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Abstract  Default risk is one of the major concerns for lending institutions and banking regulators. 
This paper focuses on the analysis of default data, using a new approach based on generalised latent 
Poisson factor models. In this case, the correlation structure of the default events is driven by a small 
number of common latent factors. Conditional to these factors, the defaults become independent 
and each default sequence is fitted to a generalised linear model with Poisson response and log-
link function. This model provides a flexible framework for the computation of the value-at-risk and 
the expected shortfall of a credit portfolio. The practical implementation of the proposed local Fisher 
scoring estimation algorithm is illustrated by a Monte Carlo simulation study. Then, a real scenario, 
with default data taken from a large database provided by Standard & Poor’s, is used to analyse the 
empirical behaviours of the different risk measures. The achieved results show promising performance.

Keywords:  default correlation, factor analysis, generalised linear models, expectation-maximisation 
algorithm, credit value-at-risk, expected shortfall

INTRODUCTION
The correlation between default events is an essential 
factor in the assessment of portfolio credit risk. 
During the last two decades, many research works 
have been devoted to modelling this complex 
phenomenon. An excellent literature review in this 
area can be found in Nguyen and Zhou1 and Jakob,2 
where the available models are classified into two 
categories: mixture models and latent structure 
models. Moody’s-KMV model,3 also described by 
Frey and McNeil,4 is a variant of the latent variable 

model proposed by Merton.5 These models assume 
that the default probabilities of the different obligors 
are driven by a series of common economic factors. 
Given these common factors, defaults are assumed to 
be conditionally independent. Hence, it can be argued 
here that the correlations are directly explained by  
the dependence on the common economic factors. A 
standard example is the ‘large homogeneous portfolio’ 
model developed by Vasicek.6

A number of other default correlation models 
have been proposed in the literature, such as those of 

mailto:m.saidane@qu.edu.sa


Saidane

90  Journal of Risk Management in Financial Institutions  Vol. 17, 1 89–105   © Henry Stewart Publications 1752-8887 (2023)

McNeil et al.7 and Bluhm et al.8 and their references. 
Works by Gupton et al.9 and the KMV model of 
Crosbie10 including the Bernoulli model developed 
by CreditMetrics, the ‘Poisson mixture model’ 
proposed by the Credit Suisse Financial Products11 
and the works of Das et al.12 and Duffie et al.13 may 
also be mentioned.

Copula models for credit risk measurement, were 
introduced for the first time by Li.14 In particular, he 
developed a generalised defaultable bond pricing 
formula based on a Gaussian copula framework with 
exponentially distributed default times. This 
approach was extensively used on Wall Street until 
the beginning of 2008. After the sub-prime 
mortgage crisis, an extensive literature has been 
developed around the use of dynamic copula models. 
For a detailed and rich literature review on this 
topic, interested readers can refer to Muhajir et al.15

Most of the work presented in the previous 
literature focuses on modelling the default 
correlations in a cross-sectional framework within a 
specific sector. However, there is a minor literature 
on modelling the default correlations between 
several sectors: the case where the default of a bond 
in a specified sector affects the default probabilities of 
certain other bonds in the other sectors. Thus, 
modelling the impact of defaulted bonds on the 
default probabilities of other bonds is certainly an 
interesting topic. This is particularly the case during 
a default crisis where this impact becomes more 
marked and the defaulting bonds become more 
likely to trigger the defaults of the surviving ones.

This paper proposes a general framework to 
model default correlations in bond portfolios, 
estimate the number of defaults and price the risks of 
default. The number of defaulted bonds in each 
sector are assumed to be produced from a general 
process that involves observed and non-observed 
data following an exponential family distribution. In 
this particular case, the Poisson distribution is used 
to model the number of default events occurring 
within a given period of time (assessment period) 
and the common latent factors are assumed to be 
independently distributed, following a multivariate 
normal distribution with zero mean and identity 
covariance matrix. To price the default risk, two 
principal risk measures will be used, namely, value-
at-risk (VaR) and expected shortfall (ES). This 

approach is general enough and can be applied to 
large portfolios consisting of many bonds, with 
reasonable computational time and effort.

The rest of this paper is organised as follows. A 
detailed description of the generalised latent 
Poisson factor model and its main characteristics 
will be presented. The estimation procedure,  
using a local approximation of the expectation 
maximisation (EM) algorithm, will be discussed. 
Thereafter, a Monte Carlo simulation strategy for 
the risk measures will be derived. The following 
section will be devoted to a set of extensive 
numerical experiments designed to evaluate the 
performance of the proposed EM algorithm. 
Moreover, the VaR and ES results given by this 
approach will be also discussed, using the Standard 
& Poor’s CreditPro 6.2 database. Finally, some 
concluding remarks and suggestions on future 
research directions will be made.

MATHEMATICAL FORMULATION  
OF THE PROPOSED MODEL
Throughout this paper, the number of defaults in a 
loan portfolio is modelled by first forming 
homogeneous groups of bonds according to their 
economic sector. Within each group, individual 
defaults are assumed to be independent, following a 
Bernoulli distribution.

For each time t = 1,…,T, this framework assumes 
that the total number of defaults in the different q 
sectors, yt = (yit)i=1,q, are generated by fewer k < q 
latent factors f t = ( f jt) j=1,k. Using these factors as 
predictors, each sequence yi is fitted by a generalised 
linear model (GLM) with Poisson response and 
log-link function. In order to avoid identification 
problems, common factors are assumed to follow 
independent Gaussian distributions with zero mean 
and unit variance:

	 ∀t,  f t ~ N 0,Ik( )  � (1)

Conditional to these factors, yit are independently 
distributed according to an exponential family with 
density function:

	
li yit|δ it ,φi( ) = exp yitδ it − bi δ it( )

φi
+ ci yit ,φi( )⎧

⎨
⎩

⎫
⎬
⎭ �

(2)
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where,

	 µit =E yit( ) = ′bi δ it( ) � (3)

	
Var yit( ) = φibi′′ δ it( ) = φibi′′ ′bi −1 µit( )⎡⎣ ⎤⎦ �

(4)

In this case, δ it and φi  denote, respectively, the 
canonical and the dispersion parameters, and bi(⋅) and 
ci(⋅) are specific functions characterising the 
probability distribution of the variable yit in the 
exponential family (see eg Fahrmeir and Tutz16).

Given the conditional independence of ( yit)i=1,q 
with respect to the common latent factors f t, the 
conditional covariance matrix of yt can be obtained 
as follows:

	
Var yt| f t( ) = diag φivi µit( ){ }i=1,q   � (5)

where, vi µit( ) = bi′′ ′bi −1 µit( )( ). In the case of a 
Poisson distribution, the expression of µit  is given by 
exp δ it( ), vi µit( ) = µit and φi = 1 (for more details, see 
McCullagh and Nelder,17 Chapter 10).

N.B. In this paper, the operators ′ and ″ denote, 
respectively, the first and second order derivatives of 
bi x( ) and g x( ) with respect to x. However, in 
matrix notation ′A  denotes the transpose of A.

Linear predictors
In this framework, the different default sequences yi 
are assumed to be driven by specific predictors ηi 
derived as linear combinations of some common 
latent factors:

	 ∀i,t : ηit = γ i + ′λi f t ; λi ∈Rk

	 (6)

In the previous literature, various approaches have 
been developed to identify the common factors. 
Most of these approaches have used principle 
component analysis and some predefined weights 
from the economic theory to extract the underlying 
risk factors from a set of macroeconomic variables, 
such as the inflation rate, business cycle patterns, etc. 
This paper presents a solution based on the EM 
algorithm and a backtesting procedure.

A more general specification of these predictors 
can also be obtained by including various other 
covariates, but for simplicity they have been taken as 
constants in this paper. In the following, the specific 

mean vector will be denoted by γ = γ 1,…,γ q( )′, the 
q ×T( ) common factor matrix by F = f1,…, fT( ),  

the q × k( )  factor loading matrix by Λ = λ1,…,λq( )′, 
the q-vector containing the predictor variables at 
time t  by ηt = ηit( )i, and the q ×T( ) predictors’ 
matrix by η = ηit( )i,t = η1,…,ηT( ). In this case, 
equation (6) can be expressed in temporal form  
as follows:

	 ∀t, ηt = γ + Λf t   � (7)

and in global form as:

	
η
q,T( )

= γ
q,1( )
1T ′
1,T( )

+ Λ
q,k( )
F
k.T( )

 
�

(8)

Link function
The mean of the response variable yit is linked to the 
set of common latent factors by a linear predictor ηit  
with unknown parameters and a specific link 
function gi:

	 ∀i,t    ηit = gi µit( )  � (9)

In the case of ηi = δ i, the function gi(⋅) is called 
canonical link function. Moreover, it can be shown 
from equations (3) and (9) that the linear predictor 
can be explicitly obtained by:

	
ηit = gi ′bi δ it( )( )  �

(10)

where the canonical link function is gi = ′bi −1. In 
the Poisson GLM, the mean of the response variable 
is linked to the linear predictor through the natural 
logarithm, ie g x( ) = log x( ).

ESTIMATION IN GENERALISED 
LINEAR LATENT FACTOR MODELS
The parameters of standard and conditionally 
heteroskedastic latent factor models (FMs) are 
estimated using a variety of maximum likelihood 
inference methods based on the EM principle (see eg 
Saidane and Lavergne18–20 and Saidane21,22). GLMs 
are also estimated using maximum likelihood 
methods based on the Fisher’s score algorithm 
(McCullagh and Nelder23). However, combining 
factorial models and GLMs leads to more complex 



Saidane

92  Journal of Risk Management in Financial Institutions  Vol. 17, 1 89–105   © Henry Stewart Publications 1752-8887 (2023)

models and estimation algorithms, such as those 
proposed by Wedel and Kamakura24; Genton and 
Ronchetti25 and Moustaki and Victoria-Feser.26 All 
these methods consider only single factor models and 
they are computationally complex and require high 
computing power and long execution time, which 
precludes their use for multifactor models and big 
data analysis.

Inspired by the previous literature, this paper 
proposes a quicker estimation procedure based on a 
local approximation of the iterative EM algorithm 
developed by Dempster et al.27 In a first step, the 
expected values of the common latent factors will be 
used as predictors and the parameters in the 
conditional GLM will be estimated using maximum 
likelihood estimators. Then, in a second step, the latent 
random state of the common factors will be restored 
and the parameter estimates of the linear predictor will 
be updated using the EM algorithm. These steps will 
be repeated until convergence is reached.

Fisher scoring algorithm for the GLM
To begin with, one can consider the simple 
univariate GLM for given data yt ,xt( ). In this case, 
the predictors xt = x1t ,…,xkt( )′ are assumed to be 
observed without error. Let X = x1,…,xt ,…,xT( )′; 
µt = E yt( ) and the linear predictor η = Xβ, β ∈Rk. 
At each time t , the linear predictor ηt is related to 
the mean µt through a specified link function 
ηt = g µt( ) which can also be expressed as 
xt′β = g ′b δ t( )( ). The log-likelihood function of this 
model is explicitly given by:

L =
t=1

T

∑Lt yt|δ t ,φ( ) =
t=1

T

∑
ytδ t − b δ t( )

φ
+ c yt ,φ( )⎡

⎣
⎢

⎤
⎦
⎥
�

(11)

and the first derivatives with respect to β j can be 
obtained using the following rule:

∂L
∂β j

=
t=1

T

∑xtj
1

′g µt( )2Var yt( ) ′g µt( ) yt − µt( )

In the special case of a Poisson distribution, if one 
denotes by:

Wβ = diag ′g µt( )2Var yt( )⎡⎣ ⎤⎦ t=1,T = diag ′g µt( )2φv µt( )⎡⎣ ⎤⎦ t=1,T

and

∂η / ∂µ = diag ′g µt( )( )
t=1,T

Then, it holds by construction that:

	

Wβ = diag 1
exp ′xtβ( )
⎡

⎣
⎢

⎤

⎦
⎥
t=1,T �

(12)

and the likelihood equations can be solved as 
follows:

	
∇
β
L = 0⇔ ′X Wβ

−1 ∂η
∂µ

y − µ( ) = 0
�

(13)

Since this equation system depends nonlinearly  
on β it cannot be solved directly and an iterative 
method, such as the Fisher scoring algorithm (FSA), 
must be implemented:

β e+1[ ] = β e[ ] − E
∂2L
∂β ∂ ′β

⎛
⎝⎜

⎞
⎠⎟

e[ ]⎛

⎝
⎜

⎞

⎠
⎟

−1
∂L
∂β

⎛
⎝⎜

⎞
⎠⎟

e[ ]

= ′X Wβ e[ ]
−1X( )−1 ′X Wβ e[ ]

−1 z e[ ]

where β e[ ] denotes the estimated parameter vector 
at the e-th iteration and

	
z e[ ] = Xβ e[ ] + ∂η

∂µ
⎛
⎝⎜

⎞
⎠⎟

e[ ]

y − µ e[ ]( )
�

(14)

In this case, equation (13) becomes:

	 ′X Wβ
−1 zβ − Xβ( ) = 0 �

(15)

Given zβ , the equation system (15) may be viewed 
as a normal generalised least squares (GLS) equation 
system of the linear model M :

zβ = Xβ +ζ

with E ζ( ) = 0 and Var ζ( ) =Wβ, since Var ζ t( ) =
Var zβ ,t( ) = ′g µt( )2Var yt( ). The key step in each 
iteration of the FSA is to solve with respect to β the 
system ′X Wβ e[ ]

−1 (zβ e[ ] − Xβ ) = 0, and to update 
thereafter the value of β in Wβ and zβ with the 
optimal solution. In the sequel, M e[ ] will denote the 
linearised model at the current iteration [e]: 
zβ e[ ] = Xβ +ζ e[ ]  with E ζ e[ ]( ) = 0 and Var ζ e[ ]( ) =Wβ e[ ].



A latent Poisson factor model for default correlations

© Henry Stewart Publications 1752-8887 (2023)  Vol. 17, 1 89–105  Journal of Risk Management in Financial Institutions  93

order to avoid the indetermination of gi  owing to 
the presence of zero-responses among the data, in 
the case of a log-link function, one can take: 
zit

0[ ] = gi ayit + 1− a( )yii( ) for all t.

Estimation of the Gaussian FM
Following Saidane30 (Chapter 2), the general 
structure of the standard latent factor analysis model 
can be summarised as follows:

yt = γ + Λf t + ε t

and

yt
f t

⎛

⎝
⎜

⎞

⎠
⎟ ~ N

γ
0

⎛

⎝⎜
⎞

⎠⎟
;
Λ ′Λ +Ψ Λ

′Λ Ik

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

where, ∀t = 1,T , Var ε t|f t( ) = Ψ. The estimation 
of the specific mean vector γ, the factor loading 
matrix Λ and the specific covariance matrix Ψ can 
be carried out by solving the first derivatives set of 
the conditional expectation of the complete data log-
likelihood function as follows:

	
∇

γ ,Λ,Ψ t=1

T

∑E log l yt , f t( )|yt( )⎡
⎣⎢

⎤
⎦⎥
= 0

�
(17)

In the case of an heteroskedastic Gaussian FM, 
this function is given by:

In the multivariate case, one can refer to the 
works by Niku et al.28 and Huber et al.29 where the 
response variables {y1,…,yq} are assumed to be 
(conditionally) independent given the covariates 
x1,…,xk{ }. From this assumption, it follows that:

	
l yt|ηt( ) =

i=1

q

∏li yit|ηit( );   ∀t = 1,T
�

(16)

and

l y|η( ) =
i=1

q

∏li yi|ηi( )

As a consequence, the corresponding linearised 
model M can be expressed as follows:

ziβ = Xβi +ζ i

where ∀i = 1,q : E ζ i( ) = 0 and Var ζ i( ) =Wiβ  with

Wiβ =diag ′gi µit( )2Var yit( )⎡⎣ ⎤⎦ t=1,T = diag ′gi µit( )2φivi µit( )⎡⎣ ⎤⎦t=1,T
and the FSA can be used for the estimation of the 

model parameters.
For the initialisation of β , one can use the 

ordinary least squares estimates of the regression of 
gi yi( ) on X . In this case, the first order Taylor 
development of gi yi( ) around µi writes: 
gi yi( ) = gi µi( )+ ′gi µi( ) yi − µi( ) = zi. Thus, in  

log l yt , f t( ) ≈ω − 1
2 t=1

T

∑ log Ψt + yt − Λf t − γ( )′ Ψt
−1 yt − Λf t − γ( )⎡

⎣⎢
⎤
⎦⎥

where ∀t = 1,T , Ψt =Var ε t|f t( ) and the component 
ω  does not depend on the parameters γ, Λ and Ψt. 
Following Saidane31 and Saidane and Lavergne,32 
when the first derivative of equation (17), with 
respect to γ, is equated to zero, one can find the 
updated estimate of the specific mean:

γ̂ e+1[ ] =
t=1

T

∑Ψt
e[ ]−1⎡

⎣⎢
⎤
⎦⎥

−1

t=1

T

∑Ψt
−1 yt − Λ̂ e[ ] !f t

e[ ]( )
Similarly, equating to zero the first derivative 

with respect to Λ gives:

t=1

T

∑Ψt
−1 yt − γ̂( ) ! ′f t⎡⎣ ⎤⎦ =

t=1

T

∑Ψt
−1Λ̂ !St

The row by row procedure proposed by 
Saidane33,34 can be used to estimate the factor 
loading matrix Λ, when the number of common 
factors exceeds 1. In the case of 2 factors, for 
example, given the fact that Ψt

−1 = diag Ψt
−1( ),  

the i-th row of the above matrix can be written  
as follows:

t=1

T

∑
yit − γ i e[ ]

Ψt
i e[ ]

!f t
1 e[ ] !f t

2 e[ ]( ) = λ̂i1e+1[ ] λ̂i2e+1[ ]( )
t=1

T

∑
1

Ψt
i e[ ]

!St
11 e[ ] !St

12 e[ ]

!St
21 e[ ] !St

22 e[ ]

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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The estimation step
In this step, given the values of z and Var ζ( ), the 
latent random state of the common factors will be 
restored:

∀t,  f t ~ N 0,Ik( )

and the model (18) can be written as an 
heteroskedastic FM, with mean E zt( ) = γ  and a 
covariance structure dependent on the observed 
data: Ψt = ′g µi, ft( )2Var εit| f t( ). In the case of a 
canonical link and a Poisson distribution, it can be 
shown that:

Var εit| f t( ) =Var yit| f t( ) = ′′bi ′bi −1 µit( )( ) = 1
′gi µit( )

which implies that Ψt = diag ′g µit( )2( ).

THE LOCAL EM ALGORITHM
i. Parameters’ initialisation:

Compute: ∀t = 1,T ;  ∀i = 1,q : zit0[ ] = g yit( ), and 
for instance: ∀t = 1,T : Ψt

0[ ] = I q.
In the case of a canonical link function g, the 

specific covariance matrix may be correctly initialised 
using: ∀t = 1,T , Ψt

0[ ] = diag ′gi yit( )2 vi yit( )( )
i=1,q

.

ii. Given the values of z and Var ζ( ), the latent 
random state of the common factors will be restored. 
Then, an EM step will be taken in order to estimate 
F  from the resulting linearised heteroskedastic FM: 
zt = γ + Λf t +ζ t , with Var ζ t( ) = Ψt , ∀t = 1,T .

iii. After a conditional GLM is obtained using the 
value of F, computed in the previous step, one can 
implement the FSA in order to update the specific 
mean vector γ  and the factor loading matrix Λ, 
using the conditional covariance matrix 
Var zt|Ft( ) =Var ζ t( ) = Ψt.

iv. Once updated estimates for γ ,Λ,F  are made, 
one computes z and Var ζ( ):

∀i = 1,q : εi,F = yi − µi,F  ; ζ i,F = ′g µi,F( )εi,F  ; zi,F
= γ i ′1T + ′λ F +ζ i,F

∀t = 1,T : Var ζ t( ) = Ψt = diag ′g µi, ft( )( )
i=1,q

Go to (ii).

where Λ̂ e[ ] = λ̂ije[ ]( )( )
i, j

 and !St
e[ ] = !St

ij e[ ]( )( )
i, j

. The 

resolution of this equation system gives the i-th row 
of the updated factor loading matrix Λ̂ e+1[ ].

Finally, to obtain the updated specific covariance 
matrix, the above log-likelihood function is 
differentiated with respect to Ψt

−1 and equated to 
zero. Solving for Ψt yields:

Ψ̂t
e+1[ ] = diag yt ′yt − ′Λ e[ ] γ̂ e[ ]⎡

⎣
⎤
⎦ yt !f t

e[ ]′ yt
⎡
⎣⎢

⎤
⎦⎥
′⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Estimation of a generalised latent  
factor model
Application of the EM algorithm to the standard 
FM does not pose any computational difficulties 
since the required conditional expectations can be 
performed analytically in this case. One can also 
take advantage from the normality assumption, 
which may be used within each iteration to 
estimate a linearised GLM via the GLS algorithm 
discussed in section ‘Fisher scoring algorithm for 
the GLM’. The proposed algorithm alternates 
between two main steps.

The linearisation step
Given the actual values of γ, Λ, F , the working 
variable z can be obtained from equation (14) as 
follows:

∀i = 1,q : zi,F = γ i1T ′ + λi'F + ′g µi,F( ) yi − µi,F( )
Let ζ i,F = ′g µi,F( )εi,F , where εi,F = yi − µi,F ; 

∀t, zt = (z1t ,…,zqt ) and z = (z1,…,zt ,…,zT )′. Given 
z , F  and Var ζ |F( ), the linearised form of the model 
is obtained as follows:

	 ∀t = 1,T  : zt = γ + Λf t +ζ t � (18)

with the conditional covariance matrix given by:

Var ζ |F( ) = diag ′g µit( )2Var εit|F( )( )
t=1,T

where, Var ζ iF |F( ) =Wi,ΛF and in the case of 
Poisson outcomes and a log-link function, the 
matrix W  is specified as indicated in equation (12).
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where Lit+1s , s = 1,…,n( ), denote the simulated 
number of defaulted bonds in each sector i = 1,…,q 
for the period t +1.

	4.	 Finally, the simulations should be arranged in an 
increasing order and the α per cent worst (high-
est) losses Lt+1,s

p  must be excluded. Therefore, the 
predicted VaR for the period t +1, will be com-
puted as the maximum of the remaining losses. 
The ES is calculated by averaging the α  per cent 
worst portfolio losses Lt+1,s

p .

Monte Carlo-based GLPFM approach
The steps of the proposed GLPFM-based approach 
are detailed as follows:

	1.	 Define the VaR significance level α .
	2.	 Generate from the distribution of the common 

factors f t s ~ N 0,Ik( ), n different random sce-
narios using the optimal specification at time t 
obtained by the BIC criterion (Schwarz36), evalu-
ated after each EM cycle.

	3.	 Simulate n different random scenarios for the 
linear predictor ηts, using the latest parameter 
estimates given by the EM algorithm at time t :

ηt+1s = γ + Λf t+1s

Then, n different values for the means of the 
portfolio’s components can be computed as follows:

µit+1s = exp ηit+1s( )     ∀i = 1,…,q

	4.	 Generate from the Poisson distribution the default 
sequences for the q portfolio’s sectors:

yit+1s = rpois 1,µit+1s( )

∀s = 1,…,n, ∀i = 1,…,q

In this case, the different portfolio losses at time 
t +1, can be computed as follows:

Lt+1,s
p = y1t+1s + y2t+1s +…+ yqt+1s

where y1t+1s , y2t+1s , . . . , yqt+1s  s = 1,…,n( ), denote the 
simulated number of defaulted bonds in the q sectors 
for the period t +1.

	5.	 Finally, the simulations should be arranged in an 
increasing order and the α  per cent worst  

MONTE CARLO VaR AND ES 
COMPUTATIONS FOR CREDIT 
PORTFOLIOS
This section follows the methodology outlined in 
Saidane35 to compute the VaR and ES of a credit 
portfolio. In order to evaluate these measures, each 
bond in the loan portfolio is assumed to carry one 
dollar. To achieve a balance between efficiency and 
parsimony, two simulation methods will be 
implemented and compared in a rolling window 
design with n = 50.000 random default scenarios: the 
classical Monte Carlo method (CMC) and the 
proposed Monte Carlo-based generalised latent 
Poisson factor modelling (GLPFM) approach.

The classical Monte Carlo approach
The steps of the CMC approach are detailed as 
follows:

	1.	 Define the VaR significance level α .
	2.	 Simulate the number of defaults from time t to 

time t +1 by generating random variates from the 
Poisson distribution defined by λ  (the empirical 
default rate calculated as an average on a rolling 
window basis). The following recursive rules can 
be used to get successive probabilities from the 
Poisson distribution:

pi+1 = p X = i +1( ) = λ
i +1

pi  ;      i ≥ 0

This leads to the following method:

	(i)	 Firstly, a uniform pseudo random number U  is 
generated.

	(ii)	 Then, initial values for i = 0, p0 = e−λ and R0 = p0, 
should be provided.

	(iii)	If U ≤ Ri, then deliver X = Ri . Return to step (i).
	(iv)	Else, the loop variable ‘ i ’ is incremented by 1: 

pi+1 = λ pi / i +1( ) and Ri+1 = Ri + pi+1.

Return to step (iii).

	3.	 After that, the simulated portfolio losses at time 
t +1, can be computed as follows:

Lt+1,s
p = L1t+1

s + L2t+1
s +…+ Lqt+1

s
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(highest) losses Lt+1,s
p  must be excluded. There-

fore, the predicted VaR for the period t +1, will 
be computed as the maximum of the remaining 
losses. The ES is calculated by averaging the α  per 
cent worst portfolio losses Lt+1,s

p .

NUMERICAL EXPERIMENTS
The major contribution of this paper consists in the 
development of a new Monte Carlo-based GLPFM 
framework for the estimation of the VaR and ES of a 
credit portfolio. To investigate the potential utility 
of the estimation algorithm and the effectiveness of 
the proposed risk assessment approach, synthetic and 
real data experiments were conducted. All the 
computational results in this paper were obtained 
using the R software (Version 4.2.2).

Synthetic data
In order to evaluate the accuracy and stability of the 
estimates obtained via the proposed local EM 
algorithm, a simulation study has been developed. 
For this purpose, a GLPFM is used to generate 
correlated Poisson outcomes from different factorial 
specifications with k = 1,2,3, q = 8 and n = 200 
observations. To stop the EM iterations, the 
following convergence criterion is applied:

Δ = max
j∈ 1,…,q{ } t=1

n

∑ f jt
e+1[ ] − f jt

e[ ]( )2{ }

The algorithm stops when the value of Δ, between 
two successive iterations, becomes less than 10−5. For 
the initialisation of the working variable z, and in 
order to avoid the indetermination of the log-link 
function owing to the presence of zero-responses 
among the data, the following guess values were used:

∀i = 1,q;  t = 1,T       zit
0[ ] = log ayit + 1− a( )yi[ ]

where the coefficient is a ∈ 0,1[ ]. For the 
initialisation of the EM algorithm, random 
perturbation of the simulation parameters were used 
as initial guess values. In order to identify the 
optimal number of common latent factors, which 
can be used to better fit the data, various 
configurations of the GLPFM were estimated using 
the local EM algorithm (with k = 1, 2, 3), on the 
different training datasets. To analyse the results of 
these experiments, empirical correlations between 
the estimated and true parameters were computed at 
the end of each EM cycle.

From the results given in Table 1, it can be seen 
that these correlations are strongly affected by the 
model parametrisation: correlations obtained when 
using the correct specification are larger than those 
given by the other specifications. Moreover, it can be 
seen also that the estimation error becomes 
significantly smaller when the accurate specification 
is used.

Figure 1, reports the results from the regressions 
of the simulated factors f t on the estimated ones f t

e( ):

Table 1:  The estimation errors and the correlations of the true parameters with the estimated ones obtained from a  
GLPFM with one, two and three common factors

True model Estimated model Errors Correlations

γγ ΛΛ γγ ΛΛ

3 3 0.0085 0.3240 0.9898 0.9984 0.9936 0.9978

2 0.0255 1.2914 0.9536 0.9776 0.8373

1 0.0823 1.8412 0.9066 0.6735

2 3 0.0078 0.0115 0.9829 0.9880 0.9904

2 0.0068 0.0095 0.9830 0.9884 0.9954

1 0.0073 0.3238 0.9696 0.6857

1 3 0.0048 0.0079 0.9873 0.9866

2 0.0040 0.0043 0.9898 0.9934

1 0.0038 0.0042 0.9902 0.9939
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f1t = γ 0 + γ 11 f1t
e( ) + γ 21 f 2t

e( ) + γ 31 f 3t
e( ) +ν1t

f 2t = γ 0 + γ 12 f1t
e( ) + γ 22 f 2t

e( ) + γ 32 f 3t
e( ) +ν2t

f 3t = γ 0 + γ 13 f1t
e( ) + γ 23 f 2t

e( ) + γ 33 f 3t
e( ) +ν3t

It can be seen here that the coefficients γ 11,  
γ 22 and γ 33 are very close to one, whereas γ 0, γ 21, 
γ 31, γ 12, γ 32, γ 13 and γ 23  converge to zero. From 
Figure 1, it can be seen also that the correlations of 
the estimated factors with the simulated ones 
converge to one (rf1 f1 e( ), rf2 f2e( ), rf3 f3e( ) > 90% whereas 
rf1 f2e( ) ≈ rf2 f1 e( ) ≈…≈ 0).

These results are confirmed by Figure 2, which 
displays the scatter plots of each simulated factor on 
the different estimated factors overlaid with a fit line. 
As can be clearly seen from this figure, the scatter 
about the line is quite small for the simulated factors 
and their corresponding estimated values, which 
implies a strong linear relationship between them. 
Hence, it can be argued that the proposed local EM 
algorithm works well and gives a good estimation of 
the latent factors (estimated factors very close to the 
simulated ones).

Note finally that in this example, the coefficient 
value a = 0.95  was used for the initialisation of the 

working variable z required for the implementation 
of the Fisher scoring step. However, the choice of 
any value a ∈ 0,1[ ] does not affect in any way the 
estimation results. Indeed, several simulation 
experiments were conducted following Saidane  
et al.37, taking various values ranging from 0.1 to 0.9 
for this parameter and the results have shown that, 
when convergence is reached, the algorithm gives 
the same solution each time.

Note also that the algorithm has converged to the 
optimal values after nearly 15 iterations. All these 
results indicate that the proposed EM-based Fisher 
scoring algorithm works well, for both the factor and 
parameters estimation.

Standard & Poor’s database
Data and preliminary analysis
The database CreditPro 6.2, provided by the 
Standard & Poor’s Risk Solutions group, summarises 
financial information for 9,928 bonds belonging to 
different rating classes within 13 industry sectors. All 
the rating movements between 1st January, 1982 and 
31st December, 2002 as well as the different 
subsectors and countries are, also specified. In the 
following, only US bonds, belonging to the energy, 
transport, consumer and media sectors, will be 
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Figure 1:  Behaviour of the regression and correlation coefficients (obtained from a GLPFM with three common latent factors) through 
the EM iterations
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considered. Figure 3 depicts the number of defaulted 
bonds during this period for the different considered 
sectors, which have been extracted from figures 2, 3, 
4 and 5 in Giampieri et al.38

To assess the stability of the estimates during 
1982–2002, the default events were grouped in 
quarterly periods. Then, the local EM algorithm was 
implemented to the resulting sequences, using a 
one-quarter rolling window framework (see 
Saidane39,40). To do this, the dataset was split into 
two subsets. The first one (training set) consists of 34 
observations (quarters) that range from 1st January, 
1982 to 30th June, 1990, on which the GLPFM was 
fitted. Thereafter, the defaults of the third quarter of 
1990 were added and those of the first quarter of 
1982 were excluded from the dataset and the model 
was re-estimated. This procedure was repeated to 
obtain means and factor loadings from 1st July, 1990 
to 31st December, 2002 (50 estimates). The 
empirical means and standard deviations of these 
estimates were also computed. Note, finally, that all 

these computations were made using a single-factor 
model in order to satisfy the identification 
constraints discussed in section ‘Estimation in 
generalised linear latent factor models’ by Saidane 
and Lavergne.41

Table 2 gives the total number of issued bonds 
during the whole period; the number of defaults for 
the different sectors; the empirical means of the 
estimated parameters and their standard deviations 
(into brackets) obtained from the local EM algorithm 
for the period 1st July, 1990 to 31st December, 2002. 
These results show very low standard deviations, 
which proves the stability of the estimates during the 
study period.

Backtesting results
This section aims to find the best model for 
estimating the credit VaR and ES using Monte 
Carlo simulations. To do this, the single-factor 
GLPFM was fitted in a first time to the observed 
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represents the simple linear regression line
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default sequences in order to identify the optimal 
latent correlation structure. Thereafter, the 
predictive accuracy of the model was evaluated using 
the one-quarter rolling window framework. The 
training set consists of 34 quarterly observations 
ranging from 1st January, 1982 to 30th June, 1990 
and the backtesting period covers the range 1st June, 
1990 to 31st December, 2002 (50 quarterly estimates 
of the VaR and ES).

To assess the precision of the credit VaR and ES 
estimates obtained from the model, it was assumed 
in the backtesting period that each bond in the loan 
portfolio carries one dollar. Then, a similar strategy 
to that developed by Saidane,42,43 using Monte Carlo 

simulations from the fitted GLPFM and the CMC 
method was followed. After each backtesting cycle, 
the observed hits rates obtained by the GLPFM and 
the CMC approaches for the different coverage rates 
2 per cent, 4 per cent, 6 per cent, 8 per cent and 10 
per cent, were recorded. Moreover, the p-values of 
the unconditional coverage test developed by 
Kupiec44 (UC test), the conditional coverage test and 
the independence test developed by Christoffersen45 
(CC and IND tests), the dynamic quantile test 
developed by Engle and Manganelli46 (DQ test) and 
the VaR quantile test developed by Gaglianone et al.47  
(VQ test) were also calculated for the different 
coverage rates.
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Figure 3:  The number and time of defaults in each quarter for the different sectors, from January 1982 to December 2002

Table 2:  Results obtained from the Standard & Poor’s database

Sector Number of bonds Number of defaults γγ ΛΛ

Energy 420 71 -0.4423
(0.0112)

0.6762
(0.0210)

Transport 281 59 -0.2485
(0.0124)

0.6453
(0.0184)

Consumer 1041 251 1.4502
(0.0118)

0.6112
(0.0226)

Media 650 133 0.6844
(0.0122)

0.6714
(0.0231)
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Table 3 reports the hits rates: the proportions of 
observed defaults exceeding the VaR. The p-values 
of the backtesting VaRs are, also, reported, as well as 
the results given by the average quantile loss (AQL) 
function developed by Gonzalez-Rivera et al.48 
When using the adequate VaR prediction, one 
expects to accept the hypothesis meaning that the 
estimated hits rate does not differ from the expected 
theoretical one, and that consecutive hits are 
independent of each other. Note finally that methods 
ensuring minimum distances between the number of 
observed quarterly defaults and the estimated ones 
are always preferred.

For the coverage rates 8 per cent and 10 per cent, 
the GLPFM did not reject the null hypothesis 
indicating that the estimated hits rate is not 
significantly different from the expected one at 95 
per cent confidence level. These results also 
highlight the good performance of the VaR 
estimates obtained by the CMC method. In this 
case, the p-values for most tests are higher than the 
conventional significance levels > 5%( ). Moreover, 
the results given by the model confidence set method 
(MCS) developed by Hansen et al.49 show a set of 
promising models having low quantile loss values. 
All these results are marked in bold on Table 3. In 
light of these results, the single-factor GLPFM 
(taking into account the default correlations among 
the different sectors) seems to perform well and to 
better capture the default events, compared to the 
CMC method.

For the coverage rate 6 per cent, the best model is 
the GLPFM. The p-values reported by the CMC 
method are higher than the significance level 5 per 
cent only for the UC test and the DQ test. For the 
VaR 2 per cent and 4 per cent, the results indicate 
that only the GLPFM approach provided p-values 
significantly higher than 5 per cent. Hence, the 
proposed model seems to perform fairly well and is 
superior to the CMC method in the VaR prediction 
for the different significance levels.

Figure 4 displays the credit VaR and ES estimates 
obtained by the CMC and the GLPFM-based 
approach over the backtesting period using different 
significance levels. A visual inspection of Figures 4 
and 5 reveals the significant influence of the latent 
time-varying correlations between the defaults of 
the different sectors, directly related to the economic 
situation during this period (the Savings and Loan 
Crisis (1980s and 1990s period) that affected the US 
economy for over a decade, the Gulf War recession 
that began in July 1990, the Balkan and South Asian 
Crises 1990–2002), on the behaviours of the 
estimated VaR and ES measures. Figure 5 shows also 
that the correlations obtained from the GLPFM 
specification are very close to the observed ones, 
calculated on a rolling window basis of the 
preceding 34 quarters. All the AQL values given in 
Table 3 confirm the previous results. Furthermore, 
these results confirm also the existence of a 
significant dependence relationship between the 
failure rate and the contagion effect in the credit 

Table 3:  Backtesting results of the GLPFM and the CMC method for the different coverage rates on the period from 30th 
June, 1990 to 31st December, 2002. UC, unconditional coverage test; CC, conditional coverage test; IND, independence 
test; DG, dynamic quantile test; VQ, VaR quantile test; AQL, average quantile loss function.

VaR Model % Hits UC IND CC DQ VQ AQL

10% GLPFM 10% 0.5752 0.4403 0.6811 0.6327 0.5104 0.1142

CMC 8% 0.0974 0.1721 0.0468 0.1743 0.0351 0.3631

8% GLPFM 8% 0.4310 0.5431 0.5843 0.6109 0.4682 0.1394

CMC 8% 0.0706 0.2237 0.0496 0.2076 0.0398 0.3806

6% GLPFM 6% 0.4137 0.3428 0.5721 0.4759 0.4102 0.1587

CMC 8% 0.0538 0.0292 0.0410 0.0506 0.0484 0.4169

4% GLPFM 4% 0.3942 0.4842 0.6504 0.5864 0.4327 0.1842

CMC 2% 0.0309 0.0356 0.0328 0.0194 0.0239 0.5243

2% GLPFM 2% 0.3358 0.4647 0.5412 0.5462 0.3915 0.2093

CMC 0% 0.0322 0.0296 0.0315 0.0136 0.0231 0.6517
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market. Consequently, one can argue that the poor 
results obtained by the CMC approach are due to 
not taking into account the effects of the latent 
heterogeneous correlations between the defaults of 
the different sectors during this period. In such 
situations, the GLPFM may be used to quantify 
change in the co-movement structure of defaults 
over time and calibrate the simulation parameters 
accordingly.

Finally, Table 4 reports the ES backtesting results 
for the period from 30th June, 1990 to 31st 
December, 2002. The (McF) test developed by 
McNeil and Frey,50 as well as the (NZ) and (BD) 
tests developed, respectively, by Nolde and Ziegel51 
and Bayer and Dimitriadis52 were used here. In the 
case where the p-value is above the theoretical 
significance level (>5 per cent), then one does not 
reject the hypothesis that the estimated ES and the 
theoretical one, do not differ significantly. The McF 

is used here to test the nullity of the exceedance 
residuals mean. The NZ and BD tests are used to test 
the accuracy of the estimated ES conditional to a 
sequence of realised defaults.

From this table, it can be observed that for the 
significance levels 10 per cent and 8 per cent, the 
corresponding p-values obtained from the single-
factor GLPFM are significantly larger than 0.05. It 
can be noted also, that all the p-values obtained from 
the CMC approach are larger than 0.05, which 
justifies the good quality of fit to the data and the 
accurate ES estimation given by this method. For the 
coverage rates 2 per cent, 4 per cent and 6 per cent 
only the corresponding GLPFM’s p-values are 
significantly larger than 0.05. All these results 
conclude that, for the different confidence levels, the 
GLPFM-based simulation framework gives more 
accurate predictions for the ES compared to those 
given by the CMC approach.
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Figure 4:  The credit VaR and ES values for the different significance levels over the backtesting period, from 30th June, 1990 to 31st 
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Note finally that the accuracy of the VaR 
prediction results given in Table 3, can also be 
verified using the McF and NF tests. From these 
results, it can be argued that the proposed GLPFM-
based simulation framework performs significantly 
better than the CMC approach for the different 
confidence levels.

CONCLUSIONS
This paper introduced a novel generalised latent 
Poisson factor analysis GLPFM approach for 
modelling credit portfolio risk with correlated 
defaults. Practical details of the estimation 
procedure, using an extended version of the EM 
algorithm, are also discussed. It has been shown how 
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Figure 5:  Default correlations between the different sectors during the backtesting period, from 30th June, 1990 to 31st December, 2002

Table 4:  The ES backtesting results for the period from 30th June, 1990 to 31st December, 2002. McF, test developed by 
McNeil and Frey; NZ, test developed by Nolde and Ziegel; BD, test developed by Bayer and Dimitriadis.

ES Model McF NZ BD

10% GLPFM 0.5130 0.7183 0.5072

CMC 0.0604 0.0534 0.0512

8% GLPFM 0.6915 0.6813 0.6764

CMC 0.0589 0.0534 0.0521

6% GLPFM 0.8204 0.5562 0.7906

CMC 0.0412 0.0403 0.0319

4% GLPFM 0.8642 0.6108 0.8511

CMC 0.0231 0.0098 0.0244

2% GLPFM 0.7125 0.5428 0.9237

CMC 0.0278 0.0372 0.0151
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to estimate the GLM parameters using the Fisher 
scoring algorithm, followed by a local EM step to 
estimate the latent predictors.

The framework is flexible enough to take into 
account the latent correlation structure of the 
default events and the market-related component 
in the credit risk. Thus, it can be used both in the 
traditional finance and risk management literature. 
Based on the estimation results of the GLPFM, a 
Monte Carlo simulation strategy had also been 
developed to predict the credit portfolio risk. The 
numerical experiments have demonstrated that the 
proposed approach helps to improve the credit 
VaR and ES predictions for different significance 
levels. These results may be very useful for 
academics concerned with the use of new 
intelligent statistical methods for financial 
engineering and risk management and for 
practitioners and regulators looking for modern, 
up-to-date techniques to improve and facilitate 
financial decision making.

Future studies combining this model with 
gaussian mixture models and hidden Markov 
models will be of great importance. This makes it 
possible to separate the market component from the 
total credit risk and to characterise the specific risk 
related to each default sequence. Further research 
can be conducted on (i) extending the GLPFM to a 
mixture of probabilistic GLPFM setting similar to 
the one in Mosbahi et al.53 and Saidane54; (ii) 
combining the GLPFM with hidden Markov 
models based on the ideas in Saidane and 
Lavergne55–57 and Saidane.58,59 The local EM 
estimation algorithm can also be upgraded to 
calculate the standard errors for the GLFPM 
parameter estimates by the evaluation of the 
‘complete data variance-covariance matrix’, 
coherently with the ‘missing information principle’ 
proposed by Louis.60 These extensions make it 
possible to make comparisons between different 
estimation methods.
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