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Abstract

In economics, we need to forecast the present because reliable and comprehensive

measures of the state of the economy are released with a substantial delay and

considerable measurement error. Nowcasting exploits timely data to obtain early

estimates of the state of the economy and updates these estimates continuously

as new macroeconomic data are released. In this chapter, we describe how the

framework used to nowcast GDP has evolved and is applied worldwide.
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1 Introduction

The term “nowcasting” is a contraction of the words “now” and “forecasting,” and it

refers to the prediction of the very recent past, the present, and the very near future.

This word has been used in meteorology for a long time, and it was introduced into

economics by Giannone et al. (2008).

Obtaining a reliable measure of the state of the economy is pivotal to making policy

and business decisions. Every day, policy institutions, market analysts, and financial and

non financial corporations parse troves of economic data released by statistical agencies,

private and public surveys, and other sources to assess the health of the economy. Based

on these data, they nowcast the current state of the economy; that is, they create a

narrative about where the economy is and where it is headed. The difficulty comes in

separating meaningful economic signals from the noise.

In their seminal paper, Giannone et al. (2008) designed a nowcasting model to for-

malize key features of how market participants and policymakers read data in real time.

A few years later, Bańbura and Modugno (2014) enriched the state-of-the-art nowcast-

ing model with the appropriate tool to monitor how multiple and asynchronous data

releases change the assessment of the state of the economy. In other words, with this

tool, the nowcasting model can mimic the behavior of market participants who revise

their assessments whenever a new data release differs from their expectations.

Before Giannone et al. (2008) introduced their nowcasting model, real-time monitoring

of macroeconomic conditions was more of an art than a science. The common practice

was to use a set of heuristic models and a good dose of judgment to make predictions

about the state of the economy. However, judgmental and simplified heuristic procedures

are exposed to internal inconsistencies, with the constant risk of putting too much weight

on outdated signals or on timely but unreliable releases. In addition, this procedure

cannot help interpreting the information content of each data release in a systematic

way. Moreover, assessing the state of the economy in real time involves analyzing a large

amount of complex information that is continuously released, often with multiple data

releases in a single day. Lastly, processes that are not scientific and do not use formal

methods cannot be evaluated ex post. In conclusion, updating the assessment of the

economy in real time using a procedure that is not entirely automated is costly, risky,

and not scalable.

The challenge embraced by the literature was to design an entirely automated plat-

form capable of tracking the state of the economy without relying on any judgment or

subjective prior information. Hence, the nowcasting literature developed a formal and

internally coherent methodology replicating the experts’ judgmental process. To perform

this task, an arsenal of tools and methods in econometrics, statistics, and data analy-

sis has been deployed, building upon the nascent developments and insights in big data
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analytics and taking advantage of improvements in scientific computing, data handling,

and visualization. Compared to judgmental predictions, the advantage of having such a

platform is that it delivers a transparent monitoring of the economy through a robust

methodology and provides a coherent analysis of the links between macroeconomic and

cyclical developments.

The first nowcasting model was a dynamic factor model (DFM) equipped with efficient

filtering techniques. This model exploits two essential and robust features of business cy-

cle fluctuations. First, macroeconomic data strongly co-move, so a few common factors

summarize their dynamics well—in this context, the common factors are typically asso-

ciated with the unobserved state of the economy. Second, historically, economic booms

and busts persist for a considerable period of time, so the past dynamics of such factors

should be informative to understand where we are and where we are heading in the near

future. Hence, a DFM provides a parsimonious yet suitable representation for the large

set of macroeconomic time series.

Formally, DFMs can be written in a state-space form or as a system of two types of

equations: measurement equations linking observed series to the unobserved factors, and

transition equations describing the dynamics of the unobserved factors. The state-space

representation allows the use of Kalman filtering techniques to obtain projections for the

observed variables and the unobserved factors. Most importantly, given an estimate of the

parameters, the Kalman filter can easily cope with challenging features of the nowcasting

information set, such as data observed at different frequencies and with missing data.

These can appear either at the end of the sample due to asynchronous data releases

(ragged edges) or at the beginning of the sample due to only a recent collection of some

data sources.

The use of DFMs, coupled with the Kalman filter, has a long tradition in econometrics.

However, for a long time, it was considered infeasible for high dimensional data, as they

require estimating a large number of parameters. Doz et al. (2012) challenged this view

and, by studying the asymptotic properties of the maximum likelihood estimator when

the complexity of the model and the sample size increase, showed that these models

are viable for analyzing big datasets. They also refined the estimation procedure to

make the computation scalable to high-dimensional problems. However, their procedure

was not directly suitable for nowcasting with an information set characterized by data

with mixed frequencies and missing data. Bańbura and Modugno (2014) tackled this

problem by modifying Doz et al.’s maximum likelihood procedure to efficiently use all

the information embedded in incomplete datasets. Subsequently, D’Agostino et al. (2016)

provided an alternative solution based on Bayesian inference.

Taking stock of the accumulated experience has shown that the model provides pre-

dictions whose accuracy equals or exceeds the accuracy of expert judgment predictions.

This performance is why, today, almost every central bank in the world has a nowcasting
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model. For example, various Federal Reserve branches (Atlanta, Cleveland, and New

York) periodically publish their nowcasting models’ results, and Bloomberg makes avail-

able nowcasts through its platform. All these estimates are widely followed and discussed

by the press and analysts at hedge funds, investment banks, and large corporations.

Nowcasting has also become an active area of academic research. In a survey article,

Stock and Watson (2017) included nowcasting among the 10 most important innovations

in time-series econometrics over the previous 20 years, and many papers applying the

nowcasting framework to economies all around the world have been published.1

In this chapter, we focus on how DFMs are constructed and estimated for nowcast-

ing gross domestic product (GDP).2 We will briefly discuss the limits of how real-time

economic monitoring was conducted before nowcasting and how this framework has over-

come those limitations, particularly interpretability. After a brief description of alterna-

tive models that have been proposed for real-time monitoring of the economy, we will

also discuss how estimation algorithms for DFMs have evolved to efficiently use all the

information content embedded in a dataset characterized by a large cross-section of data,

with mixed-frequency and mismatched time span coverage. We will then describe the

data selection process and conclude with an empirical section that will highlight the per-

formance of some of the nowcasting applications during the Great Financial Crisis and

the onset of the COVID-19 pandemic across multiple countries.

2 Models and their interpretability

Key data that describe the current state of the economy are available with a significant

delay, particularly those collected quarterly, with GDP being a prominent example. For

instance, limiting our attention only to G7 countries, the delay between the publication

of the first official estimate of GDP and the end of the reference quarter is approximately

four weeks in the United States and the United Kingdom, six weeks in Japan, and eight

1The economies include Belgium (de Antonio Liedo, 2015), Brazil (Bragoli et al., 2015), BRICs
plus Mexico (Dahlhaus et al., 2017), Canada (Bragoli and Modugno, 2017), China (Yiu and Chow,
2010 and Giannone et al., 2013) ,the Czech Republic (Arnostova et al., 2011; Rusnák, 2016), Ecuador
(González-Astudillo and Baquero, 2019), Euro Area (Angelini et al., 2010, Camacho and Perez-Quiros,
2010, Angelini et al., 2011, Bańbura and Rünstler, 2011, Bańbura et al., 2011, Bańbura and Modugno,
2014 Carriero et al., 2019, and Cascaldi-Garcia et al., 2023), European countries (Rünstler et al., 2009
and Jansen et al., 2016), France (Barhoumi et al., 2010 and Bessec and Doz, 2014), Germany (Marcellino
and Schumacher, 2010; Andreini et al., 2023), India Bragoli and Fosten, 2018, Indonesia (Luciani et al.,
2018), Ireland (D’Agostino et al., 2012), Japan (Bragoli, 2017; Hayashi and Tachi, 2023), Mexico Caruso,
2018, New Zealand (Matheson, 2010), Norway (Aastveit and Trovik, 2012, and Luciani and Ricci, 2014),
Switzerland (Siliverstovs, 2012), Turkey (Modugno et al., 2016), the United Kingdom (Anesti et al.,
2018), United States (Giannone et al., 2008; Lahiri and Monokroussos, 2013; Bańbura et al., 2013; Bok
et al., 2018; Antolin-Diaz et al., 2020). Surveys of the literature on nowcasting are provided by Bańbura
et al. (2011, 2013); Luciani (2017); Bok et al. (2018).

2Nowcasting models have also been applied to variables other than GDP, such as, among others,
inflation (Modugno, 2013) and trade (D’Agostino et al., 2017).
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weeks in Canada. France, Germany, and Italy were characterized by a six-week delay

until October 2015, four weeks after that.

However, plenty of information (cor-)related to GDP is published at higher frequencies

and earlier than the variable of interest: information about the labor market, industrial

production, trade, sales, housing, or surveys about the state of the economy. These are

frequently available at monthly frequencies and are released before the current quarter

figure of GDP.

The first foundational principle of nowcasting was to create a framework that could

exploit a large and timely information set (cor-)related to the target variable to generate

its early estimates. However, using timely information from various sources has a number

of implications regarding the features of the information set: 1) it may be composed of

data with different frequencies; 2) data are released in a non synchronous manner and

with different degrees of delay, creating the so-called “ragged” or “jagged” edge dataset;

3) data may have a different time availability.

Nowcasting is not the first framework deployed that produces estimates of the state of

the economy by handling information sets characterized by mixed frequency, unbalanced,

and “ragged edge” data. Central banks and financial market practitioners have long relied

on frameworks mainly based on bridge equations and model averaging. However, those

frameworks do not provide tools to interpret how new releases of the input variables

affect the change in the early estimate of the target variable. This results from their

“partial” model nature, as they are not set up to isolate the unpredictable component in

the newest data release, conditional on the existing information set. Another drawback of

these partial solutions is the need to specify a different model (and, consequently, estimate

different sets of parameters) for data vintages with different “ragged edge” structures. As

such, it is not possible to interpret the impact of new data releases, which is at odds with

the second foundational principle of nowcasting of a framework that links and interprets

how new releases of the input variables revise the model estimate of the target variable.

This objective can only be reached by using multivariate econometric frameworks that

allow isolating from each new data release the innovation that is orthogonal to the entire

available information set and linking how this innovation changes the estimate of the

target variable—i.e., a multivariate unique framework that can produce a forecast for

each variable in the system.

The natural candidates that display this characteristic among the econometric frame-

works typically used in macro-econometric analysis are DFMs and vector autoregressive

models (VARs). However, when the nowcasting literature started, the estimation of

VARs on a large number of variables was thought unfeasible, which restricted the set of

available options to the DFMs. In recent years, advances in estimation algorithms for

VARs have overcome the curse of dimensionality and made it feasible to estimate these

models on large datasets, thus making them a palatable solution for nowcasting. We refer
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to Cimadomo et al. (2022) for an exhaustive exposition of how VARs can be used for

nowcasting.

In the remainder of this section, we start by describing bridge equations. We then

take a deep dive into DFMs, exploring different specifications and adaptations to the

kind of data explored. Next, we explain how news can be extracted from “joint models.”

The last subsection is dedicated to a quick overview of alternative models proposed for

short-term forecasting but that still cannot interpret the evolution of the assessment of

the current conditions. Therefore, we group them in the “partial” model family with

bridge equations.

Before starting the description of the models, let us set the basic notation we will

use throughout the paper: yft,n is variable n, released at frequency f , which describes the

value of that variable for period t, where, by convention, t indicates the last day of the

reference period.3

2.1 Bridge equations

In this type of model, the nowcast and forecasts of yqt,gdp are obtained via the following

regression:

yqt,gdp = α + βyqt,n + et, (1)

where yqt,n is the aggregation of the predictor yft,n, which can be available at a frequency

f higher than the target variable and therefore needs to be aggregated to match the

frequency and units of the target variable.45 Hence, the mixed-frequency problem is

solved by temporal aggregation of the predictors to the lower frequency. To handle the

ragged edge, bridge models resort to auxiliary models, such as autoregressive moving

average (ARMA) or VAR, to forecast yt,n and close the target period of interest. This

was the “traditional” tool popularly employed at central banks to obtain early estimates

of GDP or its components, and the predictors were usually monthly (see, e.g., Kitchen

and Monaco, 2003; Parigi and Golinelli, 2007, Parigi and Schlitzer, 1995; and Baffigi

et al., 2004).

Equation (1) is typically estimated by ordinary least squares (OLS) and can be further

extended to include more predictors or the lags of the dependent variable. If the informa-

tion set is large, forecast combination is often an alternative (Kitchen and Monaco, 2003;

Diron, 2008; Angelini et al., 2011; Rünstler et al., 2009). Bridge equations can also be

3E.g., the monthly industrial production of January 2022 will be represented as ym01/31/2022,ip, and

the quarterly GDP of 2022:Q1 will be represented as yq03/31/2022,gdp.
4From now on, we will use the convention that the time notation will indicate the final highest-

frequency finite fraction of the reference period. For example, if the variable of interest is quarterly and
the highest frequency is monthly, τ will indicate the last month in the quarter of interest.

5The aggregation used in bridge equations follows the same logic as in subsection 2.3 for factor
models.
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combined in a so-called bottom-up approach where one obtains early estimates of GDP by

aggregating the early estimates of its components, exploiting national accounts’ identities

(see Hahn and Skudelny, 2008; Drechsel and Scheufele, 2012; Baffigi et al., 2004).6

2.2 Dynamic factor models

The typical DFM used for nowcasting decomposes every economic indicator into at least

two parts: (i) factors common to each indicator in the information set, and (ii) an

indicator-specific idiosyncratic component. The main identification assumption behind

these models is that the common factors are the only components that explain the co-

movement among the economic indicators, while the idiosyncratic components capture

indicator-specific variation. This identification assumption is formalized by imposing that

the idiosyncratic components are orthogonal to each other and to the common factors at

each lead and lag.7

More precisely, we specify the model as

yt = Λ · Ft + et, (2)

Ft = A · Ft−1 + ut, ut ∼ i.i.d. N(0,Q), (3)

et = D · et−1 + vt, vt ∼ i.i.d. N(0,R), (4)

where yt is a vector of (n×1) standardized economic indicators; Ft is a vector of (r×1)

common factors (with r<n); et are the (n×1) idiosyncratic components; Λ is a matrix of

(n×r) loadings of the economic indicators on the factors; A is the (r×r) auto-regressive

matrix of the factors (in companion form); D is the (n×n) diagonal auto-regressive ma-

trix of the idiosyncratic components; Q is the variance-covariance matrix of the common

factors; and R is the diagonal variance covariance matrix. D and R are assumed to be

diagonal to preserve the cross-orthogonality condition among the idiosyncratic compo-

nents.

In order to make this model suitable for the Kalman filter, which is a central ingredient

for both the estimation of the model’s parameter (see section 3) and the production of

forecasts, we need its state-space representation. Equations (2) to (4) can therefore be

6Note that the model of Giannone et al. (2008) can also be interpreted as “bridging with factors,”
as the factors extracted with the Kalman filter were plugged into an equation similar to (1) to obtain
the nowcasts. The Kalman filter allowed using the ragged edge part of the information set (not data at
different frequencies) to update the factors’ estimate but not the model’s parameter. Once Bańbura and
Modugno (2014) and D’Agostino et al. (2016) showed how to efficiently use all the information set for
estimating both factors and parameters, “bridging with factors” was outmoded.

7The assumption that the idiosyncratic components are not cross-sectionally correlated is a simplified
assumption used for exposition purposes. Indeed, in a large macroeconomic dataset, it is most likely the
case that these idiosyncratic components are cross-correlated. If those correlations are small, the model
can be estimated without additional problems (Doz et al., 2012; Barigozzi and Luciani, 2022).
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written as

yt =
[
Λ In×n

] [ Ft

et

]
(5)[

Ft

et

]
=

[
A 0r×n

0n×r D

][
Ft−1

et−1

]
+

[
ut

vt

]
(6)

where[
ut

vt

]
∼ i.i.d. N

([
0r×1

0n×1

]
,

[
R 0n×r

0r×n Q

])
(7)

Most of the nowcasting applications have been successful, in terms of nowcasting

accuracy, with the simplest specification of this model—i.e., assuming the existence of one

common factor (r=1 ).8 However, there have been applications where more complicated

specifications of the DFM have been deployed due to the nature of the data, the problem

under scrutiny, or the need to understand links between specific groups of variables and

the GDP.

One example is Cascaldi-Garcia et al. (2023). In this paper, the authors formalize

how to monitor the euro-area economy following a multi-country approach inspired by

the example of market participants, who track both euro-area aggregate data and largest

country-specific data, and policymakers, who build euro-area forecasts from projections

for individual countries. To do so, they assume a block structure in which each economic

indicator loads only on its economy-specific factor, as in


yea
t

yfr
t

yge
t

yit
t

 =


Λea 0 0 0 I 0 0 0

0 Λfr 0 0 0 I 0 0

0 0 Λge 0 0 0 I 0

0 0 0 Λit 0 0 0 I





f ea
t

f fr
t

f ge
t

f it
t

eea
t

efr
t

ege
t

eit
t


, (8)

where the data yt is partitioned into indicators from the euro-area aggregate (yea
t ), Ger-

many (yge
t ), France (yfr

t ), and Italy (yit
t ) that load on one factor per economy, respec-

tively: euro-area aggregate (f ea
t ), Germany (f ge

t ), France (f fr
t ), and Italy (f it

t ). More-

over, each variable loads also its own idiosyncratic component, included in vectors eea
t ,

ege
t , efr

t , and eit
t . In this specification, each of the matrices Λi, 0, and I is of dimension

ni×1, with ni that differs according to the geographical area i = ea, ge, fr, it.

8Usually, some restrictions on the loading matrix are imposed in order to coherently model the
relation among variables published at different frequencies, as explained in detail in section 2.3.
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Another example is Bok et al. (2018), where the authors specify a model with a global

factor, which affects all the variables, and a few local factors, which affect only blocks of

variables. The scope of the authors is to control for idiosyncrasies in particular subgroups

of series. Specifically, to model the local correlations in survey data, they include a soft

block, loading only variables representing economic agents’ perceptions and sentiments.

In a similar vein, they add two more factors, one for the block of real variables and one

for labor variables.9

2.3 Mixed-frequency and time aggregations

Most of the nowcasting models for GDP have been developed for datasets that con-

tain time series published at monthly and quarterly frequencies. Therefore, in equa-

tion (2), yt = [yq
t ;y

m
t ]. If those data are seasonally adjusted but are not stationary in

mean, monthly and quarterly data are transformed into month-on-month and quarter-on-

quarter growth rates. If they are stationary, they are transformed into month-on-month

or quarter-on-quarter differences.10

To construct a model that explicitly considers the different units of measure within a

mixed-frequency dataset, the general strategy has been to assume that the low-frequency

variables have a partially observed counterpart with the highest frequency among those

included in the dataset.

To be more concrete, let’s consider a dataset with several monthly variables and the

quarterly GDP. The latter is treated as a partially observed monthly variable in which the

quarterly release is assigned to the third month of the respective quarter. This partially

observed variable is assumed to be an aggregation of an unobserved monthly growth rate

of GDP (ymt,u, whose log-level is Y
m
t,u that admits the same factor model representation as

the other monthly variables:

ymt,u = λgdpft + et,gdp, (9)

where

et,gdp = ρgdpet−1,gdp + vt,gdp. (10)

To link ymt,u with the observed GDP growth rate yqt,gdp, let us start considering this

growth rate as the difference of the log-levels of the quarterly GDP Y q
t and then use the

9It is also possible to determine the number of factors using statistical tests, which depend on the
estimation technique adopted; see Coroneo et al. (2016) for maximum likelihood and Bai and Ng (2002)
for principal components.

10Surveys are usually included in levels, given that they already express changes. For example,
questionnaires behind most of the surveys used in nowcasting models ask how the current conditions
(about confidence, consumption, business, etc.) compare to the previous month/quarter.
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following triangular aggregation:

yqt,gdp = Y q
t,gdp − Y q

t−3,gdp = (1− L3)Y q
t,gdp

≈ (1− L3)(1 + L+ L2)Y m
t,u = (1 + L+ L2 − L3 − L4 − L5)Y m

t,u

= (1− L+ 2L− 2L2 + 3L2 − 3L3 + 2L3 − 2L4 + L4 − L5)Y m
t,u

= ymt,u + 2ymt−1,u + 3ymt−2,u + 2ymt−3,u + ymt−4,u.

Therefore, the quarterly GDP yqt,gdp can be written as

yqt,gdp = λgdp(ft + 2ft−1 + 3ft−2 + 2ft−3 + ft−4) + ...

+ et,gdp + 2et−1,gdp + 3et−2,gdp + 2et−3,gdp + et−4,gdp (11)

and easily cast in the state-space form

[
yqt,gdp
ym
t

]
=

[
λgdp 2λgdp 3λgdp 2λgdp λgdp 1 2 3 2 1 0′

Λm 0 0 0 0 0 0 0 0 0 0

]



ft

ft−1

ft−2

ft−3

ft−4

et,gdp

et−1,gdp

et−2

et−3,gdp

et−4,gdp

et,m



(12)

However, for some countries, due to the lack of reliable seasonal adjustment tech-

niques, both monthly and quarterly data are published only as year-on-year growth rates.

This is the case of China, for which Giannone et al. (2013) propose a time aggregation

that takes into account the nature of this data, also adopted by Modugno et al. (2016),

Dahlhaus et al. (2017), Bragoli and Fosten (2018), and Barcelona et al. (2022).

Let us again assume that GDP level data for a given quarter is the sum of monthly

unobserved contributions and let y
my

t,u denote the unobserved monthly year-on-year GDP

growth rate. We assume that y
my

t,u admits the same factor structure of the other year-on-

year monthly variables in the dataset, similarly to equations (9) and (10).

The monthly unobserved year-on-year growth rate can then be linked to a partially

observed (at every third month of the quarter) quarterly year-on-year growth rate (y
qy
t,gdp)
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using the following formula:

y
qy
t,gdp = Y q

t,gdp − Y q
t−12,gdp = (1− L12)Y q

t,gdp

≈ (1− L12)(1 + L+ L2)Y m
t,u = (1 + L+ L2)y

my

t,u

= y
my

t,u + y
my

t−1,u + y
my

t−2,u, (13)

which implies that the quarterly variables are required to load equally on the current and

lagged values of the unobserved monthly factor.

Using a similar logic but with some more cumbersome algebra, weekly and daily data

can also be included in the dataset for a nowcasting model. Modugno (2013) and Bańbura

et al. (2013) show how to modify the state space by including aggregator variables that

link flow and stock variables coherently at frequencies from daily to quarterly.

2.4 News

A critical ingredient of a nowcasting model is to interpret how new data releases of

indicators included in the information set revise the estimate of the variable of interest.

In order to do so, we first need to extract the unpredictable component of each new data

release given the available information set—i.e., the innovation, and then the contribution

of this innovation to the forecast revision, the so-called “news.”

To extract the innovation, we need a framework that jointly models all the variables

in the information set. Such a model allows us to compute expectations for each new

data release and isolate the innovation, which is the difference between the actual release

and its expectation. The innovation can then be linked to the variable of interest through

weights that depend on the model parameters, and the product of those innovations and

their corresponding weights is news. Having model-based news for all variables allows

the obtainment of the revision of the GDP nowcast as the weighted sum of the news.

Computing the news is key for understanding the changes in the model assessment of

current economic activity over time and helping evaluate the significance of each data

publication.

Bańbura and Modugno (2014) explain these ideas more formally. For the sake of

simplicity, in what follows, we abstract from data revision and parameter re-estimation,

so the new information we consider is only due to new data releases.11 Let us define

yqτ,gdp as our target variable, e.g., real GDP quarterly growth for a given quarter, which

we attribute to the last day of the quarter τ . For each data vintage Ωv, available in

day v, we can produce an estimate of our variable of interest E[yqτ,gdp|Ωv]. The difference

between Ωv and Ωv+1 is the new data released between v and v + 1. For simplicity, let

11Hayashi and Tachi (2021) extend the revision analysis by providing a method for breaking down
the decomposition of nowcast changes into the new-observations, data-revisions, and parameter-revisions
contribution from each individual indicator variables.

11



ymt,n and yms,m be the only available data, relative to variable n and m and attributed to

day t and s, respectively, which have been released between v and v + 1.

Formally we have

Ωv ⊂ Ωv+1 and Ωv+1\Ωv = {ymt,n, yms,m}. (14)

Hence the information set is “expanding.”

With the new releases, and therefore the new information set Ωv+1, a new estimate

E
[
yτ,gdp|Ωv+1

]
can be generated. Using equation (14) and the properties of conditional

expectations as an orthogonal projection operator, the following decomposition holds:

E
[
yqτ,gdp|Ωv+1

]
︸ ︷︷ ︸

new forecast

= E
[
yqτ,gdp|Ωv

]
︸ ︷︷ ︸

old forecast

+E
[
yqτ,gdp|Iv+1

]
︸ ︷︷ ︸

revision

,

where

Iv+1 =

[
ymt,n − E

[
ymt,n|Ωv

]
yms,m − E

[
yms,m|Ωv

] ] . (15)

Iv+1 is the part of the releases y
m
t,n and y

m
s,m that was unpredictable with the information

contained in Ωv (given a specific model), or, more formally, Iv+1 ⊥ Ωv. This is the reason

why Iv+1 is labeled news, as it is the new information content available in Ωv+1 with

respect to Ωv. Note that it is the news and not the release itself that leads to nowcast

revisions. In particular, if the new values in Ωv+1 are exactly as predicted, given the

information in Ωv (in other words, “there is no news”), the nowcast will not be revised.

We can further develop the expression for the revision, or the difference between the

new and the old nowcast, as

E
[
yqτ,gdp|Iv+1

]
= E

[
yqτ,gdpI

′
v+1

]
E
[
Iv+1I

′
v+1

]−1
Iv+1 . (16)

Given the model described in equations (2) to (4), assuming that there is only one

factor and abstracting from parameter uncertainty, equation (16) can be decomposed as

E
[
yqτ,gdpI

′
v+1

]
=

 Λ′
gdpE

[
(fτ − E [fτ |Ωv]) (ft − E [ft|Ωv])

]
λn

Λ′
gdpE

[
(fτ − E [fτ |Ωv]) (fs − E [fs|Ωv])

]
λm

 , and
E
[
Iv+1I

′
v+1

]
=[

λnE(ft − E [ft|Ωv])E (ft − E [ft|Ωv])λn +Rn,n λnE (ft − E [ft|Ωv])E (fs − E [fs|Ωv])λm

λmE (fs − E [fs|Ωv])E (ft − E [ft|Ωv])λn λmE (fs − E [fs|Ωv])E (fs − E [fs|Ωv])λm +Rm,m

]
,

where Λ′
gdp = [λgdp 2λgdp 3λgdp 2λgdp λgdp], fτ = [fτ fτ−1 fτ−2 fτ−3 fτ−4]

′, and the appropri-
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ate expectations can be extracted by the Kalman filter and smoother.

Naming δτ,gdpt,n = E
[
yqτ,gdpI

′
v+1

]
E
[
Iv+1I

′
v+1

]−1
, we can write

E
[
yqτ,gdp|Ωv+1

]
− E

[
yqτ,gdp|Ωv

]︸ ︷︷ ︸
revision

= δτ,gdpt,n

(
ymt,n − E

[
ymt,n|Ωv

]︸ ︷︷ ︸
news

)
+δτ,gdps,m

(
yms,m − E

[
yms,m|Ωv

]︸ ︷︷ ︸
news

)
.

(17)

In other words, the revision can be decomposed as a weighted average of the news in

the latest release. What matters for the revision is both the size of the news as well as its

relevance for the variable of interest, as represented by the associated weight δτ,gdpt,n . This

weight captures the importantance of the update of the factor f given the new information

about series n relative to time t for the update of factor f at time τ . Equation (17) can

be considered as a generalization of the usual Kalman filter update equation to the case

in which new data arrive in a non synchronous manner, or τ ̸= t.

As stressed before, this crucial relationship described in equation (17) can be obtained

only through “joint models” like DFMs or VARs and in the case of a simultaneous release

of several (groups of) variables, bringing the possibility of tracking how single releases

have contributed to the forecast revision. While in this review we focus on factor models,

most tasks performed with a DFM can also be performed with a VAR. The key is to

write the VAR in a state-space form to use the Kalman filter (see, for example, Bańbura

et al., 2015). Differently from DFMs, however, the time aggregation in VARs is not exact

but regression based (Cimadomo et al., 2022).

2.5 Other “partial” models

Subsection 2.4 has highlighted the importance of relying on joint models for nowcasting.

In this subsection, we present advances in “partial” models that are also commonly used

for tracking the current state of the economy.

2.5.1 MIDAS-type equations

MIDAS represents an evolution of the “partial” model approach. Here, the predictors

are included in the regression at their original observation frequency:

yqτ,gdp = α + βΓ(L, θ)yft−hn,n
+ eτ , (18)

where f can be any frequency, t − hn may also coincide with τ , and Γ(L, θ) is a lag

polynomial. Since, for large hn, many lags of the explanatory variable might be re-

quired, the key in this approach is to parsimoniously parameterize Γ(L, θ). Various

versions have been proposed (see, for example, Ghysels et al., 2007), including expo-

nential Almon polynomials for which Γ(L, θ) =
∑M

m=1 γ(m, θ)L
m with θ = (θ1, θ2) and
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γ(m, θ) = exp(θ1m+θ2m2)∑M
m=1 exp(θ1m+θ2m2)

. In contrast to the bridge equations, MIDAS-type regression

implies that the temporal aggregation weights are data-driven.

Regarding the problem of ragged edge, the solution in this type of approach can be

thought of as re-aligning each time series. The time series with missing observations at the

end of the sample are shifted forward to obtain a balanced dataset with the most recent

information.12 The parameters in equation (18) depend on hn, which is determined by

the difference between the forecast target period and the period of the last observation

of the predictor. Consequently, separate models must be estimated for different data

vintages as the corresponding hn varies. The case of t − hn > τ—i.e., when some data

referring to the target quarter are available—is sometimes labeled as MIDAS with leads

(Andreou et al., 2008).

Applications of this type of model to short-term forecasting include Clements and

Galvão (2008, 2009) and Kuzin et al. (2011), who use monthly indicators to forecast

GDP, and Andreou et al. (2008), who also include daily financial variables.13 Given

that the MIDAS equations suffer from the curse of dimensionality, a popular strategy

for dealing with large information sets is forecast combination (see, e.g., Andreou et al.,

2008) or substituting the right-hand side observables yt−hn,n with factors extracted from

a set of monthly predictors as in Marcellino and Schumacher (2010).

As we have already noted, these models are not suited to interpret the impact of

new releases on the assessment of the state of the economy. Attempts to circumvent the

problem have been based on heuristic procedure, as in Ghysels and Wright (2009), where

they construct news using market expectations linked to the change in the forecast by

estimating additional auxiliary regressions.

2.5.2 Machine learning

Several papers released in recent years have started to explore the performance of machine

learning techniques for short-term forecasting.14 Among others, Soybilgen and Yazgan

(2021) use bagged decision trees, random forests, and stochastic gradient tree boosting

models to produce early estimates of U.S. GDP; Richardson et al. (2021) explore ridge,

Lasso, elastic net, and support vector machine regression methods other than gradient

boosting and neural networks to estimate in real time New Zealand GDP; and Zhang

et al. (2023) compare the performance of various machine learning algorithms to DFMs,

static factor models, and MIDAS for short-term forecasting the Chinese annualized real

12Re-aligning has been a popular strategy to deal with ragged-edge data. See, for example, Altissimo
et al. (2001, 2010); de Antonio Liedo and Muñoz (2010).

13Clements and Galvão (2008) also show how to add a lag of the low-frequency variable to avoid a
seasonal response of the dependent variable to the predictors and use the Broyden-Fletcher-Goldfarg-
Shanno method to obtain the estimates of the parameters.

14See Goulet Coulombe et al. (2022) for a detailed description of how machine learning techniques
can be applied to forecast macroeconomic variables.
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GDP growth rate.

Although some of these applications have displayed some encouraging results in terms

of accuracy, most of the characteristics of machine learning approaches are classified as

“partial,” as they are set up in a way that does not allow extracting the unpredictable

component of new releases. Therefore, machine learning models cannot interpret how

new data releases change the early estimates of the state of the economy.

Moreover, two other characteristics make these models not palatable for nowcasting.

First, the “ragged edge” problem is solved by filling the missing values in the quarter

of interest with model-based forecasts. Second, the mixed-frequency problem is solved

“outside the models”—that is, data are averaged over the quarter to have the predictors

at the same frequency as the target variable. These approaches have two side effects. The

machine learning models are fed with redundant information—i.e., the information set of

these models contains forecasts that are linear combinations of information already con-

tained in the set. Moreover, the aggregation “outside the models” may lag the detection

of the early signal that high-frequency variables can deliver, downplaying its effect.

3 Estimation algorithms

We will now describe the algorithms used to estimate DFMs’ parameters and to infer their

unobserved components in the context of nowcasting applications. The main issue that

this part of the literature has tried to overcome is how to exploit all the information when

the available data are characterized by different frequencies and by covering dissimilar

time spans due to either mismatched historical availability or the asynchronous timing of

the releases, thus creating the so-called “ragged” edge.

3.1 Principal components and Kalman filter

One of the most common methods to estimate factor models in the economic literature is

the principal component analysis (PCA). PCA estimates the factors and the loadings by

finding the pair of Ft and Λ that minimize the variance of the idiosyncratic component,

subject to the constraint that the covariance matrix of the loadings is an identity matrix.

Formally,

min
{Ft}Tt=1,Λ

1

nT

T∑
t=1

(yt −ΛFt)
′(yt −ΛFt), s.t.

1

n
Λ′Λ = I. (19)
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The solution to this problem yields

Λ̂ = VrD1/2
r (20)

F̂t =
1

n
Λ̂′yt, (21)

where Dr is an r×r diagonal matrix containing the eigenvalues, and Vr is the n×r matrix

containing the associated eigenvectors of the covariance matrix of yt. This is equivalent

to estimating the factors as a weighted average of the data 1
n
w′yt where the weights are

w = VrD1/2
r . The main intuition of why principal components work is that as the number

of variables increases to infinity, the common component survives to aggregation, whereas

the idiosyncratic component vanishes.

Estimation of approximate factor models with (static) principal components is studied

in Stock and Watson (2002), Bai and Ng (2002), Bai (2003), and Forni et al. (2009). We

refer the interested reader to these references for more details.

However, using PCA to estimate loadings and factors in equation (2) does not over-

come the complications arising from the mixed frequency and the dissimilar time spans

that characterize datasets used for real-time monitoring of the economy. Indeed, PCA

can be applied only on the balanced part of the dataset, therefore disregarding histori-

cal information, the most recent one, and also all the data series that have a frequency

different from the one of the majority of the series in the dataset. Moreover, as a static

representation of the data and factors, the PCA specification prevents producing forecasts

beyond the sample period.

Doz et al. (2011) made a first step towards overcoming part of these limitations with a

two-step procedure. Their idea is to write the factor model in state space, adding equation

(3). In the first step, the parameters and the factors of equation (2) are estimated via

principal components on the “balanced” part of the information set. The parameters of

equation (3) are then estimated via OLS, regressing the estimated factors on their lags.

In the second step, factors are re-estimated by applying the Kalman smoother to the part

of the information set, including its “unbalanced” part, that contains data with the same

frequency. For example, in Giannone et al. (2008), the second step is applied only to the

monthly data. Therefore, given the parameters, the factors are also estimated using the

unbalanced part of the panel.

The drawbacks of this methodology are twofold. First, data with frequencies different

from those prevalent in the information set are either not used to estimate the factors

(lower-frequency data) or need to be aggregated outside the model (higher-frequency

data). In the example above, quarterly data are disregarded from the estimation of

the factors. This can be a material limitation when the information set may contain

a large amount of series with a different frequency from the prevalent one. Second,

the parameters are estimated only using the “balanced” part of the dataset, while low
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frequency data are included in the analysis only if they have to be forecasted, usually via

a bridge equation that uses the estimated factors.

The literature has proposed overcoming these limitations by estimating the model with

a modified version of the expectation-maximization (EM) algorithm or with a Bayesian

algorithm. The following two sections will discuss these two algorithms.

3.2 Expectation-maximization algorithm

The EM algorithm is an iterative method to find maximum likelihood estimates of pa-

rameters in models with unobserved latent variables. In the case of the model described

by equations (2) through (4), at any iteration κ > 0, in the E-step, given an estimate

of the parameters Λ̂(κ−1), Â(κ−1), R̂(κ−1), and Q̂(κ−1), the factors are extracted using the

Kalman filter and the Kalman smoother. Then, given E(κ−1)

[
Ft|Ωv

]
, in the M-step the

parameters are re-estimated. Specifically,

Λ̂(κ) =

(
Tv∑
t=1

E(κ−1)

[
ytF

′
t |Ωv

])( Tv∑
t=1

E(κ−1)

[
FtF

′
t |Ωv

])−1

, (22)

Â(κ) =

(
Tv∑
t=1

E(κ−1)

[
FtF

′
t−1|Ωv

])( Tv∑
t=1

E(κ−1)

[
Ft−1F

′
t−1|Ωv

])−1

. (23)

from which we can estimate R and Q as follows:

R̂(κ) = diag

(
1

Tv

(
Tv∑
t=1

E(κ−1)

[
yty

′
t|Ωv

]]
− Λ̂(κ)

Tv∑
t=1

E(κ−1)

[
Fty

′
t|Ωv

))
(24)

Q̂(κ) =
1

T

(
Tv∑
t=1

E(κ−1)

[
FtF

′
t |Ωv

]
− Â(κ)

Tv∑
t=1

E(κ−1)

[
Ft−1F

′
t |Ωv

])
. (25)

The algorithm runs until the increase in the likelihood between two consecutive it-

erations is below a certain threshold. Lastly, the algorithm is initialized by estimating

Ft and Λ by principal components and A by OLS. For a rigorous treatment of the EM

algorithm in DFMs, we refer the reader to Doz et al. (2012) and Barigozzi and Luciani

(2022).

However, this algorithm per se is also not suited to deal with datasets characterized

by different frequencies and covering dissimilar time spans. Indeed, if yt did not contain

missing observations, we would have that

Eκ [yty
′
t|Ωv] = yty

′
t and Eκ [ytF

′
t |Ωv] = ytEκ [F

′
t |Ωv] , (26)
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which can be plugged into the equations above and Eκ

[
FtF

′
t |Ωv

]
, Eκ

[
FtF

′
t−1|Ωv

]
, and

Eκ

[
Ft|Ωv

]
can be obtained via the Kalman filter and smoother. Given that in nowcasting

applications yt contains missing observations due to the mixed-frequency nature of the

data and the dissimilar time spans availability, the EM algorithm needs to be modified.

Bańbura and Modugno (2014) make the EM algorithm suitable to such cases by re-

defining the vector of data yt as

yt = Wtyt + (I −Wt)yt,

where Wt is a diagonal matrix with ones corresponding to the non-missing entries in yt

and zeros otherwise. With this change, equations (22) and (24) become

vec
(
Λ̂(κ)

)
=

(
Tv∑
t=1

E(κ−1)

[
FtF

′
t |Ωv

]
⊗Wt

)−1

vec

(
Tv∑
t=1

WtytE(κ−1)

[
F ′

t |Ωv

])
(27)

and

R̂(κ) = diag

(
1

Tv

Tv∑
t=1

(
Wtyty

′
tW

′
t −WtytE(κ−1)

[
F ′

t |Ωv

]
Λ̂(κ)′Wt

− WtΛ̂
(κ)E(κ−1)

[
Ft|Ωv

]
y′
tWt +WtΛ̂

(κ)E(κ−1)

[
FtF

′
t |Ωv

]
Λ̂(κ)′Wt

+ (I −Wt)R̂
((κ−1))(I −Wt)

))
. (28)

Therefore, Wt works as a selection matrix that allows us to obtain the expectations

in equation (26) and the corresponding remaining parts of the estimates when the data

are available.

3.3 Bayesian inference

An alternative way of estimating DFMs on incomplete datasets is to use Bayesian infer-

ence. D’Agostino et al. (2016) propose the following model:

xit =

p∑
s=0

λisft−s +

p∑
s=1

ρisxit−s + eit (29)

ft =

p∑
s=1

Asft−s + ut (30)

where ut ∼ N (0, Ir) and eit ∼ N (0, ψit).

Compared to models (2) through (4), the main difference is that the factors are allowed

to be loaded dynamically by the variables through the polynomial λi(L) =
∑p

s=0 λis. To

estimate the large number of parameters in the model, D’Agostino et al. (2016) propose
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an algorithm based on the following priors:

Ri,i ∼ IG(1, 3),

Λi,r,h ∼ N(0, τ
1

(h+ 1)2
),

Ar,h ∼ N(0, τ
1

h2
),

Qr,r ∼ N(0, 1),

where r indicates the factor and h indicates the lag of the factor to which the coefficient

is associated. The prior covariance among coefficients associated with different variables

and lags is set to zero. Notice that the variance of the prior is lower for the coefficients

associated with more distant lags. The hyperparameter τ controls the scale of all the

variances and effectively governs the overall level of shrinkage, and the authors fix it to

the conventional value of 0.2. These priors, including the choice of the degree of overall

shrinkage, are similar to the Minnesota prior proposed by Litterman (1986) in the context

of Bayesian VARs. The inference is conducted using Gibbs sampling techniques. If all

data and the common factor were observed, drawing from the posterior of the parameters

would have been easy since the prior is conjugate. Conditionally on the parameters

and the observable data, the common factors and the missing data can be drawn using

simulation smoothers (Carter and Kohn, 1994; De Jong and Shephard, 1995; Durbin and

Koopman, 2002). In other words, the Gibbs sampler consists of alternating the following

two steps: (i) given a draw of the parameters, draw the missing data and the latent factor

conditional on the observations using the simulation smoother; and (ii) given a draw of

the full data and the latent factors, draw the parameters from their posterior.

The algorithm is initialized using the parameters associated with principal compo-

nents computed by fitting missing data by a spline function. This algorithm has been

successfully applied to nowcast U.S. GDP by D’Agostino et al. (2016) and Drechsel et al.

(2023) and Norwegian GDP by Luciani and Ricci (2014).

4 Data selection

Which variables should we include in the dataset to nowcast GDP? And how many of

them? In theory, these should be trivial questions, as when estimating large DFMs, we

can add as many variables as we like, even more so because these models are consistently

estimated for n growing to infinity. However, it turns out that adding as many variables

as we can is not the right recipe. The right recipe consists of adding the right variables;

that is, we want to add variables that contain signals and avoid those that contain just
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noise.15

How do we determine which are the right variables? The answer to this question has

stimulated an interesting debate among academics and practitioners at central banks and

other financial institutions. The literature has broadly conceived two alternative methods

to answer this question: expertise-based and statistical-based selection methods.

4.1 Expertise-based selection

The first solution relies on the expertise of the people who monitor the state of the econ-

omy daily. Their monitoring activities inform monetary policy decisions at central banks,

fiscal policy decisions at governmental agencies, or investment decisions at financial and

non financial businesses. Including the data that the experts consider important to assess

the state of the economy is a natural choice, as one of the goals of nowcasting is to inter-

pret how new data releases change the model-based assessment of current macroeconomic

conditions.

In academic papers, scholars rely on the so-called “market-moving indicators” to infer

the experts’ preferences about data. For example, news platforms and data providers such

as Bloomberg, Forex Factory, and Trading Economics report quantitative or qualitative

indexes that indicate the importance of a given data release for their users from which

we can identify the market-moving indicators.16

As an alternative to identifying “market moving indicators,” some papers rely on ex-

pert judgment. For example, in their seminal paper, Giannone et al. (2008) constructed

the dataset with the help of economists at the Board of Governors of the Federal Re-

serve System, therefore tailoring the dataset to the internal expertise and interest in

specific variables, among them several sectoral disaggregated variables. Another example

is Barigozzi and Luciani (2021), who started from a large dataset and then eliminated

variables by looking for those with very high idiosyncratic cross-correlation and using

judgment.

Through time, the literature has concluded that for nowcasting GDP, the information

set should include two categories of data. The first category is so-called hard data—i.e.,

data collected by statistical agencies based on measurable quantities, like variables about

labor markets (e.g., the unemployment rate), the industrial sector (e.g., the index of

15Adding noise means adding a variable that is idiosyncratic and contains no information about the
common factors or adding a variable that is very correlated with another variable in the dataset and,
hence, contain no additional information. When we add a variable very similar to another variable in the
dataset, we increase the cross-correlation among idiosyncratic components, which is very problematic,
as Boivin and Ng (2006) show that excessive cross-sectional correlation among idiosyncratic components
worsens the model’s forecasting performance, a result confirmed by the simulations in Luciani (2014).

16For example, for each data release, Bloomberg reports a relevance index based on the percentage
of Bloomberg users who have set up an automatic alert about that specific release. See Cascaldi-Garcia
et al. (2023) for a nowcast application that selects market-moving indicators based on the Bloomberg
relevance index.
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industrial production, and industrial turnover), the construction sector (e.g., the index of

production in construction), private consumption (e.g., retail sales and car registrations),

and the external sector (e.g., exports and imports of goods). The second category is so-

called soft data—i.e., survey indexes that portray feelings and perceptions of economic

agents about current and future economic prospects.17

Moreover, the nowcasting literature has concluded that focusing mainly on the head-

lines of each macroeconomic report while disregarding sectoral disaggregation is a simple

and very effective solution. For example, Bańbura and Modugno (2014) and Bańbura

et al. (2011) show that the marginal impact on the nowcast precision of disaggregated

data is minimal, which is in line with market participants primarily focusing on the

headlines of each report. Moreover, the same authors show that the model’s nowcasting

performance does not deteriorate if the right disaggregated data are included—regardless

of relying on market participants or expert judgment—and the factor model is robust;

see the empirical analysis in Bańbura et al. (2010) for forecasting at longer horizons,

and the simulation studies of Doz et al. (2011, 2012) and Barigozzi and Luciani (2022)

for estimation performance. Another result of the nowcasting literature is that daily

and weekly indicators, such as financial variables, do not improve the performance of

a nowcasting model either during normal times or during recessions because the high-

frequency component of these indicators is detached from the real economy (see Bańbura

et al., 2013). This result does not imply that higher-frequency indicators are unrelated

to real economic activity but that the link is through their low-frequency component. As

such, the usefulness of high-frequency indicators for nowcasting is dim.

4.2 Statistical-based selection

The second solution consists of selecting the variables using statistical criteria as suggested

by Boivin and Ng (2006) and Bai and Ng (2008)—for example, Bai and Ng (2008) suggest

using only the variables informative for forecasting the target variable—which are also at

the foundation of the machine learning approach as discussed in Section 2.5.2. However,

statistical-based selection does not work well when the data are very correlated, which

is the case of macroeconomic data. In particular, De Mol et al. (2008) find no major

differences in the forecasting performance between models using statistical-based selection

and those with no selection.18 Most importantly, variable selection is unstable because

of collinearity among predictors. In other words, the set of predictors selected from

month to month is very sensitive to minor perturbations of the dataset, such as adding

new variables or extending the sample length, which makes (revisions to) the forecasts

obtained with this method difficult to interpret. Similar instabilities have also been found

17Measures of prices and monetary aggregates are usually found not informative for nowcasting GDP.
This result goes back to Sargent and Sims (1977).

18This result also emerges from a careful reading of the empirical results of Boivin and Ng (2006).
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in the context of model selection and model averaging (Ouysse, 2011; Stock and Watson,

2012). Finally, Giannone et al. (2021) find that economic data do not appear informative

enough to uniquely identify the relevant predictors when a large pool of variables is

available to the researcher.

4.3 Alternative data

Given the growing availability of information and the increased ability to process and store

data, information that goes beyond macro data has been tested for nowcasting GDP in

recent years. One of the most promising typologies of data is corporate accounting data.

Indeed, Abdalla et al. (2021) find that factors based on the real-time flow of accounting

data from the corporate financial reports are incrementally relevant for nowcasting and

forecasting major components of economic output in the BEA’s National Income and

Product Accounts.

One of the most-studied sources of big data in macroeconomics is Google Trends,

but the literature expresses mixed views about its usefulness for nowcasting. While

Choi and Varian (2012) argue that Google Trends data help in forecasting near-term

values of several economic indicators and Ferrara and Simoni (2022) find improvements

in nowcasting GDP accuracy for several countries, Larson and Sinclair (2022) show that

such data do not improve the accuracy of nowcasts of unemployment insurance claims,

neither in normal times nor during the COVID-19 pandemic. Moreover, as pointed out by

Lazer et al. (2014), Google Trends, like other publicly available indices, are the product

of numerous algorithms and decisions made by engineers that are invisible to the user.

The problem for forecasters is that these algorithms are not static but are tweaked and

adapted as time passes. Therefore, historical values available to us now are not the same

as those that were available in the past, and values available in the future may be different

again.19

5 Empirical application

In this section, we put into practice the nowcasting lessons detailed in this chapter.

As highlighted by Cascaldi-Garcia et al. (2023), timely soft data such as surveys and

confidence indicators, even if only qualitative, contain important information about the

state of the economy, which is paramount for nowcasting economic activity. We test

this result further by presenting the nowcasting performance of a mixed-frequency DFM

combining soft and hard data for seven advanced economies: the euro area, Germany,

France, Italy, Canada, Japan, and the U.K.

19Simon van Norden explained these issues in a 2017 post on Econbrowser, available at
econbrowser.com/archives/2017/05/guest-contribution-big-data-and-fake-forecasts.
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We illustrate the performance of such models by looking at two global events of large

deterioration of the economic conditions, namely the 2008 Global Financial Crisis (GFC)

and the onset of the COVID-19 pandemic. For the GFC, we use pseudo-real-time data

for the 2008–09 period. We provide weekly nowcasts of quarter-on-quarter (QoQ) GDP

growth (at an annual rate, a.r.), following the evolution of the model predictions until

the eve of the official GDP release. For the onset of the pandemic, we provide the weekly

nowcasts of GDP growth (QoQ a.r.) for the second quarter of 2020. By using real-time

data, we follow the evolution of the model predictions starting in the first week of January

2020 through the first release of each country’s GDP.20

For the euro area and its main economies, we follow the model set-up and data

selection proposed by Cascaldi-Garcia et al. (2023). For Canada, we follow the model

set-up and a similar data selection as proposed by Bragoli and Modugno (2017), who

combine soft and hard data not only from Canada but also from the U.S.—the model

also highly benefits from the official release of monthly GDP. For Japan, we follow a

data selection similar to Carriero et al. (2019) and Hayashi and Tachi (2023). Lastly, for

the U.K., we follow a data selection similar to Carriero et al. (2019) and Anesti et al.

(2018)—as for the model for Canada, the UK model highly benefits from the official

release of monthly GDP.

5.1 The Global Financial Crisis

The GFC started in 2008 with financial stresses in the U.S. It quickly spread across

the world through the banking system, causing substantial real economic contraction

that lasted several quarters. The fast-moving contagion made timely and accurate hard

data on the state of the economy more important than ever for policymakers to direct

counter-cyclical measures. However, the long delay in the release of such data made

policy decisions based on such indicators impracticable. The nowcasting literature has

extensively shown that mixed-frequency DFMs enriched with soft data would have been

able to track economic developments during the GFC in a timely and precise manner. In

this section, we bring additional evidence in support of this finding.

Figure 1 presents the evolution of the nowcast of GDP growth (QoQ a.r.) for seven

advanced economies. Each line corresponds to the evolution of the nowcast as new data

become available, while the dots correspond to the official GDP release. As shown in the

figure, the nowcast evolution tracked quite closely the economic disarray observed through

2008, culminating in a global recession. Moreover, the models were quite accurate even

at the height of the crisis, with double-digit contractions.

Let us zoom in on the weekly evolution of the euro-area GDP nowcast for 2009:Q3.

Figure 2 shows the great advantage of using “joint” models over “partial” models: the

20The first release of 2020:Q2 GDP was published in August for all the countries analyzed.
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Figure 1 Nowcast evolution during the Global Financial Crisis

Note: Nowcast evolution from dynamic factor models for seven advanced economies. Red, green, blue,
orange, purple, cyan, magenta, yellow, and pink lines follow the nowcasts for the GDP growth (QoQ
a.r.) for 2008:Q1 through 2010:Q1, respectively. Dots correspond to the final official GDP release.
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possibility of clearly disentangling how releases of all the data included in the information

set change the assessment of the current state of the economy. The upper panel shows

the weekly evolution of the 2009:Q3 euro-area GDP growth nowcast from the beginning

of April 2009 to the end of October 2009. For the euro area, we can decompose the

contribution of new releases either by country, middle panel, or by nature of the data

(soft or hard), lower panel. Focusing on the lower panel, we can see the pivotal role played

by soft data in capturing the current state of the economy, anecdotally confirming that

soft data are very important to extract timely signals. However, soft data may be noisy:

although the overall signal points to improved macroeconomic conditions in the euro area

for this specific quarter, few soft data releases deliver confounding signals. In contrast,

hard data consistently point to improved macroeconomic conditions, even though their

contribution becomes relevant only in the middle of the quarter of interest.21

5.2 The COVID-19 experience

The onset of the COVID-19 pandemic caused a sharp and intense deterioration of the

economy that was unparalleled in recent history. The fast-moving developments observed

from March 2020 onward posed challenges to the usual tools for nowcasting, making this

event a natural laboratory for these methods.

The lockdowns widely imposed across the globe at the onset of the pandemic closed

down factories and drastically diminished manufacturing production, services not deemed

essential were suspended, and entire sectors such as tourism and air transportation came

to a halt. Official quantitative data became difficult to collect and were unreliable, and

the long release delay made them close to useless. As such, researchers and policymakers

were using the few and unstructured releases of timely sentiment indicators, such as

confidence indexes and purchasing managers’ indexes, to grasp the magnitude of the

damage the pandemic inflicted on the economy. The results in this section show that

a DFM would have pointed to the eventual double-digit contraction over the advanced

economies as soon as these timely indicators started to be released.

Figure 3 illustrates the weekly evolution of the nowcasts from DFMs for selected ad-

vanced economies of 2020:Q2 GDP growth (QoQ a.r.), starting from January 2020. The

lockdowns started to be broadly implemented between March and April, so their real

quantitative effects would only be manifested once indicators such as industrial produc-

tion and retail sales were released, which may have a delay of up to 60 days. However, as

early as the end of March, confidence indicators already gave hints of an upcoming severe

economic contraction. By mid-April, the nowcasts of all selected advanced economies

showed predictions close to double-digit contraction in the second quarter of 2020, while

almost no hard data had been released yet. Once hard data started to become available,

21See Cascaldi-Garcia et al. (2023) for the full description of the model.
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Figure 2 News decomposition

Note: The upper chart shows the weekly evolution of the 2009:Q3 euro area GDP growth (QoQ a.r.)
nowcast from April 2, 2009 to December 3, 2009. The middle chart shows the contribution to the nowcast
revision of variables grouped by country. The lower chart shows the contribution of variables grouped
by hard and soft data.
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the model assessed that economic conditions were deteriorating even further, with now-

casts hitting unprecedented marks ranging from -10% to -60% by mid-May, persisting

until the eventual first GDP release in August 2020.

Figure 3 Nowcast evolution during the onset of the COVID-19 pandemic

Note: Nowcast evolution from dynamic factor models for seven advanced economies. Solid lines follow
the nowcasts for the quarter-on-quarter GDP growth (QoQ a.r.) for 2020:Q2. Dots correspond to the
first official GDP release.

In conclusion, two results emerge from our analysis of the COVID-19 pandemic. First,

a comprehensive model that summarizes unstructured, unbalanced, and mixed-frequency

data can be quite informative about the state of the economy, especially in events of

rapid regime changes. Second, timely soft data proved useful to get a first assessment of

the magnitude of the impact on the economy from the lockdowns.

5.3 Dealing with the pandemic period in nowcasting models

The DFMs that we used in this section to nowcast the onset of the COVID-19 pandemic

are linear Gaussian models. As such, they are not well-equipped to fit such an extreme

event unlike anything else in history. Going forward, methodological changes may be

needed to improve the nowcasting performance of mixed-frequency models when dealing

with extreme events.

Since March 2020, the literature has proposed many interesting econometric enhance-

ments on how to deal with an extreme episode such as the COVID-19 pandemic, both

in the Frequentist and Bayesian environments. These enhancements are either already

directly implemented in mixed-frequency set-ups, or future research could engineer them
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to work with the current set of tools available for nowcasting.22 A non-extensive list of

methods proposed include the following:

– Excluding the pandemic observations altogether (Schorfheide and Song, 2020)

– Estimating a common shift and persistence of the volatility of the shocks during the

extreme periods of the pandemic (Lenza and Primiceri, 2021)

– Downplaying the importance of extreme observations (Cascaldi-Garcia, 2022)

– Modeling extreme observations either as random shifts in the stochastic volatility (Car-

riero et al., 2022; Álvarez and Odendahl, 2022), or through non-parametric methods

(Huber et al., 2023)

– Estimating the model with t-distributed errors (Bobeica and Hartwig, 2023)

– Augmenting the information set with an exogenous variable capturing the pandemic

period (Ng, 2021)

– Modeling outliers directly in the DFM (Antolin-Diaz et al., 2020)

6 Conclusion

Nowadays, nowcasting models are the most popular tools used to assess the current

state of the economy at central banks, governmental agencies, and financial and non-

financial corporations all around the world. They have also been the topic of a hefty

body of academic literature. In this chapter, we have summarized how the nowcasting

framework has evolved and is currently applied to 1) efficiently use large information sets

characterized by data with mixed frequency and mismatched time spans due to dissimilar

historical availability and asynchronous release time, and 2) provide the final users with a

tool that helps to interpret why a given data release has changed the model’s assessment

of the state of the economy.
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