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Abstract  Machine learning has permeated almost all areas in which inferences are drawn from 
financial data. Nevertheless, in financial market risk measurement most machine learning techniques 
struggle with some inherent difficulties: Financial time series are very noisy, not stationary and mostly 
considerably short. This paper contains an easy to implement sequential learning algorithm that 
overcomes some of these disadvantages. It is based on a Kalman filtering mechanism for quite general 
stochastic processes and provides a first step in the direction of separating parameter dynamics 
from the ubiquitous noise component. The core idea here is to use some stylised facts inherent to 
financial markets time series such as time varying measures of volatility. The new approach is tested 
using real market data in two different settings. First, a hypothetical portfolio containing credit spread 
and equity risk is analysed over a time frame containing the outbreak of the global pandemic in 2020 
and the beginning of the Russian attack on Ukraine in 2022. Another analysis is focused on US$/EUR 
exchange rate during a time span containing the global financial crisis of 2008 and the subsequent 
European sovereign crisis. In all test calculations the proposed sequential learning algorithm performs 
better than the historical simulation approach used by many firms in the banking industry to meet 
regulatory capital requirements. Due to its simplicity this method has a high degree of explainability and 
interpretability which will decrease the inherent model risk. The paper concludes with a discussion of 
model risk for machine learning in financial institutions. Compared to classical model risk frameworks, 
the emphasis must be put on the more prominent role of data. The simple approach described in this 
paper shows that machine learning in financial market risk does not have to get lost in noise.
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INTRODUCTION
Machine learning has permeated almost all areas in 
which inferences are drawn from data. The range of 
applications in the financial industry spans from credit 
rating, loan approval processes in credit risk to automated 
trading, portfolio optimisation and scenario generation 
for market risk. Machine learning techniques can also be 

found in fraud prevention, anti-money laundering, 
efficiency/cost control and marketing models. Machine 
learning has demonstrated significant uplift in these 
business areas and the use of machine learning will 
continue to be explored in the financial industry.

Nevertheless, there is one area in which machine 
learning has not (yet) contributed too many 
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innovations: Time series analysis for financial market risk 
measurement. The main reasons for this are rooted in 
the observation that financial time series are very 
noisy, not stationary and mostly considerably short. 
Therefore, traditional machine learning algorithms 
simply do not find enough data to draw any relevant 
conclusion.

Here is an example. During the start of the 
COVID-19 pandemic in the first half of 2020, many 
banks experienced large numbers of backtest outliers 
when they compared actual profit and loss numbers 
to value at risk (VaR) estimates in the trading book. 
The simple reason was that their regulatory VaR 
systems were not able to adapt to rapidly changing 
market conditions as volatility spiked to ever-higher 
levels. The problem lies with the amount of data that 
is used to ‘train’ the VaR system.

In a nutshell, this amount of data is a compromise 
between having enough observations to compute 
relevant statistical quantities (here we want lots of 
data) and the degree to which this data is still 
relevant for the current environment (here we  
only want recent data). Whereas in quiet times 
collecting many data points to reduce measurement 
uncertainty seems to be a priority in some model risk 
management approaches, the situation changes once 
there is a rapid shift as experienced in March 2020.

This paper contains an easy to implement 
algorithm that overcomes some disadvantages of 
currently used regulatory systems to capture 
financial market risk. For that purpose, we first  
have a look at the basics of regulatory market risk 
measurement and machine learning. Based on these 
insights, we propose a method that can easily be 
added to existing risk measurement frameworks to 
cope with rapidly changing market conditions. This 
method is tested using real market data and finally 
some aspects of model risk management will 
complement the discussion.

MARKET RISK MEASUREMENT
Standard ways to measure regulatory 
market risk
What is market risk all about? Market risk is the  
risk of changes in the value of a given portfolio of 
financial instruments due to the movement of risk 

factors like stock prices, interest rates, foreign 
exchange rates and commodity prices. The focus 
here is on short term risk, ie changes over a risk 
horizon of up to a few trading days. It is part of the 
risks that need to be capitalised by financial 
institutions subject to the suite of regulations 
contained in Basel Pillar one and Pillar two.1 In 
brief, regulatory market risk is measured by 
evaluating a portfolio under different potential 
future scenarios. Every scenario will imply a 
potential future portfolio value which delivers a 
probabilistic description of the future behaviour of 
the portfolio. This will then lead to a risk measure 
that will be used to determine the regulatory or 
economic capital of the financial institution.

Currently there are different approaches that are 
used by banks within the internal model framework 
to measure market risk. Essentially, these methods 
only differ in the way they identify the potential 
future scenarios.

Historical simulation approach: The potential future 
scenarios are described by changes in risk factors  
that have been observed in the past. There might  
be differences in the way these shifts are computed 
(relative shifts for equities and foreign exchange 
rates, absolute shifts for credit spreads), but, in 
essence, historical information is directly transferred 
into the scenarios used to compute market risk. This 
approach seems to resemble the slogan ‘Let the data 
speak for itself ’ often encountered in machine 
learning frameworks.

Monte Carlo simulation approach: The potential 
future scenarios are sampled from given probability 
distributions instead of the empirical distribution. 
The historically observed data is used to calibrate  
the corresponding parameters of the probability 
distribution. In principle, a scenario generator can 
produce an arbitrarily large amount of shift scenarios 
for the risk factors, which makes this approach more 
flexible than the historical simulation. Nevertheless, 
the focus on a certain form of parametric families of 
distributions for the risk factors will lead to its own 
model risk aspects.

Parametric approach: The distributions of potential 
future risk factor shifts are described by parametric 
families (usually normal distributions, student 
t-distributions or hyperbolic distributions). The 
corresponding profit and loss distribution of the 
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portfolio under consideration is then derived under 
assumptions that guarantee that this distribution 
remains within a certain parametric family of 
distributions.

Extreme value approaches: Within the scenario 
generator there is an explicit distinction between the 
body of the profit and loss distribution (the region 
where ‘normal’ things happen) and the tails of the 
distribution (the region where ‘extreme’ things 
happen). However, extreme value approaches are not 
so common in practice since it is usually controversial 
where the transition between the body and tail of the 
corresponding distributions is located — a feature 
that will also introduce additional model risks.

Stylised facts of financial time  
series data
But why should the above-mentioned data driven 
approach to measure market risk work at all? Some 
evidence comes from the analysis of so-called 
stylised facts of financial markets time series. In a 
nutshell, stylised facts relate to statistical properties  
of time series data observed across a wide range of 
financial instruments, markets and time periods. The 
considerations of this section are mostly based on the 
work of Cont and the references therein.2

Stylised facts are essentially qualitative statements 
by nature, mostly obtained on an empirical basis. 
They reveal certain characteristics of large amounts 
of data — they belong to the realm of ‘big data’.  
The main aspect is therefore to let the data ‘speak  
for itself ’. Although this non-parametric approach 
does not depend on specific models for the data-
generating process, there is the shortcoming of not 
having a theory to guide further conclusions.

As the study of stylised facts will integrate 
different financial instruments, markets and time 
periods per se, the statements gain in generality  
but obviously lose in precision. Therefore, it will  
be observed time and again that stylised facts do  
not help the modeller to identify a unique data-
generating process. On the other hand, these stylised 
facts are so constraining that in general it is very 
hard to construct any model of a (parametric) 
data-generating process that shows all these stylised 
facts simultaneously.3 After these general remarks, 
the focus now moves to a few stylised facts that are 

particularly important within the context of market 
risk measurement.

Absence of linear autocorrelations: In liquid markets, 
the linear autocorrelation function of price  
changes often decays rapidly as a function of the 
corresponding time lag. In general, for medium-
sized lags in the range of one hour or greater, the 
autocorrelations could be assumed to be zero.  
Of course, the corresponding price must be  
liquid, otherwise it makes no sense to talk about 
autocorrelation over a time lag of a few minutes.

Volatility clustering: Although there is only little 
evidence of linear autocorrelation in time series of 
price changes, this does not mean that these changes 
are statistically independent. If absolute values are 
studied, there is very strong evidence of (positive) 
autocorrelation. Roughly speaking, that means large 
absolute price changes are likely to be followed by 
other large absolute price changes, a feature that is 
often referred to as ‘volatility clustering’. Time 
series models such as these are extensively studied 
by Box et al.4

Fat tails, extreme events: Empirical evidence from 
many different markets and time periods indicates 
that fat tails in distributions of price changes are the 
norm and not the exception. This result even holds 
for conditional distributions — for distributions 
where the effects of volatility clusters (see above) 
have been controlled. Nevertheless, fat tails  
seem to be more pronounced in unconditional 
distributions. Since fat tails characterise the 
behaviour of the probability distribution for extreme 
realisations, they are often associated with extreme 
events. Although on a qualitative basis this is quite 
intuitive, due to the rareness of extreme events it is 
much harder or even impossible to quantify the 
probability of occurrence of such an extreme event.

The stylised facts mentioned so far are associated 
with financial time series data. But what about 
alternative data like data form social media 
platforms, geo data from satellites or data from 
sensors embedded in different products? Is there a 
potential to use this kind of data for financial risk 
forecasts? Usually, alternative data comes with short 
data history (maybe a few years to a decade) which 
may make a reliable backtest difficult. Nevertheless, 
it may complement the classical financial time series 
when it comes to time series analysis.
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Up to now there has not been any conclusive 
evidence that this kind of alternative data may yield 
a sustainable improvement of financial market risk 
forecasts.5 Nevertheless, the current M6 competition 
examines the extent to which the so-called efficient 
market hypothesis6 can be aligned with the 
observation that there are participants in the 
financial markets who seem to deliver very good 
investment results over long periods of time. The 
results of this competition are expected in 2024. It 
remains to be seen how far alternative data could be 
used to optimise financial time series analysis.

USING MACHINE LEARNING  
IN FINANCIAL MARKET RISK
What are the main obstacles?
To what extent are machine learning techniques 
applicable to financial markets data? Even more 
importantly, since a lot of machine learning 
algorithms are quite time consuming when it 
comes to the integration of new data, can we use 
these techniques when we have to come up with a 
timely market risk report on each and every 
trading day?

There are indications that (current) machine 
learning techniques that have been developed for 
time series data are not quite reliable when it comes 
to the application in market risk measurement.7 The 
first objection relates to the inherently low signal- 
to-noise ratio in financial market data. To put it  
another way, time series data used for market risk 
measurement usually come with a lot of noise that 
may lead machine learning techniques astray.  
Some machine learning methods are in danger of 
overfitting and therefore have large issues with  
noisy data like time series in financial markets.

The second objection relates to ever-evolving 
financial markets ie machine learning algorithms 
must be prepared for a concept drift in the learning 
environment. This is an area where machine 
learning techniques may improve in the future.

The third objection relates to the availability  
of training data. Whereas in credit risk, rating 
assignments rely on data collected over a huge time 
span (several years or even decades), market risk 
measurement must cope with the fact that even  

recent data may no longer be so relevant. In the 
context of market risk measurement, we should not 
focus on machine learning techniques designed for 
‘big data’. Instead, we must think about how to adapt 
to new situations in a fast and efficient way. This 
special case of machine learning runs under the  
name of sequential (online) learning. The focus here  
is not so much on processing huge amounts of data, 
but on the efficient usage of new information as it 
arrives. The next section turns to a prototypical 
example that provides a promising starting point.

Parameter adaptation in a noisy 
environment
As mentioned in the introduction, market turmoils 
during the early phase of the COVID-19 pandemic 
in 2020 have once again highlighted weaknesses of 
regulatory VaR estimates when it comes to changes 
in financial market environments.8 Although 
potential remedies have been available for some 
time, the concrete implementation of solutions in 
running VaR systems seems to be more challenging. 
In this section we like to consider a simple adaptation 
mechanism that can be used in existing VaR methods 
to track changing market environments. Like 
classical stochastic volatility methods,9,10 the focus is 
on the dynamics of the logarithm of portfolio 
returns.

Consider the following univariate stochastic 
process for the unknown true parameter

µn+1=µn +mn+1

for n = 0,1,… with initial condition µ0 = 0 and 
independent identically distributed increments mn  
for n = 1,2,…. The increments do not need to be 
normally distributed; we only require that the 
corresponding distribution allows for first and  
second moments. The relevant profit and loss 
dynamic is described by the stochastic process

pln+1=µn + εn+1

for n = 0,1,… with initial condition µ0 = 0 and 
independent identically distributed εn for n = 1,2,…. 
Note that the process εn contains the unknown 
dynamics of the parameter as well as the 
measurement uncertainty of the profit and loss 
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(therefore the subscript n in µn). Both processes mn 
and εn are supposed to be independent identically 
distributed, of second order with zero mean and 
standard deviation σm > 0 and σ ε > 0 respectively. 
The processes mn and εn are correlated with 
covariance σ εm for n = 1,2,….

But how does the actual algorithm work once  
we are given specific measurements? Based on the 
noisy profit and loss measurements PL1,…,PLn+1 an 
estimator is given by

Mn+1 = Mn + λ PLn+1 −Mn( )

for n = 0,1,… with initial condition M 0 = µ0 and a 
parameter λ > 0. The idea behind this update is quite 
intuitive. We are starting from the most recent 
estimate Mn at time tn and correct for the difference 
between this quantity and the new measurement PLn+1 
at time tn+1. So, for example, if the new measured 
PLn+1 is higher than our last best guess Mn, we need 
to increase our best estimate Mn+1 for time tn+1.

How to choose the parameter λ > 0 ? Since what 
we really want is the parameter µn+1 at time tn+1 it 
would be a good idea to focus on the estimation 
error En+1 = µn+1−Mn+1. Using the definitions of the 
stochastic processes from above yields

En+1 = 1− λ( ) µn −Mn( )+mn+1 − λεn+1

such that the mean value en+12 = E En+1
2( ) is given by

en+12 = 1− λ( )2 en2( )+σm
2 + λ 2σ ε2 − 2λσ εm

where σm > 0 and σ ε > 0 are the standard deviations 
of the innovations and σ εm is the corresponding 

covariance. The condition λ <2 is necessary to  
avoid explosion of the error terms. In this case the  
asymptotic error is

e2 λ( ) = σm
2 + λ 2σε

2 − 2λσ εm

λ 2 − λ( )

The parameter λ  can now be specified to obtain a 
minimal error term e2 λ( ). Please note that due to 
the restriction λ > 0 we only consider one of the 

roots of 
d
dλ
e2 λ( ) = 0. We have

λ = − σm
2

2 σε
2 −σεm( ) +

σm

σε
2 −σεm

1+ σm
2

4 σε
2 −σεm( )  

which can also be written as

λ = − 1
2
 snr 2 + snr 1+ 1

4
snr 2

with the signal-to-noise ratio snr  such that

snr 2 = σm
2

σε
2 −σ εm( )

.

Since, in general, the noisy process has increments 
with a larger standard deviation than the process 
without noise, we have  1<σε  /σm such that the 
signal-to-noise ratio is well defined in this case. In 
Figure 1 we see the asymptotic development of the 
parameter λ  as the signal-to-noise ratio tends to 
infinity.

As a final remark please note that in the above 
expression defining the optimal parameter λ  only 

Figure 1:  Asymptotic behaviour of the model parameter λ  with different signal-to-noise ratios
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the signal-to-noise ratio snr is relevant; we do not 
necessarily need the individual values for the 
standard deviations σm > 0 and  σ ε > 0 or the 
correlation coefficient !εm. One can see the crucial 
effect of the signal-to-noise ratio; low values of snr 
indicate calm times in which there is no need to 
pronounce recent observations. As values for  
signal-to-noise ratio increase, recent observations 
yield a much bigger influence in estimating the 
current state.

Extension to more general  
stochastic processes
The approach described in the last section is easily 
extended to include noisy auto-regressive time  
series models instead of noisy random walks; in this 
case, the optimality criterion can also be derived 
analytically. If, for example, the parameter would be 
described by the stochastic process

µn+1 =αµn +mn+1

with 0 <α ≤ 1 then the optimality criterion for the 
parameter λ in

Mn+1=αMn + λα PLn+1 −αMn( )

would be given by

λα = − 1
2
 snr 2 α( )+ snr 2 α( ) + 1

4
 snr 4 α( ) − 1−α 2

α 2

with

snr 2 α( ) = α 2σm
2 + 1−α 2( ) σε

2

α 2 σε
2 − σ εm( )  .

This expression reduces to the form derived 
earlier for the noisy random walk α = 1. Quell and 
Meyer give details concerning the derivation of this 
optimality criterion.11

Even more complex generalisations of the 
stochastic processes describing the temporal 
evolution of the parameter µn can be handled using 
state space approaches and the Kalman/Stratonovich 
Filter.12–14

Conclusion 1: It became clear that changing 
volatilities observed in financial markets time series 
data require a rapid adaptation of sequential machine 

learning methods used for market risk measurement. 
Under the assumption of quite general stochastic 
processes describing these parameters, efficient filter 
mechanisms can be found that minimise the tracking 
error within noisy time series data. In a more 
informal way, the dynamics of the time varying 
parameters and their estimates M  can be thought  
of as the signal that has to be identified within  
noisy data.

IMPROVING REGULATORY MARKET 
RISK MEASUREMENT
Definition of a benchmark risk model
How can the stylised facts together with the 
sequential learning from the previous sections  
be used to improve regulatory market risk 
measurement? Hull and White suggest standardising 
risk factor changes using an estimate of the current 
volatility.15 Barone-Adesi and Giannopoulos16 extend 
the Hull and White approach and examine the 
behaviour of this method for individual financial 
instruments.

When it comes to a practical implementation, the 
limiting factors of these approaches are:

	1.	 They operate on a risk factor level, ie in practice 
one would have to calibrate several hundreds of 
parameters to allow for an optimal tracking of risk 
factor dynamics.

	2.	 If banks like to use these techniques within their 
regulatory market risk measurement, they usually 
need to modify large parts of their risk model 
software.

To overcome these issues, this section contains the 
description of a benchmark risk model that can be 
placed ‘on top’ of already existing regulatory risk 
models in banks. Since the focus is on the profit and 
loss of complete portfolios, they require a minimal 
amount of calibration effort.

To fix terms, let the profits and losses of the 
portfolio under consideration be given by PL1,…,PLN. 
These numbers may have been produced by  
any of the risk models already mentioned. The crucial 
fact is that there is a natural order to these scenarios:  
PL1 precedes PL2, and so on until the most recent PLN .  
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This feature will allow for the adaptation to 
changing parameters.

Let Mn be an estimate for the parameter at time n, 
then the normalised profit and loss QLn is defined for 
n = 0,…,N −1 by

QLn+1 = PLn+1 −Mn

At this point, it is important to note that there  
is no typo in the above formula. The term QLn+1 
should contain the ‘surprise’ that QLn+1 contains 
relative to the knowledge of Mn from the previous 
time step. While the classical historical simulation 
approach would use the profits and losses PL1,…,PLN 
to estimate the risk measure, the adaptive benchmark 
model will use

RLn =MN +QLn

for n = 1,…, N as the profit and loss distribution 
based on the current parameter estimate MN.

Application to financial market data
To see how the adaptive benchmark model could 
improve current regulatory methods for financial 
market risk estimation, we focus on the rescaled 
profit and loss characteristics of a hypothetical 
portfolio between January 2020 and June 2022. This 
time frame covers a period of increased economic 
uncertainty due to the pandemic that started in the 
first quarter of 2020 and the Russian attack on 
Ukraine in February 2022. The portfolio consists of 
credit spread risk (government and corporates) as 
well as equity risk.

Figure 2 shows the results of daily market risk 
estimations during this period based on the  
adaptive benchmark model and the historical 
simulation approach. In both diagrams, the solid  
line is the backtest profit and loss time series for the 
hypothetical portfolio under consideration. The 
dashed line indicates the daily update of the 1 per cent 
and the 99 per cent quantile of the profit and loss 
distribution. In terms of the discussion from the last 
section, the profit and loss distribution should be used 
to track the backtest profit and loss form of the 
hypothetical portfolio. At first glance, both methods 
seem to work quite well tracking the characteristics  
of the time series. Nevertheless, there are some 
important differences.

In both diagrams, the lower dashed line represents 
the 1 per cent quantile of the profit and loss 
distribution, a quantity which is called value at risk 
(VaR) in the Basel regulatory framework. Since it is 
calibrated on 1 per cent, there should be around 
700*1 per cent or around 7 trading days, where this 
level is breached by the solid line. Such an event is 
then called a backtest outlier. In this case, the 
adaptive benchmark model produced 8 backtest 
outliers whereas the historical simulation approach 
produced 17 backtest outliers. One immediate cause 
for this difference is the worse adaptation speed of the 
historical simulation to increasing market volatilities. 
In a certain sense, the adaptive benchmark model 
uses the sequential learning to better keep track of 
the market dynamics which then results in fewer 
backtest outliers. But are 8 backtest outliers still 
tolerable when one expects only 7 backtest outliers  
in this example? Due to the standard Basel traffic light 
approach,17 the 8 outliers of the adaptive benchmark 
model are still in the green zone of this test (ie will 
not be rejected on a 95 per cent level) whereas the 17 
backtest outliers of the historical simulation approach 
fall into the yellow zone (rejection at 95 per cent but 
not rejected at 99 per cent).

To get a better feeling for the behaviour of the two 
risk models over longer historical time spans, let us 
look at foreign exchange markets. The log returns of 

Figure 2:  Adaptive benchmark model and historical simulation for 
a hypothetical portfolio
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the US$/EUR exchange rate from early 2006 until 
mid-2020 together with the performance of the 
adaptive benchmark model as well as the historical 
simulation approach are shown in Figure 3. The 
impact of the global financial crisis of 2008, the 
subsequent European sovereign crisis as well as the 
start of the global pandemic in 2020 are clearly visible.

It is obvious that the adaptive benchmark model 
follows the risk factor dynamics much better than 
the historical simulation; this is also reflected in  
the number of backtest outliers on the 99 per cent 
confidence level. The historical simulation produces 
53 backtest outliers (amber zone of the Basel traffic 
lights approach18 with 3724 samples) whereas the 
adaptive benchmark model stays in the 
corresponding green zone with 40 backtest outliers.

Conclusion 2: This example shows that sequential 
learning methods like the adaptive benchmark 
model have the potential to track the behaviour of a 
profit and loss quantity based on real financial 
market data. The profit and loss decomposition

RLn = MN +QLn

helps us not to get lost in noise, but to use the noise 
to improve financial market risk measurement. 
During the construction of the method there is no 
need to make any specific assumption concerning 

the distribution of the random variables, the 
existence of first and second moments will suffice.

MACHINE LEARNING AND MODEL 
RISK MANAGEMENT
The banking industry is becoming increasingly  
aware of model risks related to the use of machine 
learning techniques for risk management purposes. 
What are the main challenges when it comes to the 
application of machine learning in a regulatory 
context? Figure 4 provides a first overview.

Explainability/Interpretability: One should be able  
to explain how the algorithm makes a prediction  
or decision for one specific case at a time.

Overfitting: One should recognise that there is some 
amount of randomness in the training data. If not 
taken care of, algorithms show good performance on 
training data — but fail on data not seen before.

Robustness and transient environments: One should 
account for the fact that markets or environments 
can change, which calls for a good balance of 
adaptability and robustness.

Bias and adversarial attacks: Compared to classical 
statistics there is a much more prominent role for 
(training) data in machine learning applications.

How should the model risk governance react to 
these challenges? Here are some questions to guide 
the validation process.

Model review: If machine learning algorithms 
frequently change their ‘inner workings’, how should 
model validation react? What should be the contents 
of the validation activity? How should aspects of 
conceptual soundness be treated?

Model development, implementation and use: How to 
account for the more prominent role of data? What 
level of complexity can users handle? What kind of 
explanations would be accepted by users or by senior 
management?

Model identification and registration: How to account 
for model complexity, the role of data, model 
recalibration within the model inventory?

Excellent quality standards: Existing frameworks 
need to be enhanced by additional checks for 
overfitting and sensitivity analysis to test for 
robustness. Tests for possible bias and discrimination 
may be reviewed with respect to reputational risk.

Figure 3:  Adaptive benchmark model and historical simulation for 
US$/EUR exchange rate
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Some banks have already developed frameworks 
to deal with the model risks of machine learning 
applications, while other banks are searching for 
viable starting points. There definitely is a need to 
share emerging industry best practices and to 
develop a comprehensive framework to assess model 
risks in machine learning applications. A good 
platform for all risk professionals to share their views 
on model risk and machine learning is the Model 
Risk Managers’ International Association.19

CONCLUSION
The preceding considerations have shown that 
machine learning methods could use the stylised facts 
within financial markets time series data to come up 
with real improvements for regulatory market risk 
measurement. Sequential learning algorithms may 
take a first step into the direction of separating 
parameter dynamics (aka signals) from the ubiquitous 
noise component. Due to their simplicity, these 
methods have a high degree of explainability and 
interpretability which will decrease the inherent 

model risk. Of course, the separation of signal and 
noise in financial markets time series data will never 
be perfect. Nevertheless, already the simple adaptive 
benchmark method described in this paper shows that 
machine learning does not have to get lost in noise.

Finally, here are some thoughts for further 
exploration.

Use domain knowledge: Stylised facts provide a first 
step towards explainability and may indicate which 
kinds of algorithms will work.

Use sequential learning: A ‘sliding time frame’ 
approach may help to some extent, to counter the 
effects of changing market environments.

Avoid overfitting: The low signal-to-noise ratio 
within financial markets time series data calls for 
explicit treatment of the noise component. This may 
also support the estimation of uncertainty for the point 
forecasts as well as providing information for the 
construction of confidence intervals around such 
forecasts.

Avoid development bias: Try to automate 
preprocessing and avoid the extra decisions required 
on the part of the user.

Figure 4:  Potential dangers of AI applications
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