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A B S T R A C T   

The ecosystem service literature has drastically expanded since the Millennium Ecosystem Assessment, yet the 
nature of how ecosystem services interact across space is still poorly understood. A key unresolved question is 
how efforts in sampling (a proxy for data availability) affect the calculation of the interactions or associations 
among ecosystem services. We contribute to answering this question by estimating a suite of ecosystem services 
and asking how the values of their interactions – in the form of spatial correlations – change as a function of the 
sampling rate of the landscape. Specifically, we estimate a set of seven ecosystem services for France (agricultural 
production potential, biodiversity, carbon storage, livestock grazing potential, net ecosystem productivity, 
pollination, and soil loss), applying four different measures for biodiversity, seven different methods for carbon 
storage, and three for pollination. We find that spatial correlations are fairly robust to the sampling rate, sup
porting the notion that moderate sampling rates across a heterogenous landscape are sufficient to obtain reliable 
estimates of the average correlation occurring across the landscape. In other words, despite heterogeneity in the 
spatial distribution of ecosystem services, at sufficient sample sizes we only need to randomly sample ten percent 
of the landscape to acquire an accurate measure of the correlations between all ecosystem services averaged 
across the entire landscape. Our results have implications for management, with applications for sampling extent 
and intensity and the identification of ecosystem service bundles.   

1. Introduction 

The ecosystem service literature has seen an explosion of publica
tions since the Millennium Ecosystem Assessment (Bennett et al., 2009; 
Fisher et al., 2009; Vihervaara et al., 2010). Yet despite an immense 
number of case studies being published, the nature of how ecosystem 
services interact across space is still poorly understood (Bennett et al., 
2009; Seppelt et al., 2011). Indeed, effective estimation of the spatial 
correlations among ecosystem services enables a better identification of 
ecosystem service bundles, which is key to managing the landscape so as 
to maximize total benefits. 

The literature has progressed such that most papers measure at least 
a set of services and report the spatial correlations between them 
(Seppelt et al., 2011; Vihervaara et al., 2010), with a large variety of 
tools available to measure the provisioning or supply of ecosystem ser
vices (Crossman et al., 2013; Egoh et al., 2008; Martínez-Harms and 
Balvanera, 2012; Schagner et al., 2013). However, issues of data 

availability, quality, quantity, and uncertainty remain key limitations to 
the field (Crossman et al., 2013; Egoh et al., 2012; Hou et al., 2013; 
Layke et al., 2012; Martínez-Harms and Balvanera, 2012), and may 
largely impact the estimation of spatial correlations. A key unresolved 
question is how the effort in sampling (a proxy for data availability) 
affects spatial correlations – often referred to as interactions or associ
ations, sensu Vallet et al. (2018) – among ecosystem services. On-the- 
ground estimates of ecosystem services are time consuming and 
expensive to conduct. Furthermore, even with proxy-based methods that 
rely on land use and land cover data, finding the balance between how 
much of the landscape is needed to accurately measure a spatial inter
action is tricky. Sampling too much of the landscape can be expensive in 
terms of time, labor, computation time, and other costs; sampling too 
little can ignore local heterogeneities that are averaged out when 
calculating the spatial correlation. 

We contribute to answering this question by estimating a suite of 
ecosystem services and asking how the values of their spatial 
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correlations change as a function of the sampling rate of the landscape. 
Specifically, we estimate a set of seven ecosystem services for France 
(agricultural production potential, biodiversity, carbon storage, live
stock grazing potential, net ecosystem productivity, pollination poten
tial, and soil erosion prevention), applying four different measures for 
biodiversity, three for pollination, and seven different methods for 
carbon storage. We vary the sampling rate of the data to calculate the 
spatial correlations between our ecosystem services. We find that cor
relations are fairly robust to the sampling rate, supporting the notion 
that at sufficient sample sizes moderate sampling rates across a het
erogeneous landscape are sufficient to obtain reliable estimates of the 
average correlation calculated using data for the entire landscape. 

Relatively few studies have explicitly evaluated uncertainty in esti
mating ecosystem services. Plummer (2009) and Rosenberger and 
Stanley (2006) focus on the extrapolation and transferability of 
ecosystem service provisioning models, discussing the errors associated 
with taking the value of ecosystem services at one site and applying 
them to another. Eigenbrod et al. (2010) measure the overlap between 
on-site, local estimates of ecosystem services and proxy-based land use 
data. Schulp et al. (2014) reviewed and compared ecosystem service 
maps at the European scale. Van der Biest et al. (2015) test for differ
ences in the spatial correlations between ecosystem services across three 
types of land use-based models and field data. Roussel et al. (2017) 
compare the clustering or bundling of ecosystem services between a 
proxy-based land use method and a set of models which compute seven 
other individual ecosystem services. Vallet et al. (2018) compared 
different methods to estimate the interactions between ecosystem ser
vices, including how they might change over time. Rather than 
comparing different models or data sources to measure ecosystem ser
vices at a single scale, we test for differences in the spatial correlations 
between ecosystem services as a function of the study sampling rate, 
while testing for differences between models and/or data sources for 
biodiversity, carbon storage, and pollination. 

Our paper is outlined as follows: in the next section we present our 
framework for modelling ecosystem service provisioning, the data, and 
how we measure their interactions; our results are presented in the third 
section; finally, we discuss the main take-aways of our results and how 
they relate to ecosystem service management. 

2. Methods 

We model ecosystem services and their spatial interactions at the 
national scale of France. Data availability was and still is one of the 
major limitations of the field (Bennett et al., 2009; Crossman et al., 
2013; Egoh et al., 2012; Hou et al., 2013; Layke et al., 2012; Martínez- 
Harms and Balvanera, 2012). Our study is no exception. We do not have 
access to local, plot-level data with which to test our hypotheses. We do, 
however, have access to national-level spatial data. As we will show 
below, for some of our results, the data can be viewed as a generic 
landscape – we would expect many of the general trends in our results to 
hold regardless of the spatial scale of the study. However, for other re
sults such as policy implications, it will be more important to keep in 
mind that our study was conducted at the national level. 

In terms of measuring the provisioning of ecosystem services, the 
literature is abound with different methodologies and modelling 
frameworks such as the InVEST model (Daily et al., 2009; Nelson et al., 
2009), GUMBO (Boumans et al., 2002) and IMAGE (Schulp et al., 2012) 
frameworks, or the Soil Water Assessment Tool (SWAT) (Arnold et al., 
1999; Lautenbach et al., 2013). We would direct the reader to reviews by 
Crossman et al. (2013), Egoh et al. (2012), Martínez-Harms and Balva
nera (2012), and Schagner et al. (2013) for detailed discussions of the 
vast array of indices for measuring individual ecosystem services. We 
provide a summary spreadsheet in Supplemental Material A. Rather 
than taking one of the large modelling frameworks to estimate 
ecosystem service provisioning, we have chosen to take them as inspi
ration and build our phenomenological models of provisioning ourselves 

directly from the literature. We believe that doing so increases the 
transparency of our work. 

Furthermore, we modeled a set of seven ecosystem services, with 
four types of measurements for biodiversity, three for pollination, and 
seven for carbon storage, totaling eighteen indicators. While many case 
studies measure a larger number of ecosystem services, we find that 
considering a smaller set allows us to go deeper into understanding the 
data, the models, and how their interactions affect the calculation of the 
spatial correlation coefficients between ecosystem services, while 
balancing the limitations of data availability and quality for a study at 
the national scale. A summary of all ecosystem services and the methods 
used to measure them is found in Table 1. 

We measured the spatial correlation coefficients between ecosystem 
services as a function of the percentage of the landscape sampled. Spatial 
correlation coefficients are often used synonymously with the terms 
“interactions” or “associations”, though there is a body of work discus
sing what is an interaction versus an association, what are the types of 
interactions (tradeoffs and synergies), how do they form (directly or 
indirectly), and how do we measure them (see Lee and Lautenbach 
(2016) and Vallet et al. (2018) for overviews of this literature). Rather 
than be caught up in discrepancies about what-is-what, we will call our 
“interactions” for what they are: spatial correlations between ecosystem 
services across a given area. 

Table 1 
Summary of ecosystem service provisioning models.  

Ecosystem service Model description 

Agriculture Binary if annual summer or winter crops, orchards, 
or vineyardsa 

Biodiversity  
National Inventory of 

National Heritage 
Number of threatened species of amphibians, birds, 
and reptilesb 

Mauri et al. (2017) Tree species richnessc 

Carbon storage (C)  
Amoatey et al. (2018) – 

Institutions 
Power law relationship, C = 4735 * exp (0.7075 * 
NDVI)d 

Amoatey et al. (2018) – Parks 
and gardens 

Power law relationship, C = 3453.6 * exp (5.9194 * 
NDVI)d 

Myeong et al. (2006) Power law relationship, C = 107.2 * exp (0.0194 * 
NDVI)d 

Yao et al. (2014) Power law relationship, C = 6445.014 * 
(NDVI^2.390)d 

Egoh et al. (2008) Low/intermediate/high potential by land use typee 

Gibbs et al. (2007) Lookup table by land use typee 

Spawn et al. (2020) Aboveground carbon storage mapd 

Net ecosystem productivity  
Maes et al. (2015) Net ecosystem productivity map 
Pastureland Binary if natural or intensive grasslanda 

Pollination (P)  
Ricketts et al. (2008) Exponential function of distance to natural forest, P 

= exp (-0.00053 * distance)f 

Schulp et al. (2014) Map of percentage of suitable pollinator habitat 
Schulp et al. (2014) Map of pollinator visitation probability 
Soil loss by water erosion 
Panagos et al. (2020) Mean annual soil loss mapg 

Calculated at the 1 km resolution. 
a Taken from the CESBIO land use and land cover data (https://labo.obs-mip. 

fr/multitemp/) (10 m resolution). 
b As listed by the National Inventory of Natural Heritage (INPN) (https://inpn. 

mnhn.fr/) (10 km resolution). 
c Compiled from species occurrence data, aggregated using a 10 km grid (10 

km resolution). 
d Associated data from the Google Earth Engine are reported at < 1 m 

resolution. 
e Corresponding values of carbon storage by land use type can be found in the 

Supplemental Material (10 m resolution). 
f Natural forest data is provided by the European Commission Joint Research 

Centre forest cover data (https://forest.jrc.ec.europa.eu/en/) (25 m resolution). 
g Estimated using the revised universal soil loss equation (RUSLE) (100 m 

resolution). 
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2.1. Measuring ecosystem service provisioning 

As data availability and quality are key limitations, we relied pri
marily on land use and land cover data in our models to estimate 
ecosystem service provisioning, though there are notable exceptions as 
discussed below. Land use and land cover data were downloaded from 
the French Centre d’Etudes Spatiales de la Biosphère (CESBIO) (Inglada 
et al., 2017) at the 10 m resolution. It includes seventeen land use types: 
annual summer crops; annual winter crops; broad-leaved forest; conif
erous forest; natural grasslands; woody moorlands; continuous urban 
fabric; discontinuous urban fabric; industrial and commercial units; 
roads; bare rock; beaches, dunes, and sand; water bodies; glaciers and 
perpetual snow; intensive grasslands; orchards; and vineyards. Addi
tionally, we used biodiversity data compiled from the National In
ventory of Natural Heritage (INPN) (10 km resolution), reflectance data 
taken from the Google Earth Engine (<1 m resolution), and forest cover 
as provided by the European Commission Joint Research Centre (25 m 
resolution). References for where to download spatial data are located in 
Table 1 and, if available for public download, can be accessed on the 
Open Science Framework (osf.io/7hk9v). 

It is worth keeping in mind that in order to measure the correlations 
between ecosystem services, we must align their associated raster data 
layers, which requires that they be the same spatial extent and resolu
tion. It is necessary to interpolate or aggregate (downscale or upscale) 
the data to be the same resolution. We aggregated to the resolution of 
the coarsest layer which, in doing so, transforms our binary measures of 
ecosystem services (e.g., agriculture and grazing) into continuous 
measures of potential probabilities of presence based on their proximity 
to cell(s) with a presence of the service. 

2.1.1. Agriculture potential 
As France possesses a large agricultural system across the country 

(about a third of the country’s total surface area in 20181) and a high 
degree of variation in its crops produced (exporting 346 different types 
of crop and livestock products in 20182), we limited our study of agri
cultural production to a binary agriculture/not agriculture index. To be 
clear, agricultural data for France does exist. Aggregated data at the 
departmental level can be accessed online via the Service Statistique 
Ministériel de l’Agriculture (Agreste).3 Parcel-level data of major agri
culture types are available for each department through the Agence de 
Services et de Paiement (APS) and the Institut National de l’Information 
Géographique et Forestière (IGN).4 Specifically, this data is part of the 
Registre Parcellaire Graphique (RPG), which is an annual declaration 
agricultural parcels and their corresponding surfaces in accordance with 
the acquisition of EU subsides from the Common Agricultural Policy. 
However, due to the large diversity of agricultural products in France, 
we believe that a proper treatment of this data is better left for future 
studies.5 The presence or absence of agriculture was taken from the 
CESBIO land use and land cover data set. We defined a pixel of agri
culture land to be annual summer or winter crops, orchards, or vine
yards. We find that differentiating between agricultural types is more 
important when considering the economic value of the ecosystem ser
vice, where benefits and costs between crop types becomes more 
important. 

2.1.2. Biodiversity 
While biodiversity is not an ecosystem service per se, it is known to be 

positively correlated with regulating services such as carbon seques
tration, pest regulation, and soil mineralization (Cardinale et al., 2012; 
Millennium Ecosystem Assessment, 2005). However, fine-scale national 
surveys of biodiversity are few and far between. For example, through 
the L’Inventaire National du Patrimoine Naturel or National Inventory 
of Natural Heritage (INPN), it is possible to construct maps of species 
richness by taxonomic groups – but this is at the departmental level. 
Therefore, we used taxonomic species richness of threatened or pro
tected species, where we have data at the national level, as a measure for 
biodiversity. Data were compiled from the National Inventory of Natural 
Heritage (INPN).6 The database is based on an atlas (grid) of 10 km 
spatial resolution, where species occurrences are aggregated by taxo
nomic groups to produce a series of biodiversity maps for protected 
species across the country. We focused on certain taxonomic groups with 
different environmental requirements, thus representing different facets 
of biodiversity. Namely, we produced maps for threatened amphibians, 
birds, and reptiles. Similar approaches have been applied in the United 
Kingdom using the Biodiversity Action Plan (BAP) list of species of 
“conservation concern” (Anderson et al., 2009; Eigenbrod et al., 2009; 
Eigenbrod et al., 2010), and numbers of threated or protected species are 
often used as proxies for biodiversity in economic valuation studies 
(Bartkowski et al., 2015). 

However, biodiversity of threatened or protected species does not 
necessarily correlate with common ones. In other words, it may not be a 
good proxy for the biodiversity of common species, as the “number of 
threatened species” and “number of total species” can be driven by 
different processes. Threatened species may exist as endemic, refugia 
populations with specific distribution patterns or may be oversampled 
compared to common species (though the potential contribution of rare 
species as keystone species cannot be completely discounted). There
fore, we supplemented our maps of threatened species with a well- 
established map of tree biodiversity in the Europe (Mauri et al., 
2017). In its raw form, the data exist as occurrences of 242 species across 
the European Union, compiled from existing European tree distribution 
datasets (Forest Focus and Biosoil) and previously unpublished National 
Forest Inventories datasets. We overlaid the raw data onto a 10 km by 
10 km grid and aggregated species occurrences by species type within 
each grid cell to measure tree species richness at the 10 km resolution. 

2.1.3. Carbon storage potential 
As carbon is one of the more well-studied ecosystem services in the 

literature (Crossman et al., 2013; Feld et al., 2009; Issa et al., 2020; 
Martínez-Harms and Balvanera, 2012; Seppelt et al., 2011), we adopted 
a set of models to estimate carbon storage potential and investigate the 
uncertainty around the choice of method. We first used two look-up 
table approaches based on land use type. The first assigns a categori
cal “low”, “intermediate”, or “high” carbon storage potential based on 
the type of land occupation (Egoh et al., 2008; Rouget et al., 2004). The 
second attaches a more quantitative weight to carbon storage potential, 
assigning an average quantity of carbon stored per hectare for each pixel 
of each land use type at a given moment in time (Bai et al., 2011; Chan 
et al., 2006; Maes et al., 2012; Naidoo et al., 2008; Spawn et al., 2020; 
Swetnam et al., 2011; Vallet et al., 2018). Specifically, we used the 
carbon storage values of Gibbs et al. (2007), which is based on the 
Intergovernmental Panel on Climate Change guidelines for national 
greenhouse gas emissions (Intergovernmental Panel on Climate Change, 
2006). Tables for the values of carbon stored per hectare of land use type 
can be found in Supplemental Material B. We complemented this mea
sure with the aboveground carbon storage map of Spawn et al. (2020), 
which is based on a suite of local, regional, and national data sets 
including national inventories. Each of these approaches were 

1 https://data.worldbank.org/country/france.  
2 https://www.fao.org/faostat/en/#data/TCL.  
3 https://agreste.agriculture.gouv.fr/agreste-web/disaron/RA2020_1013/de 

tail/.  
4 https://www.data.gouv.fr/fr/datasets/registre-parcellaire-graphique-rpg- 

contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire 
/.  

5 https://odr.inrae.fr/intranet/carto/cartowiki/index.php/Accueil_Porta 
il_RPG. 6 https://inpn.mnhn.fr/. 
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motivated by the literature and/or expert opinion and lend themselves 
well to large-scale analyses, but ignore spatial heterogeneities across 
landscapes with the same land use. Therefore, they should be seen as 
averages rather than absolute values. 

In an effort to account for finer-scale variation across the landscape, 
we followed the methodology of Dong et al. (2003), Myeong et al. 
(2006), Yao et al. (2014), and Amoatey et al. (2018), who relate 
aboveground carbon storage and reflectance data, the latter measured 
by the normalized difference vegetation index or NDVI. Each fitted non- 
linear models (usually saturating functions such as power laws) of on- 
the-ground field measurements of carbon storage to spatial reflectance 
data. We obtained NDVI data from the Google Earth Engine (Ermida 
et al., 2020; Jiang et al., 2008)7 and transformed values of NDVI to 
carbon storage per pixel using the functions derived by Myeong et al. 
(2006), Yao et al. (2014), and Amoatey et al. (2018). It is worth noting 
that their field experiments were based in arid climates (Amoatey et al., 
2018) or urban centers (Myeong et al., 2006; Yao et al., 2014), and so it 
is unlikely that these functions will produce precise estimates of carbon 
storage for other ecosystems like forests. However, rather than viewing 
the transformed carbon storage data in absolute terms, we used these 
models to give us a representation of carbon storage potential, and, by 
measuring a suite of parameterizations, tested the sensitivity of carbon 
storage estimation to model parameters. 

Ideally, we would want to include finer scale assessments of carbon 
storage such on-the-ground field surveys throughout the country (Gas
coigne et al., 2010; Gleason et al., 2008) or compartmental or process- 
based models calibrated to field data (Crossman et al., 2011b; Lands
berg and Waring, 1997; Naidoo and Ricketts, 2006; Naidoo et al., 2008; 
Schulp et al., 2012). However, obtaining the necessary fine scale data 
was not possible at the national scale. 

2.1.4. Grazing potential 
We considered pastureland or grazing as a binary pastureland/not 

pastureland variable. Like agriculture, accurately classifying pasture
land by species and production type is difficult and compounded by the 
fact that farmers may routinely share their land between multiple flocks. 
These difficulties are more apparent when attaching a value to a parcel, 
which depends on the species and eventual use of the animal product(s) 
(cheese, fur, meat, milk). We set a pixel to be pastureland if it is clas
sified as a natural or intensive grassland in the CESBIO land use and land 
cover data set. 

2.1.5. Pollination potential 
We adopted the methodology of Ricketts et al. (2004) and Ricketts 

et al. (2008), who through a series of field experiments established a 
relationship between pollinator visitation rates and distance to natural 
forest. We used the European Commission Joint Research Centre (JRC) 
Pan-European forest cover map to create a proximity map of the dis
tances of the centers of each pixel to the nearest natural forest pixel 
(broad-leaved, coniferous, or mixed). We then fitted the proximity data 
to the function defined in Ricketts et al. (2008) to estimate the mean 
visitation probability for temperate regions. We supplemented our 
pollination map with two maps by Schulp et al. (2014), which include 
the percentage of suitable pollinator habitat and the probability of 
pollinator visitation. Both maps are based on Corine land cover and 
landscape green elements data. 

2.1.6. Regulating ecosystem services: Soil loss and net ecosystem 
productivity 

We supplemented our core analysis with published maps of two 
regulating ecosystem services: soil loss (erosion prevention) (Panagos 
et al., 2020; Panagos et al., 2015) and net ecosystem productivity (Maes 

et al., 2015). The former is based on the universal soil loss equation 
(USLE) (Batjes, 1996; Nelson et al., 2009; Wishmeier and Smith, 1978), 
which relates soil properties, topology, land management and vegeta
tion cover, and precipitation to predict potential soil loss by water 
erosion. Specifically, we used the published map of Panagos et al. 
(2020), who adopted the updated revised universal soil loss equation 
(RUSLE) to estimate mean annual soil loss rates (tons/hectare/year) 
across the European Union in 2016. 

Net ecosystem productivity (NEP) is defined as an ecosystem’s net 
accumulation of carbon, which depends on the balance between gross 
primary production and losses via plant and animal respiration, leach
ing, plant emissions, methane fluxes, and disturbances (Chapin et al., 
2012). For ecosystems that experience little or no disturbances, then it is 
given primarily by the difference between carbon gains from plant pri
mary production (photosynthesis) and carbon losses by respiration and 
leaching. We used the published net ecosystem productivity map of 
Maes et al. (2015), prepared as part of an European Commission Joint 
Research Council report to measure spatial–temporal trends in 
ecosystem services across the European Union. Specifically, they used 
reflectance data as a proxy for net ecosystem productivity, defining it as 
the difference between net primary productivity and decomposition 
rates of dead organic matter (taken to represent heterotrophic respira
tion). They adopted the “Phenolo” algorithm of Ivits et al. (2013) to 
convert spatial maps of NDVI data to plant primary productivity, adjust 
for decomposition of dead organic matter, and normalize net ecosystem 
productivity to a dimensionless scale of 0 to 1. 

To ensure data comparability, we aligned raster layers to the same 
spatial extent and resolution. Layers were resampled using a bilinear 
nearest-neighbor aggregation up to the resolution of the coarsest layer 
(10 km resolution), and then all layers were cropped to the same spatial 
extent using the ‘raster’ package R v.3.6.2. By aggregating our binary, 
presence/absence measures of ecosystem service provisioning (e.g., 
agriculture and grazing), we implicitly transformed them to be a prob
ability of presence based on their distance to a cell where the service is 
present. 

2.2. Calculation of spatial correlation coefficients 

We calculated the spatial coefficients between ecosystem services 
across a suite of random sampling rates of the landscape. That is, we 
randomly selected a certain percentage of pixels in the landscape 
(without replacement), and calculated the Pearson spatial correlation 
coefficients between each pair of ecosystem services using that subset of 
the data. While other methods exist in the literature for measuring in
teractions between ecosystem services such as principle component 
analysis, production possibility frontiers, or regressions (Feld et al., 
2009; Lee and Lautenbach, 2016; Vallet et al., 2018), correlation co
efficients are widely used, accepted, and provide reasonable estimates of 
interactions (Chan et al., 2006; Raudsepp-Hearne et al., 2010; Vallet 
et al., 2018). We then resampled the data and recalculated the corre
lations for N = 1000 repetitions, and calculated the mean and standard 
deviations for each pair of services for that percentage of the landscape 
sampled. We tested a set of proportions ranging from (0,100] percent of 
the landscape. As we are able to resample the landscape N number of 
times, and standard errors depend on sample size, hypothesis tests for 
statistical significance or p-values are largely inappropriate. 

Analyses were carried out in R 3.6.2 using the ‘raster’ and ‘sp’ 
packages. Scripts for our analysis and final raster layers can be down
loaded on the Open Science Framework (osf.io/7hk9v). 

3. Results 

3.1. Estimates of ecosystem service provisioning 

Our estimations for ecosystem services are presented in Figs. 1 and 2. 
Agriculture and pastureland are inversely related, which is expected 

7 As reflectance changes seasonally and annually, we specifically use the 
annual average between 2010 and 2020 for our analysis. 
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given the modeling framework (Fig. 1a, b). Land is either used for 
agriculture (crops) or pastureland (animals), not both simultaneously. 
Biodiversity of threatened amphibians is more-or-less distributed 
throughout the country, although with high local heterogeneity 
(Fig. 1c); diversity of threatened birds is distributed throughout the 
country, especially on the coasts; biodiversity of protected reptiles is 
concentrated in the southern half of France, particularly in the “arc 
méditerranéen” (Fig. 1d, e). Tree diversity is highest in forest areas 
(Fig. 1f, Supplemental Material B). 

We observe spatial variation in the distribution of carbon storage 
across the country (Fig. 2), with levels of carbon storage unsurprisingly 

higher within forests (Supplemental Material B). However, we find large 
quantitative differences in the quantity of carbon stored between our 
carbon models (Fig. 2), the reason for which is grounded in the type of 
data used for the calibration of each model. The NDVI relationships are 
derived from urban forest (Myeong et al., 2006; Yao et al., 2014) or 
desert ecosystems (Amoatey et al., 2018); others, such as Gibbs et al. 
(2007) and Spawn et al. (2020) are derived from a variety of sources and 
ecosystems. 

Net ecosystem productivity is mainly concentrated in forests, with its 
lowest values at higher elevations in the Alps and Pyrenees (Fig. 3a). Soil 
loss is similarly lowest at high slopes (Fig. 3b). Pollination potential is 

Fig. 1. Estimated ecosystem services: (a) agriculture; (b) pastureland; (c-e) biodiversity taken as the number of threatened or protected species amphibians, birds, 
and reptiles; (e) biodiversity measured as the number of tree species (Mauri et al., 2017). Note that the units in (a) and (b) are interpreted as the probability of the 
presence of agriculture and grazing. 

Fig. 2. Estimated levels of carbon storage and carbon storage potential: (a) Amoatey et al. (2018) (institutions); (b) Amoatey et al. (2018) (parks and gardens); (c) 
Myeong et al. (2006); (d) Yao et al. (2014); (e) Egoh et al. (2008); (f) Gibbs et al. (2007); and (g) Spawn et al. (2020). Units for each measure are in tons/hectare. 
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quite high throughout the country (Fig. 3c, e), with some exceptions 
being along the coasts.8 Pollination as measured by the percentage of 
suitable pollinator habitat follows forested areas (Fig. 3d, Supplemental 
Material B), with pockets of highly suitable habitat in mountain regions. 

3.2. Within-service correlations 

While there is certainly some debate about what level of correlation 
is meaningful for ecosystem services (Lee and Lautenbach, 2016), we 
interpret our correlations in a purely positive/negative mathematical 
way and prefer to focus on the trends in the results rather than their 
absolute values. 

We find positive correlations between our measures of carbon 
(Fig. 4a-c), our measures of biodiversity as the number of threatened 
species and tree diversity (Fig. 4d), and pollination. (Fig. 4e). A notable 
exception is the negative correlation between trees and threatened birds, 
which is intuitive. We would expect diverse forests to be suitable habitat 
for bird species, and subsequently tree diversity to be inversely related to 
number of threatened or protected bird species. This example serves as a 
good reminder that our measures of amphibian, avian, and reptile di
versity are the numbers of threatened or protected species. If we were 
using the total number of avian species in this case, then we would likely 
observe a positive correlation. 

Overall, correlations are more-or-less constant as long as we sample 
more than ten percent of the landscape. Despite heterogeneity in the 
spatial distributions of biodiversity, carbon storage, and pollination, 
estimation of their interactions is robust to the sample size. In fact, it is 
only until we sample less than one percent of the data do we see vari
ation in the mean spatial correlations – a claim that is confirmed by 
looking at the variance of our estimates (Fig. 4b, d-e). 

Specifically for carbon storage, we find strong correlations between 
all measures, with mean correlation coefficients greater than 0.4 
(Fig. 4c), even though their absolute value in tons/hectare differ. 
Qualitatively, these models give us similar information as to the spatial 
distribution of carbon storage across France. The fact that these models 
are correlated is expected. Forests, for example, will have a high carbon 
storage regardless if it is evaluated by a land use/land cover model or via 
plant reflectance. However, the quantitative degree to which they are 
correlated is another question. The NDVI methods are very strongly 
correlated to each other and robust to sample size, with mean correla
tion coefficients greater than 0.9 and variance close to zero regardless of 
the percentage of the landscape sampled, despite having quite different 
functional forms and parameter values. 

3.3. Between-service correlations 

Spatial correlations between ecosystem services are robust to sample 
size (Fig. 5). Mean interactions between ecosystem services are the same 
as long as we measure greater than ten percent of the landscape 
(Fig. 5a), and, for some services, do not change even when we sample 
less than one percent of the landscape. That is, the mean spatial corre
lation using fifty percent of the landscape is more-or-less identical to 
calculating the mean spatial correlation with ten percent of the land
scape sampled. We see differences in the mean spatial coefficients only 
when randomly sampling less than ten percent of the landscape. 

This result is confirmed when measuring the variance of spatial 

correlations (Fig. 5b). As we decrease the proportion of the landscape 
sampled, the variance in the spatial correlation coefficient calculated 
across all samplings increases exponentially. By simple back-of-the- 
envelope calculations between the mean and the variance it can be 
illustrated that there are likely qualitative differences between sample 
calculations when we calculate the spatial correlation coefficient using a 
low proportion of the landscape. In other words, calculating the corre
lation coefficient using different small subsets of the landscape can yield 
both positive and negative values. 

Expanding on our pairwise correlation coefficients from the previous 
section, agriculture was negatively correlated with all services except 
threatened amphibian biodiversity. Biodiversity of threatened amphib
ians was positively correlated with biodiversity of protected birds, rep
tiles, trees, and net ecosystem productivity, and negatively correlated 
with grazing, pollination, and soil loss. Interestingly, it showed mixed 
positive and negative correlations with our carbon models. Protected 
avian biodiversity was positively correlated with threatened reptile di
versity, and negatively correlated with tree diversity, carbon, grazing, 
net ecosystem productivity, pollination, and soil loss. Biodiversity of 
threatened reptiles exhibited weak or positive correlations with most 
carbon models, positive correlations with tree diversity, grazing, polli
nation, and soil loss, and a weak negative correlation with net ecosystem 
productivity. Tree diversity showed positive correlations with all carbon 
models and net ecosystem productivity, and negative correlations with 
grazing and soil loss. It exhibited mixed correlations with pollination. 
Carbon models were positively correlated with net ecosystem produc
tivity, but showed mixed correlations with soil loss and pollination. 
Grazing was positively correlated with all carbon models, net ecosystem 
productivity, pollination, and soil loss. Net ecosystem productivity was 
negatively correlated with soil loss, with mixed effects with pollination. 
Soil loss exhibited mixed, and often weak, correlations with pollination. 
Detailed figures of the trends within each ecosystem service can be 
found in Supplemental Material B. 

4. Discussion 

Data quality and quantity are two of the main limitations for esti
mating ecosystem services and ecosystem service management (Bennett 
et al., 2009; Crossman et al., 2013; Egoh et al., 2012; Hou et al., 2013; 
Layke et al., 2012; Martínez-Harms and Balvanera, 2012). We show that 
it is possible to obtain reliable estimates of the correlations between 
ecosystem services at the landscape level (the average correlation 
occurring across the landscape) when randomly sampling ten percent of 
the landscape for all ecosystem services studied, and close to one percent 
for some. Despite heterogeneity in the spatial distribution of ecosystem 
services, we only need to sample ten percent of the landscape to acquire 
an accurate measure of the average correlations between all ecosystem 
services at the landscape level. 

To use the words of Mark Williamson (Williamson, 1996), our main 
finding is a type of “tens rule” applied to the statistical calculation of the 
spatial correlation coefficient.9 Ten percent is the minimum proportion 
of the landscape that needs to be sampled in order to minimize variation 
in the calculation of the spatial correlation relative to the average cor
relation using the full sample. Below this level, variance in the calcu
lation of the spatial correlation increases exponentially, and we also see 
variability in the calculation of the mean (Figs. 4 and 5). This result is at 
least partly a statistical phenomenon similar to general relationships 
between ecological process and spatial scale in ecology, such as the 

8 Pollination potential exhibits a high degree of fine-scale spatial variation, 
much of which is lost when we aggregate the data. For example, the farthest 
distance from natural forest in our proximity analysis was 10.12 km. Aggre
gating the data to the 10x10 km resolution of the biodiversity data expectedly 
results in a loss of much of this information. However, we do see some variation 
in the pollination potential, though its overall values across the landscape are 
high. We would not expect this to affect the calculation of our spatial 
correlations. 

9 The tens rule from ecology is a statistical generalization of the establish
ment and spread of invasive species. It states that of the set of novel species 
introduced to a new local, ten percent are able to establish a self-sustaining 
population, and of those, ten percent become pests. For captive species, there 
is another initial step of ten percent of introduced species escaping captivity 
and becoming feral in the wild. 
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species-area relationship (SAR) (Arrhenius, 1921; Lomolino, 2000; 
Schoener, 1986), stability-area relationship (StAR) (Delsol et al., 2018), 
or relationships between biodiversity and ecosystem functioning (BEF) 
(Cardinale et al., 2011; Gonzalez et al., 2020). For each of these, the 
greater the spatial area studied, the greater the biodiversity (SAR), sta
bility (StAR), or total community biomass (BEF). In our case, the greater 
the proportion of the landscape sampled, the lower the variation in the 
calculation of the correlation coefficients between ecosystem services. 

As we increase the spatial scale of the analysis from very local to 
regional or national, we may change who, how, and how much parcels 
of land are managed (which will affect the underlying physical and 
biological processes occurring at each site) or exceed limits for species 
dispersal or pollination, both of which overall potentially change the 
driving factors for ecosystem service supply (Bennett et al., 2009; de 
Groot et al., 2010; Hou et al., 2013; Lee and Lautenbach, 2016; Mil
lennium Ecosystem Assessment, 2005). From a purely statistical stand
point, increasing the sample size will minimize spatial heterogeneities in 
the data and, by consequence, variance in the calculation of the spatial 
correlation coefficients. Indeed, applying a measure of stability to the 
data – calculated as invariability or the ratio of the mean to the standard 
deviation (Shanafelt and Loreau, 2018; Wang and Loreau, 2016; Wang 
et al., 2017) – confirms this claim. Stability of the correlation co
efficients increases exponentially as a function of the landscape sampled 
(Supplemental Material B), which is primarily driven by decreases in the 
variance (as opposed to increases in the mean), which approaches zero 
as the entire landscape is sampled. Thus, our “tens rule” is the threshold 
percentage of the landscape that minimizes variation in the calculation 
of the correlation coefficient. It is worth emphasizing that our threshold 
most likely directly applies to similar large-scale studies that use remote 
sensing land use and land cover data as proxies for ecosystem services. 
There are many ways to measure ecosystem services (Supplemental 
Material A), and other methods of data collection such as field surveys 
may not support the 10% sampling rate. 

Our individual estimates of the spatial correlations between 
ecosystem services at the landscape scale are consistent with 

expectations from the data and the models used to estimate them, and 
are in general agreement with the rest of the literature. For example, 
Raudsepp-Hearne et al. (2010) identified a consistent, negative rela
tionship between agriculture and carbon sequestration. Mattison and 
Norris (2005), Phalan et al. (2011), and Reidsma et al. (2006) discuss the 
general negative relationships between agriculture and biodiversity. We 
find a positive correlation between agriculture and biodiversity of 
threatened amphibians, and negative relationships between agriculture 
and the number of threatened bird and reptile species. We attribute this 
to the fact that amphibians are most threatened by lowlands with agri
culture (as opposed to pastoral highlands), and it is likely that more 
threatened amphibians will be located in agricultural areas. For pro
tected birds and reptiles, we suppose that viable habitat for those species 
is either not used for agriculture or not as suitable for it compared to 
other land uses. (In contrast, if we were using the total number of species 
in each taxonomic group rather than the number of threatened species, 
we could expect to find the opposite signs of these relationships.) Many 
of our correlations are at least partially due to the nature of the data 
(discussed below), and we test only a small set of provisioning and 
regulating services. It would be interesting in future studies to test our 
findings across a broader set of ecosystem services, specifically a greater 
number of supporting and regulating services. Indeed, the literature has 
identified general trends in the trade-offs and synergies (positive or 
negative correlations) between broad types of ecosystem services (Lee 
and Lautenbach, 2016). For example, in a review of synergies and 
tradeoffs, Lee and Lautenbach (2016) found that synergistic relation
ships were more common between regulating services, and no-effect 
relationships between provisioning and cultural services. 

While we would certainly express caution in interpreting our results 
in absolute terms, they do offer interesting questions for the manage
ment of ecosystem services and experimental design going forward. For 
example, when evaluating ecosystem service provisioning for urban 
development, what is the minimum amount sampling that is needed to 
effectively capture a landscape-level average measure of their in
teractions while still accounting for local heterogeneities? Given a 

Fig. 3. Estimated ecosystem services: (a) net ecosystem productivity (dimensionless) (Maes et al., 2015); (b) soil loss (tons/hectare/year) (Panagos et al., 2020); (c-e) 
pollination. Note that the units for pollination are visitation probability (c, e) and the percentage of suitable pollinator habitat (d). 
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sufficiently large sample size (discussed in more detail below), our “tens 
rule” would suggest a rate of greater than ten percent of the whole. 
Alternatively, we could flip the nail on its head by asking if fine-scale 
heterogeneities are important, what is the maximum amount of 

sampling that should occur to preserve this heterogeneity? We believe 
that this result could be useful in designing field surveys. For instance, if 
we were to randomly sample individual plots, sampling at the ten 
percent level would suffice; sampling above this would result in greater 

Fig. 4. Within-service spatial correlations for measures of carbon (a-c), biodiversity (d), and pollination (e). Mean and variance of carbon storage, biodiversity, and 
pollination as a function of the percentage of the landscape sampled are presented in (a-b) and (d-e) respectively. Note that these are meant to visualize the trends in 
the correlations as a function of the landscape sampled rather than the individual values of each pairwise correlation. From left to right, dotted vertical lines indicate 
one, ten, and fifty percent of the landscape sampled. Pairwise correlations between carbon storage estimates at the full landscape scale are given in (c). Values of each 
(row, column) combination are indicated by color and number. 
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Fig. 5. Trends in the mean and variance of spatial interactions as a function of sample size (a, b), and mean spatial correlations at the full landscape scale (c). In (a) 
and (b), marker color and style indicate a correlation between two ecosystem services at a given proportion of the landscape sampled. Note that these are for 
illustration of the trends rather than identifying individual correlation coefficients. From left to right, dotted vertical lines indicate one, ten, and fifty percent of the 
landscape sampled. In (c), the qualitative (color) and quantitative (value) of the correlations are presented as pairwise (row, column) combinations of each ecosystem 
service, with the transparency of the numbers paralleling the strength of the correlation. 
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costs without yielding additional returns in terms of the mean correla
tion at the landscape level. Indeed, we would expect our “ten’s rule” to 
hold even more strongly in homogeneous landscapes or sites of the same 
type or terrain, with even fewer data points being needed to estimate the 
average correlation occurring across the landscape. Our paper also offers 
a perspective for how we sample the landscape. In our study, we apply a 
random sampling approach with replacement. In reality, certain areas 
will be prioritized over others, with non-random sampling and spatial 
differences in sampling intensity (Brus, 2022; de Gruijter et al., 2006). 

Particularly when making management decisions or environmental 
policies for heterogeneous landscapes, it is important to consider not 
only summary measures like the average correlation, but also the vari
ation of correlations across the landscape. A country such as France, for 
example, contains a range of heterogeneous landscapes, each with 
different management profiles and bio-physical properties and pro
cesses, which can potentially lead to different ecosystem service corre
lations between them. It is certainly possible that the dominant 
correlation between two ecosystem services does not occur everywhere 
in the country. By comparing the mean and variances of our correlation 
coefficients across different sampling rates (Figs. 4 and 5), it is clear that 
it is possible for a correlation coefficient between two ecosystem services 
calculated from an individual sample draw to be qualitatively different 
from the average correlation calculated at the landscape level, particu
larly at low sampling rates. Summary measures have their place – it is 
useful to understand general relationships between ecosystem services, 
and establishing their common trade-offs and synergies is a frequent, 
reoccurring theme in the literature (Bennett et al., 2009; Lee and Lau
tenbach, 2016). But considering only the mean can hide variation that is 
averaged out during the aggregation process. Assuming that an associ
ation between ecosystem services occurs everywhere, and implementing 
a management policy at a large scale (regional or national), can likely 
lead to perverse outcomes. 

One way to account for this is to break up the landscape into smaller 
subsections or ecoregions, and measure the correlations between 
ecosystem services at scales which preserve local heterogeneities that 
would be lost at larger scales. We subdivide the data into the thirteen 
political regions in France (Supplemental Material B) and re-run our 
analysis. Plots of the trends in ecosystem services and tables of corre
lation coefficients are found in Supplemental Material B. In general, we 
find that agreement between our estimates of correlation coefficients for 
all of France (Fig. 5) and at the full regional level (Supplemental Ma
terial B), though there are certainly differences particularly for regions 
with lower sample sizes such as Corse. Our “tens rule” holds reasonably 
well in most regions, but functions most generally across all regions in 
France at the fifty percent level. This highlights the potential role of 
sample size in driving the statistical phenomenon of minimizing the 
variance in the calculation of the correlation coefficients. Interestingly, 
the ten percent level of the national sample has more observations (533) 
than all but three regions (Auvergne-Rhône-Alpes, Nouvelle-Aquitaine, 
and Occitanie); the one percent level of the national sample is greater 
than the fifty percent level of the regions of Corse and ̂Ile-de-France. The 
threshold level for minimizing variation in the correlation coefficients 
likely varies from landscape to landscape as a function of landscape 
properties (e.g., heterogeneities in land use and land cover, manage
ment, soil properties and climate, etc.). Developing the contribution of 
each of these factors to the threshold requires a deeper statistical anal
ysis across multiple landscapes and is left for future work. 

Certainly, reliance on aggregated or proxy data and stylized models 
for estimating ecosystem services are a limitation to our study, but this is 
a general problem for this field of research (Crossman et al., 2013; Hou 
et al., 2013; Layke et al., 2012; Martínez-Harms and Balvanera, 2012). 
Take, for example, the relationships between agriculture, grazing, and 
the Gibbs et al. (2007) and Egoh et al. (2008) carbon models. Each 
ecosystem service is derived from land use and land cover data. Agri
culture and grazing are calculated directly from the presence or absence 
of each respectively. The Gibbs et al. (2007) carbon model assigns an 

average storage of carbon by land use type, with forests and grasslands 
storing more carbon than agriculture; the Egoh et al. (2008) carbon 
model classifies carbon storage potential as “low”, “intermediate”, or 
“high” based on land use type. We would expect to find negative in
teractions between these three. Physically measuring ecosystem services 
in the field is time consuming and expensive, and other compartmental, 
phenomenological, or simulation models still require fine-scale data, 
much of which is not readily available. For instance, the Terrestrial 
Ecosystem Model (McGuire et al., 2001; Naidoo et al., 2008) and 3-PG 
tree growth model (Crossman et al., 2011a; Crossman et al., 2011c) 
both require local information on locally present species and manage
ment, as well as biophysical and weather data. Estimating recreation 
often involves conducting interviews or surveys to establish visitation 
rates (Tardieu and Tuffery, 2019). Air and water quality notoriously 
require point measurements of nitrogen and phosphorus inputs and re
movals, land use, hydrology, soil profiles, and weather (Bai et al., 2011; 
Guerry et al., 2012; Jansson et al., 1998; Maes et al., 2012; Nelson et al., 
2009; Raudsepp-Hearne et al., 2010). For these reasons many studies 
rely on proxy data such as land cover, even though there are discrep
ancies between land cover-based proxy methods and actual fine-scale 
point measurement (Eigenbrod et al., 2010; Roussel et al., 2017). For 
example, Eigenbrod et al. (2010) found that models based on land-use 
data worked well for broad-scale applications but there were errors 
when applied to fine-scale resolutions. Roussel et al. (2017) found that 
finer-scale, phenomenological models were able to better account for 
local heterogeneities in service provisioning, leading to an identification 
of a greater number of clusters of ecosystem services than a lookup table 
model. 

These ideas touch on a broader discussion of potential bias in the 
models used to estimate ecosystem service provisioning, and bias due to 
the structure of the used by them. Firstly, in terms of biases inherent to 
models used to estimate the provisioning of ecosystem services, our 
analysis advises caution against interpreting estimates as concrete, ab
solute measures of ecosystem service supply and the blind application of 
proxy-based methods or benefits transfer. Our carbon models provide a 
straight-forward illustration of this. While they are quite positively 
correlated with each other (e.g., carbon hotspots in one model corre
spond to carbon hotspots in another), we find gross differences in the 
quantity stored between them, often of several orders of magnitude. The 
main reason for this is the type of data used in the calibration of each 
model. The NDVI methods rely exclusively on proxy data, being cali
brated to either urban forest urban forest (Myeong et al., 2006; Yao 
et al., 2014) or desert ecosystems (Amoatey et al., 2018). We would not 
expect these calibrations to perform well outside of urban areas or in 
temperate ecosystems. Other measures, such as Gibbs et al. (2007) and 
Spawn et al. (2020), are derived from a variety of datasets including 
forest inventories and expert opinion, and likely present a more accurate 
representation of carbon storage. However, that being said, our “tens 
rule” holds across all of the ecosystem services in this study – including 
external, published maps of ecosystem service provisioning – which is 
encouraging. 

Secondly, it is possible that the structure of the landscape (the data) 
can potentially bias the calculation of the correlation coefficient. To 
illustrate this, let us focus specifically on land use-based estimates of 
ecosystem services. When randomly sampling the landscape, the land 
use type with the highest proportion will be greater represented in the 
sample, which can potentially impact the calculation of the correlation 
coefficient. (In contrast, a landscape with an even proportion of land use 
types will always return the same proportion in the sample on average 
and will be constant irrespective of the sampling rate.) Landscapes with 
one dominant land use type could be more or less likely to exhibit 
“bundles” of ecosystem services, which have been shown to occur be
tween certain types or groups of spatially autocorrelated ecosystem 
services (Bai et al., 2011; Raudsepp-Hearne et al., 2010). Thus, the 
physical structure of the landscape has a role in shaping the resulting 
correlations of ecosystem services. Very rarely do we find landscapes 
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with an even proportion of anything. There is almost always some het
erogeneity, with landscapes being composed to greater proportions of a 
particular land use, micro-climates, soil conditions, etc. How should we 
account for potential biases caused by this in the analysis? On the one 
hand, we could try and control for it by restricting the analysis to regions 
with a more even proportion of land use types. But on the other hand, 
the data is the data, and in doing so we actually introduce bias to the 
analysis in the opposite direction. In a more traditional regression 
analysis, we would include a set of dummy variables that explicitly ac
count for the effect of land use types in the data. This is not an option 
here. Perhaps this is a limitation of using the correlation coefficient to 
measure interactions between ecosystem services, as opposed to other 
methods such as linear regression, principle-components analysis (PCA), 
or production possibilities frontier (Feld et al., 2009; Lee and Lau
tenbach, 2016; Tardieu and Tuffery, 2019). One solution is to break up 
the data and explicitly test for potential differences caused by aggre
gations of the landscape, much like what we have done in our regional 
analysis (Supplemental Material B). Indeed, this approach is similar to 
general tests for bias caused by endogeneity in frequentist statistics 
(Angrist and Pischke, 2009; Cameron and Trivedi, 2005). We leave a 
comprehensive treatment of this to future work. 

Our results indicate that it may be possible to reliably capture the 
value of an interaction between ecosystem services at low sample sizes – 
a hypothesis that could be tested empirically. The resolution of the data 
is fairly coarse, with a total of 5339 observations (pixels or study sites), 
which is comparable to smaller scale but finer resolution landscapes. At 
the national level, it should be feasible to obtain adequate sample sizes 
in the field to test our findings, particularly with larger, multi-lab 
collaboration networks (see, for example, the “NutNet” Nutrient 
Network, an ecological research network of over 130 grassland sites 
worldwide). Alternatively, it could be possible to exploit national plot 
data, such as the French National Forest Inventory (IFN) or the European 
Farm Accountancy Data Network (FADN). Future research could repeat 
our analysis at the local scale, using on-the-ground estimates of a 
broader range of ecosystem services. In this way, we can move away 
from binary ecosystem service measures, taking into account local het
erogeneities in management, nutrient update/deposition, soil type, 
temperature, elevation, or precipitation. 

Understanding how a measure of an interaction between services 
changes depending on the data type or quality is but one piece of the 
overall uncertainty puzzle. We believe that our study complements the 
existing literature and has important implications for landscape and 
ecosystem service management. We hope that it brings to light new 
questions previously unconsidered in the field. 
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