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A B S T R A C T

This paper estimates unobserved components (UC) models with real and financial trends and business and
credit cycles to assess different measures of the credit cycle used by policymakers. The permanent components
of the real and financial sectors are a Beveridge–Nelson and local linear trend, respectively. The business
and credit cycles evolve jointly as a second-order vector autoregression. Bootstrap methods are applied to UC
model estimates retrieved from classical optimization of the predictive likelihood of the Kalman filter. Results
indicate the slope of the financial trend better predicts the credit to GDP ratio in the United States than the
estimated business and credit cycles and the Basel gap. This suggests policymakers should consider permanent
shocks to the financial sector when gauging the state of financial stability.
1. Introduction

The effectiveness of the CCyB depends on accurate measurement of
the business cycle on the real side of an economy and similar transitory
fluctuations in its financial markets. The credit cycle is the label often
given to the hidden state variable that captures the response of financial
markets to transitory disturbances. The Basel Committee on Banking
Supervision (2010) recommends measuring the credit cycle by applying
a one-sided Hodrick–Prescott (HP) filter to the quarterly credit to GDP
ratio.

The choice by the Basel Committee on Banking Supervision (BCBS)
to use the HP filter has drawn criticism. Along with the well known
critiques of the HP filter by Harvey and Jaeger (1993), King and Rebelo
(1993), Cogley and Nason (1995), Canova (1998), and Hamilton (2018)
among others, there is an extensive literature showing the BCBS-HP
filtered credit cycle can exhibit excess volatility and persistence and
its conditional mean can be biased. A subset of this literature includes
(Edge and Meisenzahl, 2011; Alessandri et al., 2015; Barrell et al.,
2018; Darracq Pariès et al., 2019; Jokipii et al., 2021; Alessandri et al.,
2022). An interesting aspect of these critiques is provided by Galán and
Mencía (2021), Schüler (2020), and Jylhä and Lof (2022). They draw
attention to the BCBS (2010) suggesting the HP smoothing parameter
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be set to 4×106 instead of the conventional value of 1600 for quarterly
data.

Despite these issues, the Basel Committee on Banking Supervision
(2017) reports that its HP filtered credit cycle, which is also known as
the Basel gap, is widely used by national financial market regulators.
Support for the Basel gap is found in Drehmann et al. (2010), Drehmann
and Juselius (2014), and Borio et al. (2016). Drehmann et al. (2010)
contend the Basel gap is a leading indicator of financial distress.
Drehmann and Juselius (2014) support this finding over long horizons,
while an alternative measure, the debt service ratio, performs better
over shorter horizons. Borio et al. (2016) find incorporating the Basel
gap into estimations of potential output improves the precision and
robustness of real time output gap estimates.

This paper presents an alternative approach to estimating and test-
ing the credit cycle motivated by the lack of consensus about the Basel
gap. I obtain estimates of the credit cycle by imposing restrictions
associated with the permanent income hypothesis (PIH) and a macro-
finance theory of leverage on unobserved components (UC) models.
The PIH predicts a decomposition of consumption and income into the
common PI trend and business cycle. I extend the ideas of Brunner-
meier and Sannikov (2014) to place restrictions on the financial sector.
Brunnermeier and Sannikov (2014) construct a macro-finance model
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in which the demand for credit originates in the optimal choice of
leverage by borrowers. This choice predicts a long-run equilibrium that
jointly restricts movements in capital and the level of debt held by the
productive sector. Similar to the PIH, the long-run relationship in the
stock of nonfinancial assets and credit supply predicts a permanent-
transitory decomposition, which I refer to as the financial trend and
the credit cycle.

The UC models embed the trend-cycle restrictions of the PIH and
the Brunnermeier and Sannikov theory of leverage in the measurement
equations. The measurement equations are grounded in a vector of con-
stant dollar observables consisting of non-durable goods and services
consumption expenditures, disposable income, nonfinancial credit, and
nonfinancial assets. These variables are sufficient to recover the state
variables, which are the PI and financial trends and business and
credit cycles, given an appropriate specification of the system of state
equations. I assume the PI trend evolves as a random walk with drift
while a local linear trend produces the permanent financial component.
As a result, the PI trend is interpreted as the permanent component of
the Beveridge and Nelson (1981) decomposition while the permanent
component of the financial sector consists of the levels trend and its
time-varying I(1) slope.

An unrestricted second-order bivariate autoregression generates the
business and credit cycles. This is my baseline UC model. I create five
additional UC models by placing restrictions on the lag coefficients of
the business and credit cycles or covariance matrix of the errors of the
reduced-form VAR(2). The UC models are estimated using the Kalman
filter and its predictive likelihood and classical optimization methods
on a quarterly U.S. sample from 1960 to 2018. However, bootstrapped
methods are employed to construct the empirical sampling distributions
of the UC model parameters, state variables, and test statistics.

Estimating the UC models yields five main contributions. First,
bootstrapped likelihood ratio (LR) tests favor the baseline UC model
that lacks exclusion restrictions on the lags of the cycles in the reduced-
form VAR(2). Nonetheless, joint tests of these lag coefficients suggest
Granger causality does not run in either direction between the business
and credit cycles.

Second, estimates of the slope of the financial trend and the busi-
ness cycle display troughs during almost every NBER dated recession
between 1960 and 2018. The credit cycle has three troughs. The first
two troughs are in the mid 1960s and mid 1990s, but the third occurs at
the end of the 2007–2009 recession and financial crisis. My estimated
credit cycle is more persistent and volatile than the business cycle, but
less volatile and smoother than the Basel gap.

Third, mapping the reduced-form VAR(2) into a structural VAR
(SVAR) yields impulse response functions (IRFs) for the business and
credit cycles with respect to their shocks. When the business cycle is
ordered after the credit cycle, its IRF to a credit cycle shock is hump-
shaped. However, the uncertainty bands around this IRF include zero
at every forecast horizon except between the 1- and 2-year horizons.
Reversing the order of the SVAR results in substantial uncertainty
surrounding the equivalent IRF of the business cycle to a credit cycle
shock.

Fourth, I report predictive regressions of the ℎ-quarter ahead boot-
strapped business cycles on the bootstrapped credit cycle. Tests show
the credit cycle is a useful predictor of the ℎ-step ahead business cycle
nly at horizons longer than two years. In contrast, the business cycle
as predictive power for the credit cycle at every forecast horizon from
ne quarter to four years.

Fifth, regressing the ℎ-quarter ahead growth rate of the credit to
DP ratio on the Basel gap results in serially correlated residuals at
ll forecast horizons. This reinforces results in Alessandri et al. (2022),
alán and Mencía (2021), and Schüler et al. (2020) that the Basel
ap is a weak predictor of the future path of the credit to GDP ratio.
dding the bootstrapped business and credit cycles to the regression
ields serially uncorrelated residuals at low-order forecast horizons.
2

nterestingly, my estimate of the slope of the financial trend is the
best predictor of the growth of the credit to GDP ratio considered.
Regressing the ℎ-quarter ahead growth rate of the credit to GDP ratio
on the bootstrapped slope of the financial trend produces serially
uncorrelated residuals at forecast horizons of up to one year. This
finding suggests permanent shocks to the financial sector matter for
financial stability. Plots of the coefficient from this regression estimated
with rolling windows demonstrate the slope of the financial trend could
have provided a signal of financial instability to policymakers prior to
the 2007–2009 financial crisis in the United States.

My estimates contribute to a large and growing empirical literature
on credit cycles. Important work on this topic includes (Demirgüç-Kunt
and Detragiache, 1998; Kaminsky and Reinhart, 1999; Mendoza and
Terrones, 2008; Schularick and Taylor, 2012; Claessens et al., 2012;
Aikman et al., 2014). This literature points out the importance of
growth in the credit to GDP ratio as a precursor of financial instability.
Recent contributions to the literature by Lo Duca and Peltonen (2013),
Aikman et al. (2017), Alessi and Detken (2018), and Schüler et al.
(2020) demonstrate that broader sets of financial indicators improve
upon the Basel gap’s ability to gauge financial stability. Hartwig et al.
(2021) consider a number of different indicators from the literature.
The authors conclude that ex ante systemic risk can only be measured
consistently after turning points in the indicators have been observed.
Since turning points are unpredictable, Hartwig et al. (2021) suggest
using leverage cycle theory in the vein of Brunnermeier and Sannikov
(2014) to explain systemic risk.

This paper is distinct from existing literature in two aspects. First,
I recover estimates of a financial trend and credit cycle from a struc-
tural model with restrictions informed by theory. Theory for the joint
consideration of variables is provided by the PIH for the real sector
and Brunnermeier and Sannikov (2014) for the financial sector as
suggested by Hartwig et al. (2021). Second, I jointly estimate credit and
business cycles and examine their comovement. This is important for
policymakers because the link between the financial sector and the real
sector is the focus of the CCyB as stated by the BCBS (2010). My results
indicate that omission of business cycle information when estimating
the credit cycle leads to model misspecification.

My approach to studying the credit cycle within a structural time
series model is closest to Galati et al. (2016) and Rünstler and Vlekke
(2018). Galati et al. (2016) estimate UC models to recover estimates of
the credit cycle. Rünstler and Vlekke (2018) jointly estimate business
and credit cycles. The results in this paper support the claim made
by Rünstler and Vlekke (2018) that there is important information in
the credit cycle for the business cycle. A key difference in my work
is the imposition of a common trend and cycle on two variables in
each sector. The use of multiple variables for each sector is necessary
to properly identify a trend-cycle decomposition. Carreras et al. (2018)
demonstrate the importance of taking long-run relationships between
financial variables into account. Loading additional observable infor-
mation into UC models that restrict the joint process generating the real
and financial sides of the U.S. economy gives estimates of the credit
cycle that are more efficient and economically interesting. Further,
estimates of the slope of the financial trend and business and credit
cycles are used to assess their and the Basel gap’s predictive content.
The predictive regressions indicate my estimates of the business and
credit cycles and especially the slope of the financial trend provide
better signals of the state of the financial markets, as measured by the
credit to GDP ratio, than the Basel gap. Hence, my results lend support
to a growing literature that recommends policymakers exercise caution
if using the Basel gap to assess the state of the financial markets for
which they are responsible.

Section 2 lays out the UC models. Section 3 describes the data. My
estimation methods are discussed in Section 4. Section 5 presents the
estimates of the PI and financial trends and business and credit cycles,
estimates of the SVARs of these cycles, the IRFs and forecast error
variance decompositions (FEVDs), and predictive regressions. Section 6

concludes.
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2. The UC models

I estimate PI and financial trends and business and credit cycles
using UC models. The UC models are described by measurement and
state transition equations. The measurement vector, 𝑌𝑡, contains the 𝑛
observed variables in the model. The system of measurement equations
is

𝑌𝑡 = 𝐶𝑋𝑡 +𝐷𝑒𝑡. (1)

In Eq. (1), the measurement error, 𝑒𝑡, is a white noise process with
𝑣𝑎𝑟(𝑒𝑡) = 𝐼𝑛. The states are placed in the 𝑘-dimensional vector 𝑋𝑡, which
evolves as the system of state transition equations

𝑋𝑡 = 𝐴𝑋𝑡−1 +𝐻 + 𝐵𝜀𝑡. (2)

Static drift parameters are stored in the vector 𝐻 , which also contains
zeros. In Eq. (2), the state transition error is a white noise process with
𝑣𝑎𝑟(𝜀𝑡) = 𝐼𝑚, 𝑚 ≤ 𝑘.

2.1. The PIH and the business cycle

The PIH identifies the common trend of the consumption–income
pair. Households consume their PI level which is their current expected
discounted level of future income. By assuming a random walk with
drift drives the PI trend, it is identified with the Beveridge and Nelson
(1981) trend as in Morley (2007). The consumption–income pair yields
the business cycle as the common transitory component that remains
after removing the common PI trend.

2.2. Leverage, the financial trend, and the credit cycle

Much of the literature measures credit cycles from the perspective
of firms’ and households’ ability to pay their debt obligations. For
example, Drehmann et al. (2012) calculate a credit cycle using a band-
pass filter on the ratio of credit to GDP. In this interpretation, the
credit cycle is in an expansionary phase when credit growth outpaces
income growth. Their story is increasing debt, relative to income,
increases default risk in financial markets and the likelihood of a credit
contraction in the future.

My models innovate by identifying a long-run relationship between
credit supply and nonfinancial assets. This long-run relationship is
motivated by the macro-finance theory of Brunnermeier and Sannikov
(2014). Their model begins with productive agents borrowing from
non-productive agents to purchase physical capital. Productive agents
seek to maximize growth in net worth by targeting a level of leverage.
Leverage is defined as the percentage of net worth borrowed to fund
physical capital expenditures. Leverage is stationary in this model,
which predicts there is a long-run relationship between debt and phys-
ical capital. Similar to Brunnermeier and Sannikov (2014), deviations
from this long-run relationship are identified as the credit cycle.

The permanent financial component is a local linear trend as in
Rünstler and Vlekke (2018). This specification implies the level of the
trend and its slope are I(1) processes. A local linear trend nests the
financial trend of Galati et al. (2016) which sets the level disturbance
equal to zero to form an integrated random walk. Further, a local linear
trend is consistent with the HP and Baxter-King filters, as discussed by
Harvey and Trimbur (2003), among others. This assumption makes for
straightforward comparisons with studies using these filters to estimate
credit cycles as, for example, by Borio et al. (2018).

2.3. The measurement equations

Restrictions on the real and financial sectors of Model 1 are embed-
3

ded in the system of measurement equations n
⎡

⎢

⎢

⎢

⎢

⎣

𝑐𝑜𝑛𝑡
𝑖𝑛𝑐𝑡
𝑛𝑓𝑐𝑡
𝑛𝑓𝑎𝑡

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝑌𝑡

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 𝜅 0 0 0
𝛼 0 0 1 0 0 0
0 1 0 0 0 𝜆 0
0 𝛽 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜏𝑡
𝜓𝑡
𝜉𝑡
𝛿𝑡
𝛿𝑡−1
𝜙𝑡
𝜙𝑡−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝑋𝑡

+𝐷𝑒𝑡, (3)

where 𝑒𝑡 = [𝑒𝑐𝑜𝑛,𝑡 𝑒𝑖𝑛𝑐,𝑡 𝑒𝑛𝑓𝑐,𝑡 𝑒𝑛𝑓𝑎,𝑡]′ ∼ 𝑁(04×1, 𝐼4×4), and 𝐷
s a square matrix with the volatility of measurement errors 𝜎𝑐𝑜𝑛,𝑡,
𝜎𝑖𝑛𝑐,𝑡, 𝜎𝑛𝑓𝑐,𝑡, and 𝜎𝑛𝑓𝑎,𝑡 on the diagonal and zeros elsewhere. The real
ector, consumption and income, is composed of the PI trend, 𝜏𝑡, and

business cycle, 𝛿𝑡. Similar to Morley (2007), I normalize the response
of consumption, 𝑐𝑜𝑛𝑡, to the PI trend. The factor loading of income,
𝑖𝑛𝑐𝑡, on the business cycle is also normalized to one. In Eq. (3), 𝛼 is the
actor loading of income on the PI trend, and 𝜅 is the factor loading of
onsumption on the business cycle. Further, I normalize the response
f credit supply, 𝑛𝑓𝑐𝑡, to the financial trend, 𝜓𝑡, and the response
f nonfinancial assets, 𝑛𝑓𝑎𝑡, to the credit cycle, 𝜙𝑡. The response of
onfinancial assets to the financial trend is described by 𝛽. The response
f the supply of credit to the credit cycle is measured by 𝜆.

.4. The state equations

The trends and cycles of the UC models make up the state vector.
he PI trend is a random walk with drift 𝜇, which is consistent with
Beveridge–Nelson trend. As already mentioned, the financial trend

volves as a local linear trend.1 The level of the financial trend is 𝜓𝑡
nd 𝜉𝑡 is its slope. The business and credit cycles, 𝛿𝑡 and 𝜙𝑡, are a
educed-form VAR(2). This structure is summarized in the system of
tate transition equations of Model 1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜏𝑡+1
𝜓𝑡+1
𝜉𝑡+1
𝛿𝑡+1
𝛿𝑡
𝜙𝑡+1
𝜙𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
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⏟⏟⏟
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=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 𝜃1 𝜃2 𝜗1 𝜗2
0 0 0 1 0 0 0
0 0 0 𝜁1 𝜁2 𝛾1 𝛾2
0 0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
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⎢
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⎢
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⎣

𝜏𝑡
𝜓𝑡
𝜉𝑡
𝛿𝑡
𝛿𝑡−1
𝜙𝑡
𝜙𝑡−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝑋𝑡−1

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜇
0
0
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝐻𝑍𝑡

+𝐵𝜀𝑡, (4)

where 𝜀𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜀𝜏,𝑡
𝜀𝜓,𝑡
𝜀𝜉,𝑡
𝜀𝛿,𝑡
𝜀𝜙,𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∼ 𝑁(05×1, 𝐼5×5),

and 𝐵𝐵′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎2𝜏 0 0 𝜎𝜏,𝛿 0 0 0
0 𝜎2𝜓 0 0 0 𝜎𝜓,𝜙 0

0 0 𝜎2𝜉 0 0 0 0

𝜎𝜏,𝛿 0 0 𝜎2𝛿 0 𝜎𝛿,𝜙 0
0 0 0 0 0 0 0
0 𝜎𝜓,𝜙 0 𝜎𝛿,𝜙 0 𝜎2𝜙 0

0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In the system of state Eqs. (4), innovations to the trend and cycle
within a sector are correlated. The PI trend and the financial trend are
independent. In Model 1, the real and financial sectors are connected
by the VAR(2) specification of the business and credit cycles. Similar
restrictions on the state equations are found in Lee and Nelson (2007).

1 Attempts to model the financial trend as a random walk with drift were
ot supported by the data. See Appendix F.2 for further discussion.
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Table 1
Summary of model restrictions.
Reduced-form VAR specifications

Model Cycle description Restrictions

Model 1 Granger causality runs in both directions. none
Model 2 Business cycle does not Granger cause credit cycle. 𝜁1 = 𝜁2 = 0
Model 3 Credit cycle does not Granger cause business cycle. 𝜗1 = 𝜗2 = 0
Model 4 Cycles do not Granger cause each other. 𝜁1 = 𝜁2 = 𝜗1 = 𝜗2 = 0

Recursive SVAR specifications

Model Cycle description Restrictions

Model 5 At impact the business cycle responds to the credit cycle. 𝜁∗0 = 𝜎𝛿,𝜙 = 0
Model 6 At impact the credit cycle responds to the business cycle. 𝜗∗0 = 𝜎𝛿,𝜙 = 0
R
r

s
e
e
p
S
s

I estimate three alternative UC models by placing exclusion restric-
ions on the reduced-form VAR(2) of the system of state Eqs. (2). Model
sets the response of the credit cycle to lags of the business cycle, 𝜁1

nd 𝜁2, to zero. The business cycle does not Granger cause the credit
ycle under these restrictions, which are motivated by Borio et al.
2018). Next, Model 3 assumes Granger causality runs in the opposite
irection by restricting 𝜗1 = 𝜗2 = 0. In this case, there is reduced-form
redictability from lags of the business cycle to the credit cycle. The
inal model, Model 4, imposes zero restrictions on the off diagonals,
1 = 𝜁2 = 𝜗1 = 𝜗2 = 0, of the reduced-form VAR(2). The dynamics of
he business cycle and credit cycle are separate in Model 4. The top
anel of Table 1 summarizes Models 1, 2, 3, and 4.

.5. Using recursive SVARs to generate business and credit cycles

Models 1, 2, 3, and 4 have reduced-form VARs that can be mapped
nto recursive structural VARs. The structural VAR is

0

[

𝛿𝑡
𝜙𝑡

]

= 𝛩1

[

𝛿𝑡−1
𝜙𝑡−1

]

+ 𝛩2

[

𝛿𝑡−2
𝜙𝑡−2

]

+ 𝐵∗
𝑐 𝜀𝑐,𝑡, (5)

where 𝜀𝑐,𝑡 ∼ 𝑁(02×1, 𝐼2×2), 𝐵∗
𝑐𝐵

∗′
𝑐 =

[

𝜎∗2𝛿 0
0 𝜎∗2𝜙

]

,

and 𝐵∗
𝑐 = 𝛩0𝐵𝑐 is the submatrix of 𝐵 corresponding to 𝛿𝑡 and 𝜙𝑡. The

first step in mapping from the reduced-form VARs of Models 1, 2, 3, or
4 to the structural VAR of (5) involves pre-multiplying (5) by 𝛩−1

0
[

𝛿𝑡
𝜙𝑡

]

= 𝛩−1
0 𝛩1

[

𝛿𝑡−1
𝜙𝑡−1

]

+ 𝛩−1
0 𝛩2

[

𝛿𝑡−2
𝜙𝑡−2

]

+ 𝛩−1
0 𝐵∗

𝑐 𝜀𝑐,𝑡,

where 𝛩−1
0 𝐵∗

𝑐 𝜀𝑐,𝑡 ∼ 𝑁(02×1, 𝛩−1
0 𝐵∗

𝑐𝐵
∗′
𝑐 𝛩

−1′
0 ). Next, the impact matrix, 𝛩0,

of the structural VAR is recovered using one of two recursive orderings
of the business and credit cycles. In the first structural VAR, which is
labeled Model 5, the credit cycle is structurally causally prior to the
business cycle

𝛩0,𝐶𝐵 =
[

1 −𝜗∗0
0 1

]

.

Take the upper Cholesky decomposition of the covariance matrix of
the business and credit cycles of the reduced-form VAR, 𝛩−1

0 𝐵∗
𝑐𝐵

∗′
𝑐 𝛩

−1′
0 ,

which requires solving the bivariate system
[

𝛩−1
0,𝐶𝐵𝐵

∗
𝑐𝐵

∗′
𝑐 𝛩

−1′
0,𝐶𝐵

]1∕2
=
[

1 −𝜗∗0
0 1

]−1 [𝜎∗𝛿 0
0 𝜎∗𝜙

]

.

The structural VAR is found by pre-multiplying the lag coefficient
matrices of the reduced-form VAR by 𝛩0,𝐶𝐵 to produce Model 5.

Model 6 reverses the structural ordering to place the business cycle
before the credit cycle

𝛩0,𝐵𝐶 =
[

1 0
−𝜁∗0 1

]

.

A similar process recovers this impact matrix
[

𝛩−1
0,𝐵𝐶𝐵

∗
𝑐𝐵

∗′
𝑐 𝛩

−1′
0,𝐵𝐶

]1∕2
=
[

1 0
−𝜁∗ 1

]−1 [𝜎∗𝛿 0
0 𝜎∗

]

,

4

0 𝜙 u
but in this case a lower Cholesky decomposition of the covariance
matrix of the reduced-form VAR innovations is computed. The co-
efficient matrices of the structural VAR, Model 6, are recovered by
pre-multiplying the reduced-form VAR by 𝛩0,𝐵𝐶 .

3. Data

Data on consumption and income in the U.S. measures activity in
the real sector. The financial sector is measured by data on credit supply
and nonfinancial assets. The data are in constant dollars, per capita,
logged and multiplied by 400.2 The quarterly sample runs from 1960Q1
to 2018Q4.

3.1. The real sector

Consumption is equated to aggregate personal consumption expen-
ditures on nondurable goods and services. Tests of the PIH most often
measure consumption as its flow from nondurable goods and services.
For example, at least since (Hall, 1978), consumer durable goods ex-
penditures are excluded to avoid issues with imputing the value of the
service flow from the stock of these goods. I use an ideal Fisher index to
construct constant dollar nondurable goods and services consumption
as discussed in Whelan (2002). Income is measured by real personal
income excluding transfer payments.3 This is consistent with the PIH
from the household’s perspective. Additionally, the use of real personal
income excluding transfer payments, along with nondurable goods and
services consumption, is standard in the empirical literature on the PIH.
See for example, Hall (1978), Nelson (1987), and Kiley (2010).

3.2. The financial sector

Data for the financial sector comes from the Financial Accounts of
the United States that is published by the Board of Governors of the
Federal Reserve System. Credit supply is the sum of debt securities and
loans of nonfinancial corporate businesses, households and nonprofit
organizations, as well as loans of nonfinancial noncorporate businesses.
This measure of credit is used by Borio (2014) and Drehmann et al.
(2010) in their construction of the credit to GDP ratio. Aggregate
nonfinancial assets of the private nonfinancial sector are held by nonfi-
nancial corporate businesses, households and nonprofit organizations,
and nonfinancial noncorporate businesses.4

2 Details about the construction of the data are given in Appendix A.
3 Consumption and income data are retrieved from FRED at the Federal

eserve Bank of St. Louis. In a robustness exercise reported in Appendix G, I
eestimate the UC models with real GDP in place of real disposable income.

4 This paper differs from existing literature by not including asset prices,
uch as housing, in the estimation of credit cycles. For example, Drehmann
t al. (2012), Galati et al. (2016), Rünstler and Vlekke (2018), and Schüler
t al. (2020) all show that the inclusion of house prices helps to identify
eriods of financial instability. However, the model of Brunnermeier and
annikov (2014) implies the use of two quantity variables in the financial
ector to get at a measure of leverage. Thus, credit and nonfinancial assets are
sed as discussed above.
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Fig. 1. Data in log levels, 1960Q1-2018Q4. Notes: The gray bars represent NBER recession dates. Details of data construction are found in Appendix A.
3.3. Describing the data

Figs. 1 and 2 plot the data in log levels and growth rates. Con-
sumption and income appear to comove throughout the sample. Income
is more volatile than consumption and business cycle movements are
more pronounced. Consumption growth is below its sample mean and
income declines during each NBER dated recession. Contractions in
these series are most pronounced in the 1973–1975 and 2007–2009
recessions. Both recessions are of similar duration and severity in the
real sector.

Credit supply and nonfinancial assets often contract during NBER
dated recessions with the exception of the 2001 recession. Moreover,
the financial series seem to have a prolonged period of negative growth
on either side of the 1991 recession. This episode was followed by
more than a decade of above average growth in credit supply and
nonfinancial assets leading up to steep declines during the financial
crisis. Credit supply growth remained well below its sample mean for
several years following the most recent financial crisis.

4. Econometric methods

The innovations form of the Kalman filter is used to compute the log
likelihood of Models 1, 2, 3, and 4, given initial state conditions, 𝑋0|0,
and an initial parameter vector, 𝛤0.5 The log likelihood is maximized

5 A detailed discussion of the ML estimation and the innovations form of
the Kalman filter is given in Appendix B. The initialization of the innovations
form of the Kalman filter is discussed in Appendix B.2. I apply the bootstrap
procedure of Stoffer and Wall (2004), which is described in Appendix C.
5

via classical optimization to obtain estimates of the parameters and
states of the UC models.

I adapt the bootstrap algorithm of Stoffer and Wall (2004) to pro-
duce the small sample distributions of model parameters and the states.
Bootstrapped empirical distributions of the maximum likelihood (ML)
estimates overcome problems created by reduced rank Hessian matrices
and applying asymptotic theory in the presence of small sample sizes;
see Angelini et al. (2021), Stoffer and Wall (2004), and Ansley and
Newbold (1980). Another issue with using asymptotic theory is the
autoregressive parameters are near the boundary of the parameter
space when cyclical components are highly persistent; see Morley et al.
(2003). The bootstrap algorithm first resamples with replacement the
standardized errors from the Kalman filter of the ML estimates. These
resampled standardized errors are used to back out a synthetic sample
using the state space representation of a UC model. Next, the UC model
is estimated on the bootstrap sample and the results are recorded. One
thousand artificial samples are produced to create bootstrap distribu-
tions of UC model parameters, the covariance matrix of the parameters,
and likelihood ratio statistics.6

Empirical distributions of likelihood ratio (LR) statistics are used
to evaluate which UC model best fits the data. The LR tests provide
evidence about whether the credit cycle Granger causes the business
cycle. The likelihood of the UC model under the null corresponds to
Model 1. The null is compared with Model 2, Model 3, and Model 4.
Bootstrap methods described by Morley et al. (2016) produce the em-
pirical distributions of the LR statistics. The LR statistics are computed

6 Julia 1.3.1 is used to estimate the UC models and generate the bootstrap
samples. Code is available upon request.
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Fig. 2. Growth rates, 1960Q1-2018Q4. Notes: The dotted lines represent the mean of the growth rates over the sample period. Otherwise, see the notes to Fig. 1.
at the ML estimates of the alternative and null UC models

𝐿𝑅 = −2(𝑙ℎ(𝛤1) − 𝑙ℎ(𝛤𝑖)), 𝑖 ∈ [2, 3, 4],

where 𝑙ℎ denotes the UC model likelihood.
There is a five step algorithm to compute bootstrap p-values of the

LR statistics. The steps are

i. generate 1000 bootstrap samples under the null of Model 1,
ii. estimate the UC models on the 1000 bootstrap samples,

iii. calculate 1000 bootstrap log likelihoods for the UC models,
iv. construct 1000 LR statistics for UC Models 2, 3, and 4 against

the null of UC Model 1,
v. count the number of LR statistics greater than its sample coun-

terpart for the three UC model comparisons.

The p-values equal the counts obtained in step (v) of the algorithm
divided by 1000.

5. Results

Section 5.1 reviews estimates of Models 1, 2, 3, and 4. The fit of the
UC models and the results of the bootstrap LR tests are in Section 5.2.
Section 5.3 discusses the estimates of the trends and cycles across the
6

sample period. I report the IRFs and FEVDs of Models 5 and 6 in
Section 5.4. Section 5.5 explores the reduced form predictive content of
the credit cycle for the business cycle. Finally, Section 5.6 tests whether
my estimated credit cycle better predicts growth of the credit to GDP
ratio ℎ-quarters ahead compared with the Basel gap.

5.1. UC model parameter estimates

Table 2 reports estimates of the factor loadings, 𝛼, 𝛽, 𝜆, and 𝜅
on the states. The cointegrating vector of consumption and income is
approximately [1,−1] according to the estimates of 𝛼. This supports
the PIH. The estimates of 𝜅 indicate movements in consumption are
dominated by the PI trend rather than business cycle fluctuations.
Credit supply grows at a slower rate than nonfinancial assets because
the point estimates of 𝛽 are nearer a half than one. Similar to the
relationship of consumption and the PI trend, estimates of 𝜆 show
the supply of credit responds far more to changes in the level of the
financial trend compared with the credit cycle. Estimates of the factor
loadings are consistent across the UC models implying differences in
the models are not reflected in the measurement equations.

Measurement error in income displays the greatest volatility in the
measurement equations. Estimates of 𝜎𝑖𝑛𝑐 are more than ten times larger
than estimates of 𝜎 and two to three times the size of estimates of
𝑐𝑜𝑛
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Table 2
ML estimates of the UC model measurement equations, 1960Q1-2018Q4.

Model 1 Model 2
𝜁1, 𝜁2 = 0

Model 3
𝜗1, 𝜗2 = 0

Model 4
𝜗1, 𝜗2, 𝜁1, 𝜁2 = 0

Parameter Estimate
(s.e.)

Estimate
(s.e.)

Estimate
(s.e.)

Estimate
(s.e.)

𝛼 1.02
(<0.01)

1.02
(<0.01)

1.02
(<0.01)

1.02
(<0.01)

𝛽 0.62
(<0.01)

0.62
(<0.01)

0.62
(<0.01)

0.62
(<0.01)

𝜅 0.21
(0.09)

0.21
(0.09)

0.22
(0.09)

0.22
(0.09)

𝜆 0.22
(0.07)

0.21
(0.07)

0.22
(0.07)

0.21
(0.07)

𝜎𝑐𝑜𝑛 0.15
(0.18)

0.15
(0.18)

0.15
(0.18)

0.15
(0.18)

𝜎𝑖𝑛𝑐 1.63
(0.26)

1.63
(0.26)

1.67
(0.21)

1.67
(0.21)

𝜎𝑛𝑓𝑐 0.55
(0.23)

0.56
(0.23)

0.57
(0.22)

0.58
(0.21)

𝜎𝑛𝑓𝑎 0.69
(0.20)

0.71
(0.19)

0.67
(0.22)

0.69
(0.21)

Notes: Bootstrap standard errors are calculated as
√

∑𝐵
𝑏=1 (�̂�𝑖𝑏−�̂�𝑖 )2

𝐵−1
1000 and based on

𝐵 = 1000 bootstrap samples.

𝜎𝑛𝑓𝑎 and 𝜎𝑛𝑓𝑐 . Comparing the latter two standard deviations shows the
volatility of the measurement errors of credit supply and nonfinancial
assets have similar magnitudes.

Table 3 contains parameter estimates and associated bootstrap stan-
dard errors of the state equations of Models 1, 2, 3, and 4. Estimates of
the drift in the PI trend, 𝜇, are nearly identical across the models. The
responses of the business cycle and credit cycle to their own lags, 𝜃𝑖
nd 𝛾𝑖 respectively, for 𝑖 = 1, 2, indicate that the cycles are highly
ersistent. Both pairs of parameters sum to close to one across all
our models. This finding is further verified by the eigenvalues of the
AR(2). The eigenvalues of the VAR(2) in Model 1 are complex and

ndicate a high degree of persistence. A shock to the largest eigenvalue
0.912 ± 0.037i) has a half life of nearly two years. The largest
igenvalue of Model 2 is 0.938 while for Models 3 and 4 it is 0.954,
hich yield half-lives of about 3 years for Model 2 and almost 4 years

or Models 3 and 4.
The off-diagonal elements of the VAR estimates, 𝜗1, 𝜗2, 𝜁1, and 𝜁2,

capture the importance of lags in the credit cycle for the business cycle
and lags of the business cycle for the credit cycle, respectively. These
parameters are small and statistically insignificant for Models 1 through
3. This indicates there is little information contained in the business
cycle for the credit cycle. The converse is also true.

Volatility of the shock innovation of the PI trend, 𝜎𝜏 , is estimated
to exceed that of the business cycle, 𝜎𝛿 . The local linear trend of the
financial sector produces estimates of the volatility of innovations to the
slope of the financial trend, 𝜎𝜉 , that are greater than the estimate of the
volatility of innovations to the financial trend level, 𝜎𝜓 . However, these
components are less than half the size of the volatility of innovations
to the credit cycle, 𝜎𝜙. The trend-cycle within sector correlations,
𝜌𝜏,𝛿 and 𝜌𝜓,𝜙, are negative but small and statistically insignificant.
The correlation between cycles, 𝜌𝛿,𝜙, is small across the models and
statistically insignificant in Models 1 and 2, but has a t-ratio of about
two in Models 3 and 4.

5.2. Fit of the UC models

The results of the bootstrap likelihood ratio tests are summarized in
Table 4. Model 1 is assumed to be the null model and is compared
7

to Models 2, 3, and 4 which are the alternative models. The null
Table 3
ML estimate of UC model state equations, 1960Q1-2018Q4.

Model 1 Model 2
𝜁1, 𝜁2 = 0

Model 3
𝜗1, 𝜗2 = 0

Model 4
𝜗1, 𝜗2, 𝜁1, 𝜁2 = 0

Parameter Estimate
(s.e.)

Estimate
(s.e.)

Estimate
(s.e.)

Estimate
(s.e.)

𝜇𝜏 1.52
(0.12)

1.52
(0.12)

1.52
(0.12)

1.52
(0.12)

𝜃1 1.62
(0.15)

1.62
(0.15)

1.68
(0.11)

1.68
(0.11)

𝜃2 −0.66
(0.15)

−0.66
(0.15)

−0.71
(0.11)

−0.72
(0.11)

𝜗1 0.07
(0.05)

0.07
(0.05)

– –

𝜗2 −0.08
(0.05)

−0.08
(0.05)

– –

𝜁1 0.02
(0.11)

– 0.02
(0.11)

–

𝜁2 −0.01
(0.11)

– −0.00
(0.11)

–

𝛾1 1.71
(0.07)

1.73
(0.06)

1.69
(0.07)

1.71
(0.06)

𝛾2 −0.72
(0.07)

−0.75
(0.06)

−0.70
(0.07)

−0.72
(0.06)

𝜎𝜏 1.81
(0.26)

1.80
(0.26)

1.80
(0.34)

1.80
(0.31)

𝜎𝜓 1.18
(0.35)

1.15
(0.34)

1.14
(0.36)

1.12
(0.35)

𝜎𝜉 1.21
(0.14)

1.21
(0.14)

1.21
(0.14)

1.21
(0.14)

𝜎𝛿 1.71
(0.64)

1.71
(0.63)

1.69
(0.62)

1.69
(0.60)

𝜎𝜙 2.66
(0.36)

2.60
(0.34)

2.70
(0.37)

2.65
(0.34)

𝜌𝜏,𝛿 −0.02
(0.06)

−0.02
(0.06)

−0.01
(0.06)

−0.01
(0.06)

𝜌𝜓,𝜙 −0.15
(0.40)

−0.15
(0.48)

−0.15
(0.54)

−0.15
(0.69)

𝜌𝛿,𝜙 0.05
(0.04)

0.05
(0.04)

0.07
(0.04)

0.08
(0.04)

Notes: See the notes to Table 2.

Table 4
Bootstrap likelihood ratio test results.

Model 1 Model 2
𝜁1, 𝜁2 = 0

Model 3
𝜗1, 𝜗2 = 0

Model 4
𝜗1, 𝜗2, 𝜁1, 𝜁2 = 0

LogL
(boot. se)

−2142.21
(35.78)

−2142.61
(35.82)

−2144.51
(35.75)

−2143.00
(11.28)

p-val – 0.201 0.266 0.154

Notes: The test statistic is 𝐿𝑅 = −2(𝑙ℎ(𝛤1) − 𝑙ℎ(𝛤𝑖)), 𝑖 ∈ [2, 3, 4], where 𝛤𝑖 is the
parameter vector for model 𝑖. The p-values are computed as the percentage of bootstrap
estimates that have a larger test statistic than the true value of the test statistic.

hypotheses fail to be rejected across the three tests. The data fits best
to Model 1 with business and credit cycles that evolve jointly as a
reduced-form VAR(2) relative to Models 2, 3, and 4. Thus, there is no
evidence supporting Granger causality running from the credit cycle to
the business cycle or the converse. This finding contradicts Borio et al.
(2018). They present evidence of predictive causality running from the
credit cycle to the business cycle. Placing exclusion restrictions on the
business and credit cycles is at odds with the U.S. data. The rest of this
paper focuses on the estimates produced by Model 1 as it is the model
with the best fit to the data.
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Fig. 3. Bootstrap estimates of the permanent income and financial trends, 1960Q1 to 2018Q4. Notes: The gray bars represent NBER recession dates. The blue shaded areas are
the 90% sup-t uncertainty bands. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Bootstrap estimates of the slope of the financial trend, 1960Q1 to 2018Q4. Notes: The blue shaded areas are the 68% sup-t uncertainty bands. Otherwise see notes to
Fig. 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5.3. Estimates of the trends and cycles

Figs. 3, 4, and 5 plot the median estimates of the bootstrap trends
and cycles for the real and the financial sectors of Model 1 along
with sup-t uncertainty bands of Olea and Plagborg-Møller (2018).7
The sup-t uncertainty bands yield simultaneous coverage probability
equal to the given confidence level. The significance level is 0.1 to
achieve 90% uncertainty bands for plots of the PI trend and level
of the financial trend. Plots of the slope of the financial trend and
business and credit cycles are surrounded by 68% uncertainty bands
implying a significance level of 0.32. Wider bands for the permanent
components aid in visualization. The PI trend and financial trend are
similar from 1960 until after the ‘‘double-dip’’ recession. Both trends
feature pronounced downward movements around the 1973–1975 re-
cession and the ‘‘double-dip’’ recession as seen in the top and bottom
panels of Fig. 3. The PI trend differs from the financial trend in the
subsequent period from 1983 to 2007. The PI trend grows steadily,
while the financial trend exhibits large movements throughout the
1990s. Both trends contract during the 2007–2009 recession. During
this period, movement in the PI trend is not as pronounced as the
contractions of the 1973–1975 and ‘‘double-dip’’ recessions. However,
there is substantial uncertainty surrounding the PI trend during these
recessions. The financial trend has a sharp contraction from a peak in
2009 until 2013. The financial trend has not reached its pre-2007 level
by the end of the sample in contrast to the PI trend.

7 Plots of the trends and cycles estimated using Models 2, 3, and 4 are
found in Appendix I. These estimated trends and cycles resemble the plots in
Figs. 3, 4, and 5.
8

There is also substantial uncertainty around the estimate of the
slope of the financial trend. Fig. 4 shows the slope of the financial
trend contracts during each NBER dated recession with the exception
of the 1960–1961 and 2001 recessions. During the latter recession the
slope actually increases. The most severe contractions in the slope occur
during the 1973–1975 and 2007–2009 recessions.

The top and bottom panels of Fig. 5 display the business and credit
cycles. The former cycle has troughs at or after NBER dates. The credit
cycle features long swings. The first credit cycle peak lines up with the
‘‘double-dip’’ recession. After this however, the credit cycle does not
match up with NBER dates. The credit cycle bottoms out in the mid
1990s and peaks for a second time in 2005, two years before the most
recent financial crisis. The credit cycle troughs in 2010 following the
2007–2009 recession. The estimate of the slope of the financial trend
appears to move with the business cycle. This removes some of the
business cycle comovement and less persistent movements from the
credit cycle.

The business and credit cycles differ both quantitatively and quali-
tatively over the time period. The volatility of the credit cycle is much
larger than the business cycle. The bootstrap median standard deviation
of the business cycle is 11.08 with 5% and 95% quantiles of 9.22 and
13.55. These values for the credit cycle are 33.74, 30.66, and 36.62
respectively. These observations are in line with Borio (2014).

The Basel gap, plotted in Fig. 5, is at odds with the estimated credit
cycle. From 1960 until about 1983, the Basel gap is muted relative to
the credit cycle. The Basel gap behaves much differently after 1983
with two long swings. Borio (2014) claims the shift in the behavior of
the credit to GDP ratio in the mid-1980s reflects increasing financial
liberalization and globalization which loosened financial constraints.
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Fig. 5. Bootstrap estimates of the business and credit cycles, 1960Q1 to 2018Q4. Notes: The red line is the Basel gap scaled by 500 to help draw comparisons. The blue shaded
areas are the 68% sup-t uncertainty bands. Otherwise see notes to Fig. 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 6. Bootstrapped spectral densities of the business and credit cycles, 1960Q1 to 2018Q4. Notes: Plots display median bootstrap estimates of the spectral densities using a
smoothed periodogram with a Bartlett window of length 7. The red line is the spectral density of the Basel gap scaled by 24 000 to help draw comparisons. The blue shaded areas
are the 68% sup-t uncertainty bands. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The first major peak in the Basel gap occurs in 1986 several years
after the estimated credit cycle, which peaks during the ‘‘double-dip’’
recession. Both series decline and experience a protracted trough in the
mid-1990s followed by a steady climb into the 2000s. The estimated
credit cycle peaks in 2005 and its 68% uncertainty bands do not cover
the peak in the Basel gap in 2007. Its trough occurs in 2012 while
the estimated credit cycle troughs about three years earlier. Hence, my
estimates indicate expansion in the U.S. financial markets ended two
years or more before the start of that financial crisis and recession, but
recovery was under way by the beginning of 2010.

The credit cycle is more persistent than the business cycle. The
spectral densities of the business and credit cycles and Basel gap are
plotted in the top and bottom panels of Fig. 6. The top panel shows the
spectral density of the business cycle achieves maximum power at 7.5
years per cycle. In contrast, Morley et al. (2003) find the business cycle
has a period of 2.5 years. This discrepancy results from the business
and credit cycles being a reduced-form VAR(2). Rünstler and Vlekke
(2018) also find that joint estimation of the business and credit cycles
lengthens the period of the business cycle. The maximum power is 10
9

years per cycle for the estimated credit cycle and for the Basel gap.
These results contrast with those of Drehmann et al. (2012) who find
the length of their average credit cycle to be around 16 years.

5.4. Structural VAR results

Table 5 reports parameter estimates of the structural VARs, Model
5 and Model 6. The business cycle responds to the credit cycle on
impact in Model 5. The impact response is reversed in Model 6. The
business cycle responds negatively on impact to the credit cycle in
Model 5, although the estimate of 𝜗∗0 is statistically insignificant. In
Model 6, the credit cycle responds negatively to the business cycle on
impact, as shown by 𝜁∗0 . Once again, the estimated impact coefficient
is statistically insignificant.

Estimates of the lag coefficients of the structural VAR(2)s are similar
across Model 5 and Model 6. The own lag coefficients, 𝜃∗1 , 𝜃∗2 , 𝛾∗1 , and
𝛾∗2 , shown in Table 5 differ only marginally from the estimates of the
own reduced-form lags of Table 3. Whether structural or reduced-form,
these estimates always have large t-ratios (in absolute value). This is
not true of the estimates of the off-diagonal lag coefficients, 𝜗∗𝑖 and 𝜁∗𝑖

for 𝑖 = 1, 2. These estimates are insignificant with t-ratios less than 2
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Fig. 7. IRFs of model 5. Notes: The blue line is the bootstrap median IRF. The blue shaded areas are 90% sup-t uncertainty bands. The shocks are one standard deviation shocks.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 5
Estimates of structural VARs of the business and credit cycles, 1960Q1 to 2018Q4.

Model 5 𝜁∗0 = 0 Model 6 𝜗∗0 = 0

Parameter Estimate
(s.e.)

Estimate
(s.e.)

𝜃∗1 1.62
(0.15)

1.62
(0.15)

𝜃∗2 −0.66
(0.15)

−0.66
(0.15)

𝜗∗0 −0.21
(0.16)

–

𝜗∗1 −0.29
(0.29)

0.07
(0.05)

𝜗∗2 0.08
(0.14)

−0.08
(0.05)

𝜁∗0 – −0.33
(0.28)

𝜁∗1 0.02
(0.11)

−0.50
(0.51)

𝜁∗2 −0.01
(0.11)

0.21
(0.25)

𝛾∗1 1.71
(0.07)

1.69
(0.07)

𝛾∗2 −0.72
(0.07)

−0.70
(0.07)

𝜎𝛿 1.71
(0.64)

1.71
(0.64)

𝜎𝜙 2.60
(0.34)

2.60
(0.34)

Notes: The table reports estimates of 𝜁∗0 and 𝜗∗0 that are multiplied by negative one
to be consistent with the construction of the SVAR impact matrices in Section 2.5.
Otherwise, see the notes to Table 2.

(in absolute value). The inference is there is little support the business
and credit cycles have a structural causal relationship in the short-run.

I compute IRFs to explore the structural responses of shocks to the
business and credit cycles. Figs. 7 and 8 display median IRFs and sup-t
uncertainty bands for Model 5 and Model 6 in response to one stan-
dard deviation business and credit cycle shocks. The only statistically
significant and economically meaningful IRFs are with respect to own
shocks, as shown by Figs. 7 and 8. The median IRF of the business
10
cycle has a hump shape in response to its own shock, which peaks at
4 quarters. This IRF reverts to steady state in about four to five years.
The credit cycle IRF also features a hump shape in response to its own
shock, which peaks at 6 quarters. The median response takes between
six to ten years to revert to zero. In response to a business cycle shock,
the credit cycle exhibits little in the way of an economically interesting
response in Models 5 and 6.

The business cycle features a hump shape in response to a credit
cycle shock, which peaks around 6 quarters in Models 5 and 6. The
responses have 90% uncertainty bands that are strictly positive only
at the 4- to 8-quarter horizon in the top right panel of Fig. 7. Hence,
Fig. 7 depicts the business cycle having statistically and economically
meaningful responses to the credit cycle shock for one to two years,
assuming this shock affects the business cycle at impact. When the
direction of this structural impact causality is reversed, the IRF is muted
and the 90% uncertainty bands cover zero quarter by quarter from
impact to the 10-year horizon as depicted in the top right panel of
Fig. 8. Comparing the IRFs of the business cycle to the credit cycle
shock reveals the sensitivity of the results to the identification scheme.

The mean bootstrap FEVDs for Model 5 are reported in Table 6.8
Remember that in Model 5, the credit cycle is assumed to structurally
cause the business cycle at impact. The FEVD for the PI trend indicates
that 92% of the variation is explained by its own shock across all
horizons. Variation in the level of the financial trend is evenly split
between its own shock and the credit cycle from impact to the 1-year
horizon. However, beginning with the 1-year horizon, the shock to
the slope of the financial trend comes to dominate movements in the
financial trend. This dynamic only increases with the forecast horizon.
Fluctuations in the slope of the financial trend are driven only by its
own shock.

This is in contrast with the FEVDs of the business cycle. After one
year, 75% of the variation in the business cycle is explained by its own
shock, but this drops to 62% by the 10-year horizon. At this horizon,
the credit cycle shock is responsible for about a quarter of the variation
in the business cycle. The credit cycle is economically meaningful as a
driver of business cycle fluctuations when the business cycle responds
at impact to the credit cycle.

8 I report the mean FEVDs to ensure the estimates sum to one at each
horizon.
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Fig. 8. IRFs of model 6. Notes: See notes to Fig. 7.
Table 6
FEVDs of model 5.

Permanent income trend Financial trend

Horizon
Shock

𝜏𝑡 𝜓𝑡 𝜉𝑡 𝛿𝑡 𝜙𝑡 Horizon
Shock

𝜏𝑡 𝜓𝑡 𝜉𝑡 𝛿𝑡 𝜙𝑡

0 0.92 0.00 0.00 0.08 0.00 0 0.00 0.49 0.00 0.00 0.51
1 0.92 0.00 0.00 0.08 0.00 1 0.00 0.39 0.19 0.00 0.42
2 0.92 0.00 0.00 0.08 0.00 2 0.00 0.28 0.40 0.00 0.32
4 0.92 0.00 0.00 0.08 0.00 4 0.00 0.14 0.69 0.00 0.17
8 0.92 0.00 0.00 0.08 0.00 8 0.00 0.05 0.89 0.00 0.06
16 0.92 0.00 0.00 0.08 0.00 16 0.00 0.01 0.97 0.00 0.02
24 0.92 0.00 0.00 0.08 0.00 24 0.00 0.01 0.98 0.00 0.01
32 0.92 0.00 0.00 0.08 0.00 32 0.00 0.00 1.00 0.00 0.00
40 0.92 0.00 0.00 0.08 0.00 40 0.00 0.00 1.00 0.00 0.00

Slope of financial trend Business cycle

Horizon
Shock

𝜏𝑡 𝜓𝑡 𝜉𝑡 𝛿𝑡 𝜙𝑡 Horizon
Shock

𝜏𝑡 𝜓𝑡 𝜉𝑡 𝛿𝑡 𝜙𝑡

0 0.00 0.00 1.00 0.00 0.00 0 0.08 0.00 0.00 0.80 0.12
1 0.00 0.00 1.00 0.00 0.00 1 0.08 0.00 0.00 0.78 0.14
2 0.00 0.00 1.00 0.00 0.00 2 0.08 0.00 0.00 0.77 0.15
4 0.00 0.00 1.00 0.00 0.00 4 0.07 0.01 0.00 0.74 0.18
8 0.00 0.00 1.00 0.00 0.00 8 0.07 0.02 0.00 0.70 0.21
16 0.00 0.00 1.00 0.00 0.00 16 0.07 0.02 0.00 0.69 0.22
24 0.00 0.00 1.00 0.00 0.00 24 0.07 0.03 0.00 0.66 0.24
32 0.00 0.00 1.00 0.00 0.00 32 0.07 0.04 0.00 0.63 0.26
40 0.00 0.00 1.00 0.00 0.00 40 0.07 0.04 0.00 0.63 0.26

Credit cycle

Horizon
Shock

𝜏𝑡 𝜓𝑡 𝜉𝑡 𝛿𝑡 𝜙𝑡

0 0.00 0.30 0.00 0.00 0.70
1 0.00 0.30 0.00 0.00 0.70
2 0.00 0.30 0.00 0.00 0.70
4 0.00 0.30 0.00 0.01 0.69
8 0.00 0.29 0.00 0.02 0.69
16 0.00 0.28 0.00 0.04 0.68
24 0.01 0.26 0.00 0.06 0.67
32 0.01 0.26 0.00 0.07 0.66
40 0.01 0.26 0.00 0.07 0.66

Notes: Each table reports the bootstrap mean FEVD for one standard deviation shocks to the Permanent income trend (𝜏𝑡), the financial trend (𝜓𝑡), financial trend drift (𝜉𝑡), the
business cycle (𝛿𝑡), and the credit cycle (𝜙𝑡).
The business cycle is not important for explaining fluctuations in the
credit cycle under this identification. About two-thirds of the variation
in the credit cycle comes from its own shock at all forecast horizons,
11

while about one quarter comes from the level of the financial trend.
Table 7 reports the mean bootstrap FEVDs for Model 6 in which
the credit cycle responds to the business cycle on impact. The FEVDs
for the PI trend and the level and slope of the financial trend are

similar to the results in Table 6 for Model 5. The credit cycle ceases
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Table 7
FEVDs of model 6.

Permanent income trend Financial trend

Horizon
Shock

𝜏𝑡 𝜓𝑡 𝜉𝑡 𝛿𝑡 𝜙𝑡 Horizon
Shock

𝜏𝑡 𝜓𝑡 𝜉𝑡 𝛿𝑡 𝜙𝑡

0 0.92 0.00 0.00 0.08 0.00 0 0.00 0.49 0.00 0.00 0.51
1 0.92 0.00 0.00 0.08 0.00 1 0.00 0.39 0.19 0.00 0.42
2 0.92 0.00 0.00 0.08 0.00 2 0.00 0.28 0.40 0.00 0.32
4 0.92 0.00 0.00 0.08 0.00 4 0.00 0.14 0.69 0.00 0.17
8 0.92 0.00 0.00 0.08 0.00 8 0.00 0.05 0.89 0.00 0.06
16 0.92 0.00 0.00 0.08 0.00 16 0.00 0.01 0.97 0.00 0.02
24 0.92 0.00 0.00 0.08 0.00 24 0.00 0.01 0.98 0.00 0.01
32 0.92 0.00 0.00 0.08 0.00 32 0.00 0.00 1.00 0.00 0.00
40 0.92 0.00 0.00 0.08 0.00 40 0.00 0.00 1.00 0.00 0.00

Slope of financial trend Business cycle

Horizon
Shock

𝜏𝑡 𝜓𝑡 𝜉𝑡 𝛿𝑡 𝜙𝑡 Horizon
Shock

𝜏𝑡 𝜓𝑡 𝜉𝑡 𝛿𝑡 𝜙𝑡

0 0.00 0.00 1.00 0.00 0.00 0 0.09 0.00 0.00 0.91 0.00
1 0.00 0.00 1.00 0.00 0.00 1 0.09 0.00 0.00 0.91 0.00
2 0.00 0.00 1.00 0.00 0.00 2 0.08 0.01 0.00 0.90 0.01
4 0.00 0.00 1.00 0.00 0.00 4 0.08 0.01 0.00 0.88 0.03
8 0.00 0.00 1.00 0.00 0.00 8 0.08 0.02 0.00 0.84 0.06
16 0.00 0.00 1.00 0.00 0.00 16 0.08 0.03 0.00 0.82 0.07
24 0.00 0.00 1.00 0.00 0.00 24 0.08 0.04 0.00 0.77 0.11
32 0.00 0.00 1.00 0.00 0.00 32 0.07 0.05 0.00 0.75 0.13
40 0.00 0.00 1.00 0.00 0.00 40 0.07 0.05 0.00 0.75 0.13

Credit cycle

Horizon
Shock

𝜏𝑡 𝜓𝑡 𝜉𝑡 𝛿𝑡 𝜙𝑡

0 0.00 0.28 0.00 0.05 0.67
1 0.00 0.28 0.00 0.05 0.67
2 0.00 0.28 0.00 0.05 0.67
4 0.00 0.28 0.00 0.05 0.67
8 0.00 0.27 0.00 0.07 0.66
16 0.00 0.26 0.00 0.11 0.63
24 0.01 0.25 0.00 0.12 0.62
32 0.01 0.25 0.00 0.13 0.61
40 0.01 0.25 0.00 0.13 0.61

Notes: See notes to Table 6.
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to be an important driver of business cycle fluctuations when causality
runs from the business cycle to the credit cycle. Just under 90% of the
business cycle variation comes from its own shock after one year. About
three quarters of this variation comes from its own shock after 10 years
and just over 10% comes from the credit cycle. The business cycle does
not drive fluctuations in the credit cycle in Model 6. After 10 years over
60% of credit cycle variation comes from its own shocks and about 25%
comes from the level of the financial trend.

5.5. The predictability of business and credit cycles

This section reexamines claims made by Schularick and Taylor
(2012) and Borio et al. (2018). They, among others, report the credit
cycle and Basel gap have short-term predictive power for the business
cycle. Bootstrap t-statistics and p-values are computed to evaluate the
significance of the credit cycle and the first difference of the PI trend
for predicting the ℎ-quarter ahead business cycle, ℎ ∈ [1, 2, 4, 8, 12, 16].9
I also test the significance of the business cycle, the second difference
of the level of the financial trend, and the first difference of the slope
of the financial trend for predicting the credit cycle ℎ-quarters ahead.10

Table 8 reports the regression equation considered and the boot-
strap mean estimates of these regressions. The estimates of the first

9 The use of ℎ-step ahead regressions to evaluate the impact of financial
omponents is similar to the work of Hartwig et al. (2021) and Adrian et al.
2022).
10 The first two lags of the dependent variable are included in the regressions

o eliminate own predictability.
12
regression imply there is no predictive power in the credit cycle for the
business cycle over the 1-year horizon. The estimated coefficient on the
credit cycle, 𝜙𝑡, for predicting the business cycle, 𝛿𝑡, are all small and
nsignificant at the 5% level for 1 to 4 quarters ahead. These results are

challenge for Borio et al. (2018). They claim their estimated credit
ycle is a significant predictor of recessions at the 1 year horizon. My
esults do, however, lend evidence to Borio et al. (2018)’s claim that
he credit cycle is a significant predictor of the business cycle over 2-
nd 3-year horizons. The estimated coefficients on the credit cycle are
egative at all horizons indicating that a credit cycle expansion predicts
business cycle contraction.

The second regression tests the implications of the Beveridge–
elson decomposition. This decomposition implies that the growth rate
f the trend is orthogonal to the cycle. As expected, the estimated
oefficient on the first differences of the PI trend are negative across
ll horizons. However, these estimates are insignificant at the 5% and
0% level across all horizons.

The third regression examines the predictive content of the business
ycle for the credit cycle. The estimated coefficients on the business
ycle are positive across all horizons indicating greater transitory real
conomic activity anticipates temporary increases in credit activity.
he estimates are significant at the 5% level.11 In contrast, Section 5.4
rovided evidence the business cycle does not structurally cause the

11 As demonstrated by the robustness exercise in Appendix G, the estimated
business cycle is not a significant reduced-form predictor of the credit cycle
when income is measured by real GDP.
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Table 8
Tests of business cycle and credit cycle predictive content, 1960Q1 to 2018Q4.

Regression: (𝑐𝑦𝑐𝑙𝑒)𝑡+ℎ = 𝛼 + 𝛽(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟)𝑡 + 𝛾(𝐿)(𝑐𝑦𝑐𝑙𝑒)𝑡 + 𝑒𝑡
Cycle Predictor Number of quarters ahead

1 2 4 8 12 16

𝛽 −0.005 −0.013 −0.032 −0.088 −0.137 −0.159
𝛿𝑡 𝜙𝑡 se 0.011 0.016 0.023 0.028 0.028 0.028

t-stat −0.451 −0.781 −1.415 −3.212 −4.862 −5.624
p-val 0.329 0.223 0.085 0.001 0.000 0.000

𝛽 −0.359 −0.318 −0.146 −0.194 −0.153 −0.103
𝛿𝑡 𝛥𝜏𝑡 se 0.204 0.287 0.412 0.522 0.564 0.596

t-stat −1.724 −1.064 −0.305 −0.340 −0.245 −0.152
p-val 0.116 0.157 0.228 0.288 0.318 0.339

𝛽 0.130 0.178 0.247 0.418 0.633 0.794
𝜙𝑡 𝛿𝑡 se 0.060 0.084 0.124 0.195 0.242 0.274

t-stat 2.180 2.122 2.000 2.145 2.612 2.906
p-val 0.017 0.019 0.026 0.018 0.005 0.002

𝛽 0.133 0.061 0.528 0.387 0.281 0.083
𝜙𝑡 𝛥2𝜓𝑡 se 0.158 0.223 0.325 0.520 0.652 0.743

t-stat 0.848 0.268 1.616 0.739 0.422 0.106
p-val 0.216 0.390 0.056 0.232 0.338 0.454

𝛽 0.387 0.232 1.848 2.216 2.643 1.870
𝜙𝑡 𝛥𝜉𝑡 se 0.525 0.743 1.072 1.705 2.139 2.444

t-stat 0.768 0.329 1.731 1.289 1.219 0.750
p-val 0.236 0.335 0.047 0.102 0.117 0.230

Notes: The coefficients, standard errors, and t-values are the mean values of the
regressions from 1000 bootstrap resamples. The standard errors are Newey–West
corrected. The term 𝛾(𝐿) is a second order lag polynomial.

redit cycle. Additionally, there is some evidence the credit cycle struc-
urally causes the business cycle over the 1- to 2-year horizon. These
esults serve as a caution against equating statistical predictability and
tructural causality.

The final two regressions assess the predictive content of the second
ifference of the level of the financial trend and the first difference
f the slope of the financial trend for the credit cycle. The estimated
oefficients on the second differences of the level of the financial trend
re positive, but insignificant at the 5% level across all horizons. The
stimated coefficients on the first difference of the slope of the financial
rend are also positive across all horizons. However, the estimates are
nsignificant at the 5% level with the exception of the one year horizon.

.6. Predictive regressions for the growth rate of credit to GDP

This section constructs bootstrapped Breusch–Godfrey tests to inves-
igate the ability of the Basel gap, the estimated business and credit
ycles, and the estimated slope of the financial trend to predict the
rowth rate of the credit to GDP ratio.12 The Breusch–Godfrey test

estimated here has two steps. The first step regresses the ℎ-step ahead
growth rate of the credit to GDP ratio on an intercept and predictor
variables. Next, the residuals from the first step are regressed on its own
lagged value and the explanatory variables of the first regression. The
test statistic is the Lagrangian multiplier statistic that equals 𝑇 times
the 𝑅-squared of the second step regression, where 𝑇 is the number of
observations. The test statistic follows a chi-squared distribution with
one degree of freedom.

The null hypothesis of the Breusch–Godfrey test is that the residu-
als of the first regression are serially uncorrelated. Serial correlation
indicates predictability in the error terms. Hence, unaccounted for
information exists in the dependent variable of the first-step regression.
Nelson (2008) runs similar regressions to examine whether the HP-
filtered measure of the output gap contributes to the ability of the

12 Augmented Dickey Fuller tests reject the null of a unit root at the 1% level
or the growth rate of the credit to GDP ratio. The null fails to be rejected for
he log level of the credit to GDP ratio.
13
Table 9a
Predictive regressions for the growth rate of credit to GDP, 1960Q1 to 2018Q4.

Regression: 𝛥
(

𝐶𝑟𝑒𝑑𝑖𝑡
𝐺𝐷𝑃

)

𝑡+ℎ
= 𝛽0 + 𝛽1(𝐵𝑎𝑠𝑒𝑙 𝐺𝑎𝑝)𝑡 + 𝑒𝑡

Number of quarters ahead

1 2 4 8 12 16

coef 0.051 0.045 0.028 0.002 −0.016 −0.024
𝛽1 se 0.011 0.012 0.012 0.013 0.013 0.014

t-stat 4.461 3.801 2.261 0.122 −1.239 −1.770
p-val 0.000 0.000 0.012 0.452 0.108 0.039

R2 value 0.088 0.069 0.027 0.000 0.009 0.018

Breusch–Godfrey value 5.037 10.002 14.027 15.781 15.775 15.946
p-val 0.025 0.002 0.000 0.000 0.000 0.000

Notes: The null hypothesis of the Breusch–Godfrey test is that the regression errors are
not serially correlated.

Table 9b
Predictive regressions for the growth rate of credit to GDP, 1960Q1 to 2018Q4.

Regression: 𝛥
(

𝐶𝑟𝑒𝑑𝑖𝑡
𝐺𝐷𝑃

)

𝑡+ℎ
= 𝛽0 + 𝛽1(𝐵𝑎𝑠𝑒𝑙 𝐺𝑎𝑝)𝑡 + 𝛽2𝜙𝑡 + 𝑒𝑡

Number of quarters ahead

1 2 4 8 12 16

coef 0.036 0.029 0.010 −0.015 −0.025 −0.026
𝛽1 se 0.012 0.012 0.013 0.013 0.014 0.015

t-stat 3.075 2.425 0.798 −1.115 −1.781 −1.704
p-val 0.001 0.008 0.213 0.133 0.038 0.045

coef 0.008 0.009 0.009 0.008 0.004 0.001
𝛽2 se 0.002 0.002 0.002 0.003 0.003 0.003

t-stat 3.625 3.642 3.798 3.082 1.531 0.274
p-val 0.000 0.000 0.000 0.001 0.064 0.392

R2 value 0.141 0.126 0.094 0.049 0.021 0.018

Breusch–Godfrey value 2.773 5.503 8.385 11.552 14.524 15.849
p-val 0.096 0.019 0.004 0.001 0.000 0.000

Notes: The coefficients, standard errors, and t-values are the mean values of the
regressions from 1000 bootstrap resamples. The null hypothesis of the Breusch–Godfrey
tests is that the regression errors are not serially correlated.

Beveridge–Nelson trend to predict output growth. The Breusch–Godfrey
test is useful because the Basel gap is used to predict the state of the
financial sector as measured by the credit to GDP ratio. However, the
Basel gap is a hidden state retrieved from the residual of the HP-filtered
credit to GDP ratio. If the Basel gap fails to predict the credit to GDP
ratio then its predictive power is spurious in line with the findings of
Schüler (2020). A lack of predictive power would indicate the Basel gap
is not an appropriate early warning indicator for financial crises.13

Table 9a shows the ℎ-quarter ahead growth rate of the credit to
DP ratio regressed on an intercept and the Basel gap, where ℎ ∈

[1, 2, 4, 8, 12, 16]. The estimated coefficients on the Basel gap, 𝛽1, in
Table 9a are positive and significant at the 5% level over the first
year. The coefficient approaches zero at the 8-quarter horizon before
turning negative. The 𝑅2 peaks at 8.8% at ℎ = 1, is 6.9% at ℎ = 2,
and is under 3% at all other horizons. The Breusch–Godfrey test shows
there is serial correlation in the residuals of this regression. The null
of no serial correlation is rejected at the 5% level across all horizons
indicating information in the dependent variable is left unexplained.

Table 9b adds the estimated credit cycle to the previous regression.
The estimated coefficient on the Basel gap, 𝛽1, is once again positive
from the 1- to the 4-quarter ahead forecast horizons, but is insignificant
at the 5% level beyond the 1-year ahead forecast. The estimate for
𝛽1 turns negative at longer horizons, but has a bootstrapped 𝑝-value
less than 4% at the 4-year forecast horizon. This implies the Basel gap
predicts mean reversion in the credit to GDP ratio at longer horizons.
Mean reversion suggests the Basel gap is forecasting financial stability

13 See Donaldson (1992) and Canova (1994) for important work discussing
the limitations of early warning indicators for financial crises.
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Table 9c
Predictive regressions for the growth rate of credit to GDP, 1960Q1 to 2018Q4.

Regression: 𝛥
(

𝐶𝑟𝑒𝑑𝑖𝑡
𝐺𝐷𝑃

)

𝑡+ℎ
= 𝛽0 + 𝛽1(𝐵𝑎𝑠𝑒𝑙 𝐺𝑎𝑝)𝑡 + 𝛽2𝜙𝑡 + 𝛽3𝛿𝑡 + 𝑒𝑡

Number of quarters ahead

1 2 4 8 12 16

coef 0.039 0.032 0.011 −0.015 −0.025 −0.026
𝛽1 se 0.011 0.011 0.012 0.013 0.014 0.015

t-stat 3.592 2.842 0.917 −1.110 −1.780 −1.721
p-val 0.000 0.003 0.180 0.134 0.038 0.043

coef 0.006 0.007 0.008 0.008 0.004 0.001
𝛽2 se 0.002 0.002 0.002 0.003 0.003 0.003

t-stat 2.913 2.938 3.367 2.995 1.513 0.192
p-val 0.002 0.002 0.000 0.002 0.066 0.424

coef 0.029 0.029 0.018 0.002 −0.000 0.004
𝛽3 se 0.006 0.006 0.007 0.008 0.008 0.008

t-stat 4.609 4.572 2.613 0.265 −0.015 0.562
p-val 0.000 0.000 0.005 0.395 0.473 0.288

R2 value 0.214 0.204 0.124 0.049 0.021 0.020

Breusch–Godfrey value 0.145 1.755 5.574 11.525 14.520 15.704
p-val 0.709 0.187 0.018 0.001 0.000 0.000

Notes: See notes to Table 9b.

in the longer run when the estimated credit cycle is taken into account.
Thus, the Basel gap may not be suited to drawing conclusions about
financial instabilities.

The bootstrap mean estimate of the coefficient on the credit cycle,
𝛽2, is positive, but smaller in magnitude than 𝛽1, across all horizons.
These estimates are significant at the 5% level across the first eight
quarters. The 𝑅2 peaks at 14.1% for the 1-quarter ahead forecast. The
Breusch–Godfrey test indicates that adding the credit cycle removes
autocorrelation in the residuals only at the 1-quarter ahead forecast.

Table 9c adds the estimated business cycle to the regression in
Table 9b. The coefficients on the Basel gap and the credit cycle, 𝛽1
nd 𝛽2, are consistent with the estimates in Table 9b. The bootstrap
ean estimate of the coefficient on the business cycle, 𝛽3, is positive

nd significant at the 5% level from 1- to 4-quarter ahead forecasts. The
oefficients are larger in magnitude than the coefficient on the credit
ycle over these forecast horizons. At horizons longer than one year, 𝛽3
s not significantly different from zero at the 5% level. The 𝑅2 peaks at
1.4% at the 1-quarter ahead forecast, but falls to about 3% beyond a 2-
ear forecast horizon. The Breusch–Godfrey tests indicate the estimated
usiness cycle improves the prediction of growth in the credit to GDP
atio after accounting for the Basel gap and the estimated credit cycle.
he null hypothesis of no serial correlation in the residuals is rejected at
etter than the 18% level over 1- and 2-quarter ahead forecast horizons.

I also consider the ability of the estimated slope of the financial
rend to predict growth in the credit to GDP ratio. Table 10 reports
n bootstrapped regressions of this ratio on the estimated slope of the
inancial trend.14 The bootstrap mean estimate of the coefficient on the
lope of the financial trend, 𝛽4, is positive from the 1- to the 12-quarter
head forecast horizons, but is insignificant at the 5% level beyond
he 3-year ahead forecast. This coefficient is larger in magnitude than
hose of the business and credit cycles in Table 9c in all but the 3-
ear horizon. The 𝑅2 is above 20% from the 1- to 4-quarter horizon
nd peaks at 28.6% at the 2-quarter horizon. The 𝑅2 falls below 5% at
onger horizons.

The Breusch–Godfrey tests indicate the estimated financial trend
lope has more predictive power for growth in the credit to GDP ratio
han the other predictors considered. The null hypothesis of no serial
orrelation in the residuals is rejected at better than the 25% level

14 Inclusion of the slope of the financial trend into the regression in Table 9c
oes not alter the results in Table 10. These results are available upon request.
14
Table 10
Predictive regressions for the growth rate of credit to GDP, 1960Q1 to 2018Q4.

Regression: 𝛥
(

𝐶𝑟𝑒𝑑𝑖𝑡
𝐺𝐷𝑃

)

𝑡+ℎ
= 𝛽0 + 𝛽4𝜉𝑡 + 𝑒𝑡

Number of quarters ahead

1 2 4 8 12 16

coef 0.177 0.189 0.160 0.077 0.012 −0.027
𝛽4 se 0.023 0.023 0.026 0.034 0.036 0.036

t-stat 7.712 8.304 6.157 2.241 0.336 −0.763
p-val 0.000 0.000 0.000 0.016 0.369 0.224

R2 value 0.248 0.286 0.207 0.049 0.002 0.006

Breusch–Godfrey value 1.448 0.174 0.755 11.347 16.739 17.479
p-val 0.267 0.744 0.469 0.001 0.000 0.000

Notes: See notes to Table 9a.

over 1- and 4-quarter ahead forecast horizons. Hence, the direction of
the financial trend is important for predicting growth in the credit to
GDP ratio. This suggests it is permanent shocks rather than transitory
movements which matters for gauging the state of financial stability.

The ability of the slope of the financial trend to outperform the Basel
gap in predicting growth in the credit to GDP ratio is due in part to the
model specification. Note that the slope of the financial trend is the
growth rate of its level and is estimated in the models. This slope is also
a component of the HP filter as shown by Harvey and Jaeger (1993).
The Basel gap is measured by subtracting the level of the HP-filtered
trend from the observed series of the credit to GDP ratio. Therefore,
the residuals, or Basel gap, contains information about the slope of the
trend.

To further illustrate the importance of permanent shocks for gaug-
ing financial stability, I reestimate the regression of Table 10 on a
rolling basis.15 The slope of the financial trend is set to have a fixed
window length of forty-eight quarters in the rolling regression. The
purpose of this exercise is to determine whether the slope of the
financial trend provided a signal of a permanent shift in the credit to
GDP ratio.

Fig. 9 shows 𝛽4 moves substantially lower in the two years prior
to the 2007–2009 recession and financial crisis in the United States. A
U-shaped trough is clearly visible spanning the period of 2005 to 2009
in the 1- and 2-quarter ahead regressions. The change in relationship is
less pronounced in the 4-quarter ahead regression, but is still apparent.
After the 2007–2009 recession the estimates of 𝛽4 return to previous
levels. A change in the relationship between the slope of the financial
trend and the growth of the credit to GDP ratio signals a permanent
shock to financial stability as measured by the credit to GDP ratio itself.
These regressions indicate that the slope of the financial trend could
have been used as a tool to detect a period of financial instability in
real time.

6. Conclusion

This paper estimates UC models to examine the usefulness of macro-
prudential policy and present new estimates of the credit cycle. Income
and consumption share a common Beveridge–Nelson trend as implied
by the permanent income hypothesis. The macro-finance model of
leverage in Brunnermeier and Sannikov (2014) is used to place param-
eter restrictions on credit supply and nonfinancial assets. The common
permanent component of credit supply and nonfinancial assets is a local
linear trend. The business and credit cycles form a VAR(2). Estimation
of the UC models is done via classical optimization of the predictive
likelihood of the Kalman filter on a quarterly U.S. sample from 1960
to 2018. The UC models are bootstrapped to construct the empirical

15 I am grateful to an anonymous referee who proposed the inclusion of
additional support of this point.
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Fig. 9. Estimates of 𝛽4 from rolling regressions, 1980Q1 to 2017Q4. Notes: The coefficient 𝛽4 corresponds to the regression in Table 10 and ℎ denotes the forecast horizon. The
blue line is the bootstrap median value of the regression. The blue shaded areas are 90% sup-t uncertainty bands. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
sampling distributions of the model parameters, state variables, and test
statistics.

There are five key contributions of this paper. First, my estimates
support modeling the credit cycle jointly with the business cycle as a
reduced-form VAR(2). Second, the estimated credit cycle features two
peaks of similar magnitude, with the latter being two years prior to the
financial crisis in contrast to the Basel gap. Third, recursive structural
VARs lend support for causality running from the credit cycle to the
business cycle over the 1- to 2-year horizon. Fourth, I find no evidence
of reduced-form predictability of the credit cycle for the business cycle
at the 1-, 2-, and 4-quarter horizons. Interestingly, the business cycle
is a good predictor of the credit cycle from the 1-quarter to 4-year
horizon. Fifth, the Basel gap is a poor predictor of the growth of the
credit to GDP ratio at short, medium, and long forecast horizons. At 1-
and 2-quarter horizons, the estimated credit and business cycles predict
the growth rate of the credit to GDP ratio. However, the slope of the
financial trend has forecasting power at the 1- to 4-quarter horizons
for the growth of the credit to GDP ratio. Hence, my results caution
against the use of the Basel gap as a signal of the underlying state
of the financial markets. Evidence in this paper suggests policymakers
should take permanent shocks to the financial sector into account when
assessing financial stability.

Future work should focus on utilizing theories from the financial
frictions literature to restrict the UC model. These theories can be
used to address whether trends in the real and financial sectors are
independent. If this assumption is not supported by the data, the impli-
cations for aggregate fluctuations should be of interest to economists
and policymakers.

Data availability

The dataset is provided in the Data in Brief.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jfs.2023.101120.
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