0167, due to the insufficient amount of data. At the plots, vertical 
bars indicate claim values that exceed the current maximum. The results are shown in Figure 8.

The results show similar behavior between the estimators, both in increase and in decrease. In 
LoB 0351, there is a tendency for estimates to grow whenever a new maximum is reached in the 
sample, followed by a stabilization at the new level. MLE is the most affected of them, followed 
by Moments, while Hill has barely changed, maintaining the level since 2007.

As for LoB 0196, there is a rapid rise in peaks, reaching the final level of the sample in 2008. 
This occurs because one of the biggest accidents in the sample was observed in the very beginning. 
However, as in LoB 0351, the coefficients did not stabilize at the same speed. In fact, there is a 

Figure 7. The SSE given U for each LoB
Source: own elaboration.
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downward trend over time, and the extreme values at the beginning of the period may have been 
considered sufficiently rare, so as not to severely affect the tail indices. But it could also signal a 
change in the company’s underwriting process, better selecting risks based on past extreme losses. 

Lastly, LoB 0993 in the same way as LoB 0196, shows rapid maximum maturation. However, 
there is no downward trend in the estimators, but a convergent behavior similar to LoB 0351. 
This could indicate maintenance of the underwriting process and risk management, or that there 
were no sudden changes in the portfolio profile of policyholders.

The purpose of Figure 9 is to assess the evolution of ES over time. It is important to remember 
that the ES is the actuarial pure reinsurance premium, and it is the cost that the insurer incurs 
to protect itself financially against the occurrence of extreme severity claims. Therefore, it is 
essential to evaluate the sensitivity of this measure when a new maximum amount appears and 
also when the same maximum lasts for a long time. Vertical bars indicate claim values that exceed 
the current maximum.

In general, all LoB had very similar behavior to what has already been verified in Table 4. One LoB 
that stands out in Figure 9 is 0196. Because estimates of γ are always greater than 1 (approaching 
2), the ES for this LoB is infinite, and it appears as discontinuities. The immediate implication 
is to have reinsurance premiums so expensive in a way to render the risks non-reinsurable. As 
reinsurance premiums should be contained in insurance premiums, the consequence would be to 
make events uninsurable, reducing the supply capacity of insurers, since entities would consider 
the risks involved in these operations to be extremely high and unpredictable.

Figure 8. The evolution of the estimators for each LoB
Source: own elaboration.
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For LoB 0993, and Hill and Pickands estimators, the ES maintains a value close to R$50,000 
throughout the period while MLE, Moments and the sample do not deviate from the values 
in Table 4. The ES of the MLE is close to the sample because the γ estimated in Figure 8 were 
close to 0. Lastly, in LoB 0351, with the exception of the Hill estimator, the ES also remained 
approximately constant, with small positive oscillations when a new maximum claim is materialized. 
In all cases, however, actuarial pure reinsurance premiums are positively sensitive to breaches 
of the old threshold, signaling that the value should be automatically updated because of a new 
maximum occurrence. Furthermore, the premiums tend to remain constant (or with a slight 
reduction) as the old maximum continues to be in force, denoting a certain persistence of the 
old severities influencing new contracts.

7. CONCLUSIONS
In the insurance business, where the goal is to guarantee a company’s solvency in the long 

run, it is important not only to have tools to estimate the greatest potential risks to which the 
company is exposed, but also have good criteria for selecting the best estimators. After all, if 
materialized, claims of extreme severity can lead an insurer to present intense variations in the 
result and, ultimately, lead the entity to ruin. One of the tools to deal with this uncertainty is 
the reinsurance contract, especially the excess of loss. Given this scenario, this study aimed to 
evaluate different estimation methods for high quantiles of claims distributions, considering only 
the values that exceed a given retention limit. EVT was chosen to be our theoretical basis due to 
the promising results arising from techniques derived from this area of Statistics.

Figure 9. The evolution of the Expected Shortfall for each LoB
Source: own elaboration.
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Regarding the tested estimation methods, in general, the Moments estimator seemed to be the 
most appropriate of all. Its bias in the simulations was a little intense when a large proportion of 
the sample was used for estimation, but always in the sense of overestimating the exposed risks 
and being more conservative. On the other hand, its variance is not very large, being applicable 
also for any γ, making it versatile. As for the Hill estimator, although it has the lowest variance 
among them, it has a very intense bias when used for tails that are not extremely heavy, arising 
from distributions without defined mean (γ>1). In general, it had very good results when used 
in the LoB 0196, but even so, it did not manage to be better than Moments. It is important 
to note that Resnick (2014) has already mentioned the fact that Moments is more suitable for 
lower values of γ than Hill.

The Pickands estimator in the simulations obtained very promising results, but the restricted 
amount of data and its large variance make it unstable when applied to real data. In this way, 
unlike Hill or Moments, it is not possible to determine whether risks are being overestimated 
or underestimated, as any deviation is simply random. Lastly, the MLE also obtained good 
results, in addition to having a small variance when compared to the other models. Its bias, like 
Pickands, is null, thus being a choice that does not tend to overestimate or underestimate the 
occurrences of extreme values. Its only shortcoming, however, is when γ<0. In this situation, it 
ended up being the estimator with the highest SSE. As for the traditional Gamma distribution, 
it obtained good results in light or slightly heavy tails, such as LoB 0531 and 0993, although it 
is not suitable for heavy tails (LoB 0351 and 0196).

In light of all the results obtained in this study, both in the simulated experiments and in the 
real application, it was observed that the tail estimation methods constitute a powerful tool for 
the insurance area and should be looked at more carefully. Although the results do not imply that 
there is a perfect and unique estimator that can be efficiently applied in all cases, the combination 
of all methods is vital to obtain good estimates. Understanding the nature and characteristics of 
each estimator is essential for the correct application of the model. A possible extension of this 
study would be to carry out a similar evaluation for other estimators, given their broad spectrum, 
and compare them among their families and methodologies.
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