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Abstract
In this paper, we utilize the Chicago Board Option Exchange (CBOE) implied volatility
indices to estimate the time-frequency information transmission among financial markets
from 01.08.2008 to 31.10.2019. In doing so, we utilize the rolling window wavelet correla-
tion (RWWC), Diebold &Yilmaz (The Economic Journal 119: 158–171, 2012), and Barunik
& Krehlik (Journal of Financial Econometrics 16: 271–296, 2018). Our empirical findings
suggest short-term and long-term dynamic connectedness between implied volatility indices
of alternative assets. The long-term analysis findings suggest potential hedging and diver-
sification opportunities that can be exploited by taking offsetting positions across volatility
indices. The findings confirm heterogeneity between short-term and long-term connected-
ness results. Our findings also show superior out of sample hedging effectiveness of GVZ.
The implications of the findings are further discussed in the paper.
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1 Introduction

Volatility transmission in global financial markets has imperative and inevitable implications
for international portfolio investment and diversification.More importantly, the growing inte-
gration and financialization of themarkets have compelled the practitioners and researchers to
pay attention to the time-varying linkages among financial markets over the past few decades.
In this backdrop, financial stability and process of financialization is central to debate as they
are considered major source of systematic risk (Huynh et al., 2020a, 2020b, 2020c). Some of
the recent works on financial crises identify that risk transmission between financial markets
is inevitable and significant due to monetary and financial amalgamation (for instance, Euro
zone member countries), shared default risk, public debt policy, currency volatility and finan-
cialization (Ftiti et al., 2017). The information mechanisms entail that a lesser magnitude of
spillover between financial markets augments the safe haven and diversification incentives. In
otherwords, higher correlated asset classes are not a feasiblemodel to optimize the risk-return
policy of the portfolio of various assets (Andrada-Félix et al., 2018). Commonly, financial
market volatility is determined by obtaining implied volatility from derivative securities. The
pioneer works such as Demeterfi et al. (1999) assert that implied volatility indices established
by Chicago Board Options Exchange (CBOE) are important representatives of market risk
and proxies of realized volatility received from derivative financial markets. Moreover, the
volatility indices are considered determinants of fear and negative market psychology for
financial markets as they depict the investors’ expectations about the uncertainty and future
implied volatility of derivative securities for a month ahead (Whaley, 2000).

Understanding the causes and repercussions of economic uncertainty has become imper-
ative for policy makers and economic managers since high uncertainty leads to challenges
related to decisionmaking and forecasting economic outlook and has significant implications
on the financial markets and the whole economy (Huynh, et al., 2020b). Nowadays, rising
price fluctuations and contagious effects have increased the uncertainties in financial mar-
kets. Some of the culminating historical crises, such as the dot-com bubble crisis 2001, the
Global Financial Crisis of 2007–08, the European Debt Crisis of 2011–12, and the Chinese
Financial Crisis of 2015, have directed towards understanding the significance of financial
contagion modes linked with untapped financial securities. Considering the growing risk and
extreme jolts observed in the global financial markets, investors opt for different asset classes
that compensate for market risk.

The sizeable empirical and theoretical literature on the connectedness between financial
assets has focused on volatility spillovers between financial markets. The primary reason for
investigating the volatility spillovers is to unravel the magnitude of integration and informa-
tional spillovers between the financial markets. The various theoretical linkages support the
rationale of the transmission effect between multiple asset classes. Risk spillover and con-
nectedness literature is intertwining with previous established theories like efficient market
theory, modern portfolio theory and hedge and diversification hypotheses. Efficient market
hypothesis by Fama (1965), (1970) asserts that securities prices reflect to all available infor-
mation. In other words, market is called efficient if prices of financial instruments fully reflect
complete and accessible information in the market. Thus, the reduced volatility transmission
effect between two assets signals the market efficiency and quick dissemination of the infor-
mation, which is also highly linked to the speed of market adjustment to recent information
(Inagaki, 2007; Kyle, 1985). Ross (1989) argues that volatility in a specific financial market is
directly connected to the degree of information transferred to other asset markets. Moreover,
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the recent empirical research work by Jawadi et al. (2017) which tested the informational effi-
ciency hypothesis on different classes of commodities conclude that in short term, commodity
markets are inefficient in terms of information and vice versa in long term.

Further, the interlinkages and associations between various financial assets are elucidated
under hedge and diversification hypotheses. Baur and Lucey (2010) concur that combina-
tion of either positively or negatively related financial assets makes up good diversifier or
hedge portfolio in normal economic state. This specific theoretical argument is initiated and
brought bymodern portfolio theory originally conceptualized byMarkowitz, H. (1959)which
explains that to lessen and mitigate risk for given level of returns, the investors would opt
for less risky portfolio than riskier one. Hence, this implies that risk diversion and aversion
directs towards investing in various asset classes. Thus, the efficient portfolio and diversifica-
tion strategies yield protection to the investors against risk and renders support to economic
stability and optimal financialization. The theoretical underpinning on the interdependence of
various financial assets is also apprehended under the cross-market re-balancing and portfo-
lio re-adjusting mechanism in response to the financial market and economic shocks. Tiwari
et al. (2018) examined the volatility spillovers across four global asset classes namely, stock,
sovereign bonds, credit default swaps (CDS) and currency using both a time-domain and
a frequency-domain framework. Overall results from Tiwari et al. (2018) suggests that the
stock and CDS markets are net transmitters of volatility, while foreign exchange and bond
markets are net receivers of the spillovers and that the net transmitter of volatility spillovers
across the markets is contingent on the frequency under consideration.

Following the notion, abundant research has investigated the association between various
financial markets such as forex, gold, crude oil, and stock markets (see, e.g., Jain & Biswal,
2016; Akbar et al., 2019). More specifically, a large number of studies have also highlighted
the volatility spillovers between different financial assets. For instance, Yaya et al. (2016) and
Ftiti, et al. (2016) identify the spillover and co-movement between crude oil and gold during
crises period. In the same vein, many others discover the volatility and return spillovers
between oil, equities, and precious metals (see, e.g., Maghyereh et al., 2017; Balli et al.,
2019; Caporin et al., 2021; Farid et al., 2021).

Further, Dutta (2018) unveil implied volatility persistence between silver and gold by
applying the VAR-GARCH model. Al-Yahyaee et al. (2019) explore implied risk and return
spillovers between the precious metals and commodity futures of energy in the GCC equity
markets. Likewise, An et al. (2020) analyze the significant volatility spillovers between
mineral commodities using a network method. Also, Uddin et al. (2020) adopt the copula
model to evaluate the dynamics of spillovers between the precious metals, oil, and equity
market in the US. In short, time-varying interdependence and volatility spillovers between
financial markets have been extensively explored. Tiwari et al. (2021a) adopted Diebold and
Yilmaz (2012) spillover index to examine the returns and volatility connectedness between
oil–stocks and found the spillover index value for WTI and Brent, respectively, is 71.60 and
72.32%. Tiwari et al. (2021b) examined the frequency domain connectedness using Barunik
and Krehlik (2017) method. Their study used returns series of crude oil, stock market index
and four metal prices and found that the degree of connectedness decreases as frequency
increases. Additional results suggested that titanium, platinum, gold and silver are the net
contributors to volatility, while steel, crude oil, stock prices, and palladium are net receivers
of volatility.

On the contrary, limited studies have examined the volatility spillovers between the implied
volatility indices (forward-lookingmeasures of volatility in financialmarkets).Wherein, prior
literature has also stressed the superiority of implied volatility indices over historical volatil-
ity indexes in terms of forecasting volatility in financial markets (Blair et al., 2001; Fleming,
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1998; Jiang & Tian, 2005). In the same way, keeping in view the volatility transmission
between implied volatility indexes, scarce research exists regarding the hedging and diversi-
fication benefits across different asset classes. Also, the existing literature on co-movement
or spillover is largely unclear in providing the appropriate policy guidelines in countering
hazardous spillover effects (Yoon et al., 2019). Thus, the reasons above necessitate enriching
the extant empirical literature on the risk spillover between various asset classes.

This study adopts the spillover index methodology by Diebold and Yilmaz (2009, 2012).
This study offers a novel methodology andmechanism for portfolio managers to compute the
magnitude and size of the net transmitter and the contributor of implied volatility spillovers
between different asset classes. Although the connectedness between these volatility indices
has been partially investigated by Andrada-Felix et al. (2018) by using Diebold and Yilmaz
(2012, 2014) framework, our study, following Tiwari et al., (2018, 2020b, 2021a, b), provides
a more comprehensive illustration of the connectedness network between volatility indices
using the frequency connectedness framework of Barunik and Krehlik (2018) and Polanco
et al. (2018) frequency-basedmethodology of rollingwindowwavelet correlation. The result-
ing analysis will ascertain the risk transmission effects between equities, bonds, currencies,
and energy and non-energy commodities in the time–frequency domains. The examination
of this nature will allow market participants to understand the better frequency-based net
transmission of volatility across alternative asset classes using implied volatility indices and
shed light on potential hedging and diversification opportunities that can be exploited by
taking offsetting positions across volatility indices.

The main contribution of this research falls into three areas. First, this study departs from
the prior literature examining time-varying volatility spillovers between equities, bonds, cur-
rencies, and energy and non-energy commodities from the perspective of implied volatility
spillovers. Although extensive research prevails on volatility spillovers between financial
markets, there is still a gap regarding time-varying spillover effects between implied volatil-
ity indices and hedging strategies adopted among various asset classes to achieve portfolio
diversification.Moreover, the assessment of extreme risk and volatility transmission between
various financial assets will also give detailed insights into the diversification and hedging
characteristics of each financial asset, respectively. Second, the study estimates the hedge
ratios of each asset class to determine the optimal diversification strategies and hedging
effectiveness and profitability. There is a growing need to diligently plan the diversification
strategies by portfolio managers, given the mounting pressures investors confront in obtain-
ing diversified portfolios and risk reduction. Third, in addition to analyzing information
transmission, the study uses a novel methodology, the Rolling Window Wavelet Correlation
framework, to detect the risk of extreme market fluctuations.

Our empirical findings suggest short-term and long-term dynamic connectedness between
implied volatility indices of alternative assets. The long-term analysis findings suggest poten-
tial hedging and diversification opportunities that can be exploited by taking offsetting
positions across volatility indices. The findings confirm heterogeneity between short-term
and long-term connectedness results. Moreover, our findings indicate dynamic net-pairwise
connectedness, which reveals various volatility transmission episodes where net propagators
turn into net receivers. The rest of the paper is organized as follows. Section 2 presents a
literature review. Section 3 explains the methodology. Section 4 presents the data details and
obtained empirical findings, and finally, Sect. 6 concludes and provides policy implications.

123

Annals of Operations Research (2024) 334:701–729704



2 Literature review

The extant literature on volatility spillovers among different asset classes is divided into vari-
ous research work strands. The first conduit on volatility spillovers investigates the spillovers
across the same asset class markets. The inception of the literature in this direction started
with evaluating exchange rate volatility after the events erupting due to the European Mone-
tary System in the 1990 era (see, e.g., Rose & Svensson, 1994; Sosvilla-Rivero et al., 1999).
Engle et al. (1990) first explored volatility transmission, which identifies volatility spillover in
the foreign exchange market. Laopodis (1998) also confirms the evidence of strong volatility
transmission and concludes that good news related to volatility spillover has a lesser effect
than comparable bad news. In contrast, Baillie and Bollerslev (1991) identify slight or no
evidence of volatility transmission between the US dollar exchange rate and other currencies.
Few others also investigated the association among implied market volatilities. For instance,
Nikkinen et al. (2006) also examine the implied volatility term structure linkages between the
British pound, euro, and the Swiss franc against the US dollar. In the same way, Huynh et al.,
(2020b) also investigate return and volatility transmission effect among nine most traded
international currencies and confirm the asymmetric relationship and spillover effect in cur-
rencymarkets specifically during times of trade policy uncertainty.Moreover, the researchers
conclude that volatility spillover effect is more pronounced than return spillovers between
currency rates and policy uncertainty.

The second conduit on volatility spillovers investigates the spillovers between stock mar-
kets. In this regard, Bonfiglioli and Favero (2005) found a lack of long-term linkages between
the US and German stock markets. On the contrary, Caporale et al. (2006) unveil the interde-
pendence of stock market returns among the US, Japanese, European, and Southeast Asian
markets. Similarly, Chinzara andAziakpono (2009) find evidence of both return and volatility
spillover between major equity markets across the world. Some studies explore the volatility
spillovers and interdependence between stock returns and exchange rates (see, e.g., Kanas,
2000; Beirne et al., 2013). The empirical findings confirm the rising financial integrations and
interdependence of international markets. These researchers conclude the significant effect
of the implied volatility of the currency market and stock market volatility’s expectations on
each other. Ftiti et al. (2017) documented the effect of sovereign credit rating information on
spillover effect and volatility of stock markets in fragile European countries.

Another strand of volatility spillover literature connects crude oil, equity, and the exchange
rate market.Malik andHammoudeh (2007) apply amultivariate GARCHmodel to determine
the volatility spillover linkages between crude oil, US equity market, and stock markets of
Gulf countries. The findings show strong volatility spillover effects among financial markets.
Similarly, Arouri et al., (2011a, 2011b) identify contagious volatility effects between oil
and sectoral indices in the US and Europe. The empirical findings provide evidence on
strong volatility transmission between sectoral stock market returns and oil. Badshah et al.
(2013) document the concurrent transmission effects of volatility indices for gold, stock, and
forex. Also, Liu et al. (2013) found significant short- and long-term equilibrium relationships
between the implied volatility of gold, crude oil, and VIX.

Regarding commodity market spillovers, the majority of the coverage is related to the oil
market. Pioneer studies in this subject matter investigate the association between oil price
fluctuations and stock markets and conclude the significant impact of oil price fluctuations
on stock market returns in developed and developing economies (Jones &Kaul, 1996; Huang
et al., 1996; Sadorsky; Park &Ratti, 2008, among others). In other commodities, Büyüksahin
et al. (2009) find insignificant interdependence between numerous commodity returns andUS
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stock indices before the global financial crisis. Conversely, many other studies argue a strong
relationship between commodity and stock markets (Kang et al., 2015; Olson et al., 2014;
Silvennoinen&Thorp, 2013).Moreover, the recent studies assert that linkages between com-
modities and stock markets have strengthened after GFC 2007–08 due to the financialization
of commodity markets. For instance, Delatte and Lopez (2013) and Büyükşahin and Robe
(2014) document the time-varying co-movements between commodity and equity indices
and confirm the evidence that significant surge and symmetrical interdependence is wit-
nessed between equity and commodities returns in the aftermaths of financial turmoil. Also,
Mensi et al. (2013) and Maghyereh et al. (2017) find strong volatility transmission linkages
structure between oil and other commodities.

Another conduit in this direction reveals the linkages of time-varying dependence and
co-movements between gold and other asset classes (e.g., Bouri et al., 2017; Schweikert,
2018; Yunus, 2020). Choudhry et al. (2015) and Reboredo and Ugolini (2017) found asym-
metric causality linkage between gold, commodities, and stock prices. In the same vein,
Bouri et al. (2018) explore the time-varying correlations and nonlinear quantile effects of
gold and commodities index on Bitcoin. Schweikert (2018) document the long-term associa-
tion between silver and gold, whereas Yunus (2020) identifies interdependence between real
estate, gold, bond, and equity markets. Boukhatem et al. (2021) conclude that the connect-
edness between bond market and macroeconomic variables is significant and pronounced in
emerging economies during turmoil periods.

Our study is also a thread of literature that documents the effects of volatility transmission
and spillovers on portfolio diversification strategies. For instance, Chang et al. (2011) estimate
optimal hedge ratios for Brent and WTI crude oil spot and futures contracts from various
multivariate conditional models. The empirical findings support multivariate conditional
variancemodels, reducing the inconsistencybetweenoil spot and futures portfolios. Similarly,
Huynh et al. (2020c) determine the connectedness between commodity spot and futures prices
of various financial variables (crude oil, corn, soya, gold, silver, and iron) and identify that
commodities futures volatility significantly cause and effect the volatility in spot prices of
major commodities in international financial markets. Mensi et al. (2015), and Basher and
Sadorsky (2016) examine time-varying hedging strategies among various asset classes, e.g.,
exchange rate, crude oil, emerging market stock returns, the VIX, gold and bond prices. The
results suggest time-varying phenomena among asset classes and identify oil as the best hedge
against stock market volatilities. In the related works, Khalfaoui et al. (2015), and Wang and
Liu (2016) examine the hedge potentials and hedge ratios in various periods. Their findings
manifest that hedge ratios are diverse across time and frequencies, and portfolio managers
should hold more crude oil than stocks. Moreover, the evidence points towards cross-market
hedging in the oil and stock markets. Recently, Huynh and et al., (2020a, 2020b, 2020c)
examine risk spillover effects among 14 cryptocurrencies and find that risk transmission
comes from small coins in cryptocurrency market and Bitcoin is apposite financial tool for
hedging. Tiwari et al. (2020a) examined the strength and time variation of spillovers between
returns on residential real estate, real estate investment trusts (REITs), stocks and bonds in
the United States using BY and BKmethodologies. Their study found that spillovers between
housing, stock and bond returns are relatively modest and shocks to stock and bond markets
affect housing returns more than the other way round, even though with variations over time
and that shocks originating in the housing market are most persistent, particularly in the
aftermath of the subprime crisis.

Despite ample research work in this line, a significant research gap exists in examining
the time-varying interdependence and hedging strategies between equities, bonds, curren-
cies, energy, and non-energy commodities’ implied volatility indices. This study focuses on
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information transmission effects between five volatility indices, equities, bonds, currencies,
and energy, and non-energy commodities.Moreover, the studymakes use of Rolling- window
wavelet correlation framework to detect extreme market fluctuations across different time
intervals and to assess risk and volatility spillovers among implied volatility indices.

3 Methodology

3.1 Wavelet correlation

The study determines the time and frequency coherency between equities, bonds, currencies,
energy, and non-energy commodities by making use of the MODWT wavelet correlation
(WC) following Gençay et al. (2001) and Tiwari et al., (2013, 2016) and rolling-window
wavelet correlation (RWWC) approach by Polanco-Martínez et al. (2018). The MODWT
WC could be elucidated as:

ρ̃AB =
Cov

(
ẆA,z,d W̃B,z,d

)
√
var

{
W̃A,z,d

}
var

{
W̃A,z,d

} = γ̃AB(γ Z)

σ̇ A(γ Z )̃σ B(γ Z)
(1)

whereas
∼
γ AB(γ Z) signifies the wavelet covariance’s unbiased estimates between the

wavelet coefficients ẆA,z,d and W̃B,z,d . σ̇ 2A(γ Z)and σ̃ 2B(γ Z) measure of the unbiased
estimates, in accordance with scale γ Z , the wavelet variance for A and B, correspondingly.
The MODWT- based wavelet variance’s unbiased estimate is represented as:

∼
σ
2

A(γ Z) = 1

Ñ

N−1∑
d=Lz−1

W̃ 2
zd (2)

where
‘
Wz,d denotes the jth level MODWT wavelet coefficients for the data series A, Lz =

(2z − 1) + 1 is the scale wavelet filter, γz, length, which denotes the sum of coefficients;
the border does not cause a disturbance. In confirmation with Whitcher et al. (2000), the
confidence intervals for the wavelet coherence chase the manifestation 100(1 − 2p)%.

Consequently, a confidence interval estimation for the wavelet coherence is represented
as.

h{h
[∼
ρ AB(γ z)

]
+ ∅

−1(1− p)/
√
Ñ + 3} where ∅

−1(p) proxies the 100p% percentage

point for the standard normal distribution. The Fisher Z-transformation is explicated as by

h
(∼
ρ AB

)
= tanh−1

(∼
ρ AB

)
.

3.2 Rolling-windowwavelet correlation

The study determines the time and frequency coherency between equities, bonds, curren-
cies, energy, and non-energy commodities by making use of the rolling-window wavelet
correlation (RWWC) approach by Polanco-Martínez et al. (2018). The RWWC is a dynamic
approach that computes the sequential innovations of the wavelet correlation (WC). The
study applies RWWC framework, which displays WCs between data series in which moving
windows computations are required. It is a modern approach in the present literature that can
grasp the different time intervals. The study assesses the pairwise RWWCwhere windows w
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= 120 data points. The study then rolls forward each series point positioned in a stated time
following Polanco-Martínez et al. (2018).

3.3 GFEVD and connectedness in the time-domain

Initially the study approximates a stationary VAR model

yt = �(L)yt + εt = �1 yt−1 + �2yt−2 + · · · + �pyt−p + εt (3)

where vector yt is n×1, which comprises of all variables in system;�(L) is a lag polynomial.
The vector εt of random errors has zero mean, variance matrix �, and no autocorrelation.
As system of VAR is stationary, it has a moving average illustration with infinite order, or
VMA(∞)

yt = �(L)εt = �0εt + �1εt−1 + · · · + �hεt−h + · · · (4)

where �h is the moving average coefficient matrix that relates to the h-th lag; and when h
is zero, �0 diminishes to the unit diagonal matrix I . Pesaran and Shin (1998) by making
use of the generalized forecast error variance decomposition (GFEVD) depicted that the
contribution of the j-th variable to the forecast error variance of the i-th variable H-steps
ahead is

θH
i j =

∑H−1
h=0

(
e′
iψh

∑
e j

)2
e′
j

∑
e j × ∑H−1

h=0 e′
j

(
ψh

∑
ψ ′

h

) = 1

σi j
×

∑H−1
h=0

((
ψh

∑)
i j

)2
∑H−1

h=0

(
ψh

∑
ψ ′

h

)
i i

(5)

where σ j j is the j-th diagonal matrix of�; e j represents a vector whose j-th component is one
while all the other components are zero. The study can acquire the pairwise connectedness
from variable j to variable i as θ̃H

i j = θH
i j /

∑H
i j θ

H
i j by standardizing the input of all variables

( j = 1, 2, . . . , n). It is obvious that by definition,
∑n

j=1θ̃
H
i j = 1,

∑n
i=1

∑n
j=1θ̃

H
i j = n. And

the total connectedness of the VAR system is

CH =
∑n

i �= j
∑n

j=1θ̃
H
i j∑n

i=1
∑n

j=1θ̃
H
i j

= 1

n

∑n

i �= j

∑n

j=1
θ̃H
i j (6)

The net pairwise connectedness is computed as

Cd
i j,net = θ̃H

i j − θ̃H
ji (7)

The from connectedness and to connectedness are.

CH
i←· =

n∑
j �=i

θ̃H
i j , CH

i→· =
n∑
j �=i

θ̃H
ji (8)

Thenet connectedness of variable i is the difference between the to and from connectedness

CH
i,net = CH

i→• − CH
i←• (9)
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3.4 GFEVD in the frequency domain

The discussion again begins with the VMA (∞) representation of the VAR(p) model. The
lag operator is replaced L with e−iω to attain the Fourier transform for the lag polynomial
�(L) in Eq. (10)

�
(
e−iω) =

∑∞
h=0

e−iωh�h (10)

where ω is a definite frequency. The power spectrum of yt is represented as

Sy(ω) =
∞∑

h=−∞
E

[
yt y

′
t−h

]
e−iωh = ψ

(
e−iω

)∑
ψ

(
eiω

)
(11)

The frequency version of the GFEVD is

ϑi j (ω) = 1

σ j j
×

∣∣∣(�(
e−iω

)
�

)
i j

∣∣∣
2

(
�

(
e−iω

)
��

′(
eiω

))
i i

= 1

σ j j
×

∑∞
h=0

(
�

(
e−iωh

)
�

)2
i j∑∞

h=0

(
�

(
e−iωh

)
��

′(
eiωh

))
i i

(12)

The pairwise connectedness, after normalizing in the same way in the time-domain, from
variable j to variable i is

∼
ϑ i j (ω) = ϑi j (ω)∑n

j=1 ϑi j (ω)
(13)

The pairwise connectedness within a frequency band (ω1, ω2) is explained as:

∼
ϑ i j (ω1, ω2) =

∫ ω2

ω1

∼
ϑ i j (ω)dω (14)

And the within net pairwise connectedness is computed as

Cd
i j,net (ω1, ω2) = ∼

ϑ i j (ω1, ω2) − ∼
ϑ j i (ω1, ω2) (15)

Then the within total connectedness over this frequency band (ω1, ω2) is

C (ω1,ω2) =
∑n

i �= j
∑n

j=1

∼
ϑ i j (ω1, ω2)

∑n
i=1

∑n
j=1

∼
ϑ i j (ω1, ω2)

(16)

The within from connectedness and within to connectedness are

C (ω1,ω2)
i←• =

∑n

j �=i

∼
ϑ i j (ω1, ω2),C

(ω1,ω2)
i→• =

∑n

j �=i

∼
ϑ j i (ω1, ω2) (17)

The within net connectedness is

C (ω1,ω2)
i,net = C (ω1,ω2)

i→• − C (ω1,ω2)
i←• (18)

A positive value within net connectedness in a given a frequency band suggests variable
i is a net transmitter of spillover in the framework; else, if negative value is observed within
connectedness then variable i is supposed to be net receiver of spillover in the framework.

And the contribution of connectedness over frequency band (ω1, ω2) is

c(ω1, ω2) =
∑n

i �= j
∑n

j=1

∼
ϑ i j (ω1, ω2)

∑n
i=1

∑n
j=1

∼
ϑ i j (−π, π)

= 1

n

∑n

i �= j

∑n

j=1

∼
ϑ i j (ω1, ω2) (19)
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3.5 Hedge effectiveness

In the next stage, the study executes the out-of-sample hedging efficiency of variables for
OVX, EVZ and TYNVI, which permits to match the hedging capability of variables. The
study performs this by estimating the hedge efficacy of the hedged positions among variables
for OVX, EVZ and TYNVI, and determine the extent of risk reduction by including VIX
or GVZ in a shared portfolio. This technique and step are mostly applied by researchers for
portfolio risk assessment. Assume rhp,t symbolizes the hedged portfolio’s return that consists
of a given style (industry) portfolio and variables position:

rhp,t = rA,t − θt rB,t (20)

where rA,t represent the return on OVX, EVZ and TYNVI, and rB,t denotes the return on
either VIX (GVZ), and the hedge ratio is symbolized by θt . Therefore, the variance of the
hedged portfolio is dependent on the evidence accessible at the timeIt−1, and is represented
as:

var
(
rA,t It−1

) = var
(
rB,t It−1

) + ∅
2
t var

(
rA,t

) − 2∅t cov
(
rsp,t , rB,t It−1

)
(21)

The calculation of the hedge ratios originates from the conditional-volatility and covari-
ance estimation attained through the AGDCC-GARCHmodel. It is known as the asymmetric
generalized dynamic conditional correlation form of the generalized autoregressive condi-
tional heteroscedasticity model. This approach renders a robust estimation by determining
the second moments of correlations and covariance. This facilitates in evaluating the hedge
performance of variables on the style (industry) portfolios. Thus, a long position in a par-
ticular style (industry) portfolios can be hedged with a short position in variables from the
underlying specification:

θ∗
t

It
= hA,B,t/hB,t

where hA,B,t signifies the conditional covariance between OVX, EVZ and TYNVI and either
VIX (GVZ) and hB,t symbolizes the conditional variance of either VIX (GVZ). The hedge
effectiveness is analyzed to determine and associate the performance of various hedge ratios
attained by diverse GARCH models presented in the following equation

he = varunhedged − varhedged
varunhedged

(22)

In complete terms, a greater he indicates the higher hedge effectiveness. This implies that
the he = 1 would show as a perfect hedge, and he = 0 suggests as a no hedge. A static-width
rolling calculation for the hedge ratios yields forecast of 1,000 one step with model refitting
is done every 10 observations. These hedge ratio projections further direct the creation of the
hedged portfolio.

4 Data and empirical findings

4.1 Data

This study uses daily data of five volatility indices representing five major financial asset
classes, including equities, bonds, currencies, energy, and non-energy commodities. We use
theVIX index for stockmarket volatility,which expresses the expected change in the S&P500
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index over the next 30 days. It is calculated with respect to option prices that allow investors
to hedge against sharp price movements. As illustrative of the bond market, we utilize the
CBOE/Chicago Board of Trade (CBOT) 10-year US Treasury-Note, known as (TYNVI).
Based on the prices fromCBOT’s actively traded options contracts on Treasury-Note futures,
TYNVI measures the expected volatility of the next 30-days for 10-year Treasury-Note
futures. Further,we takeCBOEEuroCurrencyVIX (EVZ) as an indicator of foreign exchange
markets. Based on the option of Currency Shares Euro Trust, the indicator computes the
expected volatility of the USD/EURO exchange rate for the next 30-days. Furthermore, as
representative of the energy market, we utilize CBOE crude oil price ETF VIX (OVX). OVX
estimates the next 30-day volatility of crude oil prices by using LP (Ticker- USO) options
with a wide range of strike prices of the United States Oil Fund. Finally, as an indicator of
non-energy commodities, CBOEGold exchange-traded fund (ETF)VIX (GVZ) is employed.
Based on the bid and ask prices of SPDR gold shares, the GVZ computes the 30-day volatility
of the gold prices. The data for all of the indicators are taken from the CBOE website. The
period of our study spans from 01/08/2008 to 31/10/2019.

4.2 Descriptive analysis

Panel A of Table 1 displays the descriptive statistics of volatility indices utilized in the study.
Not surprisingly the statistics show that the highest mean implied volatility in our sample is
reported for OVX (36.23) depicting extreme oil price movements. In addition, in terms of

Table 1 Descriptive statistics and correlation between financial market volatilities

Panel A: Descriptive statistics

Mean Std. Dev Skewness Kurtosis J-B ADF

VIX 19.2712 9.5495 2.4915 10.9453 10,756.4400*** − 25.6945***

OVX 36.2304 13.7882 1.4592 5.9169 2082.0910*** − 36.0220***

GVZ 18.9686 7.7386 2.0812 8.9172 6400.5650*** − 46.8793***

EVZ 10.5901 3.9231 1.3807 5.6909 1817.9790*** − 36.7414***

TYNVI 6.0405 2.0958 1.5078 5.2980 1757.9250*** − 27.1968***

Panel B: Correlations

VIX OVX GVZ EVZ TYNVI

VIX 1

OVX 0.3653*** 1

GVZ 0.3901*** 0.2656*** 1

EVZ 0.3007*** 0.1655*** 0.3304*** 1

TYNVI 0.3392*** 0.1621*** 0.2133*** 0.2309*** 1

Panel A of this table presents the descriptive statistics and unit root tests of the daily series over the period
from 01.08.2008 to 31.10.2019. ADF is the statistic of the ADF (Augmented Dickey-Fuller) unit root test
***Indicates statistical significance at the 1% level
Panel B of this table reports the unconditional correlation coefficients between all possible pairs of the daily
series over the whole sample period from 01.08.2008 to 31.10.2019
As usual, *** indicates statistical significance at the 1% level
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Fig. 1 Daily financial market volatilities. Note: The sample period is from 01.08.2008 to 31.10.2019

implied volatility, OVX is followed by VIX (19.27) and GVX (18.96). This also showcases
that in the post-financial crisis era, non-energy commodities are also vulnerable to increasing
price volatilities due to thefinancialization of the commoditymarkets (Balli et al., 2019).Also,
as expected in our sample volatility indices, TYNVI (6.04) has the lowest average implied
volatility (low volatility of fixed income securities is well documented by Houweling & Van
Zundert, 2014; de Carvalho et al., 2014). Additionally, the skewness, kurtosis, and Jarque
Bera tests reveal that volatility indices are not normally distributed. Finally, the results of the
Augmented Dickey-Fuller test illustrate that all series are stationary.

Panel B of Table 1 also reports the pairwise correlations between the volatility indices.
Opposite to Andrada-Felix et al. (2018) we find low correlations among implied volatility
indices. The low correlations highlight the case for using alternative asset for diversification
and hedging. We further develop this idea in the empirical analysis section.

Figure 1 displays the daily evolution of volatility for sample implied volatility indices. It
is to be noted that the values of volatility indices correspond with important events (when
investors anticipate significant moves in either direction). Large volatility spikes corre-
spond to events such as default of Lehman Bros. in September 2008, European debt crisis
2010–2012, oil price collapse in 2014 that lasted till mid-2015, financial turmoil in June 2016
after the UK voted to leave European Union and the most recent in September 2019 when
finally Brexit happened. The results showcase significant influence of economic and finan-
cial conditions on the volatility of implied volatility indices. The findings illustrate market
sentiment and risk-averse behavior of investors in periods with high market volatility.

4.3 Rolling windowwavelet correlation analysis

Unlike normal correlation matrix, the rolling window wavelet correlation analysis reveals
interesting additional information about the co-movement between implied volatility indices.
The correlation coefficients for the four wavelet scales, from D1 to D4, imply time horizons
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associatedwith changes of 1–8 days and intra-week tomonthly periods. The results showcase
the correlations structure among volatility indices is frequency-dependent and the degree of
correlation between the implied volatility indices is not constant over time.

Figure 2 illustrates the rolling window wavelet correlations for volatility indices. First, in
the case of VIX, we found maximum pairs of correlations for VIX-OVX followed by VIX-
GVZ, VIX-EVZ, whereas least pairs are detected for VIZ- TYNVI. Regarding VIX-OVX,
we observe high correlations during GFC, European debt crisis, oil price slump in 2014, and
Brexit. The high correlations are spread across all wavelet scales but more evident in the
longest wavelet scales D3 and D4. The findings highlight the strong linkages between the
implied volatility of the stock and crude oilmarkets, which aremore pronounced during finan-
cial instability periods. Moving on to VIX-GVZ, we note various high correlation episodes
during the sample that correspond to the longest wavelet scales. However, the episodes of
high correlation are brief and do not persist for a long period. Instead, the findings reinforce
the earlier evidence that suggests strong properties of gold as a diversifier and safe-haven
asset for stock markets, in particular during periods of the economic downturn (e.g., Baur
& Lucey, 2010; Baur & McDermott, 2010; Naeem et al., 2020; Naeem et al., 2021, among
others). Next, about VIX-EVZ, we found high correlations during the first half of the sample
spread across all wavelet scales. On the contrary, we note very few pairs of high correlations
for the second half of the sample. From investor point view the findings imply that market par-
ticipants can capitalize on the recent weak linkages between the stock and exchange market
to create successful hedging and diversification opportunities. Finally, among the volatility
indices least pairs of high correlations are reported between VIX- TYNVI. Moreover, only
time persistent higher co-movement between stock and bondmarket is observed around 2018
when the bond market volatility was considerably high.

As shown in Fig. 4 we found only a few pairs of high and moderate correlation among
OVX-GVZ. In addition, we note a few episodes of negative correlations that highlight the
functional role of gold as hedger and diversifier for other asset classes. Nevertheless, the
highest correlation between the implied volatility of gold and crude oil is seen during 2016
due to collapse of commodity markets and subsequent rebound. Also, concerning OVX-
EVZ we detect few high pairwise correlations corresponding to GFC and the European debt
crisis. More importantly, we also observe various negative correlations between the under-
lying implied volatility indices spread across all wavelet scales. The findings highlight the
strong prospects of cross-market hedging for investors. Furthermore, we note weak volatility
linkages among OVX- TYNVI as weak and negative correlations dominate the underlying
association and only few instances of high correlations are reported. Hence, Once again
findings suggest strong cross-market diversification possibilities for investors and portfolio
managers.

Next we detect moderate correlations between gold and foreign exchange market during
the sample period corresponding to all wavelet scales. The high correlations are found in the
longest wavelet scale D4. The findings somewhat again suggest the use of precious metal
to diversify foreign exchange risk as found for other alternative asset classes. Additionally,
once again we found weak co-movement between implied volatility indices of bond and gold
market. In fact, similar results can are also reported for EVZ- TYNVI during our sample time.
The findings confirm our earlier evidence that suggests weak association and connectedness
of the fixed-income market with other alternative assets. Moreover, the results highlight the
stable and less volatile nature of the fixed-income market.

Overall, the findings of this section suggest time-varying relationship between the co-
movement of the volatility indices. The findings highlight the frequency-dependent nature
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Fig. 2 Rolling window wavelet correlation. Note: Rolling window for the pairwise wavelet correlation coef-
ficients for the financial market volatilities under study. The colour bars represent the wavelet correlations,
where the red and blue colours correspond to the highest and lowest wavelet correlation values respectively.
The correlation coefficients for the four wavelet scales, that is, from D1 to D4, imply time horizons associated
with changes of 1–8 days and intraweek to monthly periods. The wavelet coefficients are within of the 95%
confidence interval for each wavelet scale
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Fig. 2 continued
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of the underlying markets. The findings validate the use of frequency-based methods to ana-
lyze and understand the risk transmission among implied volatility indices. Moreover, visual
depiction of co-movement between the implied volatility indices offers important implica-
tions for market participants as it provides specific information related to risk management,
asset allocation and cross-market hedging.

4.4 Static connectedness analysis

First, we estimate time–frequency connectedness among implied volatility indices to analyze
the static volatility linkages. Table 2 reports the volatility spillovers between the volatility
indices, where total static connectedness is estimated using Diebold and Yilmaz (2012)
time-domain approach and frequency-based connectedness follows Barunik and Krehlik
(2018) frequency-domain approach. The off-diagonal components in the table measure the
connectedness between the volatility indices.

Panel A displays the total connectedness among the implied volatility indexes. The results
show that own connectedness values are reported to be highest, ranging from 65.12% to
79.28%. In fact, own connectedness for all of the implied volatility indices is greater than
any directional connectedness FROM and TO. The findings somewhat suggest that implied
volatility indices of alternative assets are independent of each other to an extent. Also, the risk
transmission due to shocks in a particular asset does not strongly transmit to other implied
volatility indices. In the same vein, the total static connectedness between volatility indices
is only recorded around 25.96%,1 whereas 74.04% of the variation is driven by idiosyncratic
risk. The findings indicate that the level of connectedness among implied volatility indices is
less as compare to otherfinancialmarkets. In contrast,Diebold andYilmaz (2012, 2014) report
much higher value of connectedness among financial markets. In the same way, Maghyereh
et al. (2016) also found that the total connectedness between crude oil and stock markets
around the globe is 51.60% and Fernández-Rodríguez and Sosvilla-Rivero (2016) report a
connectedness value of 48.75% among foreign exchange and equity markets for the seven
largest economies of the world.

Now concerning the pairwise connectedness, the highest level of connectedness is among
VIX, GVZ, and OVX. The findings reinforce the recent evidence that stresses strong linkages
among equities and commodities due to financialization of commoditymarket, especially post
global financial crisis (Balli et al., 2019). Also, many researchers also suggest that nowadays
institutional investors recognize commodities as an alternative investment class (Büyükşahin
& Robe, 2014; Singleton, 2014; Junttila, 2018). On the other hand, the bond market has
low pairwise connectedness values with other financial markets except VIX. This once again
highlights the independent and stable nature of the fixed-income securities market.Moreover,
the findings second the evidence that indicates weak connectedness between bonds and other
financial markets (e.g., Maghyereh & Awartani, 2016; Tiwari et al., 2018). Additionally, the
net-connectedness results unveil that VIX is the net transmitter of volatility shocks to other
implied volatility indices. The results indicate that shocks in stock market strongly influence
the volatility in other financial markets. In fact, the results corroborate a thread of literature
that suggests the leading role of equities in transmitting volatility shocks to other financial
markets (Yoon et al., 2019). Therefore, our findings also recognize the functional importance
of VIX as the world’s major indicators of volatility and investor sentiment.

Panel B and C of Table 2 exhibits the results of frequency (short- and long-term) connect-
edness among the implied volatility indices. The findings uncover that for all of the implied

1 Where Felix et al. (2018) report total connectedness for volatility indices is 38.99%.
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Table 2 Full-sample connectedness

Panel A: Total

VIX OVX GVZ EVZ TYNVI FROM

VIX 65.1155 9.5147 11.0651 6.5920 7.7128 6.9769

OVX 11.3050 77.5233 5.7329 2.8467 2.5922 4.4953

GVZ 10.9957 5.3704 71.5312 8.3106 3.7921 5.6938

EVZ 7.6871 2.8758 8.7318 76.7322 3.9731 4.6536

TYNVI 9.5420 2.4304 4.4642 4.2895 79.2740 4.1452

TO 7.9059 4.0382 5.9988 4.4078 3.6140 25.9648%

NET 0.9290 − 0.4571 0.3050 − 0.2458 − 0.5312

Panel B: Short-term

VIX OVX GVZ EVZ TYNVI FROM

VIX 56.5578 8.0455 10.1003 5.8786 6.4491 6.0947

OVX 8.9037 67.1546 4.8881 2.4587 1.8510 3.6203

GVZ 8.9356 4.4315 62.6044 7.1393 2.8979 4.6809

EVZ 5.9690 2.2114 7.1347 66.2069 3.2202 3.7071

TYNVI 7.6165 1.8634 3.7067 3.7137 66.6859 3.3801

TO 6.2850 3.3104 5.1660 3.8381 2.8836 21.4830%

NET 0.1903 − 0.3099 0.4851 0.1310 − 0.4964

Panel C: Long-term

VIX OVX GVZ EVZ TYNVI FROM

VIX 8.5577 1.4692 0.9648 0.7134 1.2636 0.8822

OVX 2.4013 10.3687 0.8448 0.3881 0.7412 0.8751

GVZ 2.0600 0.9389 8.9268 1.1713 0.8942 1.0129

EVZ 1.7181 0.6644 1.5971 10.5253 0.7530 0.9465

TYNVI 1.9255 0.5669 0.7575 0.5757 12.5881 0.7651

TO 1.6210 0.7279 0.8328 0.5697 0.7304 4.4818%

NET 0.7388 − 0.1472 − 0.1801 − 0.3768 − 0.0347

This table reports the static total and frequency connectedness among the financial market volatilities from
01.08.2008 to 31.10.2019. FEVD is based on 5-variate VAR with two lags and hundred days predictive
horizons. ‘FROM’ denotes total directional spillovers from all others i.e., off-diagonal row sums whereas
‘TO’ denotes total directional spillovers to all others i.e., off-diagonal column sums. ‘Net’ spillovers are the
difference between the contribution TO others and the contribution FROM others

volatility indexes own connectedness is greater than directional connectedness FROMandTO
in both short-run and long-run. The findings somewhat stress weak transmission of volatility
shocks across implied volatility indices in the frequency-domain. The findings showcase that
majority of the variation in implied volatility indices are caused by idiosyncratic risk. The
findings also imply that investors can take advantage of the weak volatility linkages among
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implied volatility indices by taking off-setting positions across alternative assets to shield
against volatility shocks.

As anticipated the volatility connectedness among implied volatility indices varies across
frequencies. For Instance, the total connectedness estimated among the implied volatility
indexes is 21.48% in the short-run, whereas the value significantly decreases to 4.48% in
the long-run. The results clearly depict that the volatility transmission among the under-
lying markets significantly changes at different frequencies. Moreover, the decomposition
of total connectedness into short- and long-term frequencies unveils that volatility connect-
edness among the implied volatility indexes is more pronounced in the short-term period
and otherwise there is weak risk transmission among the indices in the long-run period.
The findings are in line with a thread of literature that suggests frequency-based volatility
connectedness among different financial markets (e.g., Tiwari et al., 2018; Le et al., 2021).
In this way, the results validate the use of frequency based methods to evaluate volatility
connectedness among the implied volatility indexes. The findings have crucial implications
for investors with heterogeneous interests in investment time horizons. For example, some
investors (such as individual trades and hedge funds) focus on short-term performance of
the financial assets, while others (large institutional investors) are more concerned about the
long-run performance. Further, the findings of this section confirm earlier obtained evidence
as we again note volatility spillovers among the indices swell during periods of financial
turmoil. Furthermore, the results also stress leading role of VIX as volatility transmitter to
other implied volatility indexes.

4.5 Time-varying connectedness analysis

The previous section illustrated the static time and frequency connectedness among the
implied volatility indices. Although, the static analysis reveals the effective design of
spillovers among the volatility indices, still the effectiveness of the connectedness framework
lies in understanding the time-varying nature of volatility shocks across time and alternative
asset markets (Diebold & Yilmaz, 2012, 2014). This section presents time-varying volatil-
ity connectedness among the implied volatility indices based on a 120-day rolling window
with a predictive horizon of 100 days. Figure 2 displays the time-varying total, short-, and
long-term connectedness of the implied volatility indices. The findings point towards strong
evidence of time-varying volatility connectedness among the implied volatility indexes finan-
cial markets, wherein we trace several high connectedness cycles among implied volatility
indices. The findings corroborate the earlier evidence that indicates time-varying volatility
connectedness among different financial assets (e.g., Rehman et al., 2018). In addition, once
again we observe that volatility connectedness among the implied volatility indices is a short-
run phenomena. The results somewhat stress that volatility linkages among the underlying
markets are largely influenced by investor sentiments, which are more pronounced in the
short-run.

We detect several high connectedness cycles (large spikes) corresponding with important
global financial events. The first spike is observed during the European Debt crisis 2010
when total connectedness reaches around 60%, while the cycle ends at the beginning of 2011
with the Greek bailout. The second connectedness cycle appears close to the end of the year
2011 after heavy losses encountered by investors in stock markets due to volatility linked
with contagion of European Debt crisis and US debt ceiling crisis. Also, the cycle reaches
its peak at the start of 2012 due to economic and political uncertainties surrounding the
events experienced in the previous year. Nevertheless, after the Cyprus bailout and stabilizing

123

Annals of Operations Research (2024) 334:701–729718



measures taken by central banks the volatility connectedness among the implied volatility
indices decreases. The third large spike is noted around mid-2013, which corresponds to
rise of geopolitical risk in Arab countries. Further, the volatility connectedness again rises
in 2014 due to conflict in eastern Ukraine and the fall in energy prices. The next spike in
volatility connectedness is reported at the end of 2014 when stock markets crash as adverse
news related to the economic slowdown and political instabilities in Arab countries reach the
markets.

In the same manner, another episode of high volatility connectedness is seen around mid-
2015, which corresponds to slump in commodity prices and the Chinese Financial Crisis of
2015. Next, volatility connectedness swells among implied volatility indices in 2016 due to
political turmoil, the collapse of commodity markets, subsequent rebound, and the effects
of negative interest rates on financial markets. More importantly, the situation gets further
intensified due to the US presidential elections’ results and the uncertainty surrounding the
UK’s vote to stay or leave the European Union. In contrast, during the year 2017 the volatility
indices are reported close to their lowest due to stable economic outlook, low-interest rates,
and a rise in asset prices. Once again, the rise in connectedness is observed close tomid-2018,
which corresponds to U.S-China trade war and political upheaval due to Iran’s sanctions.
Finally, the last connectedness spike in our sample reflects September 2019 when Brexit
finally happened.

Overall, the findings stress that static connectedness analysis underestimates the total
connectedness among the volatility indices. While, the time-varying analysis uncovers that
implied volatility indices are more connected, especially during high-stress periods. More-
over, the findings are in linewith the literature that indicates high connectivity amongfinancial
markets during the high contagion periods (Kolb, 2011). From the investors’ perspective the
findings imply that high contagion effects in financial distress periods destroy the diversifi-
cation benefits.

Figure 3 illustrates time-varying short-term and long-term connectedness among implied
volatility indices of alternative assets. The connectedness pattern detected for both of the
frequencies is similar to total period analysis as almost same connectedness cycles are noted.
In accordance with our earlier static analysis we found that connectedness between implied
volatility indices reduces when we move from short-run to long-run. More importantly, the
finding of the long-run analysis highlights potential hedging and diversification opportunities
that can be exploited by taking offsetting positions across implied volatility indices. In fact,
given the low connectivity and risk transmission in the long-run, investors can use a particular
market to hedge or diversify risk in the other markets.

4.6 Dynamic net-pairwise connectedness

In this sectionwe report dynamic net pairwise connectedness among implied volatility indices
based on the frequency-connectedness method of Barunik and Krehlik (2018). The analysis
uncovers insightful information about how a particular market transmits (receives) volatility
shocks to (from) the other market. Figure 4 presents the dynamic net pairwise connectedness
among the five implied volatility indices. The green area indicates connectedness at the higher
frequency band (up to 5 days). In contrast, the red area reflects the connectedness at the lower
frequency band (from 6 to 120 days).

First, concerning VIX and OVX it is noted that VIX is the net transmitter of volatility
shocks to OVX. The findings here reinforce the evidence that stock markets transmit shocks
to the oil market, while oil price volatility does not significantly impact stockmarkets, instead
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Fig. 3 Time-varying total, short-, and long-term connectedness of stock markets. Notes: FEVD is based on
5-variate VAR with two lags and a 120-day rolling window with a predictive horizon of 100 days. The sample
period is from 01.08.2008 to 31.10.2019; short, and long-term connectedness of implied volatility indexes,
respectively

large oil price shocksmatter for stockmarkets (Zhang, 2017). Accordingly, we find that OVX
is net transmitter of volatility to stock markets during GFC and late 2014 when oil prices
fell drastically. The findings stress sharp reduction in oil prices is an indicator of global
economic slowdown causing volatility in the stock markets. Regarding VIX and GVZ the
findings unveil bi-directional volatility spillovers. In fact, GVZ is a net transmitter of volatility
during GFC, European debt crisis, fall of gold prices in 2014, and during 2019 when the gold
prices rapidly increased. Here the findings somewhat differ from the evidence that indicates
volatility trasnmission from gold to equities is weak and insignificant (Maghyereh et al.,
2017), whereas our findings suggest otherwise for implied volatility indexes. On the contrary,
we also detect various episodes when VIX is net-transmitter of volatility shocks to GVZ.
The findings are supported by a common notion that suggests equities are net-transmitter
of volatility shocks to precious metals, especially during periods of the economic downturn
(Mensi et al., 2017a, 2017b). Next, we note VIX is the net transmitter of volatility to EVZ.
The rise in volatility transmission is noted during periods of financial instability, in particular
during the European debt crisis. Oppositely, EVZ is a volatility transmitter for limited period
of time such as at the start of GFC. Similarly, Fernández-Rodríguez and Sosvilla-Rivero
(2016) also found that the foreign exchange market was a strong transmitter of volatility
to stock markets during GFC period. Finally, it is observed that VIX is a net transmitter of
volatility to TYNVI starting from 2009 to the start of 2015. The findings are in line with the
evidence that indicates strong volatility transmission from equities to bond indices (Ahmad
et al., 2018). However, volatility trasnmission from TYNVI to VIX is high during 2016 and
the start of 2018, when volatility in the bond market accelerated.

The findings showcase bi-directional volatility transmission between OVX-GVZ.
Wherein, OVX is a net generator of volatility in the first half of the sample, whereas GVZ is
the net contributor of volatility shocks in the second half of the sample. Here, the results differ
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Fig. 4 Dynamic net pairwise connectedness based on the time–frequency method of Barunik and Krehlik
(2018). Note: This figure displays the time–frequency dynamics of the net pairwise connectedness across the
five implied volatility indexes under study estimated using the method of Barunik and Krehlik (2018). The
green area indicates the connectedness at the higher frequency band (up to 5 days). In turn, the red area reflects
the connectedness at the lower frequency band (from 6 to 120 days)

from few earlier studies such as Awartani et al. (2016) who show volatility spillovers from
oil to precious metals increased post-oil price crash in July 2014. Also, we find no evidence
of strong volatility transmission from the oil to gold market during GFC as suggested by a
few other studies (see, e.g., Rehman et al., 2018). As far as OVX-EVZ we observe moderate
bi-directional volatility trasnmission, which spiked in 2014 during the crude oil crisis. In
the same way like Andrada-Felix et al. (2018) we also note that EVZ is a net transmitter of
volatility during the GFC period. Lastly, we note OVX is a net-transmitter of volatility to
TYNVI. The dominant role of crude oil in volatility transmission soars after the oil price
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Fig. 4 continued

crash in 2014. However, similar to the currency market TYNVI is also net propagator of
volatility to OVX during the GFC period.

Our findings also unveil bi-directional volatility transmission between GVZ-EVZ. GVZ
is the net transmitter to the foreign exchange market during periods of financial instability
like the GFC, European debt crisis, and Chinese financial crisis of 2015. In contrast, we also
detect few episodes when EVZ is a net propagator of volatility to gold market. Next, GVZ is
net transmitter of volatility shocks to TYNVI. The volatility spillovers fromGVZ to the bond
market correspond to important financial events like GFC and European debt crisis. Finally,
we also observe volatility transmission among EVZ- TYNVI. The findings show that EVZ
is a net transmitter of volatility in the first half of the sample and a receiver from TYNVI in
the second half.

Overall our findings once again confirm heterogeneity between our short-term and
long-term connectedness results. Various cases of pairwise connectedness demonstrate that
volatility spillovers among the implied volatility indices are a short-term phenomenon which
does not persist in the long-run.Given this investors can take a hedging position in the long-run
across implied volatility indices to create meaningful hedging and diversification opportuni-
ties. Also, our findings showcase various instances where net propagators of volatility switch
to net receivers of volatility. Hence, even though connectedness among volatility indices
exists, still such connectivity is still time and event dependent. The findings are critical for
the success of portfolio managers seeking hedging and diversification opportunities across
alternative asset classes since we provide a detailed visual demonstration of the time-varying
connectedness network of implied volatility indices.
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Table 3 Hedge ratio summary statistics and hedging effectiveness (HE)

VIX GVZ

Mean Min Max HE Mean Min Max HE

OVX 0.9701 0.2194 2.5570 0.1231 0.2591 − 0.4367 0.8816 − 0.0042

EVZ 0.0410 − 0.1754 0.3795 0.0008 0.2274 − 0.0625 0.4285 0.2149

TYNVI − 0.2017 − 0.4434 0.0017 0.1620 0.1093 0.0140 0.2229 0.1239

The forecasts are calculated from the fixed width rolling analysis which produces 1000 one step forecasts.
The models are refit every 10 observations. ADCC are estimated using a multivariate t (MVT) distribution.
All specifications include a constant and an AR (1) term in the mean equation

4.7 Hedge ratio and hedge effectiveness

Our previous findings clearly showcase the connectedness network of implied volatility
indices and its importance for cross-market hedging. In Table 3, we report summary statistics
of hedge ratios and hedging effectiveness. First, in case of VIX the average values of hedge
ratios are positive except for TYNVI. The positive hedge ratio indicates that a long position
in any of the implied volatility indices can be hedged by taking a short position in VIX. In
contrast, inverse relationship between VIX and TYNVI implies that hedge can be created
by either taking a long or short position. In addition, among the three implied volatility
indices lowest average hedge ratio is reported for EVZ which indicates that one dollar long
position in EVZ can be hedged by taking short position of (0.04) cents in VIX. As far as
hedging effectiveness results, we see that highest value of (0.1620) is recorded for TYNVI.
Furthermore, in case of GVZ all the estimated hedge ratios are positive and highest value of
(0.2149) hedging effectiveness is noted for EVZ. The findings indicate that GVZ is superior
hedger as compare to VIX.

5 Conclusions

The knowledge of co-movement and spillovers between alternative asset classes has impor-
tant implications for asset allocation, portfolio diversification, and cross-market hedging.
The value of such information is becoming increasingly relevant for portfolio managers as
increasing connectedness spillovers and high contagion effects between financial markets
drive out portfolio diversification benefits. Given the increasing difficulties in diversifica-
tion, one needs specific information on volatility connectedness among financial markets to
intelligently plan hedging strategies. In fact, better understanding of volatility transmission
process across financial markets is essential for effective policy design to reduce the negative
effects of connectedness spillovers.

In this study, we estimate time–frequency based risk transmission across financial markets
using implied volatility indices. For this purpose, we utilize the rolling window wavelet cor-
relation (RWWC), Diebold and Yilmaz (2012) time-domain and Barunik and Krehlik (2018)
frequency-domain approaches. Further, considering the increasingly volatile environment in
the financial markets andmounting pressures confronted by investors and portfolio managers
in obtaining portfolio diversification and risk reduction;we compute hedge ratios and hedging
effectiveness for each of the implied volatility indices to determine the optimal hedging and
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diversification strategies. The findings of the study uncover some interesting facts regarding
risk transmission process amongmajor financial markets. For instance, the empirical findings
confirm dynamic short-term and long-term dynamic connectedness among implied volatil-
ity indices of alternative assets. Also, the findings reinforce that volatility connectedness
between financial markets is time and event dependent, as the results exhibit heterogene-
ity between short-term and long-term connectedness results. The findings validate the use
of time–frequency approach, since the dynamic interaction among volatility indices varies
across time and frequencies. In addition, the findings of long-term connectedness analysis
suggest potential hedging and diversification opportunities for market participants that can
be exploited by taking offsetting positions across volatility indices. Finally, the findings also
showcase superior out of sample hedging effectiveness of GVZ among volatility indices.

The findings of the study are crucial for broad range of stakeholders including portfolio
managers, investors and financial regulators as they hold useful implications in terms of port-
folio strategies and policymaking. First, the high risk dependence among implied volatility
indices stresses that investors should carefully study the volatility linkages among financial
markets to safeguard investments and diversify portfolio risk. Moreover, investors can utilize
the findings of the study to improve their risk management practices and hedging strategies.
In fact, in light of the findings investors and portfolio managers in the financial markets
can better position themselves to shield against the negative shocks arising from volatility
spillovers, especially during the periods of economic and financial meltdown. Second, the
evidence presented in the study is useful for policy makers to formulate appropriate pol-
icy tools and mechanisms to absorb negative shocks arising from contagion effects among
financial markets. In this way, they will be able to implement suitable strategies and optimal
policies to mitigate unfavorable effects of risk connectedness among alternative assets.
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