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A B S T R A C T   

We explore interconnectedness in the interbank overnight lending market and propose the liquidity network and 
the urgent borrower network which capture the urgency to trade. The liquidity network connects the initiating 
party in a trade to the passive party, while the urgent borrower network connects passive sellers (lenders) to 
urgent buyers (borrowers). Along with the buyer/seller trading network, we show these networks complement 
each other, revealing valuable information that improves short-term forecasts of soft and hard information and 
country-specific yield spreads. Connectivity increases in these networks during raises volatility and boosts vol-
ume, revealing the dual nature of interconnectedness—too much interconnectedness may increase systemic risk, 
but too little may impede market functioning.   

1. Introduction 

Network analysis is a proven and effective tool to assess and un-
derstand financial markets. In fact, interconnectedness increases 
contagion and network connections can create channels for contagion 
among banks, increasing and systemic risk (Glasserman and Young, 
2015, 2016). Babus and Hu (2017) provide a theory of trading through 
intermediaries in over-the-counter (OTC) markets where traders are 
connected through an informational network and observe others’ ac-
tions. They show that trading through this informational network is 
essential to support trade when agents have limited commitment and 
infrequently meet their counterparties. Empirical evidence in Brunetti 
et al. (2019) supports informational models where information from 
interbank trading networks forecasts market liquidity problems and is 
useful to regulators in better monitoring these important markets. In this 
paper we posit that trade aggressiveness both provides additional in-
formation and serves as a commitment device (i.e. aggressive orders de 

facto commit to trade) in a market without intermediaries. 
We expand on the notion that information is important in forming 

networks and trace the evolution of the e-MID OTC interbank lending 
market from 2006 through 2012, an important period spanning the 
2007–08 financial crisis. Rather than simply constructing trading net-
works between buyers and sellers, we define two new networks: (i) 
liquidity networks as directed networks that map aggressive banks 
(conceptually equivalent to using “market orders”) to their passive 
counter-party in the overnight-lending market and (ii) urgent borrower 
networks connecting aggressive borrowers to passive lenders.1 Both 
liquidity and urgent borrower networks capture the urgency to trade by 
using trade aggressiveness, helping to overcome limited commitment 
and limited counterparty information frictions in the OTC market. 
Importantly for the interbank market, daily regulatory capital re-
quirements create strong incentives for distributing overnight funds 
among banks, with liquidity and urgent borrower networks reflecting 
market-wide liquidity conditions among banks. 
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Importantly, though the same set of overnight interbank transactions 
generates all three types of networks, we expect different network to-
pologies among the three since the urgency to trade adds information 
beyond trade direction.2 Our work identifies liquidity and urgent 
borrower networks as alternative dimensions for viewing financial 
markets: The urgency to trade reflected in these networks represents 
information that differs from, and complements, information gleaned 
from trading networks. 

We first explore structural differences among trading, liquidity, and 
urgent borrower networks. We demonstrate that the structures of the three 
networks differ—the standard core-periphery model with a single core 
does not fit the interbank market well. In fact, using the Cluster Affiliation 
Model (a method novel to financial network analysis) we provide rigorous 
evidence that each network is composed of multiple and overlapping core- 
periphery structures organized by country. Each network has three over-
lapping cores before the crisis, but following the 2008 collapse of Lehman 
Brothers, the number of cores decreases to one for the trading network and 
two for the liquidity and urgent borrower networks. 

To the best of our knowledge, the existence of multiple cores of banks is 
new to the empirical financial networks literature and aligns with theo-
retical predictions made in several recent works, including Babus and Hu 
(2017), Castiglionesi and Eboli (2018), and Castiglionesi and Navarro 
(2020). Castiglionesi and Navarro (2020), for instance, show that 
core-periphery networks emerge in equilibrium within the interbank 
market and optimally balance the trade-off of higher payouts versus 
bankruptcy risk faced by banks when connecting via interbank trades.3 

These novel findings of multiple and overlapping core-periphery 
structures also have important implications for empirical analyses of 
financial networks. In fact, we show that the information gleaned from 
the three networks differs and changes over time, highlighting the fact 
that these alternative network lenses provide complementary informa-
tion about the interbank market. 

Examining the time-series changes in the three networks, we 
conjecture that the incremental information from liquidity and urgent 
borrower networks is more important during high market information 
asymmetry periods and when bank reserves are relatively scarce—-
characteristic interbank market conditions during the 2007–09 financial 
crisis.4 In particular, we examine the evolution of interconnectedness 
among European banks around the crisis. We find that various measures 
of interconnectedness (degree, clustering, reciprocity, and the largest 
strongly connected component (LSCC))5 all dropped substantially from 
2006 to 2012, with the decline most pronounced in trading and urgent 
borrower networks: Over time, banks became less likely to trade with 
each other but only slightly less aggressive in approaching each other to 
trade. Importantly, the urgent borrower network maintained inter-
connectivity throughout the crisis, demonstrating a resilience in the 
interbank market’s ability to distribute liquidity from institutions with 
surplus funds to those in urgent need. In fact, by the end of 2012, urgent 

borrower degree and reciprocity recover to near pre-crisis levels. 
We also find that the LSCC and reciprocity are systematically highest 

in the liquidity network relative to trading or urgent borrower networks. 
For example, reciprocity is consistently more than three times higher in 
the liquidity network than the other networks, indicating that banks 
trading with each other are more likely to trade both passively and 
aggressively when they do so. 

We subsequently explore whether information from trading, 
liquidity, and urgent borrower networks is useful for forecasting eco-
nomic conditions where these banks operate.6 Consistent with the 
growing literature on the “sovereign-bank nexus” (where the interbank 
market transmits important monetary policy with economy-wide re-
percussions), we find that forecasts of macroeconomic variables and 
country-specific spreads are more accurate when utilizing all three 
networks together.7 

We further explore the differential information from each network 
by examining whether and how the interbank network forecasts hard 
and soft macroeconomic information, euro-zone yield spreads, and 
country-specific yield spreads. Consistent with Babus and Hu (2017) 
where information asymmetries drive network formations and Kroeger 
et al. (2018), where the interbank market conveys information to the 
real economy, we find that trade aggressiveness in the liquidity and 
urgent borrower networks improve short-term forecasts of soft infor-
mation and country-specific yield spreads. 

Our results highlight that connections among interbank networks 
and the real economy remain even after the 2007–09 crisis when the 
European Central Bank bolstered the supply of reserves, suggesting that 
the interbank market continued to inform the real economy. Our results 
speak to the important conduit between the banking sector and the real 
economy during a time when the reserve supply is abundant. Moreover, 
a key policy implication of our findings is that all three networks should 
be used together to create more accurate forecasts. 

Lastly, we compare the information content of trading and liquidity 
networks with that of traditional volatility and volume measures. We find 
that in normal market conditions when interconnectedness is high, 
further increases in connectivity of either network raise volatility. In the 
relatively low interconnectedness (crisis) period, however, an increase in 
liquidity network connectivity reduces volatility and boosts trading vol-
ume, revealing the dual character of interconnectedness—too much may 
increase systemic risk, but too little may impede market functioning. 

Our work contributes to a better understanding of how interbank 
markets operate and convey information about the real economy via the 
sovereign-bank nexus. While other papers focus on interbank network 
structures and contagion (Degryse and Nguyen, 2007; and Mistrulli, 
2011), our focus on different network constructs—trading, liquidity, 
and urgent borrower networks—shows these different lenses provide 
important insights into the macroeconomy.8 Importantly, we create and 

2 Brunetti et al. (2019) use these same data, building on Shin (2009, 2010) 
and Elliott, Golub, and Jackson (2014).  

3 Babus and Hu (2017) and Castiglionesi and Eboli (2018) show, respectively, 
that a star network with concentrated intermediation is both constrained effi-
cient and stable and less exposed to systemic risk than other networks. Li and 
Schuerhoff (2019) document a core-periphery network in the municipal bond 
market where the same regulatory incentives to trade may not hold. Casti-
glionesi and Eboli (2018) compare the efficiency of star-shaped, complete, and 
incomplete interbank trading networks. We document that the overlapping 
core-periphery e-MID topology matches the interlinked star network of Babus 
and Hu (2017). 

4 Brunetti, di Filippo, and Harris (2011) demonstrate high asymmetric in-
formation while Kroeger, McGowan, and Sarkar (2018) highlight the relative 
lack of bank reserves in the euro area during the crisis.  

5 LSCC is defined as the maximum number of traders that can be reached 
from any other trader by following directed edges (see Adamic et al., 2017, and 
Brunetti et al., 2019). Further details are available in Section 3.2. 

6 This exercise follows the spirit of comparing various network constructs, e. 
g. Billio et al. (2012) show correlation networks (among stock returns) reflect 
financial interconnectedness and crises, while Brunetti et al. (2019) show 
interbank trading networks forecast market liquidity problems.  

7 The growing literature exploring the sovereign-bank nexus and financial 
stability includes Acharya, Drechsler, and Schnabl (2014); Altavilla, Pagano, 
and Simonelli (2016); Becker and Ivashina (2018); Bocola (2016); Bolton and 
Jeanne (2011); Farhi and Tirole (2014); Gennaioli, Martin, and Rossi (2014); 
and Popov and van Horen (2015).  

8 The vast literature exploring trading networks includes empirical analysis 
examining how network topology exacerbates or absorbs shocks in different 
environments (Allen and Gale, 2000; Gai, Haldane, and Kapadia, 2011; Ace-
moglu, Ozdaglar, and Tahbaz-Salehi, 2015; Cont, Moussa, and Santos, 2013; 
Georg, 2013; Glasserman and Young, 2015), tracing the evolution of interbank 
networks during calm and crises subperiods (van Lelyveld, 2014; Brunetti et al., 
2019), and establishing the forecasting power of network statistics (Adamic 
et al., 2017), modeling the structure of banks (Flood et al., 2021), among 
others. 
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study liquidity and urgent borrower networks, new types of physical 
networks that more specifically focus on liquidity dynamics in financial 
markets. We find that networks integrating these dynamics link inter-
bank liquidity to the real economy and improve macroeconomic fore-
casts. Given the importance of liquidity and liquidity risk in financial 
markets, market regulators and participants may benefit from moni-
toring the dynamics of liquidity and urgent borrower networks, whether 
during financial crises or in more stable economic times. 

2. Data: e-MID overnight-lending market 

In this section, we present background information on the e-MID 
market and examine its activity using financial statistics. Established in 
1990 as a Bank of Italy initiative, the e-MID managed the only interbank 
unsecured deposit market on an electronic platform for the euro system. 
The e-MID held an estimated 17%− 22% market share in all euro 
interbank transactions prior to 2007 (with this share decreasing there-
after). More than 200 commercial banks in 29 countries utilized e-MID 
during our study, posting public quotes (i.e., bids, offers, or both) and 
executing trades primarily for overnight interbank deposits, helping 
banks to meet regulatory capital, liquidity, and daily reserve 
requirements.9 

In the e-MID market banks can observe each other’s quotes, 

including top of book (highest bid and lowest offer) and others displayed 
by descending price terms. The trading mechanism stems from the 
quote-driven display, like a limit order book in a stock market (without 
consolidation). When a bank hits a displayed quote, the system allows 
both banks to negotiate quantity and interest rate terms. When an 
aggressor bank actively chooses a quoted order, consummated trades are 
processed and automatically settled through the TARGET2 system. The 
platform also allows credit line checking and mandates trade confir-
mation by both counterparties.10 

Our detailed trading data span from January 2006 through 
December 2012 and include 464,772 trades among 212 unique banks. 
Each e-MID transaction includes the time (to the second), lender, 
borrower, interest rate, quantity, and an indication of which party is 
executing the trade. Given the eventful period covered by our data (and 
the prospect that the dynamics in this market change over time), we split 
the data into two subperiods: (1) a pre-crisis period from January 2, 
2006, until September 12, 2008; (2) a post-crisis (post-Lehman Brothers) 
period from September 16, 2008, through December 31, 2012, charac-
terized by a weak recovery. 

Fig. 1 shows several daily e-MID market statistics. We see that in-
terest rates fell starting with the collapse of Lehman Brothers.11 Rates 
started to recover as the crisis abated but fell again to crisis levels in 
2012, as Europe experienced a weak recovery. Volatility shows a similar 
pattern, with heightened levels following the collapse of Lehman 
Brothers. Effective spreads remain relatively stable across our sample 

Fig. 1. Financial statistics at the daily resolution from the e-MID interbank market. The vertical line marks the collapse of Lehman Brothers on September 12, 2008.  

9 e-MID trades represent interbank loans ranging from overnight (one day) to 
two years in duration, with overnight contracts representing 90% of total vol-
ume during our sample period (see Brunetti, di Filippo, and Harris, 2011). The 
e-MID market is open to all banks admitted to operate in the European inter-
bank market, and non-European banks can obtain access to the market through 
their European branches. As of August 2011, the e-MID market had 192 
members from European Union countries and the United States, including 29 
central banks acting as market observers (Finger, Fricke, and Lux, 2013). Vol-
ume on e-MID largely dried up after 2012, when our data end. In Fig. A1 in the 
Appendix, we show countries grew their reserves while decreasing their activity 
and connectedness in the e-MID, particularly in the post-Lehman period, 
consistent with liquidity hoarding (see Heider, Hoerova, and Holthausen, 
2015). 

10 Further details on the e-MID market can be found in Brunetti et al. (2011).  
11 Average interest rate is the mean interest rate over all trades. Volatility is 

defined as the high-low log-price difference. Effective Spread is defined as twice 
the square root of the first-order autocovariance of interest rate log-returns. 
Number of active banks is the count of banks that participated in at least one 
trade. Volume is defined as the total number of contracts bought or sold. Signed 
volume is constructed as the difference between the number of contracts 
aggressively bought and the number of contracts aggressively sold. Trade 
Imbalance is the count of aggressive buys minus the count of aggressive sells 
divided by the volume. The Herfindahl index is the sum of the square of the 
market share (based on volume) of each active bank in the market. 
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period, suggesting that interbank market trading costs did not suffer 
appreciably during the crisis. By contrast, a clear negative trend 
emerged in the number of active banks trading and in daily volume. 
Signed volume is also negative throughout our sample period, with a 
clear increasing trend toward zero. 

These patterns indicate that banks actively used the e-MID platform 
for selling funds, though by the end of our sample period, liquidity levels 
are poor. Trade imbalance (scaled by volume) shows a greater propor-
tion of aggressive lending during the 2007–09 crisis. During the weak 
recovery in Europe, trade imbalance even became positive for a handful 
of days, indicating that more banks were aggressively borrowing 
through e-MID. Last, likely driven by the reduction in banks using the 
platform, the Herfindahl index rises consistently over our sample period, 
reflecting greater concentration among banks using e-MID. 

3. Measuring interconnectedness 

In Sections 3.1 and 3.2, we start with a background discussion on 
each network and the statistics we use to characterize interconnected-
ness. In Section 3.3, we present the evolution of our network statistics to 
gain further insights into how the e-MID market evolved from 2006 
through 2012. 

3.1. Defining trading, liquidity, and urgent borrower networks 

Castiglionesi and Eboli (2018) and Babus and Hu (2017) model 
interconnectedness in the interbank market, mapping sellers to buyers. 
While Babus and Hu (2017) show that intermediaries can help overcome 
commitment and information frictions to connect traders (banks) in an 
OTC market (which exhibits limited commitment and limited informa-
tion about agents’ past actions), we posit that trade aggressiveness may 
also help overcome these frictions. 

In our liquidity and urgent borrower networks, aggressive (market) 
orders execute against standing limit orders posted on e-MID and thus 
reflect a greater commitment to trade. We surmise that the information 
impounded in these aggressive orders is complementary to the infor-
mation about borrowing and lending that emerges from the trading 
network. Moreover, with the absence of liquidity providers on e-MID, 
we anticipate that information gleaned from the interbank liquidity 
network may also serve to forecast economic conditions and other 
macroeconomic variables in the euro zone. 

To illustrate differences between trading, liquidity, and urgent 
borrower networks, consider the hypothetical trading network shown in 
Fig. 2, where banks are labeled A through E. In this trading network, 
Bank A is the dominant buyer, with active trades with Banks B and C, 
and passive buys with Banks D and E. The trading network represents 
buy/sell relationships, the liquidity network represents passive/ 
aggressive relationships, and the urgent borrower network combines 
both together to focus exclusively on aggressive buys, a particularly 
important dimension for bank funds. 

3.2. Network Statistics 

We use four network statistics to characterize connectivity in each 
network. The first network statistic is the Average Weighted Degree, 
defined as. 

Average Weighted Degree = 1
n
∑

i,j
Wij, 

where Wij denotes the volume-weighted edge on the network from 
bank i to bank j. This is a standard network statistic in financial network 
analysis (Billio et al., 2012; Adamic et al., 2017; Brunetti et al., 2019) 
because of its straightforward interpretation as the average volume 
traded per bank. Note that average weighted degree is identical between 
the liquidity and trading networks because the statistic aggregates over 
all banks and both networks are composed from the same set of trans-
actions.12 On the urgent borrower network, passive borrowing is 
excluded, so the average weighted degree represents the average volume 
traded (passively lent or urgently borrowed) per bank. 

Our second network statistic, the clustering coefficient, has been used 
to measure interconnectivity and liquidity flows in the interbank and 
stock markets (Billio et al., 2012; Adamic et al., 2017; Brunetti et al., 
2019). Additionally, higher clustering levels are also linked to higher 
levels of information in Duffie et al. (2014). The clustering coefficient is 
a measure of transitivity in the network, i.e., if bank i trades with bank j, 
and bank j trades with bank k, clustering measures whether bank i also 
trades directly with bank k. We quantify clustering using the global 
clustering coefficient (Newman, 2002), 

Clustering Coefficient = TClosed
T , 

where T represents the total number of connected triples of three 
banks (i, j and k) and TClosed represents the number of closed triples 
where bank i trades with bank j, bank j trades with bank k, and bank i 
also trades directly with bank k.13 Economically, the clustering coeffi-
cient captures liquidity in the market. Connected triples represent the 
presence of at least one liquidity provider so that larger clustering co-
efficients are associated with greater liquidity. In the extreme case 
where a single trader is responsible for all trades as in Fig. 2, no closed 
triples exist, and the clustering coefficient is zero. At the other extreme, 
the clustering coefficient is one when all triples involve three traders 
connected as a ‘closed triple.’ As with degree, this statistic is identical 
between the trading and liquidity networks. We also expect the clus-
tering coefficient to be lower on the urgent borrower network because 
higher levels require that banks to buy and sell aggressively at the same 
time. 

Dispersion of information or liquidity in the market may also be 
measured using connected components (Adamic et al., 2017; Brunetti 
et al., 2019). The largest strongly connected component (LSCC) is the 
maximum number of banks that can be reached from any other bank by 
following directed edges on the network. We compute the largest 
strongly connected component as 

LSCC =
LSCCMax

n
,

where LSCCMax is the count of banks in the largest strongly connected 
component and n is the total number of banks in the network. This ratio 
ranges between zero (e.g., one bank connects all other banks as in Fig. 2) and 
one (all banks are reachable from any other bank). Like clustering, a larger 
LSCC indicates greater connectivity, which is linked to higher levels of in-
formation in Duffie et al. (2014) and indicates higher demand for funds. 

Fig. 2. Hypothetical trading, liquidity, and urgent borrower networks to 
represent a sequence of trades where Bank A borrowers from other banks. 

12 Network statistics (and their interpretations) at the node-level will usually 
differ between the two networks, however. For example, in the trading 
network, in degree simply represents borrowing, whereas for the liquidity 
network, in degree corresponds to passive borrowing or lending. Similar in-
terpretations differentiate out degree in the two networks.  
13 Following Adamic et al. (2017) and Brunetti et al. (2019), we treat the 

edges as undirected when computing the clustering coefficient. 
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The last network statistic that we compute is reciprocity, which 
measures how often pairs of banks are linked to each other in both di-
rections and is defined as the count of reciprocally connected bank pairs 
divided by the count of non-reciprocally and reciprocally connected 
bank pairs: 

Reciprocity =

∑

i,j
I{Wij>0}I{Wji>0}

∑

i,j
I{Wij>0}+I{Wji>0}− I{Wij>0}I{Wji>0}

,

where I{⋅} is the indicator function. Higher reciprocity on the trading 
network means that Bank A borrowed money from Bank B and at 
another time Bank B borrowed from Bank A. In the liquidity network, 
reciprocal edges mean that Bank A traded with Bank B through a market 
order while at another time Bank B did so from Bank A using a market 
order. On the urgent borrower network, reciprocity increases when pairs 
of banks urgently borrow from each other at different times. As shown in 
previous works (i.e. Cocco, Gomes, Martins, 2009, and Di Maggio, 
Kermani, Song, 2017), relationships play a key role in how counter-
parties are selected. Reciprocity can therefore represent trust (i.e., lower 
expected counterparty risk), particularly for urgent borrowers. 

Both LSCC and reciprocity have been used previously to characterize 
interconnectedness and systemic risk in Mexico and Germany14 and 
these metrics should differ for each network. In the trading network, the 
LSCC and reciprocity will be closer to their maximum value of one when 

many banks are buying and selling; in the liquidity network, the LSCC 
and reciprocity are larger when a larger number of banks actively and 
passively trade; in the urgent borrower network, banks must both ur-
gently buy and passively lend. 

3.3. Interconnectedness in Trading, Liquidity, and Urgent Borrower 
Networks 

Table 1 presents summary statistics and Fig. 3 depicts our four 
interconnectedness measures over time for each network constructed 
using the transactions from a 30-day rolling window.15 As discussed 
earlier, the degree and clustering coefficient for the trading and liquidity 
networks are identical, as these metrics aggregate over all banks using 
the same set of transactions. The degree of the interbank market falls 
consistently over time, as counterparty problems during the 2007–2009 
crisis deterred banks from using the OTC e-MID market. As shown in 
Table 1, the average daily degree decreased by more than 60% after the 
collapse of Lehman Brothers. The clustering coefficient also fell post- 
Lehman, though not as dramatically. The average daily clustering 

Table 1 
Summary statistics of the network metrics within each subperiod by network type.   

Trading Network Liquidity Network Urgent Borrower Network 

Pre-Lehman (2-Jan-06–12-Sep-08)  
Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev. 

LSCC 0.666 0.671 0.044 0.818 0.816 0.021 0.386 0.403 0.087 
Reciprocity 0.127 0.125 0.022 0.431 0.426 0.025 0.039 0.038 0.014 
Degree 7498 7716 1618 7498 7716 1618 1798 1874 477 
Clustering Coef. 0.408 0.406 0.023 0.408 0.406 0.023 0.269 0.265 0.032 
Post-Lehman (16-Sep-08–31-Dec-12) 
LSCC 0.450 0.454 0.061 0.734 0.727 0.043 0.139 0.128 0.092 
Reciprocity 0.078 0.076 0.019 0.418 0.419 0.038 0.022 0.021 0.011 
Degree 2544 2503 647 2544 2503 647 826 756 283 
Clustering Coef. 0.355 0.353 0.029 0.355 0.353 0.029 0.193 0.188 0.030  

Fig. 3. Network statistics corresponding to 30-day rolling liquidity (solid red), trading dotted green), and urgent borrower (dashed blue) networks from the e-MID 
interbank market. The vertical line marks the collapse of Lehman Brothers on September 12, 2008. 

14 See Martinez-Jaramillo et al. (2014), and Roukny et al. (2014), respectively. 

15 Finger et al. (2003) find that meaningful and non-random structures appear 
for month-long construction periods with e-MID data. We also find our results 
stabilize when using at least a 30-day estimation window. Jurgilas and Zikes 
(2014) document an economically significant intraday interest rate that reflects 
the opportunity cost of pledging collateral during the trading day, highlighting 
how networks can evolve over different time scales. 
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coefficient decreased by less than 30% for all three networks before 
partially recovering as the crisis resolved. The collapse of degree with a 
more resilient clustering coefficient shows that active banks remain 
connected among a small set of other banks, even while volume fell.16 As 
expected, the urgent borrower network evolves similarly, at lower 
levels. 

Fig. 3 and Table 1 also show that the LSCC and reciprocity are 
consistently lowest for the urgent borrower network and highest for the 
liquidity network. For all three networks, LSCC dropped precipitously 
with the collapse of Lehman Brothers though the decrease was least 
severe in the liquidity network. Reciprocity also decreased concurrently 
in all three networks, with reciprocity in the trading and urgent 
borrower networks continuing to decline (nearly 50%) through 2012. In 
fact, the decrease in interconnectivity was least severe in the urgent 
borrower network. This decrease indicates that banks became less 
willing to borrow and lend funds on the e-MID, instead preferring to 
trade in only one direction as the crisis unfolded. Reciprocity in the 
liquidity network recovers to above pre-crisis levels following the Leh-
man Brothers collapse. The remaining e-MID banks were increasingly 
willing to initiate trades through market orders and post quotes on the 
platform post-Lehman. 

Altogether, we see consistent evidence that participation decreased 
significantly in the e-MID market. As the crisis unfolded, banks initiated 
trades less often or were less willing to post public quotes to borrow. 
This trend led to a decrease in overall activity and a decline in e-MID 
network interconnectivity. For example, lower reciprocity in the trading 
network reveals that banks were more polarized, either only borrowing 
or only lending. The trading and urgent borrower networks became less 
dense and more fragmented between 2006 and 2012. 

Despite this overall decline in activity, interconnectivity did not 
dissolve in the urgent borrower network and the interbank market 
continued to serve its primary function by channeling liquidity to in-
stitutions in urgent need from those with surplus. Further, the liquidity 
networks show evidence that trust levels recovered following the crisis 
and remained high between banks that continued to use e-MID. Higher 
post-crisis reciprocity in the liquidity network combined with lower 
levels in the urgent borrower network indicate that financially con-
strained banks in need of funds continued to borrow either via aggres-
sive market orders or by passively posting quotes on e-MID. Similarly, 
the LSCC in the liquidity network is larger than in the trading and urgent 
borrower networks. These results demonstrate that the three networks, 
generated by the same data, independently reveal differential informa-
tion about the market. 

Fig. 4 shows associations in and between the three network types 
through correlation analysis for each subperiod. First, we note that the 
correlation structure in the trading and urgent borrower network sta-
tistics is stable. Each pairwise correlation is positive throughout each 
subperiod. Similar results apply to correlations among liquidity network 
variables except that the LSCC often negatively correlates with other 
liquidity network metrics. As shown in Fig. 3, although liquidity 
network connectivity at the single node (average degree), two node 
(reciprocity), and three node (clustering) returns to the pre-crisis level, 
overall network connectivity measured by the LSCC never recovers. For 
associations between trading and liquidity network measures, during 
the post–Lehman Brothers subperiod, pairwise correlations tend to 
become positive as banks that remain in the e-MID become tightly 
interconnected, relying on each other for short-term funding. The urgent 
borrower network is less correlated with the other networks following 
the collapse of Lehman Brothers, indicating that passive borrowing was 

more prevalent and thus composing more of the trading and liquidity 
networks.17 

3.4. Characterizing Interbank Market Network Structure 

Having demonstrated that trading and liquidity networks reflect 
different dimensions of interconnectedness, we compare higher-order 
community structure within each network. Specifically, we evaluate 
evidence for core-periphery topology in the three networks in light of 
the large literature establishing its prevalence in financial markets.18 

With a core-periphery network, nodes can be classically grouped into 
either core or periphery. The banks composing the core are densely 
connected to each other compared with connections to peripheral banks. 
Further, peripheral banks are minimally connected to each other. In the 
e-MID interbank market a core-periphery structure would arise when 
safer banks tend to trade with each other and consistently lend to the 
broader market. In fact, Castiglionesi and Navarro (2020) note that such 
a topology is optimal in balancing the trade-off of higher payouts with 
bankruptcy risk faced by banks when connecting via the interbank 
market. Given this theoretical mechanism that leads to core-periphery 
topology and the broader literature detecting core-periphery in other 
interbank trading networks, we expect both the trading and urgent 
borrower networks to be core-periphery. 

Different mathematical models capture the key characteristics of 
core-periphery networks (Borgatti and Everett, 2000). For example, 
discrete models explicitly assign banks to one of the groups, leading to a 
partitioning of the adjacency matrix (Craig and von Peter, 2014; Fricke 
and Lux, 2015). Here, we estimate the asymmetric continuous model of 
Boyd et al. (2010), which allows for banks to have varying degrees of 
importance to the directed and weighted network. 

Let Wij be the weighted adjacency denoting the volume-weighted 
edge from bank i to bank j. Then, the asymmetric continuous model 
estimates an incoming coreness for each bank, ui ≥ 0, and an outgoing 
coreness for each bank, vi ≥ 0, with the following optimization problem: 

min
u,v

∑

i

∑

j∕=i

(
Wij − uivj

)2
, (1)  

which can be solved using Singular Value Decomposition (SVD).19 

Define the percentage of reduced error (PRE) as 

PRE = 1 −

∑

i

∑

j∕=i

(
Wij − uivj

)2

∑

i

∑

j∕=i

(
Wij − W

)2 , (2) 

16 On whether banks engage in traditional or “agency” dealing, we find no 
banks with net (in minus out) degree equal to zero on most days. 

17 Generalized Impulse Response functions (not reported) corroborate that the 
three networks, though related, convey different information. Network vari-
ables react to each others’ innovations.  
18 Soramaki et al. (2007) and Bech and Atalay (2008) document that the 

interbank network of U.S. commercial banks is sparse, with a core-periphery 
structure. Similar structures are found for interbank networks in Austria, Can-
ada, Germany, Japan, and the United Kingdom. See also Boss et al. (2004), 
Inaoka et al. (2004), Embree and Roberts (2009), Craig and von Peter (2014), 
and Langfield, Liu, and Ota (2014), respectively. Fricke and Lux (2015) detect 
core-periphery structure of Italian banks in the e-MID from 1999 to 2010. A 
core-periphery structure has also been found in credit default swaps markets of 
the United States (Markose, Giansante, and Shaghaghi, 2012) and the United 
Kingdom (Abel and Silvestri, 2017).  
19 See Boyd et al. (2010) and Fricke and Lux (2015) for details. Because 

equation (1) searches for a rank 1 approximation of a non-negative matrix, two 
theorems from linear algebra establish that the optimal solution for the coreness 
vectors are the left and right singular vectors from SVD. The first is the Per-
ron–Frobenius theorem, which guarantees that the principle singular vectors 
are non-negative when the matrix being decomposed is non-negative. Then the 
Eckart–Young theorem establishes that the SVD solution is optimal for the norm 
used in equation (1). 
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Fig. 4. Correlation matrix by subperiod between network statistics computed at the daily level using a 30-day rolling window. TN denotes trading network, LN 
denotes liquidity network, and UBN denotes the urgent borrower network. 

C. Brunetti et al.                                                                                                                                                                                                                                



Journal of Financial Stability 67 (2023) 101163

8

where W is the average of all elements of W excluding the diagonal. To 
evaluate goodness of fit, we use the criterion from Boyd et al. (2010), 
which states that the PRE should exceed 0.5 for evidence in favor of the 
core-periphery model, i.e., that a majority of the variance in the data is 
explained by the model. 

Fig. 5 shows the PRE obtained from estimating the model for each 
network. Several notable patterns emerge. First, the core-periphery 
model fits the trading network best, followed by the urgent borrower 
network. Post-Lehman, the trading network PRE is about 10% higher 
compared to the liquidity network and 5% higher than the urgent 
borrower network. Further, the liquidity network never rises above the 
0.5 threshold–the core-periphery model does not fit the liquidity 
network well as there is no core of aggressive (or passive) liquidity 
providers. The PRE is above 0.5 only in 2012 for the urgent borrower 
network. Interestingly, even for the trading network (for which a sizable 
literature shows a core-periphery structure), the model provides a good 

fit only after the 2007–09 crisis resolved—the PRE crosses the 0.5 
threshold in late 2009. 

Note that the PRE would be relatively low if a given network has 
multiple cores, because a model assuming a single core (i.e., a rank 1 
matrix factorization) cannot fit the data well. Therefore, to rigorously 
test for multiple and overlapping core-periphery structures, we estimate 
the Cluster Affiliation Model of Yang and Leskovec (2014), a model that 
essentially expands the coreness score into a multidimensional vector 
(one score for each community) that determines connection probabili-
ties.20 Fig. 6 shows the optimal number of communities according to 
cross-validation is three in the pre-crisis era for all three networks. The 

Fig. 5. The percentage of reduced error from estimating the asymmetric continuous core-periphery model for the liquidity (solid red), trading (dotted green), and 
urgent borrower (dashed blue) networks from the e-MID interbank market. Values above 0.5 provide evidence for the core-periphery model. The vertical line marks 
the collapse of Lehman Brothers on September 12, 2008. 

Fig. 6. The optimal daily number of cores using the Cluster Affiliation Model on the liquidity (solid red), trading (dotted green), and urgent borrower (dashed blue) 
networks from the e-MID interbank market. A smoothed version by local polynomial regression is shown for readability. The vertical line marks the collapse of 
Lehman Brothers on September 12, 2008. 

20 The model can be fit using a form of non-negative matrix factorization 
(Yang and Leskovec, 2013), which allows for principled selection of the number 
of communities via cross-validation (Owen and Perry, 2009; Mankad and 
Michailidis, 2013). 
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number of communities decreases just prior to the Lehman Brothers 
default before stabilizing at a single core-periphery structure for the 
trading network and two for the liquidity and urgent borrower net-
works. 21 

4. Forecasting Macrovariables 

Having established that trading, liquidity, and urgent borrower 
networks reflect distinct dimensions of interconnectedness and struc-
ture, we further assess whether and how these differences might be 
useful in forecasting short-term macroeconomic conditions. Impor-
tantly, our data cover interbank trades in the euro zone surrounding the 
2007–09 financial crisis so we explore whether a multidimensional 
analysis of interbank trading behavior during this turbulent period 
might prove useful for extracting information relevant to policymakers 
and others. 

As we previously show, interconnectedness for each network 
generally falls from 2006 through 2012, but the levels and dynamics of 
the interconnectedness metrics differ between the three network types 
over time. These forecasting exercises are intended to examine whether 
liquidity and urgent borrower networks, which incorporate the aggres-
siveness of trades, reflect incrementally more information than trading 
networks. To test this conjecture, we use connectedness metrics from all 
three networks to forecast various macroeconomic variables.22 

These forecast exercises address the question concerning which 
dimension of liquidity more closely ties to the real economy. Along the 
lines of Babus and Hu (2017), who note that informational frictions 
affect how networks develop, we examine three general types of mac-
roeconomic variables, differing by informational type: (1) hard infor-
mation, such as industrial production and retail sales; (2) soft 
information, such as the purchasing managers index (PMI) and Aruoba, 
Diebold and Scotti (ADS) business condition index23; and (3) regional 
and country-specific yield spreads. For the regional spread, we examine 
the spread between the euro-area interbank offered rate and the 

overnight index swap (the EURIBOR-OIS spread), a measure of health of 
the banking system. Our country-specific spreads include the spread 
between the 10-year Greek, Italian, Portuguese, and Spanish govern-
ment bond yields and the German government bond yield.24 

In Babus and Hu (2017), soft information between counterparties 
plays a role in how networks develop.25 In this framework, we conjec-
ture that soft macroeconomic information will be more likely reflected 
in banks’ trading aggressiveness and, therefore, incrementally more 
important in the liquidity and urgent borrower networks. Similarly, 
given the likelihood of information asymmetries across borders, we 
expect that trading aggressiveness (and the liquidity and urgent 
borrower networks, more generally) will better forecast country-specific 
yield spreads in the euro zone. 

With hard information that is more publicly verifiable to all banks, 
the liquidity and urgent borrower networks may add no incremental 
explanatory forecasting power. Likewise, given that all e-MID banks 
operate within the same euro zone, we conjecture that information 
asymmetries (among banks) about the EURIBOR-OIS spread are mini-
mal. Therefore, we expect no incremental improvement when we 
include trade aggressiveness via the liquidity or urgent borrower 
network. 

With these conjectures in mind, we forecast macrovariables using 
each network separately and combined. To produce one-step-ahead with 
each network separately, we use the following model: 

zi,t =γ0 + γ1Degreeg,t− 1 + γ2CCg,t− 1 + γ3Reciprocityg,t− 1 + γ4LSCCg,t− 1

+ βzi,t− 1 + ui,t
(3)  

where zi,t represents each macrovariable described earlier (we consider 
one variable at a time) and the subscript g denotes the network type. To 
combine information from multiple networks together, we take a 
weighted average at each time of all network statistics by projecting 
them onto their first principal component. Then, we use the projected 
time-series to produce one-step-ahead forecasts with information from 
the three networks: 

zi,t = γ0 + γ1PCt− 1 + ui,t, (4)  

where PCt− 1 is the first principal component of the network statistics 
from multiple networks. Tables 2, 3, and 4 reports the out-of-sample root 
mean square forecasting error from Eqs. (3) and (4) for each subperiod, 
where the model is estimated using an extending window from January 
2006 until the end of the previous subperiod. 

Consistent with the conjecture that interbank liquidity can affect the 

Table 2 
Forecasting performance of hard information for each network, where root mean square forecasting error is computed for 1-step ahead forecasts using the model in Eqs. 
(3) and (4) trained on data from January 2006 to September 12, 2008. Industrial production (IP) and retail sales (RS) are at the monthly level. Boldface indicates the 
minimum error and shaded cell indicates the forecast is more accurate than that of the Trading Network. Asterisks * and * * denote significance at the 5% and 1% 
levels, respectively, from the Diebold–Mariano test for whether the network forecast is more accurate than that of the Trading Network.   

Trading 
Network 

Liquidity 
Network 

Urgent 
Borrower 
Network 

Trading +
Liquidity 

Trading +
Urgent 
Borrower 

Liquidity +
Urgent 
Borrower 

Trading +
Liquidity +
Urgent 
Borrower 

Euro-Area Δ(RS)  1.351  1.653 1.284 1.058 * 1.116 1.284 1.211 
France Δ(IP)  1.371  2.347 2.188 1.367 1.424 1.621 1.508 
Germany Δ(IP)  2.138  2.369 1.771 * * 1.958 * 1.820 * * 1.767 * * 1.807 * * 
Greece Δ(IP)  4.476  7.618 5.467 5.969 6.720 7.769 7.105 
Ireland Δ(IP)  4.266  4.564 5.071 3.936 4.389 5.127 4.509 
Italy Δ(IP)  2.360  2.499 2.234 2.221 2.210 * * 2.144 * * 2.177 * * 
Spain Δ(IP)  2.067  2.110 2.226 2.182 2.384 2.457 2.458 
United Kingdom Δ(IP)  1.127  1.226 1.525 1.335 1.287 1.248 1.309  

21 In unreported results, we find evidence that the cores are organized by 
country. Specifically, banks from Germany, Greece, France, and Italy traded 
with other banks of the same country such that a core of high centrality banks 
emerged. 
22 Several works provide a theoretical basis for networks to align with eco-

nomic conditions. Elliott, Georg, and Hazell (2021) show that interconnected-
ness among German banks allowed economic shocks to propagate during the 
last financial crisis. Likewise, Safonova (2017) links shocks to bank networks 
with the real sector. Kopytov (2018) develops a dynamic general equilibrium 
model wherein financial interconnectedness endogenously changes over the 
business cycle.  
23 See Aruoba, Diebold and Scotti (2009). Erik, Lombardi, Mihaljek and Shin 

(2019) show that PMI is a powerful indicator of real economic activity and link 
PMI to financial variables. 

24 When levels of these macrovariables are not stationary, we consider the first 
difference.  
25 Bańbura and Rünstler (2011) also show that soft information may be 

important in forecasting. 
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real economy, we find strong evidence that combining the statistics 
derived from liquidity, trading urgency, and trading networks generally 
produce forecasts that are statistically preferred over forecasts produced 
from either network separately. Focusing first on Table 2, we find that 
the forecasts of hard information from combining the trading and 
liquidity networks together are more accurate in over half of the cases 
than those generated by any network separately. 

Table 3 shows that, when forecasting soft information, forecasts from 
utilizing the urgent borrower network (either alone or with the trading 
network) improves forecasts for over half of the cases. As we conjecture, 
and consistent with liquidity and urgent borrower networks being more 
informative when information asymmetry in the market is high, we find 
that the incremental information reflected in these networks improves 
short-term forecasting of soft macroeconomic information. The results 
in Table 3 indicate that information captured in all three networks is 
valuable in forecasting PMIs and, therefore, links the interbank market 
to economic activity and financial conditions. 

Table 4 shows that forecasts from the combined models dominate 
when forecasting the country-specific yield spreads and the EURIBOR- 
OIS spread. These links between yield spreads and interbank networks 
highlight the strong “sovereign-bank nexus” in the euro region during 
our sample period.26 

The sovereign-bank nexus links sovereigns to the interbank market 
through three main channels: i) the sovereign exposure channel, because 
of banks holding large amounts of sovereign debt; ii) the safety net 

channel, which links central banks to sovereigns when providing back-
stops to distressed banks; iii) the macroeconomic channel, where slow 
economic activity generates sovereign crises and negatively impact the 
banking sector. Using the same e-MID data Brunetti a, b) et al. (2022) 
find that market Sidedness and the ratio of active to passive trades for 
overnight funds lead (Granger-cause) sovereign CDS spreads across 
several countries.27 In this spirit, combining information from all three 
interbank networks proves useful in forecasting real and financial var-
iables as predicted by the sovereign-bank nexus.28 

For policymakers, these results show that the interbank market 
provides valuable information about the future state of the economy, 
consistent with trading network results in Brunetti et al. (2019). 
Importantly, however, we show that liquidity and urgent borrower 
networks provide incrementally more valuable information in fore-
casting soft macroeconomic variables and country-specific yield 
spreads. In this regard, our results suggest that monitoring the three 
types of interbank networks offers a more comprehensive view and 
better forecasts of the banking sector and the real economy, particularly 
when information asymmetries in the market may be large. Trading 
networks capture important borrowing/lending activity, whereas 
liquidity and urgent borrower networks more specifically capture the 
urgency to borrow/lend, the dynamics of liquidity demand/supply. 

Table 3 
Forecasting performance of soft information for each network, where root mean square forecasting error is computed for 1-step ahead forecasts using the model in Eqs. 
(3) and (4) trained on data from January 2006 to September 12, 2008. The purchasing managers index (PMI) and ADS series are at the monthly level. Boldface indicates 
the minimum error and shaded cell indicates the forecast is more accurate than that of the Trading Network. Asterisks * and * * denote significance at the 5% and 1% 
levels, respectively, from the Diebold–Mariano test for whether the network forecast is more accurate than that of the Trading Network.   

Trading 
Network 

Liquidity 
Network 

Urgent 
Borrower 
Network 

Trading +
Liquidity 

Trading +
Urgent 
Borrower 

Liquidity +
Urgent 
Borrower 

Trading +
Liquidity +
Urgent 
Borrower 

Euro-Area Δ(ADS)  0.370 0.598 0.600 0.400 0.411 0.456 0.433 
France Δ(PMI)  3.435 3.627 2.985 * * 3.426 2.790 * * 2.959 * * 3.040 * * 
Germany Δ(PMI)  3.016 2.484 * * 2.414 * * 2.480 * * 2.227 * * 2.139 * * 2.227 * * 
Ireland Δ(PMI)  3.465 3.821 3.618 3.550 3.374 3.772 3.564 
Italy Δ(PMI)  2.010 1.957 2.558 2.230 2.229 2.249 2.267 
Spain Δ(PMI)  4.320 4.152 4.245 3.927 * 3.925 * 4.113 4.194 
United Kingdom Δ(PMI)  2.732 2.213 * * 2.365 * * 2.943 3.101 2.873 3.061  

Table 4 
Forecasting performance of euro-zone yield spread and country-specific yield spreads for each network by subperiod, where root mean square forecasting error is 
computed for 1-step ahead forecasts using the model in Eqs. (3) and (4) trained on data from January 2006 to September 12, 2008. All series are at the daily level. 
Boldface indicates the minimum error and shaded cell indicates the forecast is more accurate than that of the Trading Network. Asterisks * and * * denote significance 
at the 5% and 1% levels, respectively, from the Diebold–Mariano test for whether the network forecast is more accurate than that of the Trading Network.   

Trading 
Network 

Liquidity 
Network 

Urgent 
Borrower 
Network 

Trading +
Liquidity 

Trading +
Urgent 
Borrower 

Liquidity +
Urgent 
Borrower 

Trading +
Liquidity +
Urgent 
Borrower 

Banking System Health 
EURIBOR-OIS Spread  0.063 0.060 * * 0.055 * * 0.097 0.049 * * 0.049 * * 0.050 * * 
Country-Specific Spreads 
SPSP  0.0027 0.0027 0.0025 * * 0.0022 * * 0.0022 * * 0.0022 * * 0.0022 * * 
GRSP  0.0761 0.0749 * * 0.0738 * * 0.0684 * * 0.0678 * * 0.0681 * * 0.0680 * * 
ITSP  0.0023 0.0023 0.0023 0.0018 * * 0.0018 * * 0.0019 * * 0.0018 * * 
PTSP  0.0115 0.0115 0.0117 0.0079 * * 0.0083 * * 0.0085 * * 0.0082 * *  

26 Results in Table 4 also demonstrate that the relative sparsity (the lack of 
French and German banks) in e-MID networks does not diminish the usefulness 
of network information gleaned from these interbank markets. We interpret 
these consistent results to show that sample selection bias does not appear to be 
an issue for our analyses. An important future work will be to investigate policy 
effects through more formal causal inference tests. 

27 Our tests for Granger non-causality between network variables and 10-year 
CDS spreads for sovereign debt reveal significant relations in both directions– 
sovereign risk leads urgent interbank borrowing and urgent interbank 
borrowing presages changes in sovereign risk.  
28 Granger causality results (in Appendix, Table A1) confirms our findings that 

the networks can aide in forecasting economic variables, particularly country- 
specific spreads and soft information. 
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Fig. 7. 10-Day Generalized Impulse Responses (IR) of volatility, and network variables to one standard deviation innovations. Standard errors are calculated using 
1000 Monte Carlo repetitions. 
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Fig. 8. 10-Day Generalized Impulse Responses (IR) of volume, and network variables to one standard deviation innovations. Standard errors are calculated using 
1000 Monte Carlo repetitions. 
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5. Networks, volume, and volatility 

How information percolates through financial markets has long been 
a central theme in the finance literature. Historically, the discussion 
anchored around the relation between price volatility and trading vol-
ume as the key variables capturing information.29 Our evidence above 
shows that trading, liquidity, and urgent borrower networks convey 
different information, despite being generated by the same trading 
process. We therefore empirically examine the linkages among volume, 
volatility and network variables using Vector AutoRegression (VAR) and 
generalized impulse response functions. 

For each subperiod using daily data, we estimate a VAR with price 
volatility, trading volume and LSCC and reciprocity of each network 
structure (trading, liquidity and urgent borrower).30 Fig. 7 depicts the 
IRs of volatility and volume to one standard deviation innovations to 
network variables and vice versa, for the two sub-periods. In both sub- 
periods a rise in market connectivity increases volatility (see columns 
1 and 3). This result is to be expected if too much interconnectedness 

increases contagion and systemic risk and network connections create 
channels for contagion (Glasserman and Young, 2015, 2016).31 In fact, 
interconnectedness is one of the five criteria used by regulators for 
designating global systemically important banks.32 

All networks (with the only exception of liquidity network LSCC) 
strongly respond to innovations in volatility. A shock to the volatility 
process increases interconnectedness in all three networks indicating 
that high volatility incentivizes market participants to be more con-
nected in an attempt to diversify risk. 

In Fig. 8, we report the same analyses for volume. In the Pre-Lehman 
period, a shock to trading network reciprocity and urgent borrower 
LSCC increase traded volume in the long run (after 3 and 5 days, 
respectively). Similar feedback effects are present when looking at how 
network interconnectedness responds to innovations in volume. 

During both periods, innovations to network interconnectedness 
increase volume, highlighting that in stressful times, interconnectedness 
benefits the market. These results also underscore the dual nature of 
interconnectedness: Too much interconnectedness may increase sys-
temic risk (higher volatility), but too little may impede market 

Fig. A1. Interconnectedness in the e-MID (first principal component of statistics from all three networks) and monthly aggregate reserves (in millions of Euros) 
by country. 

29 More precisely, price changes follow a mixture of distributions, and volume 
is the mixing variable. The Kyle (1985) and Glosten and Milgrom (1985) models 
show how private information is embedded into prices.  
30 For volatility, we use the daily log-price range. We are interested in the 

impulse response functions and are agnostic about the identification strategy, so 
we use the generalized impulse responses of Pesaran and Shin (1998). In each 
subperiod, we ensure that all variables are stationary and select optimal lag 
length using the Akaike information criterion. 

31 Gai et al. (2011) also illustrates how greater complexity and concentration 
in financial networks may amplify fragilities in interbank lending markets. 
32 See Bank for International Settlements, Basel Committee on Banking Su-

pervision (2014). 
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functioning. Interestingly, trading, liquidity, and urgent borrower net-
works seem to capture well this characteristic of network connections.33 

6. Conclusions 

During the past decade, network analysis has grown as a major 
research thrust in financial economics (Flood et al., 2020). Researchers 
have aimed to better understand how interconnectedness between 
market participants results in spillovers, amplifies or absorbs shocks, 
and creates other nonlinearities that ultimately affect key markers of 
market health (Bisias et al., 2012). In this paper, we benchmark to 
Castiglionesi and Navarro (2020), Babus and Hu (2017), and Castiglio-
nesi and Eboli (2018) to explore the incremental informational content 
of different networks composed from the same set of interbank trades. 
More specifically, we propose new network constructs, the liquidity 
network and urgent borrower network (based on the aggressiveness of 
supplying and demanding liquidity) and use them to examine connect-
edness in the physical overnight-lending market in Europe. Since daily 
regulatory capital requirements create strong incentives for distributing 
overnight funds among banks, our liquidity and urgent borrower net-
works constructed with interbank trades aim to characterize 
market-wide liquidity conditions among banks. 

We show that trade aggressiveness both provides additional infor-
mation and serves as a commitment device (i.e. aggressive orders de 
facto commit to trade) in the e-MID OTC interbank lending market from 
2006 through 2012, an important period spanning the 2007–08 finan-
cial crisis. We identify liquidity and urgent borrower networks as com-
plementary dimensions for viewing financial markets and the structures 
of the three networks differ—each network has three overlapping cores 
before the crisis, but following the 2008 collapse of Lehman Brothers, 

the number of cores decreases to one for the trading network and two for 
the liquidity and urgent borrower networks. The incremental informa-
tion from liquidity and urgent borrower networks is more important 
during high market information asymmetry periods and when bank 
reserves are relatively scarce—characteristic interbank market condi-
tions during the 2007–09 financial crisis. Various measures of inter-
connectedness (degree, clustering, reciprocity, and the largest strongly 
connected component (LSCC)) all dropped substantially from 2006 to 
2012, Over time, banks became less likely to trade with each other but 
only slightly less aggressive in approaching each other to trade–the ur-
gent borrower network maintained interconnectivity throughout the 
crisis, demonstrating resilience in distributing interbank liquidity. 

We also explore whether information from trading, liquidity, and 
urgent borrower networks is useful for forecasting economic conditions 
where these banks operate. Consistent with the growing literature on the 
“sovereign-bank nexus” we find that forecasts of macroeconomic vari-
ables and country-specific spreads are more accurate when utilizing all 
three networks together. Indeed, trade aggressiveness in the liquidity 
and urgent borrower networks improve short-term forecasts of soft in-
formation and country-specific yield spreads. These results highlight 
that connections among interbank networks and the real economy 
remain even after the 2007–09 crisis when the European Central Bank 
bolstered the supply of reserves–the interbank market continued to 
inform the real economy. 

Lastly, we compare the information content of trading and liquidity 
networks with that of traditional volatility and volume measures and 
find that in normal market conditions when interconnectedness is high, 
further increases in connectivity in these networks raise volatility. In the 
relatively low interconnectedness (crisis) period, however, an increase 
in liquidity network connectivity reduces volatility and boosts trading 
volume, revealing the dual character of interconnectedness—too much 
may increase systemic risk, but too little may impede market 
functioning. 

Our work contributes to a better understanding of how interbank 
markets operate and convey information about the real economy via the 
sovereign-bank nexus. Liquidity and urgent borrower networks that 
specifically focus on liquidity dynamics serve to link interbank liquidity 
to the real economy and improve macroeconomic forecasts. Given the 
importance of liquidity and liquidity risk in financial markets, market 
regulators and participants may benefit from monitoring these 

Table A1 
Granger causality relations between economic variables and the first principal component of network statistics from the trading, liquidity, and 
urgent borrower network. The number of lags is chosen according to the AIC criterion.  

Variable 1 Granger Causal Relation Variable 2 

Hard Information 
Euro-Area Δ(RS)  Trading + Liquidity + Urgent Borrower 
France Δ(IP)  Trading + Liquidity + Urgent Borrower 
Germany Δ(IP) → Trading + Liquidity + Urgent Borrower 
Greece Δ(IP)  Trading + Liquidity + Urgent Borrower 
Ireland Δ(IP)  Trading + Liquidity + Urgent Borrower 
Italy Δ(IP)  Trading + Liquidity + Urgent Borrower 
Spain Δ(IP) → Trading + Liquidity + Urgent Borrower 
United Kingdom Δ(IP) → Trading + Liquidity + Urgent Borrower 
Soft Information 
Euro-Area Δ(ADS) → Trading + Liquidity + Urgent Borrower 
France Δ(PMI)  Trading + Liquidity + Urgent Borrower 
Germany Δ(PMI)  Trading + Liquidity + Urgent Borrower 
Ireland Δ(PMI) ← Trading + Liquidity + Urgent Borrower 
Italy Δ(PMI)  Trading + Liquidity + Urgent Borrower 
Spain Δ(PMI) ← Trading + Liquidity + Urgent Borrower 
United Kingdom Δ(PMI) ← Trading + Liquidity + Urgent Borrower 
Banking System Health 
EURIBOR-OIS Spread → Trading + Liquidity + Urgent Borrower 
Country-Specific Spreads 
SPSP  Trading + Liquidity + Urgent Borrower 
GRSP → Trading + Liquidity + Urgent Borrower 
ITSP ← Trading + Liquidity + Urgent Borrower 
PTSP  Trading + Liquidity + Urgent Borrower  

33 While these results stem from the generalized VAR identification structure, 
evidence in Adamic et al. (2017) suggests that network variables are primitive 
to volatility and volume. Based on this insight, we run the VAR using a Cholesky 
decomposition where innovations to network variables affect volume and 
volatility but not vice versa. The results are very similar to those reported in 
Figures 9 and 10. Moreover, we flip the Cholesky factorization and assume that 
shocks to volume and volatility feed into network variables but not vice versa 
and also obtain similar results. 
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networks, whether during financial crises or in more stable economic 
times. 

We recognize that various other interbank market features (e.g. the 
importance of counterparty relationships) might also be useful in the 
forecasting sense, but the scope of examining these questions lies beyond 
this current paper so we leave these dimensions to future work. Given 
that our results are driven by the dynamic composition of banks that 
remained in the e-MID, representing less than a quarter of all euro 
interbank transactions, and several potential sovereign-bank nexus 
channels that link the interbank market and the broader economy, other 
future work might combine other auxiliary data with e-MID to provide a 
more complete view of the overnight interbank lending market. 
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