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A B S T R A C T   

This paper uses a comprehensive set of predictor variables from the five largest Eurozone countries to compare 
the performance of simple univariate and machine learning-based multivariate models in forecasting stock 
market crashes. In terms of statistical predictive performance, a support vector machine-based crash prediction 
model outperforms a random classifier and is superior to the average univariate benchmark as well as a 
multivariate logistic regression model. Incorporating nonlinear and interactive effects is both imperative and 
foundation for the outperformance of support vector machines. Their ability to forecast stock market crashes out- 
of-sample translates into substantial value-added to active investors. From a policy perspective, the use of ma-
chine learning-based crash prediction models can help activate macroprudential tools in time.   

1. Introduction 

Predicting extreme events out-of-sample early and accurately, 
i.e., predicting all financial crises which actually happened without crying 
wolf, is notoriously difficult. As Fouliard et al. (2021) note, the ability of 
existing early-warning models to predict turning points or nonlinear and 
interactive phenomena out-of-sample is still limited. Examples of extreme 
events that occur infrequently and irregularly are banking crises, sovereign 
debt crises, private debt crises, and currency crises (Kaminsky and Reinhart, 
1999; Reinhart and Rogoff, 2011; Jordà et al., 2017; Baron et al., 2021). 
Such rare and far between crisis events, causing substantial economic, 
political, and social costs, are obviously a source of constant concern. For 
example, Laeven and Valencia (2020) document that the average 
cumulative aggregate output loss in a banking crisis (computed as the 
deviation of the actual gross domestic product from its trend) is around 20% 
over the length of the crisis, which is, on average, two years. 

In our empirical analysis, we put the focus on forecasting stock 
market crashes. It is surprising that most of the macrofinance literature 
ignores such crises, despite stock markets being an important indicator 
of the expected economic development in the future and a means of 
wealth storage for both institutional and retail investors.1 A potential 

reason could be that stock market crashes originate from other financial 
crises, such as banking crises, debt crises, or currency crises, and not vice 
versa. If a sudden and sharp drop in aggregate stock prices is merely 
considered a reflection of expected economic shrinkage or impediment 
caused by the underlying crises, stock market crashes are not identified 
as isolated financial crises that cause economic contractions or even 
recessions. Nevertheless, Barro and Ursúa (2017) document that stock 
market crashes are informative about the prospects for economic de-
pressions. Crashes are more frequent than depressions, but the largest 
depressions are particularly likely to be accompanied by preceding 
crashes. They conclude that, in the absence of a crash, the occurrence of 
a depression is highly unlikely. Huang and Chang (2022) document that 
stock market crises have an isolated negative impact on economic 
growth, even after controlling for the consequences of other types of 
financial crises. They can hurt consumption and investment activities 
(e.g., through an increase in firms’ equity cost of capital), resulting in a 
negative impact on economic growth. These findings delineate an iso-
lated negative impact of stock market crises on the real economy. An 
accurate model for predicting stock market crashes out-of-sample can 
help activate macroprudential policy tools in time, aiming at increasing 
the resiliency of the financial system as a whole and mitigating the 
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imminent costs of financial crises. 
Both the actual occurrence and the mere possibility of a stock market 

crash also loom large for equity investors. Goetzmann et al. (2017) 
document that the average individual investor, responding to a survey, 
estimates that a catastrophic stock market crash within the next six 
months has a 20% chance of happening, which is much higher than 
implied by the historical frequency of such events. Moreover, because 
crashes influence expectations about future returns, such fears can 
reinforce the cyclical nature of stock markets and impose a threat on 
financial and macroeconomic stability. For example, institutional in-
vestors allocate equity procyclically (Ang et al., 2014; Goyal et al., 2015; 
Jones, 2016), and subjective crash probabilities of individual investors 
are negatively associated with mutual fund flows (Goetzmann et al., 
2017). Therefore, an accurate model for predicting stock market crashes 
out-of-sample enables active investors to implement tactical portfolio 
adjustments. Falsely classifying a crash month as a non-crash month is 
costlier in terms of investment performance than falsely classifying a 
non-crash month as a crash month due to the asymmetry in stock returns 
(Dichtl et al., 2016). As a result, the economic costs of forecast errors, 
most importantly, missing a crash and staying invested in the stock 
market, are immediately reflected in the performance of market timing 
and switching strategies.2 

However, identifying predictors for extreme stock market events is 
exceptionally difficult. Because they occur seldom, they are likely to 
exhibit unknown and time-varying patterns of nonlinearity and in-
teractions in the relationship between predictor variables and proba-
bilities of occurrence (McPhillips et al., 2018). Furthermore, scarce 
occurrences result in highly imbalanced datasets that can hamper robust 
modeling. Both theoretical findings (Wolpert and Macready, 1997) and 
empirical evidence (Fernández-Delgado et al., 2014) suggest that ma-
chine learning algorithms are particularly well suited to overcome these 
methodological challenges. For example, recent studies use machine 
learning techniques for banking crisis prediction (Tanaka, Kinkyo, and 
Hamori, 2016; Alessi and Detken, 2018; Beutel et al., 2019; Bluwstein 
et al., 2020; Samitas et al., 2020; Fouliard, Howell, and Rey, 2021). 
While there is also growing research that uses machine learning-based 
methods in the empirical asset pricing literature (Freyberger, Neu-
hierl, and Weber, 2020; Gu et al., 2020; Drobetz and Otto, 2021), at-
tempts to apply them for mere directional forecasts (rather than level 
forecasts) and the prediction of large and sudden stock market declines 
are still scant. To date, Chatzis et al.’s (2018) study is so far the only one 
that systematically addresses the problem of forecasting future stock 
market crashes via machine learning. 

The theoretical asset pricing literature establishes a potential link 
between the predictability of stock market crashes and the concept of 
bubbles. Asset price bubbles are defined as the deviation of an asset’s 
market price from its fundamental value because current owners believe 
they are able to resell the asset at an even higher price later (Brunner-
meier, 2009). In his Nobel Lecture, Fama (2014) argues that for a bubble 
to exist on stock markets, irrationally strong price increases must imply a 
predictably strong price decline (indicative of a bubble’s burst). 
Greenwood et al. (2019) show that, consistent with the weak-form 
market efficiency, longer price run-ups do not predict low subsequent 
returns. Nevertheless, they predict a heightened probability of a crash in 
the near future. Kaminsky and Reinhart (1999) conclude that what may 

(or may not) be an asset price bubble’s burst is most likely to be observed 
ahead of multidimensional financial crisis events.3 These results support 
univariate valuation measures to predict stock market crashes such as 
Campbell and Shiller’s (1988a, 1988b) model based on the 
earnings-to-price ratio, the bond-stock earnings yield differential 
(BSEYD) model (Ziemba and Schwartz, 1991; Lleo and Ziemba, 2017), 
or the Fed model (Asness, 2003; Estrada, 2006; Maio, 2013). 

In our empirical setting, we refer to the concept of semi-strong 
market efficiency and, extending Greenwood et al.’s (2021) study, 
examine whether any information in addition to the attributes of the 
price run-up helps predict stock market crashes. Following Chatzis et al. 
(2018), we define crash months as months in which the stock market 
return is below the 5th percentile based on the historical distribution 
over a ten-year rolling window. Based on this definition, we provide a 
framework for a systematic and consistent comparison 1) across uni-
variate crash prediction models and 2) between univariate and multi-
variate crash prediction models. We use a comprehensive set of 
price-based, fundamentals-based, sentiment-based, and macroeco-
nomic predictor variables from the five largest Eurozone countries. As in 
Lleo and Ziemba (2017, 2019), we construct univariate models using 
percentile-based thresholds for each predictor in isolation. Multivariate 
approaches are machine learning-based and incorporate information 
from multiple different predictors simultaneously. We use logistic re-
gressions and more sophisticated machine learning techniques repre-
sented by support vector machines (SVMs), which are a well-established 
and popular classification method (Vapnik, 1998). In a robustness test, 
we use other machine learning classifiers such as two tree-based models 
(random forests and gradient boosted regression trees) and neural 
networks. 

Our results show that, in terms of statistical predictive performance, 
an SVM-based crash prediction model outperforms a random classifier 
and is superior to the average univariate benchmark as well as a 
multivariate logistic regression model. We demonstrate, based on 
several instructive examples in the run-up to stock market crashes, that 
incorporating nonlinear and interactive effects is both imperative and 
foundation for the outperformance of SVMs. Their ability to forecast 
stock market crashes out-of-sample translates into substantial value- 
added to active investors under realistic trading assumptions. In a 
larger sense, using machine learning techniques enables us to uncover 
robust statistical relationships in the underlying economic conditions 
that precede stock market crashes. For example, abnormally low stock 
market returns in the current month do not necessarily point towards an 
even stronger stock market correction in the next month, unless other 
economic indicators are simultaneously falling out of their normal 
ranges (e.g., the yield curve flattens or even reverses). Our results thus 
confirm Lopez de Prado’s (2020) insight that machine learning should 
not prematurely be regarded as a black box. 

The question why stock market crashes happen at all is clearly 
beyond the scope of our empirical analysis. We are unable to answer the 
more fundamental question whether the stock price dynamics we 
observe are attributable to changes in expected returns or discount rates 
driven by fundamental variables such as conditions affecting profits, 
risk, and risk premiums (Pastor and Veronesi, 2006, 2009), or are the 
result of bursting or deflating bubbles, which can either be of rational or 
behavioral origin (Brunnermeier, 2009; Brunnermeier and Oehmke, 
2013; Scherbina and Schlusche, 2014). Nevertheless, our results have 
several important implications: First, they are valuable for long-term 
investors, whose risk-adjusted performance improves when they are 
able to forecast large stock market corrections. Second, stock markets 
are a leading indicator of the real economy (Fischer and Merton, 1984). 

2 Market timing refers to moving investment funds in or out of a particular 
financial market (or asset class), and market switching to moving them between 
different financial markets (or asset classes), based on predictive methods. If an 
investor can predict when financial markets will go up and down, market 
timing and switching trades can turn these price movememts into profits. 

3 Many studies document that rapid rises of aggregate stock prices are pre-
dictive of financial crises, in particular, when accompanied by high credit 
growth (Schularick and Taylor, 2012; Aliber and Kindleberger, 2015; Green-
wood et al., 2021). 
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Predicting stock market crashes is distinct – albeit clearly not fully 
separable – from predicting other financial crises, and it can help fore-
cast financial fragility and deteriorating macroeconomic outcomes. 
Through these channels, our results are related to financial and mac-
roeconomic stability. 

Our main objective is to examine whether machine learning-based 
approaches outperform simple univariate benchmarks as well as a 
multivariate logistic regression model in predicting future stock market 
crashes and, if yes, why. In our empirical analysis, we select a framework 
that resembles the realistic trading patterns of European institutional 
investors. They typically restructure their portfolios on a monthly basis 
and are often required to maintain investments in different Eurozone 
countries. 

While Chatzis et al.’s (2018) study is clearly related to ours, we 
expand it in various dimensions: First, we do not only compare the 
predictive performance of crash prediction models from a statistical 
perspective, but also contrast their economic profitability through the 
lens of an active investor. To this end, we analyze the performance of 
market timing and switching strategies.4 Second, rather than looking at 
the global stock market, we work with data from the five largest Euro-
zone countries, which allows predicting crashes at a more granular level 
and even assists active investors in tactically allocating their funds 
across countries over time. Third, we do not limit our crash prediction 
models to price-based market data. Against the backdrop of semi-strong 
market efficiency, we use a comprehensive set of price-based, funda-
mentals-based, sentiment-based, and macroeconomic predictor vari-
ables that have been shown to explain and forecast subsequent stock 
market crashes. We also incorporate predictors that have not yet been 
widely used in the literature, despite their likely predictive power, such 
as the metric from Chow et al. (1999) and Kritzman and Li (2010) that 
captures the financial turbulence on stock markets. 

Fourth, extending Chatzis et al.’s (2018) study, we address the 
black box issue in predicting stock market crashes by investigating the 
characteristics and functioning scheme of machine learning tech-
niques. Inspecting changes in the inherent model complexity over 
time, we observe strong time variation in the degree of model 
complexity and a co-movement with the current-month stock market 
variance, indicating that high-volatility periods are more difficult to 
predict. We also decompose predictions into the contributions of in-
dividual variables using relative variable importance metrics.5 The 
most influential predictors are based on exchange rate trends, returns 
on stock, oil, and gold markets, and variables reflecting current stock 
market risk. In contrast, information from bond markets seem to be 
less relevant. 

We show that there is no single variable or small subset of vari-
ables that always and reliably precedes stock market crashes with 
extreme values, suggesting substantial time variation in the predictive 
ability of any single variable. Because multivariate crash prediction 
models are capable of incorporating multiple predictor variables 
simultaneously, they should be advantageous over their univariate 
counterparts. Supporting this view, we show that only a few pre-
dictors in the univariate setting, e.g., valuation metrics such as the 

earnings-to-price ratio or the dividend-to-price ratio, deliver signifi-
cant predictive performance over the full sample period. However, in 
contrast to our multivariate approaches, their predictive ability is 
often not evenly distributed over the sample period but strictly 
limited to shorter subperiods, e.g., the dotcom bubble. 

Finally, given logistic regressions as our linear multivariate 
benchmark, we explore patterns of nonlinear and interactive effects 
in the relationship between predictor variables and the estimated 
crash probabilities, which are likely to be inherent to extreme events. 
Our results show that incorporating these effects is pivotal for the 
superior predictive performance of SVMs relative to their linear 
counterpart. 

The remainder is organized as follows: Section 2 reviews the litera-
ture on crash prediction and machine learning. Section 3 describes our 
dataset. Section 4 analyzes the economic conditions preceding crashes. 
Section 5 introduces univariate and multivariate crash prediction 
models. Section 6 assesses the predictive performance of these models 
and analyzes model complexity and variable importance as well as 
nonlinear and interactive effects. Section 7 concludes. 

2. Literature review 

According to Chatzis et al. (2018), stock market crashes are defined 
as periods during which stock market returns are abnormally low rela-
tive to their historical distribution. In this light, the literature applies 
statistical models to predict crashes along two strands: univariate 
models and multivariate models. 

Univariate crash prediction models are the simplest. As in Ziemba et al. 
(2017), we classify them into two subcategories based on methodology. 
The first subcategory refers to stochastic models, which are probabilistic 
representations of stock markets. These models are based on the idea 
that stock market states are characterized by price-based metrics such as 
return, volatility, and (auto-)correlation (Ang and Bekaert, 2004; Ang 
and Timmermann, 2012; Neely et al., 2014). Applying sophisticated 
algorithms, they aim to identify patterns in historical stock market pri-
ces such as regime shifts (Bulla et al., 2011; Nystrup et al., 2015) or 
change points (Shiryaev et al., 2014). 

The second subcategory consists of models restricted to only one 
variable, which apply a heuristic that mimics our crash definition, 
meaning that abnormally high or low values of a predictor relative to its 
historical distribution generate crash signals. These models are distin-
guished by the predictor variable under investigation. However, they 
have in common that economic theory postulates some degree of pre-
dictive ability for the specific variable used. 

Fundamentals-based models link stock market movements to changes 
in the firms’ fundamentals or macroeconomic environment, and 
consider a wide range of possible valuation metrics. Examples include 
the earnings-to-price ratio (Campbell and Shiller, 1988a, 1988b) and the 
bond-stock earnings yield differential (BSEYD) metric (Ziemba and 
Schwartz, 1991; Lleo and Ziemba, 2017), which relates the yield on 
ten-year government bonds to the inverse of the price-to-earnings ratio. 

Sentiment-based models assume that stock market movements are 
caused by changes in the overall economic sentiment (Shiller, 2003; 
Baker and Wurgler, 2006, 2007). For example, according to Billingsley 
and Chance (1988), Copeland and Copeland (1999), Whaley (2000), 
Bandopadhyaya and Jones (2008), and Goetzmann et al. (2017), put-call 
ratios or implied volatilities, among others, can be used as 
sentiment-based predictors. 

Multivariate crash models are more complex. They are devised to 1) 
incorporate a large set of variables simultaneously and 2) consider both 
nonlinearity and interactions in the relationship between predictors and 
subsequent stock market downturns. Leung et al. (2000) conduct a 
comparative analysis of simple classification-based methods (including 
linear discriminant analysis and logistic regressions) to predict the di-
rection of stock market movements and provide evidence for substantial 
predictive ability. Chatzis et al.’s (2018) study is so far the only one that 

4 We choose a monthly setting and re-estimate our machine learning-based 
models each month, rather than using daily data and fitting machine learning 
classifiers based on only a single sample split. Therefore, our approach allows to 
better account for the time variation in the predictive ability of single variables. 
This is important in light of the Lucas (1976) critique, stressing that the 
structure of econometric models changes across different economic environ-
ments and crisis times (see Section 4.2).  

5 We examine the importance of each predictor in a given crash prediction 
model over the full sample period, but we also scrutinize the time variation in 
each predictor variable’s importance. This approach reveals whether 1) some 
predictors are uninformative during the entire sample period, 2) they lead to a 
permanent deterioration in a forecast’s signal-to-noise ratio, and 3) they should 
be removed from the set of baseline variables. 
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systematically addresses the problem of forecasting future stock market 
crashes via machine learning.6 They also find significant predictive 
power of multivariate crash prediction models and conclude that ma-
chine learning techniques (including SVMs, tree-based models, and 
neural networks) outperform simpler approaches. However, both studies 
only focus on price-based data from stock, bond, or currency markets. 

Several studies that aim to forecast the direction of future stock 
market movements incorporate additional, non-price-based information 
to increase the predictive performance. For example, Choudhry and Garg 
(2008) apply a hybrid machine learning system. While also using several 
variables based on technical analysis, they propose that including fun-
damentals- and sentiment-based variables improves classification accu-
racy. Both Lee et al. (2019) and Ren et al. (2019) use various machine 
learning techniques to highlight the incremental predictive power of 
sentiment-based and financial network indicators. Earlier studies (Huang 
et al., 2005; Shao and Lunetta, 2012) provide evidence that SVMs 
outperform other classification methods (including random walk models, 
quadratic discriminant analysis, tree-based models, and neural net-
works), particularly when working with small sample sizes. Therefore, 
the literature often only focuses on how different versions of SVMs predict 
the direction of future stock market movements.7 

3. Data 

Our data come from Refinitiv and comprise market and fundamental 
data from stock, bond, commodity, and forex markets as well as senti-
ment and macroeconomic indicators. They are collected on a monthly 
basis and, if currency-related, denominated in Euro. Our sample in-
cludes the five largest Eurozone countries by gross domestic product as 
of December 2019, i.e., Germany, France, Italy, Spain, and the 
Netherlands. However, we omit country observations with missing 
values on stock market returns or at least one of the twenty-eight pre-
dictor variables used in the empirical analysis. This shrinks our sample 
period to January 1990–December 2020. To calculate excess returns, we 
use the three-month FIBOR or EURIBOR rate, whichever is available, 
scaled to the one-month horizon, as the risk-free rate. 

We follow Welch and Goyal (2008), Lleo and Ziemba (2017), Chatzis 
et al. (2018), Neely et al. (2014), and Bluwstein et al. (2020), among 
others, and construct a comprehensive set of variables that have been 
shown to predict future stock market returns. In line with Chatzis et al. 
(2018), who differentiate between local and global financial crises, we 
refer to stock market crashes that sporadically occur in a single country 
as idiosyncratic (local) and those that simultaneously occur in multi-
ple/all countries as systematic (global). We assume that local crashes are 
driven mainly by changes in country-specific economic conditions, 
while global crashes originate from supranational forces. As shown in  
Table 1, each country’s dataset thus consists of two categories of pre-
dictors: supranational variables, e.g., based on gold, oil, or foreign ex-
change markets, and country-specific variables, e.g., based on domestic 
stock and bond markets. 

We further include variables that have not yet been widely used in the 
literature to predict stock market crashes, although they contain infor-
mation that is likely to add incremental predictive performance. Ferrer 
et al. (2016) propose that the consumer confidence index (cci) serves as an 
indicator of a country’s overall economic sentiment, and possesses 

predictive power for future stock market meltdowns. Furthermore, in 
order to be meaningful, crash predictions must include information on 
whether the current stock market return and risk metrics are abnormal in 
comparison with their own past. To this end, we adapt the distance ratio 
of Avramov et al. (2020), which is defined as the ratio between short- and 
long-run moving averages of stock prices and has been shown to possess 
predictive power for the cross section of stock-level expected returns. 
Adjusted for our empirical setting, we apply this ratio to both stock 
market returns and variances (mrat and svrat, respectively). 

Finally, we include three variables that explicitly capture the sys-
tematic component of stock market crash risk. First, we use the German 
composite indicator of systematic stress (ciss) provided by the European 
Central Bank (Holló et al., 2012). High values indicate high systematic 
crash risk. Second, we incorporate the financial turbulence metric (ft) 
from Chow et al. (1999) and Kritzman and Li (2010), which identifies 
conditions under which stock markets behave atypically given their 
historical patterns. Uncharacteristic behavior (such as extreme stock 
market returns, decoupling of correlated stock markets, or convergence 
of uncorrelated stock markets) is quantified based on the Mahalanobis 
(1936) distance measure. Low values reflect a low similarity with his-
torical patterns, indicating high systematic crash risk. Third, we include 
the absorption ratio (ar) introduced by Kritzman et al. (2011), which 
applies a principal component analysis to the historical stock market 
returns of the five sample countries. It is defined as the fraction of the total 
variance absorbed by the first two eigenvectors. High values display high 
stock market fragility, corresponding to high systematic crash risk. 

Table 1 provides the definitions and time series means for the 
twenty-eight predictors that serve as the starting point for our empirical 
analysis. One important caveat is that many of the predictors are con-
structed similarly or incorporate similar information, which leads to 
relatively high correlations. However, according to Lewellen (2015), 
any resulting multicollinearity is not a major concern because we are 
mostly interested in the overall predictive power of machine 
learning-based crash prediction models, rather than the marginal effects 
of each single predictor. 

4. Characteristics of stock market crashes 

Our main objective is assessing the ability to forecast future stock 
market crashes. Any crash prediction model, whether univariate or 
multivariate, consists of two components: 1) a binary crash indicator 
CIt+1, which equals 1 when a substantial stock market downturn occurs 
during month t + 1, and 0 otherwise, and 2) a binary crash signal CSt+1|t, 
which equals 1 if the model, incorporating all information available at 
the end of month t, expects a stock market crash to occur during month 
t + 1, and 0 otherwise. 

4.1. Stock market crashes over time 

We follow Chatzis et al. (2018) in defining stock market crashes.8 We 
derive the binary crash indicator CIt+1, separately for each country, by 

6 Ohana et al. (2021) also use machine learning techniques to predict stock 
market crashes. However, they do not offer a systematic framework to assess 
their predictive ability because the authors focus on only one specific stock 
market crash (the S&P 500 meltdown in March 2020).  

7 Yu et al. (2005) and Yu et al. (2009) implement an evolving least squares 
SVM with a Genetic Algorithm (GA) for both feature selection and parameter 
tuning. Similarly, Choudhry and Garg (2008) and Khatibi et al. (2011) hy-
bridize SVM and GA, while Ni et al. (2011) add a fractal dimension-based 
feature selection. 

8 Similar to other extreme events, stock market crashes lack uniform defini-
tion. For example, Goetzmann et al. (2017) define crashes as substantial 
one-day drops in a stock market, while Goetzmann and Kim (2018) define them 
as events for which the stock market declines by more than 50% over one year. 
In both examples, the crash indication depends strongly on the return 
threshold, which is commonly chosen by discretion and kept constant over 
time. During high- or low-volatility periods, however, it may be more appro-
priate to consider higher or lower thresholds, respectively. Chatzis et al. (2018) 
use a percentile-based approach of crash indication, which reduces the need for 
discretionary selection and allows for time variation in the threshold. In 
particular, they link stock market crashes to extreme negative return events 
(based on the historical return distribution) that were likely caused by sub-
stantial changes in the underlying economic conditions. 
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comparing the stock market return retstock,t+1 during month t+1 with a 
historical return-based threshold HRTstock,t+1|t for month t + 1, calcu-
lated at the end of each month t. This threshold is defined as the 5th 

percentile based on the historical stock market return distribution over a 
ten-year rolling window.9 Accordingly, a crash during month t+1 is 
indicated if the respective stock market return falls below the calculated 
threshold: 

CIt+1 =

{
1 if retstock,t+1 − HRTstock,t+1|t < 0

0 otherwise . (1) 

Panel A of Fig. 1 illustrates our procedure for Germany. The red line 
represents the historical return-based threshold. Non-crash months 
(stock market returns above the threshold) are marked with a black 
unfilled circle, while crash months (stock market returns below the 
threshold) are marked with a red unfilled circle. Panel B of Fig. 1 visu-
alizes the aggregate number of crash occurrences across the five sample 
countries over time. It reveals three periods during which crashes 
occured simultaneously in nearly all countries (grey-shaded areas) and 
periods with only a sporadic crash in single countries. This phenomenon 
points towards systematic and idiosyncratic components of stock market 
crash risk, which is in line with Chatzis et al.’s (2018) notion of global 
and local stock market crashes.10 

4.2. Economic conditions preceding stock market crashes 

Anecdotal evidence links the three periods to economically distinct 
crash episodes, namely the dotcom bubble, the Global Financial Crisis, and 
the Covid-19 pandemic. We now examine the commonalities and differ-
ences among the economic conditions that preceded these crash epi-
sodes. For the sake of brevity, we report the descriptive statistics 
illustratively for Germany and only a single crash month during each of 
the three periods (September 2002, January 2008, and March 2020).11 

As specific numbers (in levels) are less informative than whether these 
numbers are large or small relative to their historical distributions, we 
apply a detrending and scaling procedure. 

In a first step, for each predictor, we compute the detrended values 
as the residuals of an ordinary least squares regression of the raw 
values on a time dummy. We use a five-year rolling window and all 
information up to the respective point in time. In a second step, 
following Kelly et al. (2019) and Freyberger et al. (2020), we map the 
detrended values into the ( − 1,+1) interval. Positive numbers close to 
+1 indicate abnormally high values, while negative numbers close to 
− 1 indicate abnormally low values. Hypothetically, there could be 
two different findings: First, prior to each crash, a single variable or 
small subset of variables always has abnormal numbers, which em-
phasizes stable predictive power. Second, the variables with abnormal 
figures differ across crashes, indicating time variation in their pre-
dictive ability. 

Table 1 
Descriptive statistics.  

# Predictor Definition Mean 

Supranational predictors Overall     

1 ar Absorption ratio  0.93     
2 ciss German composite indicator of systematic stress  0.15     
3 dfy Default spread [%]  0.08     
4 ft Financial turbulence metric  5.46     
5 ret_exr One-month percentage change in U.S. dollar-to-Euro exchange rate [%]  0.11     
6 ret_exr_ann One-year percentage change in U.S. dollar-to-Euro exchange rate [%]  0.80     
7 ret_gold One-month gold market excess return [%]  0.70     
8 ret_gold_ann One-year gold market excess return [%]  8.67     
9 ret_oil One-month oil market excess return [%]  0.74     
10 ret_oil_ann One-year oil market excess return [%]  8.08     
11 tbl Three-month FIBOR or EURIBOR rate, scaled to the one-month horizon [%]  0.13     
12 tds TED spread (between three-month LIBOR rate denoted in U.S. dollar and three-month U.S. T-bill rate) [%]  0.03     
13 tms Term spread (between yield on ten-year German government bonds and three-month FIBOR or EURIBOR 

rate, scaled to the one-month horizon) [%]  
0.07     

Country-specific predictors BD FR IT ES NL 

14 bm Book-to-market ratio  0.62  0.59  0.82  0.60  0.63 
15 bseyd Bond-stock earnings yield differential [%]  -4.47  -3.60  -2.77  -3.34  -3.86 
16 cci Consumer confidence index [factor 1e4]  -0.16  -1.50  -0.91  -2.72  -1.20 
17 dp Dividend-to-price ratio  0.41  0.34  0.30  0.31  0.37 
18 ep Earnings-to-price ratio  0.07  0.06  0.07  0.07  0.07 
19 ir One-month percentage change in yield on ten-year government bonds [%]  0.20  0.23  0.31  0.29  0.22 
20 ir_ann One-year percentage change in yield on ten-year government bonds [%]  2.49  2.82  3.77  3.54  2.69 
21 mrat Distance ratio (between one-month and one-year stock market return)  1.02  1.03  1.01  1.02  1.02 
22 ntis Net equity expansion [%]  0.75  1.65  1.46  2.79  -0.47 
23 ret_stock One-month stock market excess return  0.39  0.43  0.24  0.34  0.36 
24 ret_stock_ann One-year stock market excess return  5.22  6.30  2.94  4.22  5.05 
25 svar One-month stock market variance (mean of squared daily stock market returns) [factor 1e4]  1.52  1.65  1.84  1.72  1.56 
26 svar_ann One-year stock market variance (mean of squared daily stock market returns) [factor 1e4]  1.49  1.61  1.80  1.68  1.54 
27 svrat Distance ratio (between one-month and one-year stock market variance)  1.04  1.06  1.06  1.05  1.06 
28 to Turnover [€ bill.]  7.94  92.41  61.15  42.36  44.35 

This table gives the definitions and time series means for the twenty-eight supranational and country-specific predictors used in the empirical analysis. The sample 
includes the five largest Eurozone countries by gross domestic product as of December 2019 (Germany, BD, France, FR, Italy, IT, Spain, ES, and the Netherlands, NL) 
during the January 1990–December 2020 sample period. The data coming from Refinitiv are collected on a monthly basis and, if currency-related, denominated in 
Euro. 

9 The identified patterns are similar for alternative definitions of stock market 
crashes, e.g., using the 10th percentile based on the historical stock market 
return distribution over a ten-year rolling window as the threshold.  
10 Because crash prediction models are required to identify both systematic 

and idiosyncratic types, we incorporate supranational and country-specific 
variables and do not distinguish between these two types in our empirical 
analysis. 

11 For the sake of brevity, we omit the six one-year predictors, because the 
findings are similar to their one-month equivalents, and thus only show the 
results for the remaining twenty-two variables to assess the crash 
characteristics. 

H. Dichtl et al.                                                                                                                                                                                                                                   



Journal of Financial Stability 65 (2023) 101099

6

Fig. 2 presents the respective Kiviat charts illustratively for Germany 
and the crashes in September 2002, January 2008, and March 2020. 
Abnormally high values are located close to the border, whereas 
abnormally low values close to the center. The crashes have in common 
that the polygons are close to the border or center for many predictors, 
suggesting that the economic conditions preceding these stock market 
crashes were extreme. However, the Kiviat charts differ substantially 
across crashes, showing that there was no single variable or small subset 
of variables that always and reliably preceded these stock market 
crashes with extreme values. We conclude that multivariate crash pre-
diction models, which incorporate a comprehensive set of variables 
simultaneously, are potentially advantageous over approaches that 
consider only a single predictor or small set of predictors.12 

These observations are related to the Lucas (1976) critique. Eco-
nomic relationships change in response to changes in the expectations of 

market participants and their endogenously determined decisions. 
McLean and Pontiff (2016) document that investors learn about mis-
pricing from academic publications. Many of the stock market predictors 
uncovered in the finance research lost their predictive power soon after 
they were published in academic journals. There may also be an inherent 
self-defeating property in crash prediction: Variables that performed 
well in historical samples may lose their predictive ability for future 
crashes. To mitigate this problem, we move away from univariate 
models, where the predictive ability of the sole predictor may vanish 
over time, and incorporate a comprehensive set of predictor variables 
simultaneously. More importantly, we recursively refit the machine 
learning models each month. This time-consuming calibration approach 
allows regular updates of the historical crash patterns and reduces the 
necessary stability in the economic relationships to only a short time 
period, namely one month. It further takes into account any changes in 
the relative importance of each predictor variable and, at any specific 
point in time, puts the focus on those predictors that are most 
informative. 

Fig. 1. Stock market crashes over time. This figure presents the indicated stock market crashes during the January 2000–December 2020 out-of-sample period. Panel 
A visualizes the procedure to obtain the binary crash indicator CIt+1, which equals 1 when a substantial stock market downturn occurs during month t + 1, and 
0 otherwise, illustratively for Germany. The red line represents the historical return-based threshold. Non-crash months (stock market returns above the threshold) are 
marked with a black unfilled circle, while crash months (stock market returns below the threshold) are marked with a red unfilled circle. Panel B adds the aggregate 
number of crash occurrences across the five sample countries over time. The sample includes the five largest Eurozone countries by gross domestic product as of 
December 2019 (Germany, France, Italy, Spain, and the Netherlands) during the January 1990–December 2020 sample period. The data coming from Refinitiv are 
collected on a monthly basis and, if currency-related, denominated in Euro. 

12 The results for the remaining crashes and sample countries (unreported) are 
similar and underline that crash characteristics vary substantially in both time 
series and cross section. 
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5. Crash prediction models 

Although multivariate crash prediction models have the potential to 
outperform, simple univariate approaches still dominate in both 
academia and industry (Berge et al., 2008; Lleo and Ziemba, 2017, 
2019). Therefore, we consider univariate models as our first benchmark, 
which allows us to identify the incremental predictive performance of 
more complex multivariate approaches. 

5.1. Univariate approaches 

We follow Lleo and Ziemba (2017) in creating our univariate crash 
prediction models. The binary crash signal CSt+1|t is defined similarly to 
the binary crash indicator CIt+1 (see Section 4.1). It equals 1 if the 
respective model, incorporating all information available at the end of 
month t, expects a stock market crash to occur during month t + 1, and 
0 otherwise. We derive it, separately for each country and predictor, by 
comparing predictor variable Mt with a percentile-based threshold Kt (e. 
g., the 5th or 95th percentile) at the end of each month t. Economic theory 
can require Mt to exceed or fall below the threshold Kt : 

CSt+1|t =

{
1 if Mt − Kt > or < 0

0 otherwise . (2) 

To give an example, abnormally high financial turbulence metrics 
(Mt − Kt > 0) or abnormally low book-to-market ratios (Mt − Kt < 0) 
are expected to precede stock market crashes. 

Because CSt+1|t = 1 predicts a stock market crash during month t +
1, the economic implication is to exit the market at the end of month t, 
and re-enter it when CSt+1|t = 0 again. If Mt fluctuates around Kt, this 
leads to excessive variability in CSt+1|t and frequent exits and entries, 
which increase transaction costs. To overcome this deficiency, Berge 
et al. (2008) and Lleo and Ziemba (2017) suggest combining two 
different percentile-based thresholds (see Appendix C, Fig. C1 for an 
illustration): a more restrictive threshold Kexit, e.g., 95%, considered for 
exit decisions (if the crash signal was 0 in the previous month), and a less 
restrictive threshold Kentry, e.g., 90%, considered for re-entry decisions 
(if the crash signal was 1 in the previous month). 

To be consistent with our definition of stock market crashes (see 

Section 4.1), i.e., constructing univariate models that produce crash 
signals in five percent of the months (the expected fraction of crash in-
dications), we focus on the simple Kexit = Kentry = 95% case.13 A pre-
dictor signals a crash if its value exceeds the 95th percentile (Mt > Kt) or 
falls below the 5th percentile (Mt < Kt) based on the historical distri-
bution over a ten-year rolling window.14 Percentile-based crash signals 
are vulnerable to long-term trends because predictor variables exceed 
the thresholds more often than intended during an upward trend. 
Similarly, they fall below the thresholds less often during a downward 
trend. To overcome this problem, we differ from Lleo and Ziemba (2017) 
and remove the long-term trends in a preceding step. We compute the 
detrended values as the residuals of an ordinary least squares regression 
of the raw values on a time dummy, using a ten-year rolling window and 
all information up to the respective point in time. 

5.2. Multivariate approaches 

Even if some predictors possess predictive ability for subsequent 
stock market crashes in a univariate setting, it is unlikely, as explained in 
Section 4, that their predictive power is consistent across countries and 
constant over time. Therefore, ex ante, it is practically impossible to 
always select the univariate model that is optimal for a given country or 
at a specific point in time. Multivariate crash prediction models should 
outperform the average univariate model because they incorporate a 
comprehensive set of variables simultaneously. This helps diversify the 
cluster risks that seem inherent to models restricted to only a single 
predictor, i.e., that the predictive ability of this variable may vanish over 
time. In addition, multivariate models also include those variables that 

Fig. 2. Economic conditions preceding stock market crashes, Germany. This figure depicts the economic conditions that preceded the three major crash periods, 
namely the dotcom bubble, the Global Financial Crisis, and the Covid-19 pandemic. It visualizes the respective Kiviat charts illustratively for Germany and a single crash 
month during each of the three periods (September 2002, January 2008, and March 2020). For the sake of brevity, only the twenty-two one-month predictors are 
considered to assess the crash characteristics (the six one-year predictors are omitted). Each predictor is presented based on its detrended and scaled value. In a first 
step, the detrended value is computed as the residual of an ordinary least squares regression of the raw values on a time dummy, using a five-year rolling window and 
all information up to the respective point in time. In a second step, the detrended values are mapped into the (− 1,+1) interval. Positive values close to +1 are 
abnormally high, while negative values close to − 1 are abnormally low. The sample includes the five largest Eurozone countries by gross domestic product as of 
December 2019 (Germany, France, Italy, Spain, and the Netherlands) during the January 1990–December 2020 sample period. The data coming from Refinitiv are 
collected on a monthly basis and, if currency-related, denominated in Euro. 

13 In a robustness test, we deviate from this baseline specification and consider 
an alternative assumption for exit and entry thresholds: Kexit = 95% and Kentry =

90%. The classification results are shown illustratively for Germany in Panel A 
of Table B2 of Appendix B. The patterns identified for the baseline specification 
and their implications are robust to changes in the specification of the exit and 
entry thresholds.  
14 Because economic theory is ambiguous for some of the predictors used in 

the empirical analysis, we refrain from restricting the sign of the difference 
between Mt and Kt for any predictor variable ex ante. 
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might not yet be informative but potentially have predictive power in 
the future. Furthermore, most machine learning-based models consider 
nonlinear effects and interactions in the relationship between predictors 
and subsequent slumps in stock prices (McPhillips et al., 2018). 

The simplest multivariate crash prediction approaches are based on 
logistic regressions (including models that perform variable selection/ 
shrinkage or dimension reduction). However, due to their inability to 
incorporate nonlinearity and interactions (other than through pre- 
determined regression terms), more sophisticated machine learning 
models should outperform in terms of predictive power. Methods range 
from support vector machines over tree-based models to neural net-
works in various specifications, differing in their overall approach and 
complexity. More complex models may be better at modelling real- 
world phenomena, but complexity also raises proneness to overfitting, 
opaqueness, and interpretive deficiency. 

From the range of different machine learning models, we first select 
logistic regressions (Ohlson, 1980). If not explicitly included as pre-determined 
terms, logistic regressions cannot capture any nonlinear or interactive ef-
fects. Therefore, we use them as our second benchmark, i.e., our linear 
multivariate benchmark, to identify whether nonlinear effects and 
interactions actually lead to incremental predictive power. To represent 
more sophisticated machine learning models, we select support vector 
machines, which are a well-established and popular classification method 
(Vapnik, 1998).15 Like tree-based models and neural networks, they are 
able to incorporate nonlinearity and multi-way interactions inherently, 
without having to add new predictors that capture these effects in advance. 
Our selection is supported by studies showing that SVMs outperform rela-
tive to other classification methods, particularly in setups with small sample 
sizes (Huang et al., 2005; Shao and Lunetta, 2012). From a conceptual 
perspective, SVMs are less hierarchical than tree-based models (making 
them less affected by dominant predictors) and less parameterized than 
neural networks (making them more transparent and interpretable). 

Before presenting and discussing the results of our empirical anal-
ysis, the subsections following below provide more details on machine 
learning classifiers. First, we describe the sample-splitting scheme used 
to fit the multivariate crash prediction models. Second, we provide a 
brief discussion of the idea behind logistic regressions and SVMs. 

5.2.1. Sample splitting 
While machine learning classifiers possess desirable properties, they 

are prone to overfitting. Therefore, we must control for the degree of 
model complexity by tuning the relevant hyperparameters, e.g., the 
vector influence and misclassification costs in SVMs. To avoid over-
fitting and maximize out-of-sample predictive power, hyperparameters 
cannot be preset, but rather must be determined adaptively from the 
sample data. The parameter tuning approach iteratively reduces in- 
sample fit by searching for a degree of model complexity that will pro-
duce reliable out-of-sample predictive performance. Gu et al. (2020) 
propose the time series cross-validation procedure. It splits the sample 
into three distinct subsamples (a training sample, a validation sample, 
and a test sample), which maintains the temporal ordering of the data. 
However, the rare occurrence of stock market crashes results in highly 
imbalanced datasets for training and validation, and fitting machine 
learning classifiers to such datasets renders them biased against the 
minority class, which can impair their predictive performance (Chatzis 
et al., 2018). To avoid such imbalances, one can use random under- or 
oversampling. For large datasets, random undersampling artificially re-
duces the fraction of the majority class until the sample is balanced. 
Small datasets require the creation of new observations with 

characteristics similar to those of the minority class, so random over-
sampling artificially increases the fraction of the minority class until the 
sample is balanced. 

Since we work with a small sample of monthly data, we use the 
smoothed bootstrap-based random oversampling algorithm proposed by 
Menardi and Torelli (2014). The resulting dataset for training and 
validation is balanced (with similar frequencies of crash and non-crash 
months). Moreover, a problem is that random oversampling eliminates 
the time dimension of the data. We follow Chatzis et al. (2018) and opt 
for the k-fold cross-validation approach. It randomly splits the balanced 
dataset into k parts (k − 1 parts for training and the remaining part for 
validation) and repeats this procedure k times, such that each part is 
used for validation once.16 While each training sample is used to esti-
mate the model for multiple parameter specifications, each validation 
sample is used to compute the validation accuracy (Accval).17 The 
optimal specification of hyperparameters maximizes the average vali-
dation accuracy: Accval =

1
k
∑k

j=1Accval,j.
18 Finally, the test sample, which 

is used for neither model estimation nor parameter tuning, is truly 
out-of-sample and appropriate for evaluating a model’s predictive 
power. 

In addition, we adopt the ensemble approach proposed by Dietterich 
(2000) and Bluwstein et al. (2020). Using five independent seeds s, we 
first apply the random oversampling algorithm five times at each 
re-estimation date. Based on each of the five distinct balanced training 
and validation samples, we fit one independent model (either a logistic 
regression or an SVM) to compute the crash signals.19 Incorporating all 
information available at the end of month t, each model first estimates 
the likelihood pt+1|t,s that a stock market crash will occur during month 
t+1 and then generates a crash signal that equals 1 if the likelihood 
estimate exceeds 0.5, and 0 otherwise: 

CSt+1|t,s =

{
1 if pt+1|t,s > 0.5

0 otherwise . (3) 

However, instead of generating seed-level crash signals, we average 
the different predictions pt+1|t,s into a single ensemble prediction: pt+1|t =

1
5
∑5

s=1pt+1|t,s. This is the predicted stock market crash probability, which 
we denote as pcrash. Because the stochastic nature of random over-
sampling leads to different balanced datasets and likelihood estimates 
for each seed, averaging predictions across the different seeds reduces 
noise and increases the signal-to-noise ratio. For the ensemble predic-
tion, we follow the same logic applied to generate the crash signals 
within each seed, setting the crash signal equal to 1 if the average like-
lihood pt+1|t(across the five seeds) exceeds 0.5, and 0 otherwise: 

CSt+1|t =

{
1 if p̄t+1|t > 0.5

0 otherwise . (4) 

Finally, it is important to note that the sample-splitting scheme must 
periodically include more recent data (see West, 2006, for an overview). 
In general, both the “rolling window” and the “recursive window” 

15 In a robustness test, we use other machine learning classifiers such as two 
tree-based models (random forests and gradient boosted regression trees) and a 
neural network. For the sake of brevity, the results for Germany are shown in 
Panel B of Table B2 of Appendix B. The results for these alternative machine 
learning classifiers are similar to those for the SVM-based model. 

16 Using random oversampling, we set the number of monthly observations in 
the balanced dataset to obsblncd = 500, and the number of folds to k = 5. This 
implies 5 folds of 100 observations used for training and validation. 
17 Logistic regressions do not require parameter tuning (based on the valida-

tion samples) and are estimated from the combined training and validation 
samples.  
18 We use the overall accuracy of the binary classification as our loss function. 

Because it is computed based on balanced training and validation samples, it is 
suitable despite the imbalances in the underlying sample.  
19 Seeds are numbers used to initialize random processes, which ensures 

different but reproducible predictions. 
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approach are applicable. We choose the latter approach, which pro-
gressively increases the underlying dataset intended for training and 
validation, and always incorporates the entire history of data, ensuring a 
sufficient number of crashes during the fitting process.20 We recursively 
refit the models each month by adding one month to the imbalanced 
dataset at each re-estimation date.21 

5.2.2. Machine learning classifiers 
The idea behind a crash prediction model based on logistic regressions 

(logit) is running pooled ordinary least squares regressions of the log- 
odds (i.e., the logarithm of the odds, denoted as “logit”) that a stock 
market crash will occur during the next month (CIt+1 = 1) on the set of 
twenty-eight predictors zt:22 

logit(CIt+1 = 1) = αt + β
′

tzt + εt+1. (5) 

In contrast, the idea behind a crash prediction model based on 
support vector machines (svm) is to search for hyperplanes that territo-
rially divide a multidimensional vector space into groups of vectors 
that belong to the same class (see Appendix C, Fig. C2 for a two- 
dimensional, two-class illustration).23 Each potential hyperplane is 
located in an area where vectors of two different classes are close 
together. To increase computational speed, SVMs do not always use all 
vectors from the vector space. Rather, they focus on those in the im-
mediate neighborhood of the potential hyperplane, so-called “support 
vectors”. The algorithm then specifies the optimal hyperplane by 
aiming to 1) maximize the distance of correctly classified support 
vectors from the hyperplane and 2) minimize the number of mis-
classified support vectors. 

In theory, the algorithm can avoid any misclassification if there are 
no restrictions on the shape of the hyperplanes (but requiring indefinite 
computational power and time). Since this likely leads to overfitting 
(regardless of obvious computational limitations), SVMs must be 
strongly regularized. We follow Drobetz and Otto (2021) and use a 
radial basis function (RBF) kernel for a proper nonlinear transformation 
of the vector space. We simultaneously apply two other common types of 
regularization. First, we constrain the influence of any single vector, i.e., 
we restrict the space within which it can serve as a support vector (using 
a vector influence parameter γ). A smaller vector influence avoids 
enabling vectors to serve as supports for overly distant hyperplanes. 
Second, we set the permitted number of misclassified support vectors to 
a positive value, i.e., we allow for a certain number of misclassifications 
(using a misclassification cost parameter c). Smaller misclassification 

costs ignore more of the misclassified support vectors, while continuing 
to fit optimal hyperplanes.24 

6. Empirical results 

Having introduced the characteristics of stock market crashes and 
the crash prediction models, we now compare their predictive perfor-
mance in out-of-sample tests from both a statistical and an economic 
perspective. In addition, we conduct in-sample tests to investigate the 
characteristics and functioning scheme of our machine learning-based 
approaches. 

6.1. Out-of-sample tests 

We begin with contrasting the models’ ability to forecast stock 
market crashes out-of-sample in terms of classification performance, and 
proceed with comparing the performance of market timing and 
switching strategies. Because the relationship between statistical mea-
sures and economic value-added may be only weak (Leitch and Tanner, 
1991; Cenesizoglu and Timmermann, 2012), we analyze both di-
mensions of predictive performance. 

6.1.1. Statistical predictive performance 
Crash prediction models are textbook examples of binary classifiers. 

Potential outcomes of binary classifications are true positives (TPs) if the 
predicted and the realized class equal 1, true negatives (TNs) if the 
predicted and the realized class equal 0, false positives (FPs) if the 
predicted class equals 1 but the realized class equals 0, and false nega-
tives (FNs) if the predicted class equals 0 but the realized class equals 1. 
TPs are crash months correctly classified as crash months, and FPs are 
non-crash months incorrectly classified as crash months. Table C1 of 
Appendix C details the four possible cases. As visualized in Panel A, the 
classification performance is usually evaluated using confusion 
matrices, together with a broad set of classification measures, in 
particular, accuracy, precision, recall, and F1 (the harmonic mean of 
precision and recall) measures. To give an example, Panel B provides a 
visualization of a binary classification and the four corresponding 
measures. 

Because stock market crashes are extreme events and, by definition, 
rare, there are only a few crash months during the sample period. This 
results in highly imbalanced out-of-sample datasets, and thus the most 
common classification measure, overall accuracy, can be misleading 
(Luque et al., 2019). A better way to measure a model’s predictive 
performance is the conditional probability P(CI = 1|CS = 1), i.e., the 
probability that stock market crashes actually occur when they are 
expected to occur. Following Lleo and Ziemba (2017), Appendix A 
derives the maximum likelihood estimator p̂ that represents a model’s 
overall precision, i.e., the number of true positive classifications 
divided by the number of distinct crash signals. Moreover, we test 
whether the models’ classification performance is significantly 
different from that of a random classifier (no-information rate). To this 
end, Appendix A derives the likelihood ratio test statistic (Y-statistic) 
for the null hypothesis that a model’s conditional probability is equal to 
the no-information rate, for which we report the empirical p-statistics, 
corrected for a potential small sample bias stemming from the low 
number of crash signals. 

Panels A and B of Table 2 report the classification metrics for the 
univariate and multivariate models illustratively for Germany. For the 
sake of brevity, the classification results for the remaining sample 

20 As illustrated in Section 4.2, stock market crashes are preceded by different 
underlying economic conditions, i.e., they occur for different reasons. It is thus 
unclear whether a recursive-window approach is necessarily preferred over a 
rolling-window approach, which holds the dataset intended for training and 
validation constant and ignores potentially outdated information. However, in 
our empirical setting, recursive windows are the only way to ensure a sufficient 
number of crashes during the fitting process, which is why we opt for this 
approach.  
21 To allow for a comparison with the univariate crash prediction models, the 

first multivariate crash signals are also computed for January 2000, leaving 120 
months from January 1990 to December 1999 for initial fitting.  
22 In a robustness test (unreported), we observe that the statistical predictive 

performance of multivariate logistic regressions that incorporate all twenty- 
eight predictors simultaneously is superior to the average statistical predic-
tive performance of twenty-eight univariate logistic regressions that incorpo-
rate each predictor variable separately.  
23 In our analysis, each vector (observation) is defined by the twenty-eight 

predictors and assigned to either the crash or non-crash month class. 

24 The tuning parameters for the SVMs are the vector influence, which we set 
to γ ∈ (0.001,1), and the misclassification costs, which we set to c ∈ (0.001,1).
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countries are shown in Table B1 of Appendix B.25 Focusing on the uni-
variate models, differences in likelihood ratio test statistics (on average, 
across all predictors within a given country) suggest that the overall 

ability to forecast future stock market crashes differs substantially across 
countries. The average likelihood ratio test statistic is highest for Ger-
many (2.25) and lowest for the Netherlands (1.37). Moreover, within 
each country, the statistical predictive performance varies notably 
across predictors. We also observe that, in some cases, similar variables 
reflect the best and worst classification metrics in the different sample 
countries, implying that forecast abilities are consistent across countries 
(at least to some extent). For example, valuation metrics such as the 
earnings-to-price ratio (ep) and the dividend-to-price ratio (dp) tend to 
possess high predictive ability for subsequent stock market crashes, 
while the returns on gold or oil markets (ret_gold and ret_oil) or the yields 
on ten-year government bonds (ir and ir_ann) are less informative. 
However, given empirical p-statistics mostly above 5%, only a few 
variables deliver univariate models with conditional probabilities 
significantly larger than the no-information rate. In many sample 
countries, some variables are not even capable to create a single crash 
signal (npreds = 0) or fail to correctly forecast a single stock market crash 

Table 2 
Statistical predictive performance, Germany.  

Model specification Classification metrics 

Model Sign npreds TP FP TN FN Acc. [%] Prec. [%] Rec. [%] F1 [%] Y-stat p-stat [%] CP1 CP2 CP3 

Germany (nperiods = 252, ncrashes = 16) 
Panel A: Univariate crash models (Kexit = 95%, Kentry = 95%) 
ep + 17 5 12 224 11 91 29 31 30 8.55 0.04 ✔ ⨯ ⨯ 
ft + 9 3 6 230 13 92 33 19 24 5.87 0.16 ⨯ ✔ ✔ 
ret_exr – 10 3 7 229 13 92 30 19 23 5.24 0.28 ⨯ ✔ ⨯ 
bm + 26 5 21 215 11 87 19 31 24 4.87 0.53 ✔ ⨯ ⨯ 
mrat – 19 4 15 221 12 89 21 25 23 4.47 0.56 ✔ ✔ ⨯ 
ret_ri – 13 3 10 226 13 91 23 19 21 3.81 0.68 ✔ ✔ ✔ 
ret_ri_ann – 15 3 12 224 13 90 20 19 19 3.10 1.21 ✔ ✔ ⨯ 
bseyd – 15 3 12 224 13 90 20 19 19 3.10 1.21 ✔ ⨯ ⨯ 
tds + 17 3 14 222 13 89 18 19 18 2.53 2.06 ✔ ✔ ⨯ 
ret_exr_ann + 17 3 14 222 13 89 18 19 18 2.53 2.06 ✔ ⨯ ⨯ 
ret_oil_ann – 17 3 14 222 13 89 18 19 18 2.53 2.06 ✔ ✔ ⨯ 
dp – 27 4 23 213 12 86 15 25 19 2.42 19.56 ✔ ⨯ ⨯ 
svar_ann + 18 3 15 221 13 89 17 19 18 2.29 32.32 ⨯ ✔ ✔ 
ciss + 18 3 15 221 13 89 17 19 18 2.29 32.32 ⨯ ✔ ⨯ 
dfy + 18 3 15 221 13 89 17 19 18 2.29 32.32 ⨯ ✔ ⨯ 
cci – 10 2 8 228 14 91 20 13 15 2.07 2.25 ✔ ✔ ⨯ 
svar + 11 2 9 227 14 91 18 13 15 1.78 2.87 ⨯ ✔ ⨯ 
svrat + 11 2 9 227 14 91 18 13 15 1.78 2.87 ⨯ ✔ ✔ 
to – 7 1 6 230 15 92 14 6 9 0.56 69.85 ✔ ⨯ ⨯ 
ntis – 27 1 26 210 15 84 4 6 5 0.37 41.21 ⨯ ⨯ ✔ 
ret_gold_ann – 22 2 20 216 14 87 9 13 11 0.25 38.82 ⨯ ✔ ⨯ 
tms – 10 1 9 227 15 90 10 6 8 0.19 64.39 ✔ ⨯ ⨯ 
tbl + 11 1 10 226 15 90 9 6 7 0.12 63.04 ✔ ⨯ ⨯ 
ar + 18 1 17 219 15 87 6 6 6 0.02 61.55 ⨯ ⨯ ✔ 
ret_gold – 14 1 13 223 15 89 7 6 7 0.01 61.80 ⨯ ✔ ⨯ 
ret_oil – 15 1 14 222 15 88 7 6 6 0.00 61.15 ⨯ ✔ ⨯ 
ir + 17 0 17 219 16 87 0 0 0   ⨯ ⨯ ⨯ 
ir_ann + 17 0 17 219 16 87 0 0 0   ⨯ ⨯ ⨯ 
Panel B: Multivariate crash models 
logit  34 5 29 207 11 84 15 31 20 2.98 12.70 ✔ ✔ ✔ 
svm  29 7 22 214 9 88 24 44 31 9.43 0.03 ✔ ✔ ✔ 

This table reports the classification metrics for different crash prediction models illustratively for Germany during the January 2000–December 2020 out-of-sample 
period. The results for the remaining sample countries (France, Italy, Spain, and the Netherlands) are shown in Table B1 of Appendix B. The classification metrics are 
based on the comparison of CSt+1|t and CIt . CIt+1 is a binary crash indicator, which equals 1 when a substantial stock market downturn occurs during month t + 1, and 
0 otherwise. CSt+1|t is a binary crash signal, which equals 1 if the respective model, incorporating all information available at the end of month t, expects a crash to 
occur during month t + 1, and 0 otherwise. Panel A presents the metrics for the univariate crash prediction models introduced in Section 5.1. In addition to the number 
of crash signals (npreds), the numbers of true/false positives (#TP/#FP) and true/false negatives (#TN/#FN) are reported, together with accuracy (Acc.), precision 
(Prec.), recall (Rec.), and F1 measures. The likelihood ratio test statistic (Y-stat) testing the null hypothesis that a crash prediction model’s conditional probability is 
equal to the no-information rate is added, together with the empirical p-statistic (p-stat) and the distribution of true positives across the three major crash periods (CP1/ 
CP2/CP3). The last three columns indicate whether the respective model is able to correctly forecast at least one stock market crash within each of the three subperiods 
of the sample (surrounding the three major crash periods), i.e., January 2000–December 2007 (CP1), January 2008–December 2014 (CP2), and January 
2015–December 2020 (CP3). Panel B presents the metrics for the multivariate crash prediction models based on logistic regressions and support vector machines (logit 
and svm; introduced in Section 5.2). The sample includes the five largest Eurozone countries by gross domestic product as of December 2019 (Germany, France, Italy, 
Spain, and the Netherlands) during the January 1990–December 2020 sample period. The data coming from Refinitiv are collected on a monthly basis and, if currency- 
related, denominated in Euro.  

25 To understand why the tables can have empty cells, it is important to note 
that there are three potential scenarios for crash prediction models. First, a 
model fails to create a single crash signal (npreds = 0). In this case, neither 
classification outcomes (such as the number of true positives) nor classification 
metrics (such as accuracy) can be calculated. In addition, the likelihood ratio 
test statistic is not applicable. Second, a model is able to create at least one 
crash signal (npreds ≥ 1), but fails to produce at least one true positive classifi-
cation (#TP = 0). In this case, both classification outcomes and classification 
metrics can be calculated. The likelihood ratio test statistic, however, is still not 
applicable. Third, a model is able to create at least one crash signal (npreds ≥ 1) 
and, in addition, to produce at least one true positive classification (#TP ≥ 1). 
This is the most common case, in which all cells are filled with the respective 
numbers. 
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during the sample period, i.e., they produce zero true positive classifi-
cations (#TP = 0). 

There are two important caveats: First, in multiple cases, predictors 
that generally perform well across countries perform badly in at least a 
single country. For example, the univariate model based on the earnings- 
to-price ratio (ep), which performs very well in Germany, France, Italy 
and Spain, fails to beat the no-information rate in the Netherlands. 
Second, nearly all univariate models fail to correctly forecast crashes 
within each of the three subperiods of the sample (surrounding the three 
major crash periods).26 We conclude that, ex ante, it is basically 
impossible to always select the univariate model that is optimal for a 
given country or at a specific point in time. 

Next, focusing on multivariate models, we find that both the svm and 
the logit model yield notably higher likelihood ratio tests statistics than 
the average univariate benchmark for all sample countries (expect for 
Spain in the case of logistic regressions). This documents that the 
multivariate models’ ability to incorporate multiple predictor variables 
simultaneously translates into superior statistical predictive perfor-
mance relative to their univariate counterparts. The likelihood ratio test 
statistics also indicate that the classification performance of the svm 
model relative to the logit model is slightly lower for Italy, but higher for 
France and the Netherlands.27 In addition, for Germany and Spain, svm 
models substantially outperform logistic regressions in terms of sizably 
higher likelihood ratio test statistics. This suggests that the svm model’s 
ability to capture nonlinear and interactive effects tends to deliver in-
cremental predictive performance compared to the logit model.28 

Moreover, empirical p-statistics below 5% indicate that the svm 
model’s conditional probability differs significantly from the no- 
information rate for all sample countries (except for Spain). For these 

countries, the svm model is also able to correctly forecast crashes within 
each of the three subperiods of the sample (surrounding the three major 
crash periods). We conclude that, because the correct crash signals are 
more evenly distributed over the sample period, the classification per-
formance of the svm model is more likely to persist than that of uni-
variate models. Finally, consistent with these results from the likelihood 
ratio test statistics, we find that the svm model also beats the average 
univariate benchmark as well as a multivariate logistic regression model 
for most sample countries when comparing the crash prediction models 
based on their F1 measures instead of their likelihood ratio test statistics 
(see Table 2 and Appendix B, Table B1).29 

To further substantiate our arguments, Fig. 3 illustrates the classifi-
cation performance for the German stock market, taking the svm model 
(Panel A) and the univariate model with the highest likelihood ratio test 
statistic, the ep model based on the earnings-to-price ratio (Panel B), as 
examples. Both figures depict monthly stock market returns; the classi-
fication results are flagged as follows: True positives (TPs) are marked 
with a green filled circle, true negatives (TNs) with a green unfilled 
circle, false positives (FPs) with a yellow filled circle, and false negatives 
(FNs) with a red filled circle. The svm model generates crash signals and 
delivers TPs around all three major crash periods. In sharp contrast, the 
ep model creates nearly all crash signals during the dotcom bubble, and 
all its TPs are clustered during this time period as well. While the clas-
sification performance over the full sample period is only slightly higher 
for the svm model compared to ep model (as indicated by similar like-
lihood ratio test statistics of 9.43 and 8.55, respectively), it is important 
to recognize that the earnings-to-price ratio lost its predictive power 
shortly after the dotcom bubble. Being a multivariate model, SVMs are 
much less exposed to such cluster risks that seem inherent to models 
restricted to only a single predictor, i.e., that the predictive ability of this 
variable may vanish over time. 

6.1.2. Investment portfolio performance 
Next, we assess the value-added of multivariate crash prediction 

models to active investors under realistic trading assumptions. The 
cumulative performance of an investment portfolio depends on the 
trade-off between the ability to correctly classify crash and non-crash 
months (TPs and TNs, respectively) and the ability to avoid falsely 
misstating non-crash and crash months (FPs and FNs, respectively). We 
consider two common benchmarks, which we contrast with investment 
strategies based on crash signals provided by the logit and svm 
models.30 

We use the stock market excess return as our first benchmark and 
compare it with a market timing strategy that buys or holds the stock 
market to earn the benchmark return when the crash signal equals 0, 
and leaves or stays out of the stock market otherwise (investing in cash, 
which results in a zero excess return). Statistical predictive perfor-
mance only translates into value-added to active investors relative to 
the stock market benchmark if the benefits from missing negative stock 
market returns outweigh the costs of missing positive stock market 
returns (accounting for the asymmetric nature of cumulative 
performance). 

A 50/50 balanced stock-bond market portfolio, averaging the stock 
and bond market excess returns, serves as our second benchmark, which 
we compare with a market switching strategy. This strategy earns the 
stock market excess return when the crash signal equals 0, and the bond 
market excess return otherwise. Since stock and bond markets are 

26 The last three columns in Table 2 and Tables B1 and B2 of Appendix B 
indicate whether the respective model is able to correctly forecast at least one 
stock market crash within each of the three subperiods of the sample (sur-
rounding the three major crash periods), i.e., January 2000–December 2007 
(CP1), January 2008–December 2014 (CP2), and January 2015–December 
2020 (CP3). 
27 The ranking of the svm model relative to the logit model and their uni-

variate counterparts may falsely understate the true predictive performance for 
active investors. For example, in Italy, a stock market crash occurred in October 
2008, but the average crash probability across the different seeds for the next 
month computed in September 2008 (45.77%) remains marginally below the 
0.5 threshold, which is necessary for the SVM-based model to signal a stock 
market crash. In practice, many of those investors would still consider this a 
crash signal provided that the dispersion in estimated crash probabilities across 
the different seeds (from 38.90% to 51.60%) is sufficiently low (high-precision 
forecast). If an investor interpreted this as a crash signal, the classification 
performance of the svm model, resulting in a likelihood ratio test statistic of 
5.74, would be higher than that of the logit model and close to that of the best- 
performing univariate models.  
28 The svm model’s ability to forecast future stock market crashes differs 

across countries. Overall, the predictive ability is the highest for Germany and 
the lowest for Spain (as indicated by a likelihood ratio test statistic of 9.43 and 
1.69, respectively; see Table 2 and Appendix B, Table B1). We observe a similar 
rank order across countries for the svm model’s predictive ability (the highest 
for the Netherlands and the lowest for Spain) when fitting the SVMs on the full 
dataset originally used for out-of-sample testing (covering all 252 months). 
Based on these in-sample results (unreported), we conclude that stock market 
crashes follow more systematic and predictable patterns in the Netherlands. In 
contrast, crashes seem to be harder to predict in Spain, which may be explained 
by the nature of its stock market and economy. The Spanish stock market is 
more volatile, suffering from multiple high-volatility periods, which are more 
difficult to predict. During high-volatility periods, low stock market returns 
may indicate crashes without substantial changes in the underlying economic 
conditions, which can impair the svm model’s predictive performance. More-
over, some predictor variables are based on German or U.S. data, but also serve 
as crash risk proxies for the other countries in our sample. These predictors may 
be less informative in those countries that face high idiosyncratic crash risk due 
to country-specific economic conditions such as overindebtedness. 

29 The results are qualitatively similar when comparing the crash prediction 
models using Alessi and Detken’s (2011) concept of usefulness instead of their 
likelihood ratio test statistics (unreported).  
30 We take the total return indices provided by Refinitiv to calculate bond and 

stock market returns, and the three-month FIBOR or EURIBOR rate, whichever 
is available, scaled to the one-month horizon, as the risk-free rate to calculate 
excess returns. 
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Fig. 3. Statistical predictive performance, Germany. This figure visualizes the classification performance of different crash prediction models during the January 
2000–December 2020 out-of-sample period. The classification performance is based on the comparison of CSt+1|t and CIt. CIt+1 is a binary crash indicator, which 
equals 1 when a substantial stock market downturn occurs during month t + 1, and 0 otherwise. CSt+1|t is a binary crash signal, which equals 1 if the respective model, 
incorporating all information available at the end of month t, expects a crash to occur during month t + 1, and 0 otherwise. The monthly stock market returns are 
plotted; the classification results are flagged as follows: True positives (TPs) are marked with a green filled circle, true negatives (TNs) with a green unfilled circle, 
false positives (FPs) with a yellow filled circle, and false negatives (FNs) with a red filled circle. The charts are presented for the multivariate crash prediction model 
based on support vector machines (svm; introduced in Section 5.2) in Panel A and the best-performing univariate model based on the earnings-to-price ratio (ep; 
introduced in Section 5.1) in Panel B illustratively for Germany. The sample includes the five largest Eurozone countries by gross domestic product as of December 
2019 (Germany, France, Italy, Spain, and the Netherlands) during the January 1990–December 2020 sample period. The data coming from Refinitiv are collected on 
a monthly basis and, if currency-related, denominated in Euro. 
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negatively correlated during the sample period (unreported), both the 
average benefits from true positives and the average costs of false pos-
itives increase. 

We compute return and risk metrics for the stock, bond, and stock- 
bond market portfolios as well as the four machine learning-based port-
folios (i.e., one market timing and one market switching portfolio for the 
logit and svm models, respectively). We also take into account transaction 
costs. Both the benchmark and forecast strategies can be realized in a 
simply way via buying, holding, and selling exchange-traded funds 
(ETFs) that replicate the respective markets. To be conservative, we as-
sume that the market ETFs are free of transaction costs, despite the need 
for monthly rebalancing. For any buy or sell transaction related to market 
timing or switching, we refer to Borkovec and Serbin (2013) and Angel 
et al. (2016), choosing a conservative lump-sum discount of 10 bps on the 
portfolio’s monthly excess return (which is at least three times the size of 
the historical bid–ask spreads reported in these studies). 

Using the German stock market as an illustration, Fig. 4 depicts the 
cumulative performance (net of transaction costs) of investments of €1 
in both benchmarks as well as the market timing and switching strate-
gies at the beginning of January 2000. Table 3 presents the return and 
risk metrics (net of transaction costs) of the investment portfolios for 
each of the five sample countries. The terminal value is reported at the 
end of December 2020, together with the annualized excess return, 
annualized volatility, maximum drawdown, Sharpe ratio, and informa-
tion ratio (relative to the market portfolio). 

Focusing again on the results for Germany, the market timing and 
switching strategies for the svm model yield terminal values of 3.33 and 
3.77, respectively, which notably exceed the corresponding numbers for 
the logit model (1.67 and 2.03, respectively) . The average excess return 

for the SVM-based portfolios is higher compared to the stock and stock- 
bond portfolios (5.90% and 6.52% vs. 2.47% and 3.82%), while vola-
tility is within the benchmark range (15.01% and 15.25% vs. 18.56% 
and 9.14%). Bond markets generate positive and stable excess returns, 
and are negatively correlated with stock markets during our sample 
period (unreported). In contrast, stock markets faced several turbulent 
times, with three major crash periods (see Fig. 1). As a result, market 
switching outperforms market timing. However, a timing strategy re-
flects the multivariate models’ ability to predict crashes more strin-
gently because its cumulative performance depends only on stock 
market excess returns. Compared to the stock market, higher average 
excess returns and lower volatility for the svm model triple the Sharpe 
ratio (0.40 vs. 0.13), and translate into a positive information ratio 
(0.32). The maximum drawdown is reduced by roughly one-third 
(45.83% vs. 66.60%).31 

Fig. 4. Investment portfolio performance, Germany. This figure visualizes the cumulative performance of machine learning-based investment portfolios during the 
January 2000–December 2020 out-of-sample period. The two investment strategies under investigation are based on CSt+1|t . CSt+1|t is a binary crash signal, which 
equals 1 if the respective model, incorporating all information available at the end of month t, expects a crash to occur during month t + 1, and 0 otherwise. The 
market timing strategy buys or holds the stock market to earn the benchmark return when the crash signal equals 0, and leaves or stays out of the stock market 
otherwise (investing in cash, which results in a zero excess return). The market switching strategy earns the stock market excess return when the crash signal equals 
0, and the bond market excess return otherwise. The cumulative performance of the machine learning-based investment portfolios is compared to three benchmarks, 
i.e., a stock market portfolio (earning the stock market excess returns), a bond market portfolio (earning the bond market excess returns), and a 50/50 balanced stock- 
bond market portfolio (averaging the stock and bond market excess returns). The portfolio values are scaled to €1 at the beginning of January 2000. The charts are 
presented for the multivariate crash prediction models based on logistic regressions and support vector machines (logit and svm; introduced in Section 5.2) illus-
tratively for Germany, and net of transaction costs (a conservative lump-sum discount of 10 bps per exit/re-entry). The sample includes the five largest Eurozone 
countries by gross domestic product as of December 2019 (Germany, France, Italy, Spain, and the Netherlands) during the January 1990–December 2020 sample 
period. The data coming from Refinitiv are collected on a monthly basis and, if currency-related, denominated in Euro. 

31 The results are qualitatively similar for the remaining sample countries 
(except for Spain). The SVM-based market timing and switching strategies 
outperform both benchmarks (the stock market and the 50/50 balanced 
stockbond market portfolio), which translates into positive information ratios. 
Following the crash signals provided by the SVMs also substantially reduces 
both volatility and maximum drawdown. In a robustness test (unreported), we 
further investigate the performance of a cross-country market timing strategy. 
This active strategy reallocates the funds pulled out of those markets for which 
a crash is predicted to those markets for which no crash is signaled (with equal 
weights) on a monthly basis. It delivers notably improved return and risk 
metrics compared to a naïve strategy that assigns equal weights to each coun-
try’s stock market. 
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6.2. In-sample tests 

We next conduct in-sample tests to investigate the characteristics and 
functioning scheme of the multivariate crash prediction models. In 
particular, we inspect changes in the inherent model complexity over 
time, decompose predictions into the contributions of individual vari-
ables using relative variable importance metrics, and explore patterns of 
nonlinear and interactive effects in the relationship between predictor 
variables and estimated crash probabilities. 

6.2.1. Model complexity 
Since we re-estimate the svm and logit models on a monthly basis, it is 

interesting to gauge whether model complexity changes over time or 
remains stable. We define model complexity as the difficulty of fore-
casting subsequent stock market crashes, i.e., the dispersion in estimated 
likelihoods across the different seeds. In particular, we measure model 
complexity (mc) as the spread between the second-highest and second- 
lowest likelihoods within the ensemble prediction. Since difficulties in 

creating reliable crash signals (as indicated by larger spreads) may be 
attributable to extreme economic conditions such as high-volatility pe-
riods, we relate the mc metrics to the current-month stock market 
variance (svar). 

Illustratively for Germany, Fig. 5 depicts the degree of model 
complexity at each re-estimation date and its association with stock 
market volatility by plotting mc_svm, mc_logit, and svar over time. As in 
Gu et al. (2020) and Drobetz and Otto (2021), model complexity varies 
substantially over time, and both SVMs and logistic regressions exhibit 
periods of high-precision and low-precision forecasts.32 We find 

Table 3 
Investment portfolio performance.       

Machine learning-based portfolios   

Benchmark portfolios logit svm   

Stock Bond Stock-bond mix Timing Switching Timing Switching 

Germany (nexits = 9, nre− entries= 9)    
Terminal value [€] 1.67 2.30 2.20 1.67 2.03 3.33 3.77  
Excess return annualized [%] 2.47 4.05 3.82 2.48 3.43 5.90 6.52  
Std. annualized [%] 18.56 5.78 9.14 15.27 15.48 15.01 15.25  
Maximum drawdown [%] 66.60 9.84 36.56 54.00 50.42 45.83 46.18  
Sharpe ratio 0.13 0.70 0.42 0.16 0.22 0.40 0.43  
Information ratio  0.08 0.13 0.00 0.09 0.32 0.35 

France (nexits = 8, nre− entries= 8)    
Terminal value [€] 1.94 2.48 2.41 2.49 2.65 3.46 3.94  
Excess return annualized [%] 3.21 4.42 4.29 4.44 4.74 6.09 6.75  
Std. annualized [%] 17.32 5.94 8.82 15.98 16.04 15.09 15.31  
Maximum drawdown [%] 58.28 11.00 31.20 58.33 55.63 52.83 47.05  
Sharpe ratio 0.19 0.75 0.49 0.28 0.30 0.41 0.44  
Information ratio  0.06 0.11 0.19 0.22 0.35 0.39 

Italy (nexits = 11, nre− entries= 11)    
Terminal value [€] 1.05 2.92 1.94 1.62 1.64 1.98 2.02  
Excess return annualized [%] 0.25 5.23 3.20 2.31 2.40 3.29 3.40  
Std. annualized [%] 19.63 7.96 11.40 17.33 17.62 17.12 17.39  
Maximum drawdown [%] 62.60 17.28 38.13 56.00 56.70 50.69 50.95  
Sharpe ratio 0.01 0.66 0.28 0.13 0.14 0.19 0.20  
Information ratio  0.26 0.30 0.23 0.24 0.32 0.33 

Spain (nexits = 13, nre− entries= 13)    
Terminal value [€] 1.52 2.91 2.31 1.34 1.92 1.57 1.67  
Excess return annualized [%] 2.03 5.22 4.08 1.39 3.16 2.18 2.47  
Std. annualized [%] 19.11 7.70 11.06 17.86 18.03 16.82 17.06  
Maximum drawdown [%] 57.95 11.70 32.34 53.23 46.72 52.53 51.99  
Sharpe ratio 0.11 0.68 0.37 0.08 0.18 0.13 0.15  
Information ratio  0.17 0.22 -0.09 0.16 0.02 0.05 

Netherlands (nexits = 10, nre− entries= 10)    
Terminal value [€] 1.64 2.48 2.25 2.95 3.12 3.70 4.32  
Excess return annualized [%] 2.38 4.43 3.93 5.29 5.57 6.42 7.21  
Std. annualized [%] 18.01 5.83 8.99 15.49 15.53 14.45 14.69  
Maximum drawdown [%] 64.77 9.91 36.39 46.82 47.40 40.79 33.67  
Sharpe ratio 0.13 0.76 0.44 0.34 0.36 0.45 0.49  
Information ratio  0.10 0.16 0.32 0.34 0.38 0.43 

This table reports the return and risk characteristics of machine learning-based investment portfolios during the January 2000–December 2020 out-of-sample period. 
The two investment strategies under investigation are based on CSt+1|t . CSt+1|t is a binary crash signal, which equals 1 if the respective model, incorporating all in-
formation available at the end of month t, expects a crash to occur during month t + 1, and 0 otherwise. The market timing strategy buys or holds the stock market to 
earn the benchmark return when the crash signal equals 0, and leaves or stays out of the stock market otherwise (investing in cash, which results in a zero excess 
return). The market switching strategy earns the stock market excess return when the crash signal equals 0, and the bond market excess return otherwise. The cu-
mulative performance of the machine learning-based investment portfolios is compared to three benchmarks, i.e., a stock market portfolio (earning the stock market 
excess returns), a bond market portfolio (earning the bond market excess returns), and a 50/50 balanced stock-bond market portfolio (averaging the stock and bond 
market excess returns). The portfolio values are scaled to €1 at the beginning of January 2000. The numbers are presented for the multivariate crash prediction models 
based on logistic regressions and support vector machines (logit and svm, introduced in Section 5.2) for each of the five sample countries, and net of transaction costs (a 
conservative lump-sum discount of 10 bps per exit/re-entry). The sample includes the five largest Eurozone countries by gross domestic product as of December 2019 
(Germany, France, Italy, Spain, and the Netherlands) during the January 1990–December 2020 sample period. The data coming from Refinitiv are collected on a 
monthly basis and, if currency-related, denominated in Euro.  

32 Precision, taken in isolation, does not reveal information about the SVMs’ 
predictive ability in general or accuracy in particular. Precision only measures 
whether there are large or small variations in single predictions across the 
different seeds, which points towards uncertain economic conditions. Accuracy, 
in turn, indicates whether the ensemble prediction is, on average, close to its 
realization 

H. Dichtl et al.                                                                                                                                                                                                                                   



Journal of Financial Stability 65 (2023) 101099

15

synchronicity in the mc and svar metrics (with mc_logit being, on average, 
slightly higher than mc_svm), indicating that high-volatility periods are 
more difficult to predict.33 

6.2.2. Variable importance 
Next, since the degree of model complexity is time-varying, it is 

instructive to explore whether each predictor’s contribution to the 
overall forecasting ability of the two multivariate models also changes 
over time. To this end, we calculate the variable importance matrix 
based on a two-step approach, separately for each re-estimation date: 
First, we compute the absolute variable importance as the decrease in 
likelihood ratio test statistic from setting all values of a given predictor 
to its uninformative median value within the balanced datasets.34 Sec-
ond, we normalize the absolute variable importance measures to sum to 
one, signaling the relative contribution of each variable to the respective 
model. 

Panel A of Fig. 6 depicts the time series averages of relative variable 
importance measures for the svm and logit models illustratively for 
Germany. We find that, despite some differences, both models classify 
similar predictors as informative. The most influential predictors are 
based on exchange rate trends (ret_exr) as well as returns on stock, oil, 
and gold markets (ret_stock, ret_oil, and ret_gold). Variables reflecting 
current stock market risk, e.g., the financial turbulence metric (ft) or the 
current-month stock market variance (svar), are also highly important. 
In contrast, information from bond markets (ir) seem to be less relevant. 

Since the overall relative variable importance measures only mirror a 
predictor’s mean contribution to a model’s predictive performance, we 
also investigate the relative variable importance metrics over time. 
Volatile metrics indicate that all covariates in the predictor set are 
important. In contrast, stable figures mean we should remove uninfor-
mative predictors permanently, as they may decrease a model’s signal- 
to-noise ratio. Our focus is on the five, ten, and fifteen least important 
predictors, for which removal is a consideration. 

We begin with investigating their aggregate contribution to the 
predictive performance of the svm and logit models. At each re- 
estimation date, we compute the fraction of aggregate absolute vari-
able importance (i.e., the sum of decreases in likelihood ratio test sta-
tistic across all variables) that is attributed to these subsets of predictors. 

Illustratively for Germany, Panel B of Fig. 6 visualizes this fraction for 
the five (bottom5), ten (bottom10), and fifteen (bottom15) least important 
variables at each re-estimation date. Their average aggregate contribu-
tion remains relatively stable for all three subsets of predictor variables, 
i.e., on average, less important predictors remain less informative most 
of the time during the sample period. However, their contributions spike 
notably at multiple re-estimation dates, suggesting that even these 
seemingly unimportant covariate groups are material for both models 
(at least for some subperiods of the sample). 

Further investigating the five least important predictors, we inspect 
the time variability in relative variable importance measures only within 
this subset of predictors. To this end, we omit the remaining variables 
prior to normalizing the absolute variable importance measures to sum 
to one at each re-estimation date. Panel C of Fig. 6 depicts the resulting 
relative variable importance metrics at each re-estimation date, using 
again Germany as an illustration. The lines indicate that the relative 
variable importance metrics fluctuate sharply over time. Therefore, we 
conclude that each predictor variable is an important contributor to the 
overall predictive power (albeit to varying degrees). The findings from 
Fig. 6 do not recommend we should remove specific predictors.35 

6.2.3. Nonlinearity and interactions 
Our results reveal that multivariate crash prediction models 

outperform their univariate counterparts because they incorporate in-
formation from multiple different predictors simultaneously to assess 
the overall economic conditions and to establish crash signals. In terms 
of classification performance, SVMs tend to outperform logistic re-
gressions. They are constructed identically in terms of predictor vari-
ables, sample-splitting scheme, and re-estimation frequency, but they 
differ in their ability to capture nonlinearity and interactive effects. We 
thus inspect the potentially complex relationships between predictor 
variables and estimated crash probabilities, separately for the svm and 
logit models. Fig. 7 provides several instructive examples that document 
the importance of nonlinearity and interactions in establishing crash 

Fig. 5. Model complexity over time, Germany. This figure 
visualizes the degree of model complexity for different 
crash prediction models and the one-month stock market 
variance (svar) at each re-estimation date during the 
January 2000–December 2020 out-of-sample period. 
Model complexity is defined as the difficulty of forecasting 
subsequent stock market crashes, i.e., the dispersion in 
estimated likelihoods across the different seeds. In partic-
ular, model complexity (mc) is measured as the spread 
between the second-highest and second-lowest likelihoods 
within the ensemble prediction. The charts are presented 
for the multivariate crash prediction models based on lo-
gistic regressions and support vector machines (logit and 
svm; introduced in Section 5.2) illustratively for Germany. 
The sample includes the five largest Eurozone countries by 
gross domestic product as of December 2019 (Germany, 
France, Italy, Spain, and the Netherlands) during the 
January 1990–December 2020 sample period. The data 
coming from Refinitiv are collected on a monthly basis and, 
if currency-related, denominated in Euro.   

33 A t-test significantly rejects the null hypothesis that the correlation co-
efficients are zero (unreported).  
34 We simultaneously set the values for the one-month and one-year predictor 

pairs to their uninformative median values because those pairs are, by con-
struction, highly correlated. We thus only show the results for the remaining 
twenty-two variables (omitting the six one-year predictors). 

35 To be on the conservative side, we compare the statistical and economic 
predictive performance of the original svm model with versions that only 
consider the top five, ten, or fifteen predictors in terms of their overall relative 
variable importance. Out-of-sample tests (unreported) are identical to the tests 
shown in Section 6.1. We find that no model version exhibits substantial out-
performance in any of these tests, so we choose not to remove unconditionally 
less informative variables from the predictor set and instead consider each 
predictor as informative (albeit to varying degrees). Additionally, we caution 
that the pre-estimation variable selection based on relative importance metrics 
derived from the entire sample period could lead to foresight bias, undermining 
the credibility of any out-of-sample tests. 
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Fig. 6. Relative variable importance in aggregate and over time, Germany. This figure depicts relative variable importance metrics. Panel A presents the time series 
averages of relative variable importance measures during the January 2000–December 2020 out-of-sample period, which are calculated based on a two-step 
approach, separately for each re-estimation date: First, the absolute variable importance is computed as the decrease in likelihood ratio test statistic from setting 
all values of a given predictor to its uninformative median value within the balanced datasets (the values for the one-month and one-year predictor pairs are 
simultaneously set to their uninformative median values). Second, the absolute variable importance measures are normalized to sum to one, signaling the relative 
contribution of each variable to the respective model. Panel B visualizes the fraction of aggregate absolute variable importance (i.e., the sum of decreases in like-
lihood ratio test statistic across all variables) that is attributed to the five (bottom5), ten (bottom10), and fifteen (bottom15) least important variables at each re- 
estimation date. Focusing on the five least important predictors, Panel C presents the resulting relative variable importance metrics at each re-estimation date, 
but normalized within this subset of predictors. To this end, the remaining variables are omitted prior to normalizing the absolute variable importance measures to 
sum to one at each re-estimation date. The charts are presented for the multivariate crash prediction models based on logistic regressions and support vector ma-
chines (logit and svm; introduced in Section 5.2) illustratively for Germany. The sample includes the five largest Eurozone countries by gross domestic product as of 
December 2019 (Germany, France, Italy, Spain, and the Netherlands) during the January 1990–December 2020 sample period. The data coming from Refinitiv are 
collected on a monthly basis and, if currency-related, denominated in Euro. 
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Fig. 7. Nonlinear and interactive effects in forecasting stock market crashes, Germany. This figure visualizes the nonlinear and interactive effects in the relationship 
between predictor variables and estimated crash probabilities. Panel A provides a first example. It presents the marginal effect of the current-month stock market 
return (ret_stock) on the predicted crash probability (pcrash). To visualize the marginal effect of ret_stock on pcrash, all predictors are set to their uninformative median 
values within the balanced datasets at each re-estimation date. ret_stock is then varied across the minimum and maximum values of its historical distribution and the 
change in pcrash relative to the median prediction is computed. The marginal association between ret_stock and pcrash is illustrated for each re-estimation date (grey 
lines) as well as averaged across all re-estimation dates (black lines). Panels B to E provide further examples by visualizing the interactive effects between ret_stock 
and the current-month gold market return (ret_gold, Panel B), the book-to-market ratio (bm, Panel C), the consumer confidence index (cci, Panel D), and the term 
spread (tms, Panel E) on pcrash using a similar approach. Replicating the procedure outlined above, the change in pcrash relative to the median prediction is computed 
for different levels of the four interaction variables, e.g., by varying ret_gold across its minimum and maximum values. The minimum and maximum levels for ret_gold 
and the other interaction variables are shown with a red and green line, respectively. The yellow line depicts the median values. The charts are presented for the 
multivariate crash prediction models based on logistic regressions and support vector machines (logit and svm; introduced in Section 5.2) illustratively for Germany. 
The figures use solid lines for support vector machines and dashed lines for logistic regressions. The sample includes the five largest Eurozone countries by gross 
domestic product as of December 2019 (Germany, France, Italy, Spain, and the Netherlands) during the January 1990–December 2020 sample period. The data 
coming from Refinitiv are collected on a monthly basis and, if currency-related, denominated in Euro. 
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signals. Again, we present and discuss the results illustratively for 
Germany. 

In a first example, we examine the relationship between the current- 
month stock market return (ret_stock) and subsequent stock market 
crashes. To visualize the marginal effect of ret_stock on the predicted 
crash probability (pcrash), we set all predictors to their uninformative 
median values within the balanced datasets at each re-estimation date. 
We then vary ret_stock across the minimum and maximum values of its 
historical distribution and compute the change in pcrash relative to the 
median prediction.36 Positive (negative) values indicate an increase 
(decrease) in the predicted crash probability. Panel A of Fig. 7 illustrates 
the marginal association between ret_stock and pcrash for each re- 
estimation date (grey lines) as well as averaged across all re- 
estimation dates (black lines). The left figure contains the visualiza-
tion for SVMs (solid lines), and the right figure that for logistic re-
gressions (dashed lines). We find that the strength of the effects, i.e., the 
degree of skewness for the svm model or the magnitude of slope for the 
logit model, is weaker for some re-estimation dates and stronger for 
others. This supports our earlier observation that the underlying eco-
nomic conditions that precede substantial stock market downturns are 
time-varying (see Fig. 2) and that each predictor variable’s importance 
changes substantially over time (see Fig. 6, Panels B and C). 

On average, we identify a negative quasi-linear relationship between 
ret_stock and pcrash for logistic regressions, and a non-symmetrical 
U-shaped relationship for SVMs.37 During normal stock market re-
gimes (i.e., when predictor values fluctuate around their historical me-
dian values), the predicted crash probability is close to the median 
prediction for both models. However, if stock market returns get 
abnormally low, the likelihood of a crash in the next month increases 
notably. This is in line with the literature suggesting that higher crash 
probabilities are caused by large changes in expected future cash flows 
or discount rates (Campbell and Shiller, 1988a, 1988b), stock market 
sentiment (Baker and Wurgler, 2006, 2007), or other changes in the 
underlying economic conditions that put pressure on stock markets 
beyond the current month. In addition, while the logit model indicates 
that larger-than-normal stock market returns decrease the estimated 
crash probability (relative to the median prediction), the svm model 
signals a slight increase in the estimated crash probability for abnor-
mally high returns. This nonlinear effect is consistent with the literature 
on asset price bubbles, which build up after longer price run-ups and 
eventually burst (Brunnermeier, 2009; Greenwood et al., 2019). The 
example illustrates that SVMs identify a nonlinear relationship between 
ret_stock and pcrash that is consistent with economic theories, while lo-
gistic regressions fail to do so particularly at the right end of the crash 
probability distribution. It thus helps explain why the svm model out-
performs the logit model (i.e., its linear multivariate benchmark). 

Nevertheless, even extreme negative values for ret_stock increase the 
predicted crash probability relative to the median prediction by only 
around 20 percentage points (on average, across all re-estimation dates). 
Therefore, other predictor variables might simultaneously play impor-
tant roles in increasing the predicted crash probability above the 50% 
threshold to signal a stock market crash during the next month. To 
investigate those determinants, and to illustrate in detail the benefits of 

SVMs relative to logistic regressions, we inspect the interactive effects 
between ret_stock and the current-month gold market return (ret_gold), 
the book-to-market ratio (bm), the consumer confidence index (cci), and 
the term spread (tms) on pcrash. This analysis enables us to assess the 
underlying economic conditions from a price-based (Panel B), 
fundamentals-based (Panel C), sentiment-based (Panel D), and macro-
economic perspective (Panel E). We replicate the procedure outlined 
above. In this case, however, we compute the change in pcrash relative to 
the median prediction for different levels of the four interaction vari-
ables, e.g., by varying ret_gold across its minimum and maximum values. 
Panels B to E of Fig. 7 illustrate the interactive effects of ret_stock and 
ret_gold/bm/cci/tms on pcrash. The minimum and maximum levels for 
ret_gold and the other interaction variables are shown with a red and 
green line, respectively. The yellow line depicts the median values. To 
keep the figures simple, we visualize the interactive effects averaged 
across all re-estimation dates. Again, we draw solid lines for SVMs and 
dashed lines for logistic regressions. A distance between the green/red 
line and the yellow line that varies over the crash probability distribu-
tion, e.g., a smaller or larger distance towards the end(s) of the distri-
bution, indicates interactive effects. 

As expected, in all Panels B to E, the yellow dashed lines for the logit 
model are only shifted up- or downward in a parallel way. In contrast, 
for the svm model, we uncover substantial interactive effects between 
ret_stock and ret_gold/bm/cci/tms, respectively. These effects are pre-
dominantly apparent for abnormally low stock market returns (at the 
left end of the distribution), whereas the right end of the distribution is 
less affected by the level of the interaction variables (as indicated by the 
smaller distance of the green and red lines from the yellow line). 

The predicted crash probability notably increases (relative to the 
median prediction) when abnormally low stock market returns coincide 
with abnormally low or high gold market returns (ret_gold, Panel B). The 
first pattern refers to the “correlation breakdown” phenomenon. Cor-
relations across asset classes increase substantially during strong market 
corrections (Longin and Solnik, 2001). Since reallocations of funds and 
sharp stock market corrections usually have a persistent market impact 
beyond the current month, and thus correlations remain elevated, the 
simultaneous occurrence of extreme negative stock and gold market 
returns may signal a stock market crash during the next month. The 
second pattern is consistent with a “safe haven” argument, suggesting 
that investors reallocate funds from stock markets to the gold market 
during crisis periods (Baur and McDermott, 2010). Gabaix and Koijen 
(2021) further show that the price elasticity of demand of the aggregate 
stock market is small, and even small outflows of funds from stock 
markets could cause large negative price reactions. 

We identify similar interactive patterns for the book-to-market ratio 
(bm, Panel C) and the consumer confidence index (cci, Panel D). When 
abnormally low stock market returns coincide with market values that 
strongly differ from book values (i.e., abnormally low or high book-to- 
market ratios) or an abnormally low or high consumer confidence, 
these combinations lead to markedly higher predicted crash probabili-
ties relative to the median predictions. A higher likelihood of a subse-
quent stock market crash in the case of low book-to-market ratios and 
high customer confidence is supported by behavioral theories stating 
that a bubble will eventually burst or deflate when it develops towards 
maturity and the investors’ feedback trading loop is broken (De Long 
et al., 1990; Scherbina and Schlusche, 2014; Sornette and Cauwels, 
2015). In contrast, higher crash probabilities in the case of high 
book-to-market ratios and low consumer confidence are supported by 
theories suggesting that ongoing stock market corrections are likely to 
persist beyond the current month, and that crashes are initiated and 
further fueled when the sentiment about a bubble asset is reversed 
(Barberis et al., 1998; Daniel et al., 1998; Scherbina and Schlusche, 
2014). 

Finally, when stock market returns are abnormally low in an envi-
ronment of flattening or even reversion yield curves, i.e., when long- 
term interest rates get close to or even fall below the short-term 

36 Instead of pre-determining a standard deviation-based departure from the 
mean or a multiple of the interquartile range, our approach captures outliers 
that are necessary for extreme event predictions, while maintaining a realistic 
range of values.  
37 Logistic regressions incorporate linear relationships between predictors and 

the log-odds that a crash will occur during the next month. This leads to an S- 
shaped relationship between predictor variables and estimated crash proba-
bilities (bounded at 0 and 1), which shows up as a quasi-linear relationship 
around the center of the distribution (between these two boundaries). We also 
identify ret_gold/bm/cci/tms and pcrash for the logit model, and non-symmetrical 
U-shaped relationships for the svm model (unreported). 
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interest rates, the predicted crash probability sizably increases (relative 
to the median prediction). This pattern is consistent with evidence 
showing that abnormally low or even negative term spreads possess 
significant predictive power for economic recessions (Estrella and Har-
douvelis, 1991; Rudebusch and Williams, 2009) and declines in con-
sumption growth (Harvey, 1988), which in turn adversely affect stock 
markets (Ferson and Harvey, 1993). 

These instructive examples help explain why the svm model out-
performs the logit model (i.e., its linear multivariate benchmark). SVMs 
incorporate relevant interactions inherently. Interacting ret_stock with 
other predictor variables increases the predicted crash probability 
relative to the median prediction significantly more than in the case 
when considering ret_stock in isolation. Logistic regressions are unable to 
capture these effects if no pre-determined terms are added to the 
regression model, although the functional form of those effects is 
generally unknown ex ante. We conclude that abnormally low stock 
market returns in the current month do not necessarily point towards an 
even stronger stock market correction in the next month, unless other 
economic indicators are simultaneously falling out of their normal 
ranges (e.g., the yield curve flattens or even reverses). 

In summary, nonlinear and interactive effects provide an explanation 
for the advantageousness of multivariate machine learning-based stock 
market crash prediction models over their univariate counterparts and, 
more importantly, for the advantageousness of SVMs over logistic re-
gressions. The use of machine learning techniques further enables us to 
uncover robust statistical relationships in the underlying economic 
conditions that precede stock market crashes. Our results thus confirm 
Lopez de Prado’s (2020) conclusion that machine learning should not 
prematurely be regarded as a black box. 

7. Conclusion 

Using a comprehensive set of twenty-eight price-based, 
fundamentals-based, sentiment-based, and macroeconomic predictor 
variables from the five largest Eurozone countries, we compare the 
performance of simple univariate and machine learning-based multi-
variate models in forecasting subsequent stock market crashes. We show 
that there is no single variable or small subset of variables that always 
and reliably precedes stock market crashes with extreme values, sug-
gesting substantial time variation in the predictive ability of any single 
variable. Multivariate crash prediction models should be advantageous 
over their univariate counterparts because they are capable of incor-
porating the information content of multiple predictor variables simul-
taneously. Our results support this view. In terms of statistical predictive 
performance, a support vector machine-based crash prediction model 
outperforms a random classifier and is superior to the average univariate 
benchmark. It also performs better than a multivariate logistic regres-
sion model, which is unable to capture nonlinearity and interactive ef-
fects. We provide several instructive examples to demonstrate that 
incorporating nonlinear and interactive effects is both imperative and 
foundation for the outperformance of support vector machines. 

Our findings contribute to the early-warning literature and have two 
important implications: First, an accurate model for predicting stock 
market crashes out-of-sample translates into substantial value-added to 
active investors. Second, for policymakers, the use of machine learning- 
based crash prediction models can help activate macroprudential policy 
tools in time, maybe in combination with other models from the early- 
warning literature, aiming at increasing resiliency of the financial sys-
tem as a whole and mitigating the imminent costs of financial crises.  

Appendix A 

Following Lleo and Ziemba (2017), we evaluate a crash prediction model’s predictive performance using the conditional probability P(CI = 1|CS = 1), 
i.e., the probability that stock market crashes actually occur when they are expected to occur. We first compare the two components, the sequence of crash 
signals CS := {CSt+1|t ∈ {1,0}; t = 1,…,T} = {CS1,…,CST} and the sequence of crash indicators CI := {CIt+1 ∈ {1,0}; t = 1,…,T} = {CI1,…,CIT}. In 
each month t + 1, the binary variables equal 1 if a crash is expected to occur 

(
CSt+1|t = 1

)
or actually occurs (CIt+1 = 1), and 0 otherwise. We then create a 

monthly hit indicator Xi, which equals 1 for true positive classifications, and 0 for false positive classifications: 

Xi =

{
1 if CIt+1 = 1|CSt+1|t = 1
0 if CIt+1 = 0|CSt+1|t = 1 . (6) 

The length of the hit indicator sequence X := {Xi ∈ {1,0}|i = 1,…,N} = {X1,…,XN} shrinks to the number of distinct crash signals N =
∑T

t=1CSt+1|t. 
The conditional random variable X follows a Bernoulli distribution with probability p = P(CI = 1|CS = 1), which can be estimated by using the maximum 

likelihood estimator p̂ =

∑N
i=1

Xi

N . It maximizes the log-likelihood function l(p|X) = lnL(p|X) =
∑N

i=1Xiln(p)+(N −
∑N

i=1Xi)ln(1 − p) based on the likelihood 
function L(p|X) =

∏N
i=1pXi (1 − p)1− Xi , and represents a crash prediction model’s overall precision, namely the number of true positive classifications 

divided by the number of distinct crash signals (Lleo and Ziemba, 2017). 
We also follow Lleo and Ziemba (2017) in testing whether a crash prediction model’s classification performance is significantly different from that 

of a random classifier. The no-information rate, i.e., the conditional probability that random signals correctly forecast crashes, reflects the number of 

crashes that occurred during the sample period divided by the number of sample months: p0 =

∑T
t=1

CIt+1

T .38 Testing the null hypothesis that a crash 
prediction model’s conditional probability is equal to the no-information rate, the likelihood ratio test statistic is: 

Y = − 2ln(Λ),with Λ =
L(p = p0|X)
L(p = p̂|X)

, (7) 

for which we report the empirical p-statistics, corrected for a potential small sample bias stemming from the low number of crash signals.39 

38 For example, sixteen crashes occurred in Germany during the sample period (252 months). Therefore, the no-information rate, which equals the historical crash 
probability, is p0 = 16

252 ≈ 6.35%.  
39 In general, the Y-statistic is asymptotically χ2-distributed with ν = 1 degree of freedom. But as the χ2 distribution is continuous and only valid asymptotically, it 

may not provide an adequate approximation for the discrete empirical distribution of test statistics stemming from the low number of crash signals. To correct for this 
potential small sample bias, we follow Ziemba, Zhitlukhin, and Lleo (2017) and compute the empirical p-statistics from 10,000 Monte Carlo simulations. 
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Appendix B   

Table B1 
Statistical predictive performance (additional sample countries).  

Model specification Classification metrics 

Model Sign npreds TP FP TN FN Acc. [%] Prec. [%] Rec. [%] F1 [%] Y-stat p-stat [%] CP1 CP2 CP3 

France (nperiods = 252, ncrashes = 11) 
Panel A: Univariate crash models (Kexit = 95%, Kentry = 95%) 
bseyd – 18 4 14 227 7 92 22 36 28 7.23 0.07 ✓ ⨯ ⨯ 
ep + 19 4 15 226 7 91 21 36 27 6.83 0.11 ✓ ⨯ ⨯ 
dp – 21 4 17 224 7 90 19 36 25 6.12 0.20 ✓ ⨯ ⨯ 
svar + 13 3 10 231 8 93 23 27 25 5.64 0.22 ✓ ✓ ⨯ 
ft + 9 2 7 234 9 94 22 18 20 3.62 0.56 ⨯ ✓ ✓ 
svrat + 13 2 11 230 9 92 15 18 17 2.35 1.69 ⨯ ✓ ✓ 
ret_ri_ann – 15 2 13 228 9 91 13 18 15 1.91 2.55 ✓ ⨯ ⨯ 
tds + 17 2 15 226 9 90 12 18 14 1.55 3.48 ✓ ✓ ⨯ 
ret_exr_ann + 17 2 15 226 9 90 12 18 14 1.55 3.48 ✓ ⨯ ⨯ 
mrat – 19 2 17 224 9 90 11 18 13 1.26 47.33 ✓ ⨯ ⨯ 
ret_gold_ann + 25 2 23 218 9 87 8 18 11 0.64 41.24 ✓ ⨯ ⨯ 
tms – 10 1 9 232 10 92 10 9 10 0.56 70.72 ✓ ⨯ ⨯ 
ret_exr – 10 1 9 232 10 92 10 9 10 0.56 70.72 ⨯ ✓ ⨯ 
ret_oil_ann + 13 1 12 229 10 91 8 9 8 0.28 66.29 ⨯ ✓ ⨯ 
ret_ri – 14 1 13 228 10 91 7 9 8 0.22 65.69 ⨯ ⨯ ✓ 
ciss – 33 2 31 210 9 84 6 18 9 0.20 39.31 ✓ ⨯ ⨯ 
cci – 16 1 15 226 10 90 6 9 7 0.12 63.36 ✓ ⨯ ⨯ 
bm + 17 1 16 225 10 90 6 9 7 0.08 63.06 ✓ ⨯ ⨯ 
dfy + 18 1 17 224 10 89 6 9 7 0.06 62.63 ⨯ ✓ ⨯ 
ar + 18 1 17 224 10 89 6 9 7 0.06 62.63 ⨯ ⨯ ✓ 
svar_ann + 28 1 27 214 10 85 4 9 5 0.04 62.62 ✓ ⨯ ⨯ 
ntis – 19 1 18 223 10 89 5 9 7 0.03 62.44 ✓ ⨯ ⨯ 
to – 27 1 26 215 10 86 4 9 5 0.03 62.16 ✓ ⨯ ⨯ 
ir + 12 0 12 229 11 91 0 0 0   ⨯ ⨯ ⨯ 
ir_ann + 12 0 12 229 11 91 0 0 0   ⨯ ⨯ ⨯ 
ret_gold + 16 0 16 225 11 89 0 0 0   ⨯ ⨯ ⨯ 
ret_oil + 15 0 15 226 11 90 0 0 0   ⨯ ⨯ ⨯ 
tbl + 11 0 11 230 11 91 0 0 0   ⨯ ⨯ ⨯ 
Panel B: Multivariate crash models 
logit  14 3 11 230 8 92 21 27 24 5.22 0.28 ✓ ✓ ✓ 
svm  21 4 17 224 7 90 19 36 25 6.12 0.20 ✓ ✓ ✓  

Model specification Classification metrics 

Model Sign npreds TP FP TN FN Acc. [%] Prec. [%] Rec. [%] F1 [%] Y-stat p-stat [%] CP1 CP2 CP3 

Italy (nperiods = 252, ncrashes = 11) 
Panel A: Univariate crash models (Kexit = 95%, Kentry = 95%) 
ret_exr – 10 3 7 234 8 94 30 27 29 7.20 0.05 ⨯ ✓ ⨯ 
to – 21 4 17 224 7 90 19 36 25 6.12 0.20 ✓ ✓ ⨯ 
bseyd – 14 3 11 230 8 92 21 27 24 5.22 0.28 ⨯ ✓ ⨯ 
ep + 17 3 14 227 8 91 18 27 21 4.19 0.55 ⨯ ✓ ⨯ 
ciss + 18 3 15 226 8 91 17 27 21 3.91 0.62 ⨯ ✓ ⨯ 
ft + 9 2 7 234 9 94 22 18 20 3.62 0.56 ⨯ ✓ ✓ 
bm + 21 3 18 223 8 90 14 27 19 3.17 1.14 ✓ ✓ ⨯ 
svrat + 12 2 10 231 9 92 17 18 17 2.61 1.34 ⨯ ✓ ✓ 
ret_ri_ann – 13 2 11 230 9 92 15 18 17 2.35 1.69 ✓ ⨯ ⨯ 
tds + 17 2 15 226 9 90 12 18 14 1.55 3.48 ✓ ✓ ⨯ 
ret_oil_ann – 17 2 15 226 9 90 12 18 14 1.55 3.48 ✓ ✓ ⨯ 
dfy + 18 2 16 225 9 90 11 18 14 1.40 48.69 ⨯ ✓ ⨯ 
mrat – 18 2 16 225 9 90 11 18 14 1.40 48.69 ✓ ⨯ ⨯ 
dp – 34 3 31 210 8 85 9 27 13 1.26 27.46 ✓ ⨯ ⨯ 
svar_ann + 20 2 18 223 9 89 10 18 13 1.13 46.12 ⨯ ✓ ⨯ 
ret_ri – 10 1 9 232 10 92 10 9 10 0.56 70.72 ⨯ ✓ ⨯ 
tms – 10 1 9 232 10 92 10 9 10 0.56 70.72 ✓ ⨯ ⨯ 
ntis + 12 1 11 230 10 92 8 9 9 0.36 67.48 ✓ ⨯ ⨯ 
svar + 13 1 12 229 10 91 8 9 8 0.28 66.29 ⨯ ✓ ⨯ 
ret_gold – 14 1 13 228 10 91 7 9 8 0.22 65.69 ⨯ ✓ ⨯ 
ret_exr_ann – 14 1 13 228 10 91 7 9 8 0.22 65.69 ⨯ ✓ ⨯ 
cci + 17 1 16 225 10 90 6 9 7 0.08 63.06 ⨯ ✓ ⨯ 
ar + 18 1 17 224 10 89 6 9 7 0.06 62.63 ⨯ ⨯ ✓ 
ret_gold_ann + 25 1 24 217 10 87 4 9 6 0.01 61.78 ✓ ⨯ ⨯ 
ir + 8 0 8 233 11 92 0 0 0   ⨯ ⨯ ⨯ 
ir_ann + 8 0 8 233 11 92 0 0 0   ⨯ ⨯ ⨯ 
ret_oil + 15 0 15 226 11 90 0 0 0   ⨯ ⨯ ⨯ 
tbl + 11 0 11 230 11 91 0 0 0   ⨯ ⨯ ⨯ 

(continued on next page) 
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Table B1 (continued ) 

Model specification Classification metrics 

Model Sign npreds TP FP TN FN Acc. [%] Prec. [%] Rec. [%] F1 [%] Y-stat p-stat [%] CP1 CP2 CP3 

Panel B: Multivariate crash models 
logit  27 4 23 218 7 88 15 36 21 4.45 0.56 ⨯ ✓ ✓ 
svm  32 4 28 213 7 86 13 36 19 3.44 1.14 ✓ ✓ ✓  

Model specification Classification metrics 

Model Sign npreds TP FP TN FN Acc. [%] Prec. [%] Rec. [%] F1 [%] Y-stat p-stat [%] CP1 CP2 CP3 

Spain (nperiods = 252, ncrashes = 11) 
Panel A: Univariate crash models (Kexit = 95%, Kentry = 95%) 
bm + 21 4 17 224 7 90 19 36 25 6.12 0.20 ✓ ✓ ⨯ 
to – 22 4 18 223 7 90 18 36 24 5.80 0.25 ✓ ✓ ⨯ 
svrat – 15 3 12 229 8 92 20 27 23 4.85 0.35 ⨯ ✓ ⨯ 
ep + 19 3 16 225 8 90 16 27 20 3.64 0.81 ✓ ✓ ⨯ 
ft + 9 2 7 234 9 94 22 18 20 3.62 0.56 ⨯ ✓ ✓ 
ret_exr – 10 2 8 233 9 93 20 18 19 3.23 0.79 ⨯ ✓ ⨯ 
cci – 21 3 18 223 8 90 14 27 19 3.17 1.14 ✓ ✓ ⨯ 
tds + 17 2 15 226 9 90 12 18 14 1.55 3.48 ✓ ✓ ⨯ 
ret_oil_ann – 17 2 15 226 9 90 12 18 14 1.55 3.48 ✓ ✓ ⨯ 
ciss + 18 2 16 225 9 90 11 18 14 1.40 48.69 ⨯ ✓ ⨯ 
dfy + 18 2 16 225 9 90 11 18 14 1.40 48.69 ⨯ ✓ ⨯ 
svar_ann + 19 2 17 224 9 90 11 18 13 1.26 47.33 ⨯ ✓ ⨯ 
bseyd – 21 2 19 222 9 89 10 18 13 1.01 44.88 ⨯ ✓ ⨯ 
ntis – 24 2 22 219 9 88 8 18 11 0.72 41.97 ✓ ⨯ ⨯ 
dp – 24 2 22 219 9 88 8 18 11 0.72 41.97 ✓ ⨯ ✓ 
svar + 10 1 9 232 10 92 10 9 10 0.56 70.72 ⨯ ✓ ⨯ 
tms – 10 1 9 232 10 92 10 9 10 0.56 70.72 ✓ ⨯ ⨯ 
tbl + 11 1 10 231 10 92 9 9 9 0.45 69.04 ✓ ⨯ ⨯ 
ret_ri_ann – 11 1 10 231 10 92 9 9 9 0.45 69.04 ✓ ⨯ ⨯ 
ret_exr_ann – 14 1 13 228 10 91 7 9 8 0.22 65.69 ⨯ ✓ ⨯ 
mrat – 16 1 15 226 10 90 6 9 7 0.12 63.36 ⨯ ✓ ⨯ 
ar + 18 1 17 224 10 89 6 9 7 0.06 62.63 ⨯ ⨯ ✓ 
ret_gold_ann + 25 1 24 217 10 87 4 9 6 0.01 61.78 ✓ ⨯ ⨯ 
ir + 5 0 5 236 11 94 0 0 0   ⨯ ⨯ ⨯ 
ir_ann + 4 0 4 237 11 94 0 0 0   ⨯ ⨯ ⨯ 
ret_gold + 16 0 16 225 11 89 0 0 0   ⨯ ⨯ ⨯ 
ret_oil + 15 0 15 226 11 90 0 0 0   ⨯ ⨯ ⨯ 
ret_ri + 11 0 11 230 11 91 0 0 0   ⨯ ⨯ ⨯ 
Panel B: Multivariate crash models 
logit  30 1 29 212 10 85 3 9 5 0.08 63.34 ⨯ ✓ ⨯ 
svm  30 3 27 214 8 86 10 27 15 1.69 29.44 ⨯ ✓ ✓  

Model specification Classification metrics 

Model Sign npreds TP FP TN FN Acc. [%] Prec. [%] Rec. [%] F1 [%] Y-stat p-stat [%] CP1 CP2 CP3 

Netherlands (nperiods = 252, ncrashes = 15) 
Panel A: Univariate crash models (Kexit = 95%, Kentry = 95%) 
svar + 11 3 8 229 12 92 27 20 23 5.02 0.32 ✓ ✓ ✓ 
mrat – 19 4 15 222 11 90 21 27 24 4.86 0.46 ✓ ⨯ ⨯ 
ret_ri – 14 3 11 226 12 91 21 20 21 3.73 0.77 ✓ ✓ ✓ 
cci – 14 3 11 226 12 91 21 20 21 3.73 0.77 ✓ ⨯ ✓ 
ft + 9 2 7 230 13 92 22 13 17 2.61 1.34 ⨯ ✓ ✓ 
dp – 28 4 24 213 11 86 14 27 19 2.55 20.05 ✓ ⨯ ✓ 
ret_ri_ann – 18 3 15 222 12 89 17 20 18 2.55 2.05 ✓ ✓ ⨯ 
tms – 10 2 8 229 13 92 20 13 16 2.26 1.88 ✓ ⨯ ⨯ 
ret_exr – 10 2 8 229 13 92 20 13 16 2.26 1.88 ⨯ ✓ ⨯ 
svrat + 13 2 11 226 13 90 15 13 14 1.47 48.53 ⨯ ✓ ✓ 
ret_oil_ann + 13 2 11 226 13 90 15 13 14 1.47 48.53 ✓ ✓ ⨯ 
to – 13 2 11 226 13 90 15 13 14 1.47 48.53 ✓ ⨯ ⨯ 
tds + 17 2 15 222 13 89 12 13 13 0.81 42.17 ✓ ✓ ⨯ 
ret_exr_ann + 17 2 15 222 13 89 12 13 13 0.81 42.17 ✓ ⨯ ⨯ 
ciss + 18 2 16 221 13 88 11 13 12 0.69 41.14 ⨯ ✓ ⨯ 
svar_ann – 18 2 16 221 13 88 11 13 12 0.69 41.14 ✓ ⨯ ⨯ 
bm + 21 2 19 218 13 87 10 13 11 0.41 39.24 ✓ ⨯ ⨯ 
bseyd – 21 2 19 218 13 87 10 13 11 0.41 39.24 ✓ ✓ ⨯ 
ep + 23 2 21 216 13 87 9 13 11 0.27 38.88 ✓ ✓ ⨯ 
ret_gold_ann + 25 2 23 214 13 86 8 13 10 0.17 73.65 ✓ ⨯ ⨯ 
ir + 14 1 13 224 14 89 7 7 7 0.03 62.10 ✓ ⨯ ⨯ 
ir_ann + 14 1 13 224 14 89 7 7 7 0.03 62.10 ✓ ⨯ ⨯ 
ret_gold – 14 1 13 224 14 89 7 7 7 0.03 62.10 ⨯ ✓ ⨯ 
ret_oil – 15 1 14 223 14 89 7 7 7 0.01 61.80 ⨯ ⨯ ✓ 
dfy + 18 1 17 220 14 88 6 7 6 0.01 61.42 ⨯ ✓ ⨯ 
ar + 18 1 17 220 14 88 6 7 6 0.01 61.42 ⨯ ⨯ ✓ 
ntis – 18 1 17 220 14 88 6 7 6 0.01 61.42 ⨯ ✓ ⨯ 
tbl + 11 0 11 226 15 90 0 0 0   ⨯ ⨯ ⨯ 

(continued on next page) 
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Table B1 (continued ) 

Model specification Classification metrics 

Model Sign npreds TP FP TN FN Acc. [%] Prec. [%] Rec. [%] F1 [%] Y-stat p-stat [%] CP1 CP2 CP3 

Panel B: Multivariate crash models 
logit  17 5 12 225 10 91 29 33 31 9.09 0.02 ✓ ✓ ✓ 
svm  31 7 24 213 8 87 23 47 30 9.33 0.03 ✓ ✓ ✓ 

This table reports the classification metrics for different crash prediction models for France, Italy, Spain, and the Netherlands during the January 2000–December 2020 out-of- 
sample period. The classification metrics are based on the comparison of CSt+1|t and CIt . CIt+1 is a binary crash indicator, which equals 1 when a substantial stock market 
downturn occurs during month t + 1, and 0 otherwise. CSt+1|t is a binary crash signal, which equals 1 if the respective model, incorporating all information available at the end of 
month t, expects a crash to occur during month t + 1, and 0 otherwise. Panel A presents the metrics for the univariate crash prediction models introduced in Section 5.1. In 
addition to the number of crash signals (npreds), the numbers of true/false positives (#TP/#FP) and true/false negatives (#TN/#FN) are reported, together with accuracy (Acc.), 
precision (Prec.), recall (Rec.), and F1 measures. The likelihood ratio test statistic (Y-stat) testing the null hypothesis that a crash prediction model’s conditional probability is 
equal to the no-information rate is added, together with the empirical p-statistic (p-stat), as well as the distribution of true positives across the three major crash periods (CP1/ 
CP2/CP3). The last three columns indicate whether the respective model is able to correctly forecast at least one stock market crash within each of the three subperiods of the 
sample (surrounding the three major crash periods), i.e., January 2000-December 2007 (CP1), January 2008-December 2014 (CP2), and January 2015-December 2020 (CP3). 
Panel B presents the metrics for the multivariate crash prediction models based on logistic regressions and support vector machines (logit and svm; introduced in Section 5.2). The 
sample includes the five largest Eurozone countries by gross domestic product as of December 2019 (Germany, France, Italy, Spain, and the Netherlands) during the January 
1990–December 2020 sample period. The data coming from Refinitiv are collected on a monthly basis and, if currency-related, denominated in Euro.    

Table B2 
Statistical predictive performance (additional crash prediction models), Germany.  

Model specification Classification metrics 

Model Sign npreds TP FP TN FN Acc. [%] Prec. [%] Rec. [%] F1 [%] Y-stat p-stat [%] CP1 CP2 CP3 

Germany (nperiods = 252, ncrashes = 16) 
Panel A: Univariate crash models (Kexit = 95%, Kentry = 90%) 
ep + 21 5 16 220 11 89 24 31 27 6.61 0.16 ✓ ⨯ ⨯ 
dfy + 23 5 18 218 11 88 22 31 26 5.84 0.29 ✓ ✓ ⨯ 
mrat – 23 5 18 218 11 88 22 31 26 5.84 0.29 ✓ ✓ ⨯ 
ret_exr – 10 3 7 229 13 92 30 19 23 5.24 0.28 ⨯ ✓ ⨯ 
ft + 11 3 8 228 13 92 27 19 22 4.70 0.41 ⨯ ✓ ✓ 
ret_ri_ann – 20 4 16 220 12 89 20 25 22 4.14 0.67 ✓ ✓ ⨯ 
bm + 30 5 25 211 11 86 17 31 22 3.81 15.09 ✓ ⨯ ⨯ 
svar + 15 3 12 224 13 90 20 19 19 3.10 1.21 ✓ ✓ ⨯ 
ret_ri – 15 3 12 224 13 90 20 19 19 3.10 1.21 ✓ ✓ ✓ 
dp – 34 5 29 207 11 84 15 31 20 2.98 12.70 ✓ ⨯ ✓ 
ret_exr_ann + 26 4 22 214 12 87 15 25 19 2.62 20.09 ✓ ⨯ ⨯ 
ret_gold_ann + 38 5 33 203 11 83 13 31 19 2.31 11.29 ✓ ⨯ ✓ 
tds – 30 4 26 210 12 85 13 25 17 1.91 17.96 ✓ ⨯ ⨯ 
svar_ann + 21 3 18 218 13 88 14 19 16 1.68 28.68 ⨯ ✓ ✓ 
bseyd – 21 3 18 218 13 88 14 19 16 1.68 28.68 ✓ ⨯ ⨯ 
svrat + 12 2 10 226 14 90 17 13 14 1.53 48.90 ⨯ ✓ ✓ 
ret_oil_ann – 22 3 19 217 13 87 14 19 16 1.51 27.77 ✓ ✓ ⨯ 
ciss + 24 3 21 215 13 87 13 19 15 1.21 26.66 ⨯ ✓ ⨯ 
cci – 14 2 12 224 14 90 14 13 13 1.12 45.04 ✓ ✓ ⨯ 
ir – 27 1 26 210 15 84 4 6 5 0.37 41.21 ⨯ ✓ ⨯ 
ir_ann – 27 1 26 210 15 84 4 6 5 0.37 41.21 ⨯ ✓ ⨯ 
tms – 11 1 10 226 15 90 9 6 7 0.12 63.04 ✓ ⨯ ⨯ 
ar + 26 2 24 212 14 85 8 13 10 0.07 72.58 ⨯ ⨯ ✓ 
to – 12 1 11 225 15 90 8 6 7 0.07 62.48 ✓ ⨯ ⨯ 
ntis – 36 2 34 202 14 81 6 13 8 0.04 72.04 ✓ ⨯ ✓ 
tbl + 17 1 16 220 15 88 6 6 6 0.01 61.34 ✓ ⨯ ⨯ 
ret_gold – 15 1 14 222 15 88 7 6 6 0.00 61.15 ⨯ ✓ ⨯ 
ret_oil – 15 1 14 222 15 88 7 6 6 0.00 61.15 ⨯ ✓ ⨯ 
Panel B: Multivariate crash models 
logit  34 5 29 207 11 84 15 31 20 2.98 12.70 ✓ ✓ ✓ 
svm  29 7 22 214 9 88 24 44 31 9.43 0.03 ✓ ✓ ✓ 
rf  27 6 21 215 10 88 22 38 28 7.23 0.13 ✓ ✓ ✓ 
gbrt  28 6 22 214 10 87 21 38 27 6.87 0.16 ✓ ✓ ✓ 
nn  36 8 28 208 8 86 22 50 31 9.64 0.02 ✓ ✓ ✓ 

This table reports the classification metrics for different crash prediction models illustratively for Germany during the January 2000–December 2020 out-of-sample 
period. The classification metrics are based on the comparison of CSt+1|t and CIt . CIt+1 is a binary crash indicator, which equals 1 when a substantial stock market 
downturn occurs during month t + 1, and 0 otherwise. CSt+1|t is a binary crash signal, which equals 1 if the respective model, incorporating all information available at the 
end of month t, expects a crash to occur during month t + 1, and 0 otherwise. Panel A presents the metrics for the univariate crash prediction models introduced in Section 
5, considering an alternative assumption for the exit and entry thresholds: Kexit = 95% and Kentry = 90%. In addition to the number of crash signals (npreds), the numbers of 
true/false positives (#TP/#FP) and true/false negatives (#TN/#FN) are reported, together with accuracy (Acc.), precision (Prec.), recall (Rec.), and F1 measures. The 
likelihood ratio test statistic (Y-stat) testing the null hypothesis that a crash prediction model’s conditional probability is equal to the no-information rate is added, 
together with the empirical p-statistic (p-stat), as well as the distribution of true positives across the three major crash periods (CP1/CP2/CP3). The last three columns 
indicate whether the respective model is able to correctly forecast at least one stock market crash within each of the three subperiods of the sample (surrounding the three 
major crash periods), i.e., January 2000-December 2007 (CP1), January 2008-December 2014 (CP2), and January 2015-December 2020 (CP3). Panel B presents the 
metrics for the multivariate crash prediction models based on logistic regressions and support vector machines (logit and svm; introduced in Section 5.2) as well as random 

H. Dichtl et al.                                                                                                                                                                                                                                   



Journal of Financial Stability 65 (2023) 101099

23

forests (rf), gradient boosted regression trees (gbrt), and neural networks (nn). The sample includes the five largest Eurozone countries by gross domestic product as of 
December 2019 (Germany, France, Italy, Spain, and the Netherlands) during the January 1990–December 2020 sample period. The data coming from Refinitiv are 
collected on a monthly basis and, if currency-related, denominated in Euro.  

Appendix C 

Fig. C1. Stylized visualization | Univariate crash prediction models. This figure depicts a stylized visualization that helps explain the structure and functioning of 
univariate crash prediction models. 

Fig. C2. Stylized visualization | Support vector machines. This figure depicts a stylized visualization that helps explain the structure and functioning of support 
vector machines (SVMs) in a two-dimensional, two-class scenario. Each vector (observation) is defined by two variables and assigned to one of the two classes, and 
the SVM searches for a hyperplane (a straight line) that territorially divides the vector space (the two-dimensional shape) into groups of vectors that belong to the 
same class by aiming to 1) maximize the distance of correctly classified support vectors from the hyperplane and 2) minimize the number of misclassified support 
vectors . 

Table C1 
Stylized visualization | Binary classifications.  

Panel A   Crash indicator    

1 (crash occured) 0 (no crash occured)  

Crash signal 1 (crash predicted) True positives (TPs) False positive (FPs) 
0 (no crash predicted) False negatives (FNs) True negative (TNs)  

Panel B Confusion matrix  Classification measures  

Realized     

1 0  Accuracy Precision Recall F1 

Predicted 1 20 10 Definition #(TP + TN)

#(TP + FP + FN + TN)

#TP
#(TP + FP)

#TP
#(TP + FN)

2×
Precision × Recall
Precision + Recall 

0 5 15 Calculation 20 + 15
20 + 10 + 5 + 15

= 70% 
20

20 + 10
= 67% 

20
20 + 5

= 80% 2×
67% × 80%
67% + 80%

= 73% 

This table depicts two stylized visualizations that help explain the procedure to measure the performance of binary classifications.   

H. Dichtl et al.                                                                                                                                                                                                                                   



Journal of Financial Stability 65 (2023) 101099

24

References 

Alessi, L., Detken, C., 2011. Quasi real time early warning indicators for costly asset price 
boom/bust cycles: a role for global liquidity. Eur. J. Political Econ. 27 (3), 520–533. 

Alessi, L., Detken, C., 2018. Identifying excessive credit growth and leverage. J. Financ. 
Stab. 35 (1), 215–225. 

Aliber, R.Z., Kindleberger, C.P., 2015. Manias, Panics, and Crashes: A History of 
Financial Crises. Palgrave Macmillan, Basingstoke, U.K.  

Ang, A., Bekaert, G., 2004. How regimes affect asset allocation. Financ. Anal. J. 60 (2), 
86–99. 

Ang, A., Timmermann, A., 2012. Regime changes and financial markets. Annu. Rev. 
Financ. Econ. 4 (1), 313–337. 

Ang, A., Goyal, A., Ilmanen, A., 2014. Asset allocation and bad habits. Rotman Int. J. 
Pension Manag. 7 (2), 16–27. 

Angel, J.J., Broms, T.J., Gastineau, G.L., 2016. ETF transaction costs are often higher 
than investors realize. J. Portf. Manag. 42 (3), 65–75. 

Asness, C., 2003. Fight the fed model. J. Portf. Manag. 30 (1), 11–24. 
Avramov, D., Kaplanski, G., Subrahmanyam, A., 2020. Moving average distance as a 

predictor of equity returns. Rev. Financ. Econ. 39 (2), 127–145. 
Baker, M., Wurgler, J., 2006. Investor sentiment and the cross-section of stock returns. 

J. Financ. 61 (4), 1645–1680. 
Baker, M., Wurgler, J., 2007. Investor sentiment in the stock market. J. Econ. Perspect. 

21 (2), 129–152. 
Bandopadhyaya, A., Jones, A.L., 2008. Measures of investor sentiment: a comparative 

analysis put-call ratio vs. volatility index. J. Bus. Econ. Res. 6 (8), 27–34. 
Barberis, N., Shleifer, A., Vishny, R., 1998. A model of investor sentiment. J. Financ. 

Econ. 49 (3), 307–343. 
Baron, M., Verner, E., Xiong, W., 2021. Banking crises without panics. Q. J. Econ. 136 

(1), 51–113. 
Barro, R.J., Ursúa, J.F., 2017. Stock-market crashes and depressions. Res. Econ. 71 (3), 

384–498. 
Baur, D.G., McDermott, T.K., 2010. Is gold a safe haven? International evidence. J. Bank. 

Financ. 34 (8), 1886–1898. 
Berge, K., Consigli, G., Ziemba, W.T., 2008. The predictive ability of the bond-stock 

earnings yield differential model. J. Portf. Manag. 34 (3), 63–80. 
Beutel, J., List, S., von Schweinitz, G., 2019. Does machine learning help us predict 

banking crises? J. Financ. Stab. 45 (1), 100693. 
Billingsley, R.S., Chance, D.M., 1988. Put-call ratios and market timing effectiveness. 

J. Portf. Manag. 15 (1), 25–28. 
Bluwstein, K., Buckmann, M., Joseph, A., Kang, M., Kapadia, S., and Şimşek, Ö. (2020). 
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