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 With the rapid development of fintech, the need for dynamic credit risk evaluation is becoming increasingly 

important. While previous studies on credit scoring have mostly focused on single-period loan default 

prediction, we call for a new avenue—multiperiod default prediction (MPDP)—to depict risk profiles over 

time. To address the challenges raised by MPDP, such as monotonic default probability prediction and 

complex relationship accommodation, we propose a novel approach, hybrid and collective scoring (HACS). 

We design a hybrid modeling strategy to predict whether and when a borrower will default separately through 

a default discrimination model and a default time estimation model, respectively, and synthesize them through 

a probabilistic framework. To accommodate various possible patterns of default time and measure the 

distribution of default probability over successive time intervals, we propose a joint default modeling method 

to train the default time estimation model. Empirical evaluations at the model (time-to-default prediction 

performance and discrimination performance) and mechanism (identifiability and discriminability) levels, as 

well as impact analyses at the application (granting performance and profitability performance) level, show 

that HACS outperforms the benchmarked survival analysis and multilabel learning methods on all fronts. It 

can more accurately predict time-to-default and provide financial institutions and investors better decision-

support in granting loans and selecting loan portfolios. 

Keywords: Credit risk, dynamic evaluation, multiperiod default prediction, hybrid modeling, monotonic 

probability, risk analysis, profit scoring 

 

Introduction 

Credit risk refers to the risk of defaulting on a debt that may 

arise from a borrower failing to make the required 

repayments (Fu et al., 2021). With the ability to depict the 

creditworthiness of borrowers, credit risk evaluation helps 

improve returns and financial stability and thus is 

undoubtedly of major concern for both financial institutions 

 
1 Gediminas Adomavicius was the accepting senior editor for this paper. 

Nachiketa Sahoo served as the associate editor.  

and individual investors. Nevertheless, due to the inevitable 

information asymmetry between lenders and borrowers, 

credit risk evaluation has always been a challenging 

problem, especially in the current fast-moving financial 

markets. From the market perspective, with the explosive 

growth of fintech, innovative business models, such as 

marketplace lending and crowdfunding are constantly 

emerging (Hendershott et al., 2021). Such financial 
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initiatives increase credit accessibility immensely and 

expand consumer groups but inevitably bring in more 

uncertainty (e.g., subprime borrowers) and thus greatly 

intensify the need to depict the dynamic2 risk profiles of 

market participants over time. 

From the business perspective, credit risk management runs 

through the entire life cycle of the loan business, and default 

prediction is accordingly carried out at different stages to 

support distinct decisions (e.g., granting loans at the pre-loan 

stage and risk warnings at the post-loan stage). At the pre-loan 

stage, deciding whether to grant credit to an application is the 

core goal, and it is generally supported by predicting whether 

a borrower will default in the full loan term. With the growth 

of financial markets, this goal has gradually shifted toward 

choosing loans or portfolios of high profitability, hence further 

requiring the assessment of how the credit risk of a borrower 

might evolve over time since the profitability of a loan 

depends on not only whether but also when the borrower will 

default. Moreover, knowing when a borrower will default can 

help lenders (e.g., banks) tap into the potential for earning 

growth (e.g., identifying extra profitable applications) and 

maintaining customer relations. For example, for a loan 

application with high default risk toward the end of the loan 

only, offering a loan with a term adjustment (e.g., extension) 

or an interest concession, instead of simply rejecting the 

application, may prevent customer attrition and also ease 

default concerns. It is even possible that the received loan 

repayments would compensate for or exceed any potential 

losses resulting from default if the default time is late enough. 

At the post-loan stage, risk monitoring and control are the core 

goals and are generally supported by re-predicting whether a 

borrower will default based on additional repayment 

information or passively waiting for the occurrence of 

delinquency. However, both of these two methods may be 

insufficient in practice. The former method (i.e., binary 

predictions) only supports indiscriminate control activities 

(e.g., contacting every risky customer) and may thus be costly 

and vulnerable to incurring insufficient or excessive 

interventions, as the risk level is highly time dependent. The 

latter is an afterthought and thus is incapable of delivering 

early warnings and is vulnerable to risk deterioration. A more 

effective method would be to differentially manage customers 

by mastering their risk levels at any given time (e.g., Lu et al., 

2021). For example, the differential intervention may be a text 

reminder for customers who are risky in the long term (e.g., 

risky at six months) versus a call reminder for customers who 

are risky in the short term (e.g., risky in a month).  

 
2  Here, “dynamic” denotes that the default risk (in terms of default 

probability) of a borrower changes over time and, accordingly, its 

colocations, such as “dynamic evaluation” and “dynamic credit scoring”, 
refer to predicting default probability at different times (i.e., a 

survival/default curve), rather than that the predictions should evolve 

Regarding advanced decision support for credit risk 

management, credit scoring is arguably the most widely used 

device and has drawn considerable attention in information 

systems (IS) research (e.g., Wang et al., 2020; Hendershott et 

al., 2021). Previous studies have mostly treated credit scoring 

as a classification problem and predicted a single default 

probability, indicating whether a borrower will default within 

a specific period. As a borrower’s default involves a process 

that evolves over time, such single-period default prediction 

(SPDP) may be too impenetrable to accurately predict credit 

risk, especially concerning time-to-default predictions, and 

hence may not be sufficient to effectively support risk 

management decisions at both pre-loan (e.g., profit scoring) 

and post-loan (e.g., risk warning) stages.  

As SPDP lags behind the practical needs for dynamic 

evaluation, we call for a new avenue, i.e., multiperiod default 

prediction (MPDP). As a more complex task, MPDP inevitably 

entails some challenges. We identify two essential challenges, 

in particular. First, borrowers always need to survive for a 

certain period before they can default in the next period—i.e., 

since the default probability of a borrower is monotonic over 

time, how to accommodate such monotonicity is a crucial 

challenge for MPDP. Second, as the information used for credit 

scoring is becoming more extensive and complex (Wang et al., 

2020), the modeling process of credit scoring necessarily 

involves complex relationships (e.g., nonlinear dependencies), 

posing another challenge.  

To address these challenges, we propose a novel MPDP 

approach, i.e., hybrid and collective scoring (HACS), in this 

design science research (see Gregor & Hevner, 2013). HACS 

consists of two components: a default discrimination model, 

predicting whether a borrower will default in the full 

observation period, and a default time estimation model, 

predicting the default probability in each observation interval 

(i.e., when a borrower will default). The two components are 

synthesized through a probabilistic framework, which ensures 

the monotonicity of the output. Such a hybrid modeling design 

helps to distinguish the influences of features on whether and 

when a borrower will default, thus allowing for the learning 

of a more flexible model. Further, to accommodate complex 

relationships, we keep base classifiers assumption free (i.e., 

totally data driven) and design metalearning to consolidate 

their predictions. HACS is distinctly different from the 

existing credit scoring methods that could be adapted to 

MPDP, including survival analysis and multi-label learning 

methods. Survival analysis methods can predict the 

monotonic default probability over time but rely on restrictive 

continuously as more information is added to the model. In this study, to 

accommodate new information generated over time, we build multiple 

models, each of which corresponds to a specific prediction time, pre-loan 
or post-loan. 
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assumptions (e.g., proportional hazards) and are not amenable 

to directly accommodating complex nonlinear dependencies. 

Multi-label learning methods are more flexible but cannot 

guarantee the monotonicity of predicted default probability 

over time. HACS synthesizes the monotonicity property and 

flexible learning ability for dynamic credit scoring. 

We evaluated HACS using data from a leading online lending 

platform. We compared HACS with seven representative 

survival analysis and multi-label learning methods at three 

levels: model, mechanism, and application. From the model 

perspective, predicting and distinguishing bad loans from good 

ones is the main goal of credit scoring; thus, we evaluated the 

time-to-default prediction performance and discrimination 

performance (i.e., the ability to risk-rank borrowers accurately 

in different periods) at both the pre-loan and post-loan stages. 

From the mechanism perspective, to analyze the specific impact 

of monotonic default probability on each decision-making 

object, we carried out a case analysis. From the application 

perspective, considering two types of participants in financial 

markets and their unique goals, we carried out two impact 

analyses to examine the granting performance (i.e., the ability 

to grant loans at a low default rate) and profitability 

performance (i.e., the ability to select portfolios with high 

profits) for financial institutions and individual investors, 

respectively. The results show the advantages of HACS on all 

fronts. HACS outperformed the alternative methods in terms of 

time-to-default prediction performance and discrimination 

performance at both the pre-loan and post-loan stages. As 

monotonic default probability is highly desired in decision-

making, HASC demonstrated superiority to the alternative 

methods in terms of identifiability and discriminability. Since 

HACS enhances granting or profitability performance, both 

financial institutions and individual investors could benefit 

from using HACS.  

Literature Review 

A large body of literature has explored the development and 

application of predictive decision support methods in the credit 

industry. Such methods predict the probability of default based 

on a set of features. The goal of such methods is pragmatic, i.e., 

to pursue better performance, and there are generally two ways 

to achieve this goal. One is mining effective features to provide 

additional information, such as incorporating soft information 

(e.g., Iyer et al., 2016; Wang et al., 2020). The other is designing 

a better method to accurately map features to the target variable 

(e.g., Abbasi et al., 2012; Wang et al., 2021). Two divergent 

research streams suggest that specific challenges arise in feature 

mining versus predictive model development. The latter is the 

focus of this paper. 

The most prevailing approach for default prediction is 

classification, where each loan is classified into either 

creditworthy (i.e., will not default) or non-creditworthy (i.e., 

will default). Numerous classification methods have been 

used (see Lessmann et al., 2015 and Abellán & Castellano, 

2017 for surveys of state-of-art classification methods for 

default prediction), including logistic regression (Ge et al., 

2017), decision tree (Siering et al., 2016), support vector 

machine (Dong et al., 2018), and neural network (Siering et 

al., 2016). Recently, ensemble learning, with competitive and 

robust predictive performance, has been broadly used in 

default prediction (Abellán & Castellano, 2017). Although it 

is well-explored and continues to attract much attention, this 

type of default prediction method is not always sufficient, 

especially when dynamic credit risk prediction is desired. 

Thomas (2009) depicted classification-based default 

prediction as a connection between two snapshots (i.e., single-

period): the first identifies the characteristics at a specific time 

(e.g., loan application time) and the second depicts the 

situation at a later time (e.g., six months after the loan is 

granted). As the pattern of borrower behavior may change 

over time, two snapshots may be insufficient for capturing the 

dynamics; thus, MPDP may be a more reasonable and 

practically valuable approach (Dirick et al., 2017). 

When it comes to MPDP, survival analysis has usually been the 

go-to approach (see Dirick et al., 2017 for a survey of survival 

analysis methods in credit scoring). With the modeling of time-

to-event (i.e., default) data, survival analysis can predict default 

probability over time, thus helping to identify not only whether 

but also when a borrower will default (Tong et al., 2012). 

Moreover, previous studies have shown the competitive 

predictive performance of survival analysis as compared to 

classification-based default prediction methods (e.g., logistic 

regression) and the additional benefits of survival analysis in 

depicting dynamic risk over time (e.g., Jiang et al., 2019), 

modeling censored observations (e.g., Dirick et al., 2017), and 

incorporating macroeconomic factors (e.g., Djeundje & Crook, 

2019). Survival analysis generally implicitly assumes that all 

borrowers will default sooner or later, but, obviously, only a 

small proportion of borrowers will actually default. 

Consequently, a special type of survival analysis, called the 

mixture cure model, has been proposed to relax the assumption 

by modeling borrowers in terms of two distinct subpopulations 

(Tong et al., 2012). In one subpopulation, borrowers are cured 

and will never default during the lifetime of the loan, while the 

other subpopulation consists of borrowers who are uncured and 

will default at some point. 

An alternative approach for MPDP is multi-label learning, 

which assigns a subset of labels (class) to each object. It is 

straightforward to adapt multi-label learning to MPDP by 

assigning each prediction period a label via an independent 

classifier, and hence some studies have used this simple 
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approach, i.e., binary relevance, as a benchmark for survival 

analysis in MPDP (e.g., Tong et al., 2012; Jiang et al., 2019). 

Some extended multi-label learning methods may also be 

applicable to MPDP along the same basic logic. The most 

popular way is to capture label dependencies, resulting in 

various methods (Baesens et al., 2005; Rivolli et al., 2020)— 

such as classifier chain, which learns a sequence (chain) of 

classifiers using other true labels on the chain, and nested 

stacking, which learns classifiers using other predicted labels 

on the chain. 

In summary, research on credit scoring has identified two 

method families for MPDP, i.e., survival analysis and multi-

label learning. Survival analysis enables stakeholders (e.g., 

banks and investors) to predict dynamic and monotonic default 

probabilities over time but has some limitations, such as linear 

mapping and assumption reliance. Multi-label learning enables 

stakeholders to predict multiperiod default probabilities that are 

data-driven (i.e., assumption-free) and flexible (i.e., nonlinear 

dependency accommodation) but also has certain limitations, 

such as the possibility of producing non-monotonic predictions. 

We strive to address these limitations. 

As fintech is transforming every corner of financial services 

(deposits, loans, credit, fundraising, investment, and risk 

assessment, among others), the IS community has also started 

to focus on the wave of information transformation 

(Hendershott et al., 2021). For lending business, recent changes 

such as digitalization has led stakeholders (e.g., banks) to 

pursue more nuanced insights into business processes (e.g., 

whether and when a borrower will default), with the help of 

numerous data resources and technologies (e.g., artificial 

intelligence). While the IS literature has explored various types 

of methods for credit risk evaluation (summarized in Table 1), 

most existing studies have focused on SPDP, and how to 

accurately predict time-to-default is still an open and 

challenging question. We strive to extend the IS literature by 

bringing forth an effective approach (i.e., HACS) for predicting 

time-to-default. 

Background 

MPDP with Survival Analysis 

In credit scoring, the interest of survival analysis is the failure 

time, 𝑇 , the time of default. The survival function can be 

expressed as the probability of not having defaulted yet by 

time 𝑡: 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = ∫ 𝑓(𝑢)𝑑𝑢
∞

𝑡
,  (1) 

where 𝑓  denotes the probability density function of 𝑇 . By 

definition, 𝑆(𝑡) is a monotonically decreasing function of 𝑡. The 

scale of time 𝑡 can be continuous or discrete. In credit scoring, 

concerns about time are generally discrete observation 

intervals—for example, the definition of default is generally 

measured in months (e.g., overdue for over one month)—thus, 

we focus on predicting default probabilities in discrete 

observation intervals (i.e., multiple periods). Note that each 

discrete observation interval shares one common hazard function, 

as repayment behaviors only occur and are observed at discrete 

moments. With the survival function, the default probability can 

be estimated under a flexible multiperiod prediction horizon. Let 

𝜋(𝑡) be the probability function (i.e., the cumulative distribution 

function of failure time 𝑇) denoting the probability of having 

defaulted by time 𝑡. Then, 𝜋(𝑡) = 1 − 𝑆(𝑡). 

Methods for modelling the survival function 𝑆(𝑡) are diverse, 

ranging from parametric to non-parametric. Non-parametric 

models, such as the Kaplan-Meier estimator, usually provide 

only qualitative descriptions at the population level. Parametric 

models based on specific families of distributions may involve 

strict assumptions on failure times, such as Weibull. The semi-

parametric models in between—e.g., the widely used Cox PH 

model—are more flexible since no assumptions are made on 

failure times. The Cox PH model consists of a non-parametric 

baseline survival function, describing how the survival of event 

per time unit changes over time at baseline levels of covariates, 

and a parametric part, describing how the survival probability 

varies in response to explanatory covariates. The survival 

function of the Cox PH model is given by: 

𝑆(𝑡) = 𝑆0(𝑡)exp(𝛼1𝑥1+𝛼2𝑥2+⋯+𝛼𝑛𝑥𝑛), (2) 

where 𝑆0(𝑡)  is the baseline survival function, 𝒙 =
(𝑥1, 𝑥2, … , 𝑥𝑛) is the vector of explanatory variables, and 𝜶 =
(𝛼1, 𝛼2, … , 𝛼𝑛) is a vector of regression parameters associated 

with 𝒙. 

The formulation of the Cox PH model indicates that the hazard 

of an observation could change over time but the hazard ratio 

between any two observations remains constant over time 

(i.e., the proportional hazard assumption). This assumption 

can be relaxed with the accelerated failure time (AFT) model, 

in which explanatory variables act as acceleration factors to 

speed up or slow down the event process (e.g., default), but 

default probability at a specific prediction horizon may not 

always be available (i.e., the output time indicators 

corresponding to the predicted survival probabilities are 

affected by the explanatory variables and thus may differ from 

the desired time horizons) and the event time may be out of 

boundaries (e.g., default after the loan term), thus rendering 

the AFT model not directly applicable to MPDP. 
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Table 1. Representative Studies in the IS Literature on Credit Risk Evaluation 

Study Prediction object Task Methods 

Siering et al. (2016) Default (fraud) of founders in 
crowdfunding  

SPDP Support vector machine, neural network, naïve 
Bayes, k-nearest neighbors, decision tree, and 
majority voting ensemble 

Ge et al. (2017) Default of borrowers in P2P lending SPDP Logistic regression 

Van et al. (2017) Default (intentional bankruptcy) of 
companies 

SPDP Random logistic forests and random forests 

Dong et al. (2018) Default (fraud) of corporates SPDP Logistic regression, decision tree, support vector 
machine, and neural network 

Wang et al. (2020) Default of borrowers in P2P lending SPDP Logistic regression, lasso, random forests, and 
extreme gradient boosting 

Wang et al. (2021) Default of borrowers in P2P lending SPDP Hybrid strategy-based random subspace and 
adaptive aggregation 

Fu et al. (2021) Default of borrowers in crowd lending SPDP Extreme gradient boosting 

Wang et al. (2022) Default of platforms in online lending MPDP Logistic regression, Cox PH, mixture cure model, 
and random (survival) forests 

There is an implicit assumption in most standard survival 

models, including the Cox PH model, that all borrowers will 

eventually default over a sufficiently long period of 

observation, i.e., 𝑆(∞) = 1 . However, in practice, most 

borrowers do not default over the full loan term, suggesting 

that some of these borrowers may be long-term survivors not 

susceptible to default. Hence, standard survival models have 

been extended to mixture cure models (Tong et al., 2012; 

Dirick et al., 2017), also called split hazard models (Sinha & 

Chandrashekaran, 1992). A mixture cure model consists of 

two components: an incidence part predicting whether a 

borrower will default and a latency part predicting the survival 

time of a borrower conditional on the borrower being 

susceptible to default. The survival function of a mixture cure 

model is given by: 

𝑆(𝑡) = 1 − 𝑝 + 𝑝 ∗ 𝑆(𝑡|𝑦 = 1), (3) 

where 𝑦  is a binary random variable defined for the default 

event (𝑦 = 0 denoting that the borrower will never default and 

𝑦 = 1 otherwise), 𝑝 is referred to as incidence and denotes the 

probability that the borrower will eventually default, and 

𝑆(𝑡|𝑦 = 1) = 𝑃(𝑇 > 𝑡|𝑦 = 1)  is referred to as latency and 

denotes the conditional probability that the borrower survives 

beyond time 𝑡 given that the borrower will eventually default. 

The latency part can be modeled by the Cox PH model. The 

incidence part can be modeled by logistic regression. 

Both Cox PH and mixture cure models assume that covariates 

linearly affect the (conditional) survival probability, rendering 

the utilities of these models sensitive to nonlinear dependencies, 

i.e., interactions among covariates and nonlinear relationships 

between covariates and the (conditional) survival probability. 

Although certain strategies (e.g., adding higher-order 

polynomials and interactions) can help accommodate nonlinear 

dependencies, it is unlikely that all the nonlinear dependencies 

can be heuristically identified and formulated. A more 

reasonable and commonly used strategy would be to adaptively 

learn nonlinear dependencies using data-driven methods (e.g., 

random forests). Further, the inherent proportional hazard 

assumption may not strictly hold in the context of credit scoring, 

as explained by Dirick et al. (2017, p. 655): “For any continuous 

variable, e.g., age, the default hazard ratio between a 25- and a 

30-year-olds is the same as the hazard ratio between an [sic] 70- 

and 75-year-olds.” 

To accommodate complex nonlinear dependencies, some 

studies have used artificial neural networks (ANN) to predict a 

survival curve (see Baesens et al., 2005 and Wang et al., 2019 

for surveys), taking either the survival status or the hazard rate 

as output. Predicting the survival status using ANN essentially 

shares the same modeling mechanism as multi-label learning; 

thus, we group such methods into the family of multi-label 

learning, i.e., using ANN as a base learner. These methods do 

not guarantee that monotonic survival curves will be generated, 

as noted by Baesens et al. (2005, p. 1091): “The probability of 

a person surviving two periods could be greater than the 

probability to survive one period because the interdependencies 

of the survival probabilities over time are not properly taken 

into account.” Predicting the hazard rate using ANN could 

indirectly estimate monotonic survival curves through the use 

of the Kaplan-Meier estimator but, at the same time, would 

inherit the implicit assumption that all subjects will eventually 

default, hence reducing the discriminative ability for long-term 

survivors and failing to capture the heterogeneous effects of 

covariates on whether and when a borrower will default (one 

type of important complex relationship in MPDP). In summary, 

a method with both flexible modeling and label dependency 

accommodation capabilities would be highly desirable. 
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MPDP with Multi-Label Learning 

Multi-label learning is a classification variant for which 

multiple labels can be assigned to each observation. By 

treating the default status (in default or not in default) in each 

prediction period as a label to learn, multi-label learning can 

be naturally adapted to MPDP. Let 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑚) be 

the binary vector of default statuses and the subscripts 

correspond to the time vector (𝑡1, 𝑡2, … , 𝑡𝑚) , with 𝑦𝑖 = 1 

denoting that the borrower will default during a time period 

(0, 𝑡𝑖) and 𝑦𝑖 = 0 otherwise. Let 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) be the 

vector of features. Then, the goal of MPDP with multi-label 

learning is to induce a model that maps the inputs 𝒙 to the 

binary vector 𝒚 and can properly predict the default statuses 

of a borrower in multiple periods.  

The most straightforward multi-label learning method to 

tackle MPDP is binary relevance (BR), which decomposes a 

MPDP task with 𝑚  periods into 𝑚  independent binary 

classification tasks (as illustrated in Figure 1). BR trains 𝑚 

independent models and the default probabilities are predicted 

independently of each other. BR has several merits. First, it 

builds an ensemble of binary classifiers, and various 

classification algorithms can be intactly used as base learners. 

Second, nonlinear relationships between features and labels 

can be easily accommodated by nonlinear models 

automatically. Third, by decomposing the MPDP task into 

multiple subtasks, BR tries to depict the credit profile of a 

borrower synthetically from multiple views (i.e., credit profile 

in different periods), making it easier to achieve robust 

predictive performance. Based on previous studies, it seems 

likely that BR would yield competitive performance, as 

compared to survival analysis (Tong et al., 2012). 

Nevertheless, BR totally ignores label dependencies. 

Considering the interdependencies among the labels could 

help enhance the performance of multi-label learning 

(Baesens et al., 2005). Such label dependencies may be even 

more salient for MPDP, since there are clear time 

dependencies among the different periods. For any two 

observation times 𝑡𝑖 < 𝑡𝑗 , if we know that the borrower 

defaulted in the period (0, 𝑡𝑖), then the label for a wider time 

period (0, 𝑡𝑗) will be positive too, i.e., 𝑦𝑖 = 1 → 𝑦𝑗 = 1. To 

capture label dependencies, learning classifiers that condition 

the prediction of a label on not only the feature set 𝒙 but also 

some of the other labels may be useful. The idea of 

conditioning can be realized in different ways, including 

classifier chain (CC) and nested stacking (NS).  

CC trains base classifiers for labels following an order on the 

label set, i.e., a chain of labels (as illustrated in Figure 2). 

Specifically, each base classifier (except the first one) is 

trained using not only the feature set 𝒙 but also the true label 

information of the previous node in the chain. Although 

different chains, in terms of label order, should theoretically 

be equivalent, the outputs of CC, are commonly sensitive to 

the order of the chain and performance varies accordingly; 

hence, in practice, multiple chain orders (e.g., forward and 

backward) are commonly tried and compared. In the 

prediction phase, when a new borrower arrives and needs to 

be scored, a prediction 𝒚̂ = (𝑦̂1, 𝑦̂2, … , 𝑦̂𝑚)  is produced by 

sequentially implementing each trained base classifier. Since 

the true values of (𝑦1, 𝑦2 , … , 𝑦𝑚−1) , which are used as 

additional features for training base classifiers 

(ℎ2, ℎ3, … , ℎ𝑚), respectively, are not available at the time of 

prediction, they are commonly replaced by their respective 

predictions. While feasible, such replacements may violate the 

essential assumption in prediction that the future will resemble 

the past. More formally, the distribution of the true labels is 

theoretically different from that of the predicted values; thus, 

training data are not representative of testing data, resulting in 

potential prediction bias. This problem can be prevented by 

expanding the feature space using the predictions 𝑦̂ instead of 

the true labels (i.e., the NS method).  

NS is equivalent to CC, other than using the predicted labels 

𝒚̂ instead of the true labels 𝒚 for expanding the feature set in 

the training phase (as illustrated in Figure 3). NS builds two 

layers of base classifiers (i.e., the label layer and the predicted 

label layer), and the feature space of the base classifier for 𝑦𝑖 

(except the first node) in the label layer consists of (𝒙, 𝑦̂𝑖−1), 

in which 𝑦̂𝑖−1  can be obtained from the correspondingly 

previous node in the predicted label layer, thus forming a 

nested structure. Note that although NS can avoid using the 

true label information, which is not available at the time of 

prediction, it may, however, fail to capture the true 

interdependencies among the labels.  

Overall, the above-mentioned multi-label learning methods 

(i.e., BR, CC, and NS) have several merits, both common and 

unique. For example, they can take advantage of advanced 

classification algorithms to improve predictive performance 

and are well-positioned to fit complex nonlinear relationships. 

As such, they show competitive performance in several 

contexts. When there are high label dependencies, CC and NS 

may outperform BR. However, it is arguable that none of the 

existing multi-label learning methods can guarantee the 

monotonicity of the outputs, which is essential for MPDP. 

From a probabilistic perspective, the default probabilities in 

different periods follow the addition rule: 

𝜋(𝑡𝑖) = 𝑃(𝑇 ≤ 𝑡𝑖) = 𝑃(𝑇 ≤ 𝑡𝑖−1) + 𝑃(𝑡𝑖−1 < 𝑇 ≤ 𝑡𝑖)
≥ 𝜋(𝑡𝑖−1). 

(4) 
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Figure 1. Binary Relevance 

 

 

Figure 2. Classifier Chain 

 

 

Figure 3. Nested Stacking 

 

Thus, the default probabilities over periods are supposed to 

monotonically increase, but the outputs of base classifiers in 

multi-label learning, however, cannot strictly satisfy this 

property although some of the multi-label learning methods 

(e.g., CC and NS) do consider the label dependencies in the 

training phase. For example, a linear multi-label learning 

method may give a few features lower weights to the model 

at 𝑡𝑖 than that at 𝑡𝑖−1 due to its separate modeling, and when 

these features dominate the default probability of an 

observation, non-monotonic prediction may occur. This will 

greatly limit the practical value of such methods for MPDP. 

A non-monotonic default probability curve, on the one hand, 

fails to meet the basic principle of probability theory and 

thus weakens the reliability, and on the other hand, cannot 

accurately estimate the occurrence time of the default event 

according to a preset cut-off value (e.g., multiple points of 

intersection may occur) and thus will be inflexible to depict 

the dynamic credit risk of borrowers. Note that monotonicity 

may be a specific challenge for MPDP and becomes 

irrelevant when it comes to SPDP. 

Proposed Hybrid and Collective Scoring 
Approach  

Both survival analysis and multi-label learning inevitably 

have some intrinsic limitations in terms of MPDP, and a 

method that simultaneously has the flexibility to fit complex 

relationships (like in multi-label learning) and the property of 

monotonicity in the predicted default probability over time 

(like in survival analysis) would be highly desirable. Our 

design of the hybrid and collective scoring (HACS) approach 

to MPDP derives from this main motivation.  

The basic idea behind HACS (outlined in Figure 4) is to first 

distinguish defaulting borrowers from non-defaulting 

borrowers and then further identify the observation interval that 

the default event will fall into. Accordingly, HACS consists of 

two components: a default discrimination model predicting the 

probability that the borrower will default during the entire 

observation period and a default time estimation model 

estimating the probability that the borrower will default in each 

observation interval, conditional on being susceptible to default. 
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Figure 4. The Proposed HACS Approach 

 

Let 𝑦  be a binary random variable defined for the default 

event, with 𝑦 = 1  denoting that the borrower will default 

during the entire observation period (e.g., the loan term) and 

𝑦 = 0  otherwise. Let 𝒕 = (𝑡1, 𝑡2, … , 𝑡𝑚)  be a time vector 

denoting the observation times, i.e., the prediction horizon. 

Then, the entire observation period can be divided into 𝑚 

intervals: (0, 𝑡1), (𝑡1, 𝑡2), … , (𝑡𝑚−1, 𝑡𝑚). The goal of HACS 

is to induce, from training data, a probability function defined 

for MPDP as follows: 

𝜋(𝑡) = 𝑝0 × ∑ 𝑝𝑖,𝑡𝑖≤𝑡   (5) 

where 𝑝0 = 𝑃(𝑦 = 1)  is referred to as the full default 

probability and denotes the probability that the borrower 

defaults during the entire observation period, and 𝑝𝑖 =
𝑃(𝑡𝑖−1 < 𝑇 ≤ 𝑡𝑖|𝑦 = 1) is referred to as an interval default 

probability and denotes the probability that the borrower 

defaults in the 𝑖th observation interval (𝑡𝑖−1, 𝑡𝑖) conditional on 

being susceptible to default. For example, the probability that 

a borrower will have defaulted by time 𝑡2  is estimated by 

multiplying the full default probability and the sum of the first 

two interval default probabilities, i.e., 𝑝0 × (𝑝1 + 𝑝2). Note 

that we model the default probability at all 𝑚 periods, rather 

than 𝑚-1 periods, since stakeholders may be interested in the 

risk ranking of each costumer at any given time in order to 

support their risk management decision-making in different 

market and policy environments.  

Accordingly, two models will be trained in HACS: a default 

discrimination model for predicting the full default 

probability 𝑝0  and a default time estimation model for 

predicting the interval default probabilities 𝑝𝑖 . Figure 5 

presents the HACS procedure. 

Default Discrimination Model 

The default discrimination model is essentially a binary 

classification model (as shown in Figure 4) that tries to induce, 

from a training set consisting of positive (𝑦 = 1) and negative 

( 𝑦 = 0 ) instances, a hypothesis ℎ: 𝒙 → 𝑦 , which could 

properly distinguish defaulting borrowers from non-defaulting 

borrowers (Line 1 in Figure 5). Numerous binary classification 

models have been used in credit scoring, constituting a valuable 

repository for the default discrimination model. They can be 

simply divided into two families: linear and nonlinear. For 

linear models, the most widely model used in credit scoring in 

both research and practice is arguably logistic regression (e.g., 

scorecard). For nonlinear models, representatives include 

random forests and gradient-boosted trees. In light of learning 

theory (i.e., bias-variance decomposition), random forests grow 

multiple unpruned trees and mitigate the detrimental effect of 

variance through model averaging. Similarly, gradient-boosted 

trees reduce variance through model averaging and distinctively 

reduce bias through consecutively building incremental models.



Wang et al. / Depicting Risk Profile over Time 
 

MIS Quarterly Vol. 47 No. 4 / December 2023 1463 

 

 

Figure 5. Procedure of HACS 

 

Default Time Estimation Model 

The default time estimation model is designed to estimate 

interval default probabilities, 𝑝𝑖 = 𝑃(𝑡𝑖−1 < 𝑇 ≤ 𝑡𝑖|𝑦 = 1). 

Since time-to-default is a continuous status rather than a 

dichotomous indicator, accurately estimating the default 

probability in each observation interval is nontrivial. The main 

challenges are threefold. First, the credit risk level of a 

borrower, specifically a default borrower in the default time 

estimation model, changes over successive observation 

intervals, forming various possible patterns (e.g., escalating 

and defaulting in the short run and moderately increasing and 

defaulting after a long time). Thus, it is difficult to 

discriminatively represent the characteristics of defaulters in 

different periods with a single model, especially a single linear 

model. Second, when multiple models are involved, how to 

train each base model (e.g., the one-against-all strategy as in 

multi-label learning) to effectively differentiate defaulters in 

different observation intervals is not straightforward. Third, 

after multiple models are trained, a novel mechanism still 

needs to be designed to integrate (e.g., adaptively) the outputs 

of the base models to further improve the predictive 

performance and simultaneously guarantee that the integrated 

results satisfy the addition rule (Equation 4). 

We propose a novel method, joint default modeling (JDM), to 

train the default time estimation model. Along with the 

illustration and procedure of HACS in Figures 4 and 5, we 

explain JDM in detail, which consists of three phases: default 

time binarization (Lines 2-3 in Figure 5), round-robin default 

modeling (Lines 4-7 in Figure 5), and metalevel multiperiod 

default modeling (Lines 8-23 in Figure 5).  

Phase 1 (default time binarization): A straightforward way 

to estimate the default time would be using regression 

methods with the default time as the target variable; however, 
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this simple strategy suffers from several deficiencies. First, a 

regression model cannot include both event and time aspects 

as the outcome. Second, direct regression on the default time 

cannot generate a survival curve, which is imperative in 

identifying whether and how a borrower becomes a defaulter 

over time. Third, as mentioned earlier, it is difficult for a single 

model to effectively learn multiple patterns. A more 

reasonable strategy (referred to as default time binarization) 

would be to map the entire observation period into multiple 

(mutually exclusive) intervals and identify whether the 

borrower will default in each observation interval.  

A departure of default time binarization, and thus also of JDM, 

is that it only concerns the subset of default instances 𝑆𝐵 from 

the original training set 𝑆, as the default time is conditional on 

the loan being susceptible to default. For 𝑚  observation 

intervals {(0, 𝑡1), (𝑡1, 𝑡2), … , (𝑡𝑚−1, 𝑡𝑚)} , let 𝒚 =
(𝑦1, 𝑦2, … , 𝑦𝑚) denote whether a borrower defaults in each 

observation interval, separately. Then, 𝑆𝐵 can be divided into 

𝑚  defaulter groups accordingly, i.e., 𝑆𝐵 → (𝑆1, 𝑆2, … , 𝑆𝑚) , 

where group 𝑆𝑖 includes all the instances in 𝑆𝐵 that default in 

the 𝑖th observation interval (𝑡𝑖−1, 𝑡𝑖), i.e., 𝑦𝑖 = 1. Note that the 

definition of 𝒚  here is different from that in multi-label 

learning: the definition here in JDM is the label in an 

observation interval, whereas the definition in multi-label 

learning is the label over a time horizon (since the observation 

starting time). 

Phase 2 (round-robin default modeling): Having obtained 

the collection of defaulter groups, we need to collectively train 

classifiers for the corresponding observation intervals. Based 

on previous studies, there are two possible strategies for this 

purpose, i.e., one-against-all and one-against-one. As 

illustrated in Figure 6 (in a two-dimensional reduced feature 

space), the one-against-all strategy treats one defaulter group 

(circle group) as positive examples and all other groups as 

negative examples for each base classifier, whereas the one-

against-one strategy considers two defaulter groups (circle 

group vs. plus group) at a time for each base classifier. 

In comparison, the decision boundaries in the one-against-one 

strategy are obviously simpler than those in the one-against-

all strategy and are thus more likely to lead to robust base 

classifiers. Moreover, the more complex the decision 

boundaries, the more data would be needed to fit them. 

Therefore, for JDM, we adopt the one-against-one strategy for 

round-robin default modeling. Specifically, for each pair of 

(mutually exclusive) defaulter groups, 𝑆𝑖  and 𝑆𝑗  ( 𝑖 =

1,2, … , 𝑚 − 1 ; 𝑗 = 𝑖 + 1, … , 𝑚 ), a joint set ( 𝑆𝑖 ∪ 𝑆𝑗 ) is 

generated and accordingly a base classifier is trained, resulting 

in 𝑚(𝑚 − 1)/2 base classifiers in total. The choice of the 

algorithm used to train each base classifier can be flexible. 

Since the correlation across base classifiers is relatively low 

due to the fact that they are trained using different pairwise 

defaulter groups, the variance reduction effect would be 

expected with the subsequent model ensembling; hence, a 

low-bias learner may be preferred to further improve 

predictive performance. 

Phase 3 (metalevel multiperiod default modeling): Each of 

the base classifiers trained in Phase 2 can discriminate 

between two groups of defaulters (i.e., part of task); therefore, 

we need to combine the predictions of the multiple base 

classifiers and learn to address the whole task, i.e., interval 

default probabilities. The general method for this purpose 

through a separate trainable model is commonly referred to as 

stacking. Its basic idea is to use the predictions of base 

classifiers as intermediate predictions (called metadata), and 

then use them to train a model at the metalevel. In our case, 

the targets at the base level (a binary default indicator) and 

metalevel (a set of multiclass default time intervals) are 

heterogeneous. Thus, the output of each base classifier is more 

like a real feature in a specific view for training the 

metamodel. Such difference certainly calls for low-bias, even 

unbiased, metadata (e.g., out-of-sample predictions), yet 

testing the base classifiers directly on training data to generate 

metadata obviously biases the results since the base classifiers 

have already seen the training data (Murphy, 2012). 

Therefore, in JDM, we generate the metadata through a k-fold 

cross-validation. Figure 7 illustrates the procedure of 

metalearning. Such unbiased estimation of “features” (i.e., 

predictions of base classifiers) could avoid error propagation 

present in the classical stacking framework. Note that the base 

classifiers trained in metalearning (Phase 3) are only used for 

generating unbiased predictions of themselves, whereas the 

base classifiers for real predictions have been trained 

separately using the entire training set (Phase 2). 

For the metamodel, we use softmax regression (a 

generalization of logistic regression) to estimate the interval 

default probabilities. On the one hand, the outputs of softmax 

regression are independent and additive and nicely sum up to 

one. Such properties are exactly what the interval default 

probabilities need to have. On the other hand, in light of 

previous studies on ensemble learning (Abellán & Castellano, 

2017), base classifiers are often complex and diverse (i.e., 

low-bias and high-variance) whereas the metamodel is often 

simple and smooth, providing robust predictions. The 

metamodel through softmax regression is given by:   

𝑝𝑖 = 𝑃(𝑦𝑖 = 1) =
exp(𝛼𝑖0+𝛼𝑖1𝑥1+𝛼𝑖2𝑥2+⋯+𝛼𝑖𝑛𝑥𝑛)

∑ exp(𝛼𝑘0+𝛼𝑘1𝑥1+𝛼𝑘2𝑥2+⋯+𝛼𝑘𝑛𝑥𝑛)𝑚
𝑘=1

 , (6) 

where 𝜶𝑖 = (𝛼𝑖0, 𝛼𝑖1, … , 𝛼𝑖𝑛)  denotes a vector of 

coefficients for the 𝑖 th observation interval, which are 

estimated by minimizing the average of all cross-entropies 

over training instances.
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(a) One-against-All  (b) One-against-One 
 

Figure 6. Learning Strategies for a Four-Period MPDP Problem 

 

 

Figure 7. Procedure of Metalearning 

 

Table 2. Comparison of HACS with Related Methods 

Property COX  MCM RSF MTLSA BR CC NS HACS 

Direct nonlinear modeling   √  √ √ √ √ 

Monotonic outputs √ √ √ √    √ 

Flexible base learner NA NA  NA √ √ √ √ 

PH assumption-free   √ √ √ √ √ √ 

If-and-when separation  √      √ 

Label dependency accommodation √ √ √ √  √ √ √ 

Between-group discrimination √ √ √     √ 

Error propagation avoidance NA NA NA NA √   √ 

Attribute noise avoidance NA NA NA NA NA  √ √ 
Note: Attribute noise denotes that the attributes (e.g., metafeatures) used in modeling vary across training and testing phases, i.e., the “clean-
training data vs. noisy test data” case. MCM: mixture cure model; MTLSA: multitask learning-based survival analysis (Li et al., 2016); RSF: 
random survival forest (Wang et al., 2022). √: yes; NA: not applicable. 

 
Contrast with Related Methods in the Existing 
Literature 

Table 2 contrasts HACS against related methods from existing 

credit scoring research, survival analysis research, and multi-

label learning research. Compared with the extant credit scoring 

research, this study is one of the few that recognize the 

importance and benefits of MPDP. Most loans have a nature of 

multiple periods, leading to multiperiod credit risks for lenders, 

which should be adequately modeled. The literature on credit 

scoring offers few methodological tools for MPDP, other than 

directly borrowing survival analysis from the field of medical 

science, rendering the predictive performance highly dependent 

on the generalizability of the survival method used. We hence 

propose a new modeling paradigm for MPDP, which fuses 

statistical modeling (e.g., the design of output function) and 

machine learning (e.g., round-robin modeling and 

metalearning), thereby opening up a new avenue for credit 

scoring research.  
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Compared with survival analysis methods, HACS can be seen 

as an enhanced survival analysis tool and can be applied to 

solve discrete-time survival analysis problems. Theoretically, 

the output function of HACS, i.e., 𝜋(𝑡𝑖), is equivalent to the 

cumulative distribution function in survival analysis. With the 

same target function, HACS makes no assumption on the 

failure time or other factors, whereas standard survival 

analysis methods mostly rely on specific assumptions. For 

example, the main assumption of Cox PH is the 

proportionality of hazards. However, if this assumption is 

violated, Cox PH is less likely to yield the desired 

performance. Moreover, the assumption that the event of 

interest will eventually occur is implicitly embedded in most 

standard survival analysis methods, yet long-term survivors 

are ubiquitous in the financial market. In such cases, HACS 

provides a more flexible tool for survival data analysis. 

Compared with multi-label learning methods, HACS can be 

treated as an effective multi-label learning tool in contexts that 

are subject to monotonicity constraints. For example, in churn 

prediction (e.g., Martens et al., 2016), the probability of 

customer churn is generally supposed to increase over time 

and should thus be modeled as a monotonic function of time. 

Too often, such constraints are ignored in both research and 

practice, especially when multi-label learning is used. HACS 

transcends classical multi-label learning methods by honoring 

the monotonicity property of the output while preserving 

several merits, such as label dependency accommodation, 

error propagation avoidance, and attribute noise avoidance. 

Empirical Evaluation 

Data 

We evaluated HACS on a dataset from a major online lending 

platform in China. The platform provided 10% of its real 

business data between January 1, 2015 and February 22, 2017, 

including the loan application information and the monthly 

repayment information (i.e., term duration of loan, scheduled 

repayment amount, due date, repayment date, and repayment 

status). To obtain the entire loan status and sufficient 

observations, we used data on 12-month loans, which make 

up the majority of loan observations. After removing 

observations with incomplete repayment information (i.e., 

loans that had not been paid off or defaulted on by February 

22, 2017), the dataset used in our evaluation consisted of 

34,679 loan observations. A loan observation is considered to 

be in default when one repayment has been overdue for more 

than 30 days. Accordingly, there were 32,181 observations of 

loans not in default and 2,498 observations of loans in default 

in the dataset (7.2% default rate). Table 3 summarizes the 

attributes available in the loan application information. 

Categorical attributes were all transformed into dummy 

features, except for the platform-assigned grade. Since it is on 

an ordinal scale, we treated the platform-assigned grade as a 

continuous attribute and coded grades of A to F as 1 to 6, 

respectively. 

Our experiment covered both pre-loan and post-loan credit 

risk evaluation. At the pre-loan stage, the goal of MPDP is to 

predict dynamic default probabilities at the time of 

application. As our dataset only contained approved 

applicants and the evaluation objects included all (approved 

and rejected) applicants, sample selection bias may have 

occurred. However, previous studies have empirically 

suggested that “there is only modest scope for model 

improvement in considering the behavior of rejected 

applicants” (Banasik et al., 2003, p. 831) and, “at least in this 

consumer credit setting, the resulting benefits from 

determining the true outcome values of the rejected cases are 

low” (Verstraeten & Van, 2005, p. 989). In light of such 

insights and data availability, most research and practice 

simply use a sample of approved applicants for training credit 

scoring methods (e.g., Iyer et al., 2016; Ge et al., 2017; Wang 

et al., 2020). We first followed this mainstream routine and 

then further examined the effects of sample selection bias on 

the predictive performance of MPDP methods using the same 

strategy used by Verstraeten and Van (2005), in which 

marginally accepted applicants were treated as rejected. Note 

that the effects of sample selection bias may vary across 

contexts and rejection inferences (e.g., Shen et al., 2020) may 

be necessary if such bias could significantly damage 

predictive performance.  

At the post-loan stage, the goal of MPDP is to predict dynamic 

default probabilities at a specific time after loan issuance. As 

evaluation objects are simply approved applicants, our dataset 

does not suffer from sample selection bias for post-loan 

predictions. Besides, the scope of criteria relevant to decision-

making is much larger at this stage, as empirical information 

about repayment behavior regularly accumulates. 

Specifically, based on monthly repayment information prior 

to the prediction point, we constructed three additional 

features: (1) number of times in delinquency (i.e., being late 

on installment repayment); (2) cumulative number of days in 

delinquency; and (3) maximum number of days in 

delinquency for a repayment. These features were then used 

to complement the typical features (summarized in Table 3) in 

MPDP methods. Note that although the new evidence 

presented in the post-loan stage is dynamic, since its utility is 

typically partial or even complementary and the major 

evidence for MPDP is still static information at the pre-loan 

stage, sequential approaches (e.g., LSTM) may not be 

intuitive options. 
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Table 3. Attributes Used in Analysis 

No. Attribute Summary statistics 

 Continuous Min Max Mean SD 

1 Amount of loan (RMB) 100 235,000 5,044.61 3,941.97 

2 Interest rate (%) 10 24 21.31 1.73 

3 Age (years) 18 56 29.59 6.51 

4 Number of successful loan applications  0 38 1.59 2.38 

5 Amount of successful loan applications (RMB) 0 334,000 6,237.92 11,477.08 

6 Amount to be repaid (RMB) 0 74,360.78 2,524.84 4,112.42 

7 Number of historical on-time repayments 0 182 6.53 11.63 

8 Number of historical overdue repayments 0 35 0.32 1.25 

 Categorical Distribution (%) 

9 Gender Male (74.62), Female (25.38) 

10 Platform-assigned grade A (1.77), B (4.76), C (24.97), D (57.43), E (10.59), F (0.49) 

11 Type Flash loan (12.22), Normal (65.27), Other (22.51) 

12 Is the first loan on the platform Yes (46.01), No (53.99) 

13 Has mobile verification Yes (67.04), No (32.96) 

14 Has household verification Yes (6.01), No (93.99) 

15 Has video verification Yes (9.25), No (90.75) 

16 Has education verification Yes (37.80), No (62.20) 

17 Has credit verification Yes (4.18), No (95.82) 

 

Experiment Design and Performance 
Evaluation 

We evaluated HACS in comparison with benchmarked 

methods from two families, i.e., survival analysis and multi-

label learning. For survival analysis, we used Cox, MCM, 

MTLSA (Li et al., 2016), and RSF (Wang et al., 2022). For 

multi-label learning, we used BR, CC, and NS. Considering 

that the chain order may affect the performance of CC and NS, 

we set up two types of chain orders, i.e., forward (FD) (i.e., 

gradually extending the prediction horizon) and backward 

(BD) (i.e., gradually shortening the prediction horizon), 

resulting in four combinations (CC_FD, CC_BD, NS_FD, 

and NS_BD). For the base classifier learner in HACS and 

multi-label learning methods, we applied logistic regression 

(LR) as a representative of linear classifiers, and random 

forests (RF) and extreme gradient boosting (XGB) as 

representatives of nonlinear classifiers, resulting in 18 

combinations—Three base classifier learners (LR, RF, and 

XGB) × Six MPDP methods (BR, CC_FD, CC_BD, NS_FD, 

NS_BD, and HACS). We kept the default parameter settings 

of all benchmarked methods. For HACS, we used 10-fold 

cross-validation in the metalearning (i.e., k =10). We also 

examined the effects of an additional base classifier (i.e., 

ANN) and parameter tuning as a robustness check. 

We first compared the above-mentioned methods in terms of 

their ability to predict time-to-default. Specifically, we 

computed the C-index and integrated the time-dependent 

Brier score (IBS), which have been widely used for time-to-

event outcomes (Wang et al., 2019), based on the monthly 

predictions of each method. The C-index evaluates whether a 

higher risk score is associated with a shorter survival time and 

is defined as the number of concordant pairs divided by the 

number of comparable pairs (Wang et al., 2019). The Brier 

score evaluates the accuracy of a predicted survival function 

at a given time and is defined as the average squared distance 

between the observed survival status and the predicted 

survival probability (Wang et al., 2019). IBS provides an 

aggregate measure of the Brier score over all available times. 

Typically, the larger the C-index and the smaller the IBS, the 

better the performance. We also estimated the default 

probability in each time interval and accordingly examined the 

performance in predicting defaulters in each month. 

We then compared selected top-performing methods in terms 

of their discrimination performance (i.e., the ability to risk-rank 

borrowers accurately) over the one-year loan term. Specifically, 

we selected four time horizons, i.e., 3, 6, 9, and 12 months, 

respectively, to give a comprehensive comparison (we caution 

that these representative time horizons were selected for a 

pragmatic purpose only). For the pre-loan stage, the prediction 

time was naturally set as the loan issuance time. For the post-

loan stage, we selected the third month (t1) and sixth month (t2) 

as two representative prediction times and predicted the 

probability of default over the remaining loan term (e.g., t3|t1). 

We used AUC, Kolmogorov–Smirnov (KS), and H-measure 

(Hand, 2009) for gauging discrimination performance.  

To estimate the out-of-sample performance of each method, we 

performed 10 independent 10-fold cross-validations, resulting 

in 100 performance estimates, to get a robust result. 

Performance results (mean and its 95% confidence interval) 

reported later are all based on the 100 estimates. The confidence 
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interval of each mean was estimated by t-value times standard 

error (i.e., 𝑥̅ ± 𝑡𝑛−1,𝛼/2 ∗
𝜎

√𝑛
). For a fair comparison between 

methods, the partitioning of folds was kept identical across all 

methods during each 10-fold cross-validation. 

Finally, we conducted a case analysis to examine the 

differences between methods with (i.e., HACS and survival 

analysis) and without (i.e., multi-label learning) the 

monotonicity property of outputs in terms of the ability to 

accurately identify the default time (i.e., identifiability) for 

specific loans. We further examined the discriminability of the 

methods with the monotonicity property in identifying the 

default time by comparing the distances between their 

predicted probabilities before and after the default time.  

Performance in Time-to-Default Prediction 

We first examined: Whether and how much HACS contributes 

to performance improvement over multi-label learning and 

survival analysis methods in the time-to-default prediction. 

Tables 4 and 5 summarize the time-to-default prediction 

performance of HACS versus benchmarked methods in terms 

of the C-index and IBS, respectively. The results of vanilla 

HACS versus censoring-adapted HACS are available in 

Appendix A. 

Overall, HACS outperformed all multi-label learning and 

survival analysis methods at both stages and in terms of both 

performance metrics. Across the two stages, the predictive 

performance of each method at the post-loan stage was better 

than that at the pre-loan stage, indicating that incorporating 

post-loan repayment information contributed to performance 

improvement in the time-to-default prediction. Further, at the 

post-loan stage, predictive performance at t2 was better than 

that at t1, further indicating that the more post-loan repayment 

information available, the better each method (except 

MTLSA) can predict the time to default. Among the three 

types of base classifiers, RF and XGB performed somewhat 

comparably, both better than LR, for all MPDP methods. For 

example, HACS with RF gave the best performance at the pre-

loan stage in terms of both performance metrics, whereas 

HACS with XGB gave the best performance at the post-loan 

stage (t2) in terms of both performance metrics. Interestingly, 

for the multi-label learning methods, although not capturing 

label dependencies, BR was competitive with and often better 

than CC and NS; further, the backward chain order (CC_BD 

and NS_BD) often gave the worst performance, indicating 

that the error propagation effect may overshadow the 

performance lifting effect in CC and NS. The results show that 

HACS indeed contributed to performance improvement in the 

time-to-default prediction, from the aspects of both 

discrimination (i.e., C-index) and calibration (i.e., IBS).  

We tested the statistical significance of the comparisons between 

HACS and benchmarked methods using a non-parametric 

Friedman test. Since the means and confidence intervals of 

performance measures (C-index and IBS) clearly uncovered 

competitive methods in each family (i.e., BR with a nonlinear 

base classifier; MCM, RSF, and HACS with a nonlinear base 

classifier), we focused on these methods in the significance 

testing and the subsequent analyses. Tables 6 and 7 summarize 

the results of full pairwise comparisons of the six methods at the 

pre-loan and post-loan stages, respectively. Since the Friedman 

test is a kind of rank-sum test, the results across performance 

metrics (C-index and negative transformed IBS) and prediction 

horizons (t1 and t2 at the post-loan stage) were pooled together. 

Overall, the differences across the six MPDP methods were 

statistically significant at both the pre-loan (𝜒2 = 744.391, p < 

0.001) and post-loan (𝜒2 = 976.803, p < 0.001) stages. Further 

pairwise comparisons show that HACS statistically significantly 

outperformed all benchmarked methods at both stages. 

We further examined the effect size of using HACS (with RF 

and XGB) in lieu of each benchmarked method in terms of 

performance improvement in the time-to-default prediction. We 

performed repeated-measure ANOVA with method (two-level, 

i.e., HACS vs. one of the benchmarked methods, respectively) 

as a main factor and stage (three-level, i.e., pre-loan stage and t1 

and t2 at the post-loan stage) as a between-subject factor. Figure 

8 shows the partial 𝜂2 of the main factor. The results show that 

using HACS with either RF or XGB in lieu of multi-label 

learning methods (BR_RF and BR_XGB) and survival analysis 

methods (MCM and RSF) accounted for conspicuous power 

(i.e., variance)—with all being over 0.4—in performance 

improvement in the time-to-default prediction.  

In addition to commonly used performance metrics (i.e., C-

index and IBS), we also formulated an evaluation task, i.e., 

predicting default at each time interval (month), to further 

evaluate the performance of each method in the time-to-default 

prediction. For each method, we calculated the default 

probability in each month, i.e., the probability that a borrower 

will survive over t months and default within the next month 

(e.g., 4|3M). The score function was derived as (𝑝𝑡 −
𝑝𝑡−1)/(1 − 𝑝𝑡−1), where 𝑝𝑡  denotes the default probability at 

time horizon t. Table 8 summarizes the predictive performance 

of each method in terms of average AUC across all months. The 

number of months was 12, 9, and 6 for the pre-loan, post-loan 

(t1), and post-loan (t2) stages, respectively. The results show that 

HACS with RF outperformed the multi-label learning (BR) and 

survival analysis methods (MCM and RSF). Interestingly, as 

the default probabilities over different time horizons are 

associated when predicting default in a time interval, the 

methods with monotonicity property (MCM, RSF, and HACS) 

outperformed those without the monotonicity property (BR), 

indicating that temporal dependency (e.g., monotonicity) may 

be a desirable property of time-to-default prediction.
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Table 4. Performance of Time-to-Default Prediction in Terms of C-Index 

Method Base classifier Pre-loan stage Post-loan stage (t1) Post-loan stage (t2) 

BR LR 0.654 (0.651-0.658) 0.743 (0.740-0.747) 0.781 (0.777-0.785) 

CC_FD LR 0.652 (0.649-0.656) 0.743 (0.739-0.746) 0.787 (0.782-0.791) 

CC_BD LR 0.549 (0.545-0.552) 0.562 (0.558-0.566) 0.568 (0.562-0.573) 

NS_FD LR 0.654 (0.651-0.657) 0.743 (0.740-0.747) 0.779 (0.774-0.783) 

NS_BD LR 0.654 (0.650-0.657) 0.743 (0.739-0.746) 0.779 (0.775-0.783) 

HACS LR 0.657 (0.655-0.660) 0.747 (0.743-0.750) 0.787 (0.783-0.792) 

BR RF 0.685 (0.682-0.688) 0.749 (0.745-0.752) 0.784 (0.779-0.788) 

CC_FD RF 0.655 (0.652-0.659) 0.724 (0.720-0.728) 0.763 (0.759-0.768) 

CC_BD RF 0.653 (0.650-0.656) 0.723 (0.719-0.727) 0.759 (0.754-0.765) 

NS_FD RF 0.665 (0.661-0.669) 0.724 (0.720-0.728) 0.760 (0.755-0.764) 

NS_BD RF 0.665 (0.661-0.669) 0.710 (0.706-0.713) 0.737 (0.732-0.742) 

HACS RF 0.702 (0.699-0.705) 0.762 (0.759-0.766) 0.793 (0.789-0.798) 

BR XGB 0.676 (0.672-0.679) 0.752 (0.748-0.755) 0.792 (0.787-0.796) 

CC_FD XGB 0.634 (0.631-0.638) 0.727 (0.723-0.732) 0.769 (0.764-0.774) 

CC_BD XGB 0.524 (0.523-0.526) 0.535 (0.533-0.537) 0.544 (0.541-0.546) 

NS_FD XGB 0.655 (0.651-0.658) 0.722 (0.718-0.726) 0.758 (0.753-0.762) 

NS_BD XGB 0.666 (0.662-0.670) 0.704 (0.700-0.709) 0.747 (0.742-0.752) 

HACS XGB 0.691 (0.688-0.695) 0.761 (0.758-0.764) 0.802 (0.798-0.807) 

MCM - 0.664 (0.661-0.667) 0.749 (0.745-0.752) 0.789 (0.785-0.793) 

COX - 0.658 (0.655-0.661) 0.746 (0.742-0.749) 0.781 (0.776-0.785) 

MTLSA - 0.595 (0.591-0.599) 0.588 (0.583-0.592) 0.583 (0.578-0.588) 

RSF - 0.684 (0.681-0.687) 0.751 (0.747-0.754) 0.784 (0.779-0.789) 

 

Table 5. Performance of Time-to-Default Prediction in Terms of IBS 

Method Base classifier Pre-loan stage Post-loan stage (t1) Post-loan stage (t2) 

BR LR 0.441 (0.436-0.446) 0.260 (0.257-0.264) 0.130 (0.129-0.132) 

CC_FD LR 0.513 (0.507-0.519) 0.465 (0.460-0.470) 0.288 (0.285-0.292) 

CC_BD LR 0.472 (0.466-0.477) 0.285 (0.281-0.289) 0.132 (0.130-0.134) 

NS_FD LR 0.441 (0.436-0.446) 0.260 (0.257-0.263) 0.130 (0.128-0.132) 

NS_BD LR 0.441 (0.436-0.446) 0.260 (0.257-0.263) 0.130 (0.128-0.132) 

HACS LR 0.440 (0.435-0.445) 0.260 (0.257-0.263) 0.130 (0.128-0.132) 

BR RF 0.408 (0.403-0.413) 0.255 (0.251-0.258) 0.127 (0.126-0.129) 

CC_FD RF 0.451 (0.445-0.457) 0.274 (0.270-0.277) 0.127 (0.125-0.129) 

CC_BD RF 0.433 (0.427-0.438) 0.282 (0.278-0.285) 0.136 (0.134-0.138) 

NS_FD RF 0.447 (0.442-0.452) 0.304 (0.301-0.308) 0.158 (0.156-0.161) 

NS_BD RF 0.425 (0.420-0.430) 0.292 (0.289-0.296) 0.146 (0.144-0.148) 

HACS RF 0.405 (0.400-0.410) 0.251 (0.248-0.254) 0.125 (0.123-0.126) 

BR XGB 0.414 (0.409-0.419) 0.254 (0.251-0.257) 0.125 (0.123-0.127) 

CC_FD XGB 0.462 (0.457-0.468) 0.281 (0.277-0.285) 0.130 (0.128-0.132) 

CC_BD XGB 0.695 (0.673-0.717) 0.461 (0.444-0.479) 0.211 (0.199-0.223) 

NS_FD XGB 0.541 (0.532-0.550) 0.347 (0.341-0.353) 0.192 (0.188-0.196) 

NS_BD XGB 0.488 (0.479-0.497) 0.307 (0.301-0.313) 0.156 (0.152-0.159) 

HACS XGB 0.410 (0.405-0.415) 0.250 (0.247-0.253) 0.123 (0.121-0.125) 

MCM - 0.436 (0.431-0.441) 0.258 (0.255-0.261) 0.129 (0.127-0.131) 

COX - 0.441 (0.435-0.446) 0.261 (0.258-0.264) 0.133 (0.131-0.135) 

MTLSA - 0.541 (0.432-0.651) 0.546 (0.334-0.758) 0.290 (0.163-0.418) 

RSF - 0.411 (0.406-0.416) 0.254 (0.251-0.257) 0.127 (0.125-0.129) 



Wang et al. / Depicting Risk Profile over Time 
 

1470 MIS Quarterly Vol. 47 No. 4 / December 2023 

 

Table 6. Results of Full Pairwise Comparisons at the Pre-Loan Stage 

Method Average rank 
p-value of pairwise comparison adjusted by Bonferroni correction 

BR_RF BR_XGB HACS_RF HACS_XGB MCM 

BR_RF 2.84      

BR_XGB 4.63 <0.001     

HACS_RF 1.20 <0.001 <0.001    

HACS_XGB 2.84 1.000 <0.001 <0.001   

MCM 5.86 <0.001 <0.001 <0.001 <0.001  

RSF 3.62 <0.001 <0.001 <0.001 0.001 <0.001 

Friedman 𝜒2 744.391 (p<0.001) 

 

Table 7. Results of Full Pairwise Comparisons at the Post-Loan Stage 

Method Average rank 
p-value of pairwise comparison adjusted by Bonferroni correction 

BR_RF BR_XGB HACS_RF HACS_XGB MCM 

BR_RF 4.68      

BR_XGB 3.42 <0.001     

HACS_RF 2.24 <0.001 <0.001    

HACS_XGB 1.67 <0.001 <0.001 <0.001   

MCM 4.83 1.000 <0.001 <0.001 <0.001  

RSF 4.16 0.001 <0.001 <0.001 <0.001 <0.001 

Friedman 𝜒2 976.803 (p<0.001) 

 

 

Figure 8. Partial 𝜼𝟐 of Repeated-Measure ANONA 

 

Table 8. Performance (Average AUC) in Predicting Default in Each Month 

Method Pre-loan stage Post-loan stage (t1) Post-loan stage (t2) 

BR_RF 0.609 (0.605-0.614) 0.640 (0.634-0.645) 0.659 (0.652-0.667) 

BR_XGB 0.596 (0.591-0.600) 0.623 (0.617-0.628) 0.635 (0.628-0.642) 

HACS_RF 0.676 (0.672-0.680) 0.734 (0.730-0.739) 0.770 (0.765-0.776) 

HACS_XGB 0.664 (0.660-0.668) 0.728 (0.723-0.733) 0.768 (0.762-0.774) 

MCM 0.662 (0.658-0.666) 0.721 (0.716-0.726) 0.746 (0.740-0.753) 

RSF 0.646 (0.642-0.650) 0.702 (0.696-0.707) 0.733 (0.727-0.740) 
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Discrimination Performance over Time 
Horizons 

We then examined: Whether and how much HACS contributes 

to discrimination performance improvement over multi-label 

learning and survival analysis methods for specific time 

horizons. The results of discrimination performance of the 

HACS versus benchmarked method for different time 

horizons at the pre-loan and post-loan stages are available in 

Appendix B, and the results of a robustness check regarding 

base classifier and parameter tuning are available in Appendix 

C. Overall, HACS with a nonlinear base classifier (either RF 

or XGB) always gave the best discrimination performance in 

terms of all performance metrics at both stages and for all 

prediction horizons, showing that HACS may be a superior 

alternative to multi-label learning and survival analysis for 

MPDP. 

Effect of Sample Selection Bias 

At the pre-loan stage, each MPDP method was trained using 

approved applicants only but needed to evaluate all applicants, 

resulting in sample selection bias. To ensure the robustness of 

our findings, we examined the effect of sample selection bias 

on the discrimination performance of MPDP methods using 

the same strategy used by Verstraeten and Van (2005). 

Specifically, we treated our dataset as a “full” sample and 

marginally accepted applicants (i.e., applicants with a 

“platform-assigned grade” of E or F) as rejected applicants. 

Note that the feature “platform-assigned grade” was hereupon 

excluded from each method. We then trained each method 

using “approved” observations (i.e., removing observations 

with grades of E or F from the original training set) and tested 

it using two testing sets: (1) the original testing set, including 

observations with grades of A to F (i.e., with sample selection 

bias); (2) a reduced testing set excluding observations with 

grades of E or F (i.e., without sample selection bias). Table 9 

summarizes the discrimination performance of each method 

on these two testing sets. The results show that sample 

selection bias had little effect on discrimination performance, 

echoing previous studies, such as Verstraeten and Van (2005). 

Ablation Study 

To examine whether and how much each of our design 

artifacts contributes to performance improvement, we carried 

out an ablation study. Specifically, we built three methods: (1) 

HACS with RF (M0); (2) M0 without the artifact of joint 

default modeling (M1) (i.e., RF for default discrimination 

model and softmax regression directly for the default time 

estimation model); and (3) M1 without the artifact of hybrid 

modeling (M2) (i.e., softmax regression directly for all 

statuses, including in default and not in default at each time). 

Table 10 summarizes the discrimination performance of the 

three designed methods (M0, M1, and M2) at different stages 

and prediction horizons (t1 to t4 at the pre-loan stage and t2|t1 

to t4|t2 at the post-loan stage). Overall, the discrimination 

performance showed a weakening trend with the removal of 

the design artifacts (M0 > M1 > M2). Between the two design 

artifacts, the damage to performance induced by dropping 

hybrid modeling was more severe than that induced by 

dropping joint default modeling. The results show that both 

design artifacts contribute to an improvement in 

discrimination performance, albeit to different degrees, and 

jointly constitute the utility of HACS.  

Case Analysis 

We also examined: Whether the methods (multi-label 

learning, survival analysis, and HACS) provide monotonic 

predictions over multiple periods as well as the identifiability 

and discriminability of the methods. Due to the inclusion 

relationship in terms of time, the default probability during a 

longer period will certainly be higher than that of a shorter 

period. Such semantically meaningful relationships may not 

always be captured by prediction methods. As discussed 

earlier, HACS and survival analysis methods embed the 

monotonicity constraint into their modeling processes. 

However, when using a multi-label learning method, it may 

behave unexpectedly, i.e., producing non-monotonic 

predictions.  

We drilled down to the individual case level to examine how 

the monotonicity of predictions affects the effectiveness of 

credit risk evaluations (e.g., in identifying the default time). 

We selected two cases, each corresponding to a non-

monotonic prediction of BR_RF or BR_XGB, respectively, as 

illustrative examples from 10 independent 10-fold cross-

validations. We also examined the predictions of HACS (with 

the same base classifier) and MCM (the best survival analysis 

method in time-interval-level default prediction) for these 

cases. Both cases defaulted between the sixth month and the 

ninth month (specifically, case #1 defaulted at the eighth 

month and case #2 defaulted at the seventh month). We 

caution that the main purpose of this case analysis is to 

examine whether the MPDP methods are capable of 

accurately identifying the default event, but not to simulate the 

real decision process, which usually involves more nuances 

beyond the individual level of default risk. Figure 9 illustrates 

the multiperiod default probability predictions of each method 

for each case. 
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Table 9. Results on the Effect of Sample Selection Bias 

Method Time 
With sample selection bias Without sample selection bias 

AUC KS H-measure AUC KS H-measure 

BR_RF t1 0.689 (0.682-
0.695) 

0.317 (0.306-
0.328) 

0.158 (0.151-
0.166) 

0.685 (0.677-
0.692) 

0.318 (0.306-
0.331) 

0.183 (0.174-
0.192) 

BR_XGB  0.683 (0.677-
0.689) 

0.312 (0.302-
0.322) 

0.155 (0.148-
0.163) 

0.681 (0.673-
0.689) 

0.316 (0.303-
0.328) 

0.177 (0.168-
0.186) 

HACS_RF  0.713 (0.707-
0.719) 

0.358 (0.348-
0.367) 

0.184 (0.176-
0.191) 

0.718 (0.711-
0.726) 

0.367 (0.355-
0.379) 

0.225 (0.215-
0.235) 

HACS_XGB  0.692 (0.687-
0.698) 

0.328 (0.318-
0.338) 

0.169 (0.162-
0.176) 

0.705 (0.697-
0.712) 

0.350 (0.338-
0.362) 

0.207 (0.197-
0.216) 

MCM  0.649 (0.642-
0.656) 

0.258 (0.248-
0.269) 

0.135 (0.127-
0.142) 

0.657 (0.648-
0.666) 

0.275 (0.262-
0.287) 

0.156 (0.146-
0.165) 

RSF  0.685 (0.679-
0.691) 

0.318 (0.308-
0.327) 

0.155 (0.148-
0.162) 

0.687 (0.680-
0.695) 

0.324 (0.312-
0.336) 

0.187 (0.178-
0.195) 

BR_RF t2 0.682 (0.678-
0.686) 

0.294 (0.286-
0.301) 

0.138 (0.133-
0.143) 

0.675 (0.669-
0.680) 

0.275 (0.267-
0.284) 

0.164 (0.158-
0.171) 

BR_XGB  0.662 (0.657-
0.667) 

0.260 (0.252-
0.268) 

0.120 (0.115-
0.125) 

0.661 (0.655-
0.667) 

0.261 (0.252-
0.270) 

0.139 (0.133-
0.145) 

HACS_RF  0.687 (0.683-
0.692) 

0.301 (0.294-
0.308) 

0.143 (0.138-
0.149) 

0.687 (0.682-
0.693) 

0.298 (0.289-
0.307) 

0.173 (0.167-
0.179) 

HACS_XGB  0.671 (0.667-
0.676) 

0.273 (0.266-
0.280) 

0.130 (0.125-
0.135) 

0.679 (0.673-
0.684) 

0.283 (0.274-
0.292) 

0.151 (0.145-
0.158) 

MCM  0.634 (0.629-
0.639) 

0.217 (0.210-
0.225) 

0.099 (0.095-
0.103) 

0.644 (0.638-
0.649) 

0.236 (0.227-
0.244) 

0.116 (0.110-
0.121) 

RSF  0.679 (0.675-
0.684) 

0.287 (0.280-
0.294) 

0.139 (0.133-
0.144) 

0.673 (0.668-
0.679) 

0.276 (0.268-
0.285) 

0.162 (0.156-
0.169) 

BR_RF t3 0.677 (0.673-
0.681) 

0.285 (0.279-
0.291) 

0.127 (0.123-
0.132) 

0.678 (0.673-
0.683) 

0.282 (0.275-
0.289) 

0.156 (0.151-
0.162) 

BR_XGB  0.659 (0.655-
0.662) 

0.245 (0.239-
0.251) 

0.113 (0.109-
0.117) 

0.663 (0.659-
0.668) 

0.250 (0.243-
0.257) 

0.130 (0.125-
0.134) 

HACS_RF  0.679 (0.675-
0.683) 

0.284 (0.277-
0.290) 

0.129 (0.125-
0.133) 

0.683 (0.678-
0.688) 

0.286 (0.279-
0.294) 

0.160 (0.155-
0.165) 

HACS_XGB  0.665 (0.661-
0.668) 

0.252 (0.246-
0.258) 

0.118 (0.114-
0.122) 

0.672 (0.668-
0.677) 

0.262 (0.255-
0.269) 

0.136 (0.131-
0.141) 

MCM  0.634 (0.631-
0.638) 

0.207 (0.201-
0.213) 

0.093 (0.089-
0.096) 

0.646 (0.642-
0.650) 

0.229 (0.222-
0.236) 

0.108 (0.104-
0.112) 

RSF  0.674 (0.670-
0.677) 

0.274 (0.268-
0.280) 

0.130 (0.126-
0.135) 

0.674 (0.670-
9.679) 

0.273 (0.266-
0.280) 

0.154 (0.149-
0.159) 

BR_RF t4 0.673 (0.670-
0.677) 

0.270 (0.264-
0.275) 

0.122 (0.118-
0.126) 

0.678 (0.674-
0.682) 

0.274 (0.268-
0.281) 

0.149 (0.145-
0.154) 

BR_XGB  0.661 (0.658-
0.665) 

0.242 (0.236-
0.247) 

0.112 (0.108-
0.115) 

0.670 (0.666-
0.674) 

0.253 (0.246-
0.260) 

0.128 (0.124-
0.133) 

HACS_RF  0.673 (0.670-
0.677) 

0.269 (0.263-
0.275) 

0.121 (0.118-
0.125) 

0.678 (0.674-
0.682) 

0.273 (0.266-
0.280) 

0.149 (0.145-
0.153) 

HACS_XGB  0.662 (0.659-
0.665) 

0.244 (0.238-
0.249) 

0.113 (0.109-
0.116) 

0.671 (0.667-
0.675) 

0.255 (0.248-
0.262) 

0.130 (0.126-
0.134) 

MCM  0.637 (0.633-
0.640) 

0.204 (0.199-
0.209) 

0.089 (0.086-
0.092) 

0.650 (0.646-
0.653) 

0.229 (0.223-
0.236) 

0.104 (0.100-
0.108) 

RSF  0.672 (0.668-
0.675) 

0.262 (0.256-
0.267) 

0.128 (0.124-
0.131) 

0.673 (0.669-
0.677) 

0.264 (0.258-
0.270) 

0.147 (0.143-
0.152) 
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Table 10. Results of Ablation Study 

Method Time AUC KS H-measure 

M0 t1 0.753 (0.747-0.759) 0.404 (0.394-0.414) 0.278 (0.270-0.287) 

M1  0.729 (0.723-0.735) 0.366 (0.355-0.377) 0.239 (0.230-0.248) 

M2  0.687 (0.681-0.694) 0.319 (0.309-0.330) 0.174 (0.166-0.182) 

M0 t2 0.722 (0.717-0.726) 0.339 (0.332-0.346) 0.230 (0.224-0.236) 

M1  0.703 (0.699-0.708) 0.313 (0.306-0.320) 0.193 (0.188-0.199) 

M2  0.668 (0.663-0.672) 0.275 (0.267-0.283) 0.135 (0.130-0.140) 

M0 t3 0.711 (0.707-0.715) 0.318 (0.312-0.324) 0.208 (0.203-0.213) 

M1  0.697 (0.694-0.701) 0.297 (0.291-0.303) 0.180 (0.175-0.184) 

M2  0.661 (0.657-0.664) 0.256 (0.250-0.262) 0.118 (0.114-0.121) 

M0 t4 0.707 (0.704-0.711) 0.307 (0.302-0.313) 0.200 (0.196-0.205) 

M1  0.698 (0.694-0.701) 0.295 (0.289-0.300) 0.176 (0.172-0.180) 

M2  0.663 (0.660-0.666) 0.256 (0.250-0.261) 0.112 (0.109-0.115) 

M0 t2|t1 0.810 (0.804-0.815) 0.523 (0.514-0.532) 0.389 (0.381-0.397) 

M1  0.789 (0.783-0.795) 0.491 (0.482-0.501) 0.370 (0.361-0.379) 

M2  0.773 (0.768-0.779) 0.451 (0.442-0.460) 0.323 (0.314-0.331) 

M0 t3|t1 0.781 (0.777-0.786) 0.447 (0.440-0.455) 0.319 (0.312-0.326) 

M1  0.766 (0.761-0.771) 0.435 (0.427-0.443) 0.310 (0.303-0.317) 

M2  0.753 (0.749-0.756) 0.406 (0.399-0.412) 0.263 (0.257-0.270) 

M0 t4|t1 0.767 (0.764-0.771) 0.411 (0.404-0.417) 0.285 (0.280-0.290) 

M1  0.753 (0.749-0.757) 0.400 (0.393-0.407) 0.275 (0.269-0.281) 

M2  0.739 (0.735-0.742) 0.371 (0.365-0.377) 0.231 (0.225-0.236) 

M0 t3|t2 0.823 (0.817-0.829) 0.542 (0.532-0.553) 0.403 (0.393-0.414) 

M1  0.815 (0.809-0.820) 0.531 (0.522-0.541) 0.400 (0.390-0.410) 

M2  0.796 (0.790-0.802) 0.488 (0.477-0.499) 0.350 (0.338-0.361) 

M0 t4|t2 0.796 (0.792-0.801) 0.476 (0.468-0.484) 0.339 (0.330-0.347) 

M1  0.792 (0.787-0.797) 0.474 (0.466-0.483) 0.335 (0.327-0.343) 

M2  0.777 (0.773-0.781) 0.441 (0.433-0.448) 0.293 (0.285-0.301) 

 

 

Figure 9. Illustration of Multiperiod Default Probability Predictions 
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The case analysis results show the identifiability, i.e., the 

ability to precisely infer the occurrence time of default, and 

discriminability, i.e., difference in default probability 

predictions before and after the occurrence of default of each 

method. For identifiability, with a proper threshold (cut-off 

line), HACS and MCM were able to precisely identify when 

the borrower defaulted in each case, whereas the curves 

related to BR had multiple intersections with the cut-off line, 

providing confusing results. These spurious results of BR 

failed to accurately depict the evolution process of credit risk 

and could easily cause stakeholders to misjudge the risk. In 

case #1, BR_RF triggered three risk signals; the first signal 

occurred prior to the sixth month but the borrower actually 

defaulted in the eighth month. In case #2, BR_XGB also 

triggered three risk signals; the first signal occurred prior to 

the sixth month but the borrower actually defaulted in the 

seventh month. The results provide clear evidence that, 

especially in practical use, monotonicity is essential for 

MPDP to accurately identify the time to default.  

For discriminability, the grey lines accompanying each curve 

highlighted the default probability predictions before and after 

the occurrence of a loan default, respectively. The wider the 

band between the two grey lines, the greater the difference 

between the predictions before and after default, indicating 

that the method is better able to identify default. Although 

HACS and MCM both possess identifiability, they revealed 

differences in discriminability. Specifically, the width 

between the grey lines of HACS was higher than that of MCM 

(0.079 vs. 0.012 and 0.086 vs. 0.025 for the two cases, 

respectively), indicating that HACS predicted the changes of 

credit risk more accurately and effectively than MCM. 

Overall, the case analysis shows that the survival analysis 

(MCM) and HACS were superior to multi-label learning (BR) 

in terms of identifiability and that HACS was further superior 

to survival analysis (MCM) in terms of discriminability. 

Impact Analysis through Simulation 
Study 

We also designed impact analyses to examine the granting 

performance and profitability performance of each method 

from a practical perspective. For financial institutions such as 

banks, loan granting is arguably their most important credit 

decision, and methods supporting this decision are expected 

to realize as low a default rate as possible under diverse 

granting proportions (i.e., granting performance). As banks 

may also consider the loan term when granting loans, varying 

from short-term (e.g., three months) to long-term (e.g., one 

year or longer), we examined the granting performance of 

each method at four representative times—3, 6, 9, and 12 

months. For individual investors, their goals generally focus 

on achieving profits while avoiding defaults. We simulated 

real-case investment scenarios and selected multiple loan 

applications using profit-ranking recommendations of the 

MPDP and classification-based default prediction methods or 

the simple proxy index for profit, i.e., interest rate. 

Practical Use in Terms of Granting 
Performance 

We examined the granting performance from a practical 

perspective: Whether and how much HACS helps financial 

institutions such as banks grant loans more effectively than 

other methods. We simulated real-case loan granting 

scenarios and selected multiple loan applications in our 

dataset using the risk-ranking results of credit scoring 

methods. We then counted the number of loans in default 

under different granting ratios (i.e., granting performance). 

For example, assuming that we decided to lend money to 20% 

of the loan applications in our dataset, we chose the top 20% 

of loan applications based on MPDP results. We adopted a 

large range of granting ratios to more realistically reflect 

various possible real-case scenarios, such as tight and lax 

credit policies.  

Table 11 summarizes the granting performance (i.e., number 

of loans in default) of each method at different horizons (t1 to 

t4) and granting proportions (from 20% to 50%). Compared to 

using BR or MCM, granting loans using HACS, with either 

RF or XGB, always resulted in fewer loans in default under 

any granting proportion and at any horizon (except t4, at which 

BR and HACS are equivalent). Compared to using RSF, 

granting loans using HACS with RF always resulted in fewer 

loans in default. The decrease in loan defaults could reduce 

losses for financial institutions when granting loans. The 

results show that HACS improved the risk-ranking ability and 

decreased the number of loan defaults, compared to other 

methods. 

Practical Use in Terms of Profitability 
Performance 

We also examined the profitability performance from a 

practical perspective: Whether and how much HACS helps 

investors select loan portfolios with higher profits than other 

methods. In the actual financial market, given the possible risk 

of losing some or even all the principal due to loan defaults, 

investors often mitigate their total risk by diversifying their 

investments across multiple loans and investing in a portfolio 

of multiple loans rather than a single loan. 
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Table 11. Granting Performance 

Time % BR_RF BR_XGB HACS_RF HACS_XGB MCM RSF 

t1 
2
0 

3.740 (3.375-
4.105) 

4.080 (3.716-
4.444) 

3.520 (3.178-
3.862) 

3.270 (2.915-
3.625) 

3.570 (3.215-
3.925) 

4.190 (3.807-
4.573) 

 
2
5 

4.800 (4.377-
5.223) 

5.270 (4.812-
5.728) 

4.570 (4.189-
4.951) 

4.450 (4.021-
4.879) 

5.290 (4.848-
5.732) 

5.370 (4.962-
5.778) 

 
3
0 

6.360 (5.891-
6.829) 

6.670 (6.156-
7.184) 

5.540 (5.105-
5.975) 

5.810 (5.274-
6.346) 

7.410 (6.882-
7.938) 

6.610 (6.171-
7.049) 

 
3
5 

8.040 (7.504-
8.576) 

8.160 (7.636-
8.684) 

6.750 (6.283-
7.217) 

7.290 (6.754-
7.826) 

9.220 (8.657-
9.783) 

7.850 (7.372-
8.328) 

 
4
0 

9.800 (9.222-
10.378) 

9.970 (9.407-
10.533) 

8.060 (7.587-
8.533) 

8.890 (8.281-
9.499) 

11.420 (10.820-
12.020) 

9.520 (8.997-
10.043) 

 
4
5 

11.670 (11.029-
12.311) 

11.890 (11.303-
12.477) 

9.460 (8.926-
9.994) 

10.620 (10.000-
11.240) 

13.430 (12.754-
14.106) 

11.360 (10.773-
11.947) 

 
5
0 

13.900 (13.140-
14.660) 

14.030 (13.361-
14.699) 

10.970 (10.398-
11.542) 

12.580 (11.936-
13.224) 

15.740 (14.980-
16.500) 

13.150 (12.465-
13.835) 

t2 
2
0 

9.370 (8.738-
10.002) 

9.830 (9.235-
10.425) 

8.970 (8.365-
9.575) 

8.290 (7.711-
8.869) 

10.290 (9.679-
10.901) 

9.740 (9.215-
10.265) 

 
2
5 

12.210 (11.588-
12.832) 

13.130 (12.427-
13.833) 

11.820 (11.123-
12.517) 

11.270 (10.553-
11.987) 

14.280 (13.590-
14.970) 

12.850 (12.155-
13.545) 

 
3
0 

16.030 (15.301-
16.759) 

16.780 (16.017-
17.543) 

14.880 (14.070-
15.690) 

14.440 (13.633-
15.247) 

18.380 (17.560-
19.200) 

15.960 (15.209-
16.711) 

 
3
5 

19.740 (18.971-
20.509) 

20.610 (19.774-
21.446) 

17.870 (17.021-
18.719) 

18.150 (17.187-
19.113) 

22.550 (21.627-
23.473) 

19.680 (18.837-
20.523) 

 
4
0 

23.860 (23.046-
24.674) 

24.950 (24.052-
25.848) 

21.500 (20.631-
22.369) 

22.290 (21.301-
23.279) 

26.710 (25.732-
27.688) 

23.560 (22.670-
24.450) 

 
4
5 

27.790 (26.868-
28.712) 

29.520 (28.503-
30.537) 

25.580 (24.607-
26.553) 

26.740 (25.744-
27.736) 

30.920 (29.871-
31.969) 

27.200 (26.246-
28.154) 

  
5
0 

32.080 (31.081-
33.079) 

34.420 (33.307-
35.533) 

29.870 (28.917-
30.823) 

31.440 (30.396-
32.484) 

35.980 (34.829-
37.131) 

31.430 (30.374-
32.486) 

t3 
2
0 

15.290 (14.498-
16.082) 

14.160 (13.443-
14.877) 

14.590 (13.780-
15.400) 

13.340 (12.626-
14.054) 

15.240 (14.535-
15.945) 

15.580 (14.757-
16.403) 

 
2
5 

20.570 (19.649-
21.491) 

19.400 (18.603-
20.197) 

19.770 (18.774-
20.766) 

18.260 (17.407-
19.113) 

21.600 (20.745-
22.455) 

20.600 (19.630-
21.570) 

 
3
0 

25.860 (24.887-
26.833) 

25.590 (24.576-
26.604) 

24.480 (23.347-
25.613) 

23.880 (22.900-
24.860) 

29.010 (28.003-
30.017) 

26.080 (25.021-
27.139) 

 
3
5 

31.970 (30.861-
33.079) 

31.850 (30.717-
32.983) 

29.820 (28.624-
31.016) 

30.100 (28.956-
31.244) 

35.520 (34.420-
36.620) 

31.820 (30.636-
33.004) 

 
4
0 

38.200 (37.000-
39.400) 

38.870 (37.634-
40.106) 

36.060 (34.787-
37.333) 

36.910 (35.723-
38.097) 

42.520 (41.354-
43.686) 

38.140 (36.831-
39.449) 

 
4
5 

43.900 (42.641-
45.159) 

46.290 (44.970-
47.610) 

42.250 (40.964-
43.536) 

44.380 (43.103-
45.657) 

49.560 (48.310-
50.810) 

44.140 (42.730-
45.550) 

  
5
0 

49.830 (48.573-
51.087) 

53.750 (52.458-
55.042) 

48.340 (46.965-
49.715) 

52.570 (51.241-
53.899) 

56.420 (55.091-
57.749) 

50.780 (49.366-
52.194) 

t4 
2
0 - - 

18.440 (17.537-
19.343) 

16.930 (16.111-
17.749) 

19.090 (18.227-
19.953) 

19.140 (18.214-
20.066) 

 
2
5 - - 

24.990 (23.902-
26.078) 

23.180 (22.139-
24.221) 

27.360 (26.299-
28.421) 

25.440 (24.378-
26.502) 

 
3
0 - - 

30.820 (29.588-
32.052) 

30.710 (29.508-
31.912) 

36.600 (35.457-
37.743) 

31.800 (30.561-
33.039) 

 
3
5 - - 

37.650 (36.345-
38.955) 

38.680 (37.363-
39.997) 

45.180 (43.891-
46.469) 

39.200 (37.799-
40.601) 

 
4
0 - - 

45.600 (44.244-
46.956) 

47.530 (46.123-
48.937) 

52.990 (51.666-
54.314) 

47.240 (45.784-
48.696) 

 
4
5 - - 

53.900 (52.417-
55.383) 

57.900 (56.394-
59.406) 

62.150 (60.749-
63.551) 

55.700 (54.235-
57.165) 

  
5
0 - - 

63.050 (61.551-
64.549) 

68.640 (67.005-
70.275) 

71.210 (69.675-
72.745) 

64.530 (63.005-
66.055) 

Note: BR and HACS are equivalent at the full prediction horizon (t4).  
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When selecting portfolios, two types of strategies are 

generally used: (1) selecting loan applications with high 

interest rates, assuming that risks have already been 

considered in pricing; (2) selecting loan applications with low 

default probabilities predicted by credit scoring methods 

(widely adopted). In practice, these strategies may both suffer 

from deficiencies in that they may be either too speculative 

(the first strategy) or incompatible with profit maximization 

(the second strategy). Hence, we propose a new portfolio 

selection strategy based on HACS. Given the multiperiod 

default probabilities predicted by HACS, the proposed 

strategy ranks loan applications by estimating the expected 

return rate (ERR): 

𝐸𝑅𝑅 = (1 − 𝑝𝑚) ∗ 𝐼𝑅 − 𝑝𝑚 ∗ (∑
𝑚−𝑖+1

𝑚

𝑚
𝑖=1 (

𝑝𝑚−𝑝𝑚−1

1−𝑝𝑚−1
)),   (7) 

where IR denotes the interest rate and 𝑝𝑖  is predicted by 

HACS (with 𝑝0 identically equal to zero). ERR measures both 

return, i.e., interest conditional on not defaulting, and loss, i.e., 

default probability in each time interval and its corresponding 

loss rate, and thus is expected to give a more accurate profit 

ranking.  

We simulated real-case investment scenarios and selected 

multiple loan applications in our dataset using the profit-

ranking results of the three strategies: (1) IR, (2) probability 

of default (PD), and (3) ERR. Profitability performance was 

measured using the average return rate of the selected 

portfolio. To remove the influence of the loan amount, we 

assumed that the total capital would be evenly allocated to 

each loan in the portfolio. For the IR ranking, we used the 

interest rate of each loan application. For the PD ranking, we 

used classification methods (RF and XGB) to estimate the 

default probability of each loan during the full loan term. For 

the ERR ranking, we used HACS (with RF and XGB), MCM, 

and RSF to estimate the ERR of each loan application. Since 

monotonicity cannot be strictly satisfied, multi-label learning 

methods cannot accurately estimate ERR and thus were left 

out of this analysis. 

Table 12 summarizes the profitability performance (i.e., 

average return rate) of each strategy at different portfolio 

sizes. First, with any portfolio size, the IR strategy always led 

to the worst average return rates, providing clear evidence that 

high returns are also accompanied by high risks and simply 

pursuing high interest rates may even lead to losses. Second, 

the PD strategy always led to modest average return rates, and 

its profitability performance was worse than that of the ERR 

strategy using HACS, indicating the superiority of the 

proposed ERR strategy combined with HACS. Third, with the 

ERR strategy, using HACS with RF always led to the best 

profitability performance (i.e., highest average return rate), 

with any portfolio size, indicating that HACS may depict the 

default risk more effectively, compared to MCM and RSF, 

thus helping to estimate ERR more accurately. Overall, the 

results show that compared to the widely used IR and PD 

strategies, the proposed ERR strategy combined with HACS 

was able to identify loan portfolios with higher profits. 

We further drilled down to the individual portfolio level to 

examine how the proposed ERR strategy combined with HACS 

changed the selected portfolio. We selected two folds of 

portfolio selection results as illustrative examples from 10 

independent 10-fold cross-validations. Figure 10 illustrates the 

portfolio selection results of IR, PD_RF (the best PD strategy), 

and ERR_HACS_RF in these two cases. Overall, the average 

return rate of the selected portfolio using ERR_HACS_RF was 

higher than that using IR or PD_RF. As a straightforward 

strategy, IR simply pursued loans with the highest interest rates 

while totally ignoring risk, leading to a considerable number of 

loans in default. The PD strategy using RF effectively selected 

loans with lower risk (i.e., probability of default), leading to 

only one loan in default in both cases. However, the return rates 

of the selected loans were mostly moderate, and when a selected 

loan defaulted, its loss might become erratic (e.g., -49% in case 

#1 and -51% in case #2) as time-to-default was not considered. 

The ERR strategy was designed to find an appropriate tradeoff 

between return and loss; thus, the ERR strategy using HACS 

with RF-selected loans with relatively high return rates while 

absorbing a few loans in default. As HACS with RF effectively 

injected a suppression effect on the time to default (i.e., the 

earlier the default, the higher the risk score), the selected loans 

in default tended to default relatively late with lower losses. 

Some of the selected loans in default (e.g., the loan in default on 

the left in case #2 of Figure 10) might even be profitable if they 

defaulted sufficiently late. 

Discussion and Conclusion 

In response to the growing demand for MPDP and the 

deficiencies of existing methods—both survival analysis and 

multi-label learning—we have initiated a new way for MPDP 

by proposing the HACS approach. We synthesize statistical 

modeling and machine learning in the proposed approach to 

achieve desired and valuable properties, such as monotonic 

prediction and complex relationship accommodation. Our 

empirical evaluation shows the advantages of the proposed 

approach. It outperformed the benchmarked survival analysis 

and multi-label learning methods in terms of time-to-default 

prediction performance and discrimination performance. Case 

analysis further verified its identifiability and discriminability. 

Financial institutions and individual investors could both 

benefit from it by improving granting performance when 

granting loans and profitability performance when selecting 

loan portfolios. 
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Table 12. Profitability Performance 

Size IR PD_RF PD_XGB ERR_HACS_RF ERR_HACS_XGB ERR_MCM ERR_RSF 

10 
0.051 (0.030-
0.072) 

0.194 (0.191-
0.197) 

0.183 (0.179-
0.186) 

0.217 (0.208-
0.225) 

0.196 (0.185-
0.208) 

0.156 (0.142-
0.170) 

0.209 (0.199-
0.218) 

20 
0.080 (0.064-
0.096) 

0.194 (0.192-
0.196) 

0.185 (0.182-
0.188) 

0.211 (0.204-
0.218) 

0.193 (0.185-
0.201) 

0.178 (0.170-
0.186) 

0.207 (0.200-
0.214) 

30 
0.065 (0.053-
0.078) 

0.194 (0.192-
0.196) 

0.184 (0.182-
0.187) 

0.208 (0.202-
0.214) 

0.194 (0.187-
0.201) 

0.189 (0.182-
0.195) 

0.207 (0.201-
0.212) 

40 
0.075 (0.064-
0.086) 

0.195 (0.193-
0.196) 

0.185 (0.183-
0.187) 

0.207 (0.202-
0.212) 

0.194 (0.188-
0.200) 

0.195 (0.190-
0.200) 

0.206 (0.200-
0.211) 

50 
0.084 (0.074-
0.093) 

0.194 (0.192-
0.196) 

0.185 (0.182-
0.187) 

0.207 (0.203-
0.212) 

0.194 (0.189-
0.200) 

0.197 (0.193-
0.201) 

0.204 (0.199-
0.209) 

60 
0.091 (0.082-
0.099) 

0.195 (0.193-
0.196) 

0.184 (0.182-
0.187) 

0.208 (0.203-
0.212) 

0.196 (0.191-
0.200) 

0.197 (0.194-
0.201) 

0.205 (0.201-
0.210) 

70 
0.087 (0.079-
0.094) 

0.194 (0.193-
0.196) 

0.184 (0.182-
0.186) 

0.206 (0.203-
0.210) 

0.196 (0.192-
0.201) 

0.198 (0.194-
0.201) 

0.205 (0.201-
0.209) 

80 
0.083 (0.076-
0.091) 

0.194 (0.193-
0.196) 

0.185 (0.183-
0.187) 

0.205 (0.201-
0.208) 

0.198 (0.194-
0.202) 

0.198 (0.195-
0.202) 

0.203 (0.199-
0.207) 

90 
0.082 (0.075-
0.089) 

0.194 (0.192-
0.196) 

0.186 (0.184-
0.188) 

0.204 (0.200-
0.207) 

0.198 (0.194-
0.201) 

0.199 (0.196-
0.202) 

0.203 (0.199-
0.206) 

100 
0.083 (0.076-
0.089) 

0.193 (0.192-
0.195) 

0.186 (0.184-
0.188) 

0.203 (0.200-
0.207) 

0.198 (0.195-
0.202) 

0.198 (0.195-
0.201) 

0.202 (0.198-
0.205) 

 

 

Figure 10. Illustration of Portfolio Selection Results 

Contributions to the IS Knowledge Base 

We contribute a new MPDP method for credit scoring to the 

literature. The MPDP research stream follows two avenues: one 

adopts the statistical modeling paradigm through survival 

analysis and the other adopts the machine learning paradigm 

through multi-label learning. We reveal a new avenue of MPDP 

in the middle of the two existing avenues by synthesizing their 

advantages. HACS is data driven and free from assumptions on 

survival time, which hinder the performance of survival 

analysis methods in financial risk analytics. HACS allows for 

the prediction of default probability monotonically over time, 

thus alleviating the downsides of multi-label learning methods, 

which focus on local fitting and ignore the global relevance and 

monotonicity constraint, rendering them effective for 

theoretical verification (i.e., discrimination performance) but 

problematic for practical verification (i.e., they are unable to 

accurately identify the default time). HACS models default 

status and default time separately and synthesizes them through 

a probabilistic framework, allowing for the differentiation of the 

feature influences regarding whether and when a borrower will 

default, thereby helping to better split and fit the complex 

relationships embedded in credit data.  
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Design science research offers different types of contributions 

to the IS knowledge base, including strong theory, partial 

theory, incomplete theory, and even some particularly 

interesting and perhaps surprising empirical generalizations in 

the form of a new design artifact (Gregor & Hevner, 2013). 

Our theoretical contribution is to motivate, examine, and 

establish two design principles in credit scoring and data 

analytics: (1) the hybrid modeling framework and (2) joint 

default modeling for default time estimations. These design 

principles prescribe how to model monotonic default 

probability separately and jointly to attain improved 

predictive performance. Through empirical evaluation and 

impact analysis, this study offers proof of value added by 

demonstrating the viability and utility of these design 

principles in credit risk analytics. While we designed and 

evaluated HACS in the context of default prediction, the 

prescriptive knowledge advanced in this study may be 

generalizable as a “nascent design theory” (Gregor & Hevner, 

2013) to other predictive analytics contexts that satisfy the 

applicability conditions of HACS: (1) the primary objective is 

to predict whether and when a particular event of interest 

occurs; (2) the event of interest occurs at discrete (truly 

discrete or recorded on discrete units) values of time within a 

certain period; (3) some observations may never experience 

the event of interest in the entire period, i.e., existence of a 

subgroup of long-term survivors; (4) the features available for 

prediction tend to be multidimensional or multiview and have 

complex relationships. For example, in customer relationship 

management, successful customer retention requires insights 

into whether and when a customer will churn within a specific 

time period (e.g., one year), which can help the organization 

target retention efforts on the right customer at the right time 

(Backiel et al., 2016). In this case, HACS may also serve as an 

effective tool for predicting the time to churn. In 

crowdfunding, due to the “all-or-nothing” policy (i.e., creators 

obtain funding only if the fundraising reaches its goal within 

the fundraising period), both creators and backers are eager to 

know when a project will reach its fundraising target and 

HACS may accordingly be applicable to time-to-success 

predictions as well (Wang et al., 2019). 

Practical Implications 

With the continuous development of fintech and credit 

markets, credit accessibility is increasing and consumer 

groups of credit products are becoming larger and more 

complex. Consequently, credit evaluation tools (e.g., credit 

scoring) are desired to develop more intelligence to capture 

the uncertainty and depict the dynamics of credit risk. 

Financial institutions and individual investors can all benefit 

from a more comprehensive and accurate credit evaluation 

tool like HACS. We discuss key practical implications for 

these stakeholders below. 

Financial institutions: Granting loans is the fundamental 
profitable business of financial institutions such as banks, and 
credit scoring tools like HACS may facilitate financial 
institutions in granting loans more effectively. First, depicting 
the risk profile over time enables financial institutions to 
implement fine-grained risk stratification (e.g., identifying 
long-term and short-term risky loans), beyond simply whether 
a borrower will default; consequently, they may benefit from 
more elaborate information to optimize their credit allocation. 
Specifically, financial institutions can grant loans in a novel 
way by engaging in a homogeneous level of risk over time (i.e., 
risk equalization), thereby achieving sustainable and stable 
future cash flow and funding turnover. They can also set a risk 
time, i.e., the intersection of the predicted default probability 
curve and the preset risk-threshold line (as in the case analysis), 
and accordingly offer optimal loan terms for new customers. 
Second, as the industry advances, financial institutions are 
gradually shifting their granting targets from loans with lower 
default risk to those with higher profits, i.e., profit scoring, 
which depends on not only whether but also when a borrower 
will default. HACS, as a competitive MPDP method, may help 
financial institutions acquire and maintain potentially profitable 
customers to a greater extent to meet such emerging industry 
demand. Third, compliance guidelines, such as Basel Ⅱ and 
Basel Ⅲ, require financial institutions to base their loss 
provisions upon the expected losses over the entire lifetime of 
each credit portfolio. Dynamic evaluation tools like HACS may 
provide a more accurate decision basis for estimating expected 
losses, as their components, such as exposure at default, may be 
highly correlated with default time (as shown in the impact 
analysis). For post-loan management, knowing whether and 
when a customer will default can help financial institutions 
carry out post-loan risk control in a timely matter and retain the 
customer by adjusting the line of credit (Agarwal et al., 2021). 
Further, HACS may also help financial institutions adjust loan 
asset structure and transfer post-loan risk—for example, by 
bundling risky short-term loans and selling them to secondary 
markets (e.g., collectors). 

Individual investors: Compared to financial institutions, 
individual investors generally have fewer funds; therefore, the 
problem they often face is selecting a loan portfolio rather than 
approving massive numbers of loan applications. Whether they 
are risk-averse or risk-seeking, given the same portfolio risk, 
investors always prefer portfolios that offer higher returns (Fu 
et al., 2021). This study provides individual investors with a 
straightforward and effective index, i.e., the expected return 
rate, to select loan portfolios with maximum expected return 
rates, considering both default losses and default-risk-free 
returns (i.e., interest rate). In regard to the broadly used index, 
i.e., probability of default, we provide clear evidence that such 
an index is effective for selecting “safe” loans (i.e., not 
vulnerable to default) but not necessarily in selecting “good” 
loans (i.e., yielding high returns). In light of the inferior results 
of selecting portfolios based simply on interest rates, we also 
caution investors to rationally consider default risks against 
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benefits (i.e., interest rate) rather than simply pursuing benefits 
and ignoring risks. We recommend that investors adopt our 
proposed method, i.e., the ERR strategy using HACS, to select 
loan portfolios and that they further diversify their selected 
portfolios with the proposed optimization model based on 
modern portfolio theory (see analysis in Appendix D). As new 
evidence (i.e., repayment information) accumulates in the post-
loan stage, investors can then reevaluate the risk of the loans 
they hold at different time horizons and consider selling loans 
that exceed their risk appetite (e.g., risky long-term loans). 

Limitations and Future Research 

Our work has several limitations that could be addressed in 

future research. First, as discussed earlier, we did not specify the 

base classifier for each subtask and used homogeneous 

classifiers. Although we validated the effectiveness of such 

homogeneous ensembles, the optimal classifier may vary across 

different subtasks. Future research could consider designing 

artifacts for selecting the optimal classifier for each subtask to 

further improve the performance of HACS. Second, as our 

empirical evaluations were based on one dataset from an online 

lending platform, whether and to what extent the HACS 

approach could enhance risk prediction performance in other 

contexts was not explored. Future research could experiment 

with HACS on more datasets collected from other contexts to 

validate the generalizability of our findings. Third, since our 

goal is to predict rather than to explain, the increased predictive 

performance comes at a price in model interpretability. In a 

scenario where interpretability is required, HACS alone may 

not be sufficient, and interpretable alternatives or post hoc 

explanation methods (e.g., LIME and SHAP) may need to be 

adopted to complement it. Future research could explore 

possibilities along these lines. Fourth, while we broached the 

topic of how the predictions of HACS can benefit the credit risk 

management decisions (e.g., post-loan interventions) of 

financial institutions and individual investors in the discussion 

of practical implications, the actual effects of these post hoc 

actions on specific loans cannot be faithfully measured using 

merely historical data and will still need to be rigorously tested 

in the future, e.g., through field experiments. 
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Appendix A  

Censoring-Adapted HACS 

In the vanilla HACS, we managed censored observations using a common simple strategy, i.e., discarding those observations. We also 

proposed a censoring-adapted version (HACS_IPCW) by training the discrimination model with weighted observations using inverse 

probability of censoring weighting (IPCW) (Vock et al., 2016). Tables A1 and A2 summarize the performance of vanilla HACS versus 

censoring-adapted HACS in terms of the C-index and IBS, respectively. The results show that HACS slightly outperformed HACS_IPCW 

at the pre-loan stage, whereas it slightly underperformed HACS_IPCW, in terms of IBS, at the post-loan stage (t2). At the post-loan stage 

(t1), HACS and HACS_IPCW were somewhat comparable. 

Table A1. Performance of Vanilla HACS versus Censoring-Adapted HACS in Terms of C-Index 

Method Base classifier Pre-loan Post-loan (t1) Post-loan (t2) 

HACS LR 0.657 (0.655-0.660) 0.747 (0.743-0.750) 0.787 (0.783-0.792) 

HACS_IPCW LR 0.656 (0.653-0.659) 0.746 (0.743-0.750) 0.791 (0.787-0.795) 

HACS RF 0.702 (0.699-0.705) 0.762 (0.759-0.766) 0.793 (0.789-0.798) 

HACS_IPCW RF 0.695 (0.691-0.698) 0.758 (0.755-0.762) 0.792 (0.787-0.796) 

HACS XGB 0.691 (0.688-0.695) 0.761 (0.758-0.764) 0.802 (0.798-0.807) 

HACS_IPCW XGB 0.686 (0.682-0.689) 0.756 (0.753-0.760) 0.801 (0.796-0.806) 

 

Table A2. Performance of Vanilla HACS versus Censoring-Adapted HACS in Terms of IBS 

Method Base classifier Pre-loan Post-loan (t1) Post-loan (t2) 

HACS LR 0.440 (0.435-0.445) 0.260 (0.257-0.263) 0.130 (0.128-0.132) 

HACS_IPCW LR 0.449 (0.444-0.455) 0.260 (0.257-0.263) 0.123 (0.121-0.125) 

HACS RF 0.405 (0.400-0.410) 0.251 (0.248-0.254) 0.125 (0.123-0.126) 

HACS_IPCW RF 0.415 (0.409-0.420) 0.251 (0.247-0.254) 0.119 (0.117-0.120) 

HACS XGB 0.410 (0.405-0.415) 0.250 (0.247-0.253) 0.123 (0.121-0.125) 

HACS_IPCW XGB 0.416 (0.411-0.422) 0.252 (0.249-0.256) 0.119 (0.117-0.121) 
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Appendix B  

Discrimination Performance over Time Horizons   

Tables B1 and B2 summarize the discrimination performance of HACS versus benchmarked methods for different time horizons (t1, t2, and 

t3 at the pre-loan stage and t2|t1, t3|t1, and t3|t2 at the post-loan stage). The results across the three performance metrics show similar patterns, 

indicating that the results are quite robust. We tested the statistical significance of the comparisons between HACS and the benchmarked 

methods using a non-parametric Friedman test. Overall, the differences across the six MPDP methods were statistically significant at both 

the pre-loan (𝜒2 = 2391.336, p < 0.001) and post-loan (𝜒2 = 650.050, p < 0.001) stages. Further pairwise comparisons show that, statistically, 

HACS significantly (p < 0.001) outperformed all multi-label learning and survival analysis methods at both stages.  

 

Table B1. Discrimination Performance at the Pre-Loan Stage 

Method Time AUC KS H-measure 

BR_RF t1 0.719 (0.713-0.726) 0.349 (0.339-0.358) 0.233 (0.224-0.241) 

BR_XGB  0.715 (0.709-0.721) 0.344 (0.335-0.354) 0.221 (0.212-0.229) 

HACS_RF  0.753 (0.747-0.759) 0.404 (0.394-0.414) 0.278 (0.270-0.287) 

HACS_XGB  0.737 (0.731-0.744) 0.379 (0.368-0.389) 0.253 (0.244-0.262) 

MCM  0.694 (0.688-0.701) 0.314 (0.304-0.324) 0.192 (0.184-0.200) 

RSF  0.723 (0.717-0.729) 0.361 (0.351-0.371) 0.238 (0.229-0.246) 

BR_RF t2 0.711 (0.707-0.715) 0.326 (0.319-0.333) 0.220 (0.214-0.225) 

BR_XGB  0.696 (0.692-0.700) 0.304 (0.296-0.311) 0.189 (0.184-0.195) 

HACS_RF  0.722 (0.717-0.726) 0.339 (0.332-0.346) 0.230 (0.224-0.236) 

HACS_XGB  0.712 (0.707-0.716) 0.323 (0.316-0.331) 0.206 (0.200-0.211) 

MCM  0.677 (0.673-0.682) 0.276 (0.269-0.283) 0.154 (0.149-0.159) 

RSF  0.710 (0.706-0.714) 0.325 (0.318-0.331) 0.214 (0.208-0.220) 

BR_RF t3 0.705 (0.702-0.709) 0.315 (0.309-0.320) 0.203 (0.198-0.208) 

BR_XGB  0.693 (0.689-0.696) 0.288 (0.282-0.294) 0.177 (0.172-0.181) 

HACS_RF  0.711 (0.707-0.715) 0.318 (0.312-0.324) 0.208 (0.203-0.213) 

HACS_XGB  0.700 (0.696-0.704) 0.299 (0.293-0.305) 0.184 (0.180-0.189) 

MCM  0.671 (0.668-0.674) 0.258 (0.252-0.263) 0.141 (0.136-0.145) 

RSF  0.700 (0.697-0.704) 0.304 (0.298-0.310) 0.194 (0.189-0.199) 

 

Table B2. Discrimination Performance at the Post-Loan Stage 

Method Time AUC KS H-measure 

BR_RF t2|t1 0.801 (0.795-0.806) 0.513 (0.504-0.521) 0.375 (0.367-0.384) 

BR_XGB  0.799 (0.794-0.805) 0.505 (0.495-0.514) 0.372 (0.363-0.381) 

HACS_RF  0.810 (0.804-0.815) 0.523 (0.514-0.532) 0.389 (0.381-0.397) 

HACS_XGB  0.806 (0.800-0.811) 0.516 (0.507-0.525) 0.389 (0.380-0.398) 

MCM  0.798 (0.792-0.803) 0.492 (0.482-0.501) 0.363 (0.354-0.371) 

RSF  0.804 (0.799-0.810) 0.521 (0.512-0.531) 0.383 (0.375-0.392) 

BR_RF t3|t1 0.777 (0.773-0.781) 0.447 (0.440-0.455) 0.314 (0.307-0.321) 

BR_XGB  0.780 (0.776-0.784) 0.445 (0.438-0.452) 0.313 (0.306-0.320) 

HACS_RF  0.781 (0.777-0.786) 0.447 (0.440-0.455) 0.319 (0.312-0.326) 

HACS_XGB  0.781 (0.777-0.785) 0.448 (0.440-0.456) 0.318 (0.311-0.325) 

MCM  0.768 (0.764-0.772) 0.426 (0.419-0.434) 0.290 (0.283-0.296) 

RSF  0.776 (0.772-0.781) 0.443 (0.435-0.451) 0.314 (0.307-0.321) 

HACS_RF t3|t2 0.815 (0.809-0.821) 0.528 (0.518-0.539) 0.390 (0.379-0.401) 

HACS_XGB  0.828 (0.822-0.833) 0.552 (0.541-0.562) 0.409 (0.398-0.420) 

HACS_RF  0.823 (0.817-0.829) 0.542 (0.532-0.553) 0.403 (0.393-0.414) 

HACS_XGB  0.834 (0.828-0.839) 0.560 (0.550-0.570) 0.417 (0.406-0.428) 

MCM  0.822 (0.816-0.828) 0.530 (0.520-0.540) 0.389 (0.379-0.400) 

RSF  0.816 (0.810-0.822) 0.532 (0.522-0.542) 0.394 (0.383-0.404) 
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Tables B3 and B4 summarize the discrimination performance of HACS versus the survival analysis methods (MCM, COX, and RSF) at the 

full prediction horizon at the pre-loan and post-loan stages, respectively. BR and HACS are equivalent at the full prediction horizon (i.e., all 

reduced to a single default prediction problem for 12 months). 

Table B3. Discrimination Performance at the Pre-Loan Stage 

Method Time AUC KS H-measure 

HACS_RF t4 0.707 (0.704-0.711) 0.307 (0.302-0.313) 0.200 (0.196-0.205) 

HACS_XGB  0.697 (0.693-0.700) 0.288 (0.282-0.294) 0.176 (0.172-0.181) 

MCM  0.672 (0.669-0.675) 0.256 (0.250-0.261) 0.136 (0.133-0.140) 

RSF  0.701 (0.698-0.705) 0.298 (0.293-0.304) 0.190 (0.186-0.194) 

 

Table B4. Discrimination Performance at the Post-Loan Stage 

Method Time AUC KS H-measure 

HACS_RF t4|t1 0.767 (0.764-0.771) 0.411 (0.404-0.417) 0.285 (0.280-0.290) 

HACS_XGB  0.766 (0.763-0.769) 0.411 (0.405-0.417) 0.285 (0.279-0.290) 

MCM  0.753 (0.749-0.757) 0.394 (0.387-0.400) 0.255 (0.249-0.261) 

RSF  0.765 (0.761-0.768) 0.409 (0.403-0.415) 0.283 (0.278-0.288) 

HACS_RF t4|t2 0.796 (0.792-0.801) 0.476 (0.468-0.484) 0.339 (0.330-0.347) 

HACS_XGB  0.805 (0.800-0.809) 0.487 (0.480-0.495) 0.346 (0.338-0.354) 

MCM  0.792 (0.788-0.796) 0.459 (0.451-0.467) 0.317 (0.309-0.325) 

RSF  0.795 (0.790-0.799) 0.479 (0.471-0.486) 0.337 (0.330-0.345) 
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Appendix C  

Robustness Check 

To create a fair comparison between HACS and multi-label learning methods without other confounding factors that may influence performance, we 

selected two representative base classifiers (RF and XGB) and kept the default parameter settings. As a robustness check, we also examined some of 

these factors by (1) adding a new base classifier ANN and (2) tuning parameters for each base classifier. We used nested cross-validation (10-fold split 

in both inner and outer loops) with grid search for parameter tuning. For RF, we selected the parameter “mtry” (number of features randomly sampled 

as candidates at each split) from 2 to 6 in increments of 1. For XGB, we selected the parameters “eta” (learning rate) from 0.2 to 0.4 in increments of 

0.05 and “max_depth” (maximum depth of a tree) from 4 to 8 in increments of 1. For ANN, we set up two hidden layers with the ReLU activation 

function and selected the number of neurons in each hidden layer from 8 to 128 in double increments (i.e., 5 × 5 = 25-dimensional parameter space). 

Tables C1 and C2 summarize the discrimination performance with parameter tuning at pre-loan and post-loan stages, respectively. The results show 

that HACS outperformed BR, with all base classifiers (RF, XGB, and ANN), in terms of all performance metrics (AUC, KS, and H-measure), at all 

prediction horizons (from t1 to t3 at the pre-loan stage and t2|t1, t3|t1, and t3|t2 at the post-loan stage). 

Table C1. Discrimination Performance with Parameter Tuning at the Pre-Loan Stage 

Method Base classifier Time AUC KS H-measure 

BR RF t1 0.716 (0.710-0.722) 0.348 (0.338-0.357) 0.230 (0.221-0.238) 

HACS RF  0.752 (0.746-0.758) 0.404 (0.394-0.414) 0.279 (0.269-0.288) 

BR XGB  0.719 (0.712-0.725) 0.352 (0.343-0.362) 0.221 (0.213-0.229) 

HACS XGB  0.738 (0.731-0.744) 0.380 (0.371-0.389) 0.256 (0.247-0.265) 

BR ANN  0.696 (0.690-0.703) 0.328 (0.318-0.338) 0.194 (0.186-0.202) 

HACS ANN  0.710 (0.703-0.717) 0.339 (0.329-0.350) 0.217 (0.209-0.225) 

BR RF t2 0.710 (0.706-0.714) 0.326 (0.319-0.332) 0.213 (0.208-0.219) 

HACS RF  0.721 (0.717-0.725) 0.337 (0.330-0.344) 0.229 (0.223-0.235) 

BR XGB  0.697 (0.693-0.701) 0.306 (0.299-0.313) 0.190 (0.185-0.196) 

HACS XGB  0.711 (0.707-0.715) 0.321 (0.314-0.328) 0.208 (0.203-0.214) 

BR ANN  0.684 (0.679-0.689) 0.289 (0.282-0.297) 0.166 (0.160-0.172) 

HACS ANN  0.690 (0.685-0.695) 0.291 (0.283-0.299) 0.174 (0.169-0.180) 

BR RF t3 0.705 (0.701-0.708) 0.312 (0.307-0.318) 0.201 (0.195-0.206) 

HACS RF  0.711 (0.707-0.714) 0.317 (0.311-0.323) 0.208 (0.203-0.213) 

BR XGB  0.694 (0.690-0.697) 0.290 (0.284-0.297) 0.176 (0.171-0.181) 

HACS XGB  0.699 (0.695-0.703) 0.294 (0.288-0.301) 0.187 (0.182-0.192) 

BR ANN  0.682 (0.679-0.686) 0.273 (0.267-0.279) 0.158 (0.154-0.162) 

HACS ANN  0.685 (0.682-0.689) 0.276 (0.270-0.282) 0.161 (0.156-0.165) 

 

Table C2. Discrimination Performance with Parameter Tuning at the Post-Loan Stage 

Method Base classifier Time AUC KS H-measure 

BR RF t2|t1 0.806 (0.800-0.812) 0.519 (0.509-0.528) 0.383 (0.375-0.392) 

HACS RF  0.810 (0.805-0.816) 0.522 (0.513-0.532) 0.391 (0.382-0.399) 

BR XGB  0.800 (0.794-0.805) 0.506 (0.496-0.515) 0.376 (0.367-0.385) 

HACS XGB  0.807 (0.802-0.813) 0.513 (0.503-0.523) 0.388 (0.378-0.397) 

BR ANN  0.797 (0.792-0.803) 0.505 (0.494-0.515) 0.374 (0.365-0.382) 

HACS ANN  0.805 (0.800-0.810) 0.512 (0.503-0.522) 0.385 (0.377-0.394) 

BR RF t3|t1 0.778 (0.774-0.783) 0.448 (0.440-0.455) 0.318 (0.311-0.325) 

HACS RF  0.782 (0.777-0.786) 0.449 (0.441-0.456) 0.319 (0.312-0.325) 

BR XGB  0.782 (0.778-0.786) 0.448 (0.441-0.456) 0.318 (0.311-0.325) 

HACS XGB  0.782 (0.778-0.786) 0.448 (0.440-0.455) 0.318 (0.311-0.326) 

BR ANN  0.780 (0.776-0.784) 0.450 (0.443-0.457) 0.315 (0.309-0.322) 

HACS ANN  0.782 (0.779-0.786) 0.451 (0.444-0.459) 0.319 (0.312-0.326) 

BR RF t3|t2 0.824 (0.818-0.830) 0.553 (0.543-0.563) 0.411 (0.400-0.422) 

HACS RF  0.823 (0.817-0.829) 0.546 (0.535-0.556) 0.404 (0.393-0.415) 

BR XGB  0.828 (0.823-0.834) 0.551 (0.541-0.562) 0.410 (0.399-0.422) 

HACS XGB  0.834 (0.828-0.840) 0.559 (0.548-0.569) 0.419 (0.408-0.430) 

BR ANN  0.830 (0.824-0.835) 0.551 (0.541-0.561) 0.409 (0.398-0.419) 

HACS ANN  0.833 (0.828-0.839) 0.556 (0.546-0.567) 0.415 (0.404-0.426) 
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Appendix D  

Modern Portfolio Theory 

To examine the profitability performance in uneven allocation scenarios (i.e., the weight of each loan could be different), we also simulated 

selecting loan portfolios based on modern portfolio theory, mathematically represented as the Markowitz model (Ban et al., 2018). 

Specifically, we first selected portfolios using the profit-ranking results of the PD and ERR strategies and then assigned a weight to each loan 

in the selected portfolios by solving the optimization model based on the Markowitz model and characteristics of credit scenario: 

max𝑤 ∑ 𝑤𝑖 ∙
𝑟𝑖

‖𝒓‖
− 𝑤𝑖

2 ∙
𝑝𝑖

‖𝒑‖

𝑛
𝑖=1   

s. t.   ∑ 𝑤𝑖

𝑛

𝑖=1
= 1  

0 ≤ 𝑤𝑖 ≤ 2/𝑛   𝑖 = 1,2, … , 𝑛 

where 𝒘 = (𝑤1, 𝑤2, … , 𝑤𝑛) is the weight vector of a portfolio with the size of 𝑛; 𝒓 = (𝑟1, 𝑟2, … , 𝑟𝑛) is the reward (i.e., interest rate) vector of 

the portfolio; 𝒑 = (𝑝1, 𝑝2, … , 𝑝𝑛) is the risk (i.e., default probability in the full horizon) vector of the portfolio. The second constraint ensures 

the diversification effect of a loan portfolio. 

Table D1 summarizes the profitability performance (i.e., average return rate) of each strategy after weight optimization at different portfolio 

sizes. The ERR strategy using HACS_RF always gave the best profitability performance (i.e., highest average return rate) with a small portfolio 

size (less than 50), and the PD strategy using RF and the ERR strategy using RSF became comparable when the portfolio size increases. As 

portfolio variance is another important risk measure in modern portfolio theory, especially when average return rates are similar, we further 

compared the portfolio variance of these two strategies in terms of the average variance of weights (summarized in Table D2). Although the PD 

strategy using RF and the ERR strategy using RSF could give an average return rate comparable to that of the ERR strategy using HACS_RF, 

their portfolio variances were strikingly higher than that of the ERR strategy using HACS_RF, with any portfolio size, indicating a higher level 

of risk as the total capital was mostly allocated to few loans. Overall, the results show that the proposed ERR strategy combined with HACS_RF 

was able to help investors select loan portfolios with higher profits while preserving the dispersion of loan portfolios. 

Table D1. Results of Profitability Performance Using the Modern Portfolio Theory 

Size PD_RF PD_XGB ERR_HACS_RF ERR_HACS_XGB ERR_MCM ERR_RSF 

10 0.198 (0.195-0.202) 0.190 (0.186-0.194) 0.218 (0.210-0.226) 0.195 (0.183-0.208) 0.156 (0.141-0.172) 0.209 (0.199-0.218) 

20 0.203 (0.200-0.206) 0.199 (0.196-0.202) 0.212 (0.205-0.219) 0.193 (0.185-0.202) 0.172 (0.162-0.181) 0.207 (0.200-0.214) 

30 0.204 (0.201-0.207) 0.200 (0.197-0.203) 0.209 (0.203-0.215) 0.194 (0.187-0.201) 0.180 (0.172-0.187) 0.207 (0.201-0.213) 

40 0.205 (0.203-0.208) 0.200 (0.197-0.204) 0.208 (0.203-0.213) 0.193 (0.187-0.199) 0.184 (0.177-0.191) 0.206 (0.201-0.211) 

50 0.205 (0.203-0.208) 0.201 (0.197-0.204) 0.208 (0.203-0.212) 0.193 (0.188-0.199) 0.187 (0.181-0.194) 0.204 (0.199-0.209) 

60 0.205 (0.203-0.208) 0.201 (0.197-0.204) 0.207 (0.203-0.212) 0.194 (0.189-0.199) 0.188 (0.183-0.194) 0.205 (0.201-0.210) 

70 0.205 (0.203-0.208) 0.200 (0.197-0.203) 0.206 (0.202-0.210) 0.195 (0.190-0.199) 0.189 (0.184-0.194) 0.205 (0.201-0.209) 

80 0.205 (0.203-0.208) 0.201 (0.198-0.204) 0.205 (0.201-0.208) 0.195 (0.191-0.200) 0.189 (0.184-0.195) 0.204 (0.200-0.208) 

90 0.205 (0.203-0.207) 0.201 (0.199-0.204) 0.204 (0.200-0.207) 0.195 (0.191-0.200) 0.190 (0.185-0.195) 0.204 (0.200-0.208) 

100 0.204 (0.202-0.207) 0.202 (0.199-0.204) 0.204 (0.200-0.207) 0.195 (0.191-0.199) 0.189 (0.184-0.194) 0.204 (0.200-0.208) 

 

Table D2. Results of Portfolio Variance (in Percentage) 

 10 20 30 40 50 60 70 80 90 100 

PD_RF 50.507 15.100 7.322 4.317 2.885 2.076 1.550 1.196 0.950 0.777 

ERR_RSF 10.953 2.583 1.064 0.641 0.502 0.397 0.323 0.297 0.308 0.335 

ERR_HACS_RF 6.963 1.810 0.822 0.475 0.341 0.267 0.229 0.205 0.196 0.209 
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