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A B S T R A C T   

The (re)integration of nature into cities has been a progressively promoted strategy to foster sustainable ur
banization. To quantify the ecosystem services (ES) provided by urban nature, spatially explicit ES modeling is a 
key method. However, particularly in absence of independent validation data, there is a clear need for multi- 
model assessments in order to better understand uncertainties in model outcomes. Here we applied three 
commonly used open-source ES models (i.e., InVEST, LUCI, NC-Model) to quantify three key urban ES (i.e., local 
temperature regulation, flood protection and global climate regulation) using the city of The Hague (The 
Netherlands) as a case study. We quantified the three ES for the current situation and under two hypothetical 
scenarios representing changes in the amount of vegetation within the city. We found mostly positive correla
tions between the estimates for a given ES (Spearman’s ρ from 0.11 to 0.84). Yet, our comparison also revealed 
systematic differences in the ES indicator values between the ES models, as well as different responses to the 
scenarios. These differences may stem from differences in model structure (i.e., differences in biophysical pro
cesses accounted for) and model parameterization (i.e., differences in the value used to quantify a given bio
physical process). To further advance urban ES modeling, we recommend i) to improve the representation of 
urban nature (e.g., green roofs, bioswales, gardens) and urban-specific conditions and processes (e.g., drainage 
systems, building patterns, soil characteristics) in urban ES models and ii) to systematically account for uncer
tainty in (urban) ES assessments (e.g., through multi-model assessments).   

1. Introduction 

Urbanization is one of the key societal processes of the 21st century. 
Today, more than half of the global human population lives in cities, 
with most urban areas expected to continue to grow in both size and 
numbers (Seto et al., 2011, UN, 2019). It is expected that by 2050, nearly 
70 % of the global population will live in cities, with an additional 2.5 
billion city dwellers (UN, 2019). Urbanization is generally associated 
with economic growth, poverty reduction and increased human devel
opment (UN, 2019), but it also puts pressure on urban dwellers and their 
living environment. For example, many cities are characterized by poor 
water and air quality (Sarzynski, 2012, Teurlincx et al., 2019, Kho
menko et al., 2021) and many inhabitants have limited access to nature, 

which may affect their mental and physical health (Van den Berg et al., 
2010, Kondo et al., 2018, Ventriglio et al., 2021). Moreover, impervious 
surfaces can lead to flooding during heavy rainfall (Du et al., 2015), and 
built-up areas increase the risk of heat stress (Lemonsu et al., 2015; 
Manoli et al., 2019). With further global climate change, the urban 
population will face additional exposure to heat stress, floods and 
drought (IPCC, 2022), bringing forth substantial challenges to maintain 
or create healthy, resilient and livable urban environments. 

A progressively promoted strategy to foster sustainable urbanization 
is the (re)integration of nature into cities as a means to address envi
ronmental, economic and social challenges (Kabisch et al., 2017; Van 
den Bosch and Sang, 2017; Liu and Jensen, 2018; Faivre et al., 2017; Xie 
and Bulkeley, 2020). This strategy – captured by the umbrella term 
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nature-based solutions (NBS) - is based on the capacity of nature to 
provide multiple ecosystem services (ES). For example, an urban park 
offers physical and mental health benefits by providing opportunities for 
recreation, contributes to water infiltration, carbon sequestration and 
air cooling, and provides habitat for birds and insects (Nielsen et al., 
2014, Mexia et al., 2018, Veerkamp et al., 2021). Numerous policy 
targets acknowledge the importance of nature in urban planning (e.g., 
Goal 11 of the Sustainable Development Goals (UN, 2015), New Urban 
Agenda (UN, 2017), post-2020 Global Biodiversity Framework (CBD, 
2021)), and enhancing urban NBS has been encouraged particularly by 
the European Commission (EC, 2013; 2015; 2020; Faivre et al. 2017, 
Lafortezza et al. 2018). 

To consider nature more systematically in urban planning and 
development, practitioners and decision makers need quantitative evi
dence on the ES provided by urban nature (Haase et al., 2014, Veerkamp 
et al., 2021). Spatially explicit modeling is a common methodology to 
quantify urban ES, particularly across relatively large extents (e.g., an 
entire city or region) or in scenario studies (Veerkamp et al., 2021). 
Examples include assessments of flood protection services in Hyderabad 
(India) (Kadaverugu et al., 2021), local temperature regulation in Addis 
Ababa (Ethiopia) and Dar es Salaam (Tanzania) (Cavan et al., 2014) and 
urban nature scenario studies in Amsterdam (the Netherlands) (Paulin 
et al., 2020a), Great Metropolitan Area of Costa Rica (Chen et al., 2021) 
and Trento (Italy) (Cortinovis and Geneletti, 2018). Quantifying and 
understanding the uncertainties in these model outputs is critical for 
assessing the robustness and credibility of the conclusions (Refsgaard 
et al., 2007, Bryant et al., 2018, Willcock et al., 2020). Ideally, un
certainties in model outcomes are quantified by comparing them with 
independent measurements. However, particular when empirical data 
on ES are sparse, an alternative approach to address model uncertainty is 
needed. 

In model-based environmental assessments related to land cover 
change, climate change and biodiversity, model uncertainty is increas
ingly being tackled through model intercomparisons and multi-model 
approaches (Rosenzweig et al., 2013, Warszawski et al., 2013, Alex
ander et al., 2017, Thuiller et al., 2019). Model intercomparisons are less 
common in ES modelling (IPBES, 2016; Willcock et al., 2020; Pereira 
et al., 2020; Rosa et al., 2020), although there have been a few efforts 
(Bagstad et al., 2013a, Schulp et al., 2014, Sharps et al., 2017, Dennedy- 
Frank et al., 2016, Veerkamp et al., 2020). For example, Sharps et al. 
(2017) compared outputs of three ES modeling tools (LUCI, ARIES, 
InVEST) and identified differences related to model approaches and 
underlying assumptions. Similarly, Dennedy-Frank et al. (2016) used 
two ES modeling tools (InVEST, SWAT) and illustrated substantial dif
ferences between some of the model outcomes as a result of different 
model structures (e.g. complex or simple representation of hydrological 
processes). Uncertainties are also characterized through scenario-based 
modeling. For example, Veerkamp et al. (2020) used two modeling 
frameworks (GLOBIO-ES, CLIMSAVE) to project future trends of ES 
under different scenarios, which facilitated nuanced and contextualized 
insights with respect to possible ES futures. More recently, the biodi
versity and ecosystem services scenario-based inter-model comparison 
project (BES-SIM) was established to assess uncertainties in ES model 
projections more systematically (Kim et al., 2018, Rosa et al., 2020). 

Despite the growing attention for multi-model approaches as a 
means to convey uncertainties in ES assessments, there is a considerable 
lack of ES model intercomparison studies for the urban context. This 
may reflect that urban ES modelling is a relatively new research area, 
and methods used are often not yet fully developed or extensively tested 
(Haase, et al., 2014, Veerkamp et al., 2021). Many existing ES models 
were originally designed for the rural context, without consideration of 

specific urban characteristics, such as specific types of urban green 
infrastructure and the fine-scale heterogeneity that is specific to urban 
areas (Delpy et al., 2021, Hamel et al., 2021). In absence of context- 
specific parameterization and validation data, it is unknown to what 
extent such simplifications or omissions introduce uncertainty in model 
outcomes. This limits credibility and may lead to possible mis
interpretations of model outcomes by end users, such as urban planners 
and policy makers. These issues emphasize the need to increase our 
understanding of urban ES models and their associated uncertainties by 
comparing the outcomes of multiple models for the same ES and study 
site(s). 

Here we applied three ES modeling tools to quantify three key urban 
ES based on the city of The Hague (The Netherlands) as a case study. 
First, we identified suitable ES models applicable to the urban envi
ronment. We selected three commonly used open-source ES modeling 
tools (InVEST, LUCI, NC-Model) and applied them to quantify three ES 
(local temperature regulation, global climate regulation and flood pro
tection) and changes therein under two hypothetical scenarios repre
senting reductions in the amount of urban green. We quantified 
similarities and differences in both the city-average outcomes and the 
spatial patterns of ES provision as generated by the different models and 
discuss these in the light of similarities and differences in model struc
ture and parameterization. 

2. Material and methods 

2.1. Selection of models for urban ecosystem service assessments 

To identify ES models applicable to the urban environment, we first 
compiled an initial list of commonly used ES models based on previous 
reviews and model intercomparison studies (Bagstad et al., 2013b, 
Harrison et al., 2018, Van Oijstaeijen et al., 2020, Delpy et al., 2021, 
Veerkamp et al., 2021) and online platforms of available ES assessment 
tools (Ecosystems Knowledge Network (2021), Urban Nature Navigator 
(NATURVATION, 2021)). We focused on stand-alone models specifically 
designed to provide quantitative outputs of ES delivery. Hence, we 
excluded biophysical models that merely assess biophysical factors 
controlling ES supply rather than the ES itself (e.g., hydrological SWAT 
model), and integrated assessment models, which account for feedbacks 
between different sectors and ecosystem components (e.g., IMAGE- 
GLOBIO, CLIMSAVE). Next, we searched for additional ES models in 
Google Scholar and Web of Science, with the terms ‘ecosystem service 
assessment tools’ and ‘ecosystem service assessment methodologies’. 
The screening resulted in a list of 28 ES modeling tools, potentially 
applicable to generate spatially explicit assessments of multiple ES 
delivered by urban green and blue infrastructure. While we acknowl
edge that this list is not necessarily complete, it does represent a set of 
models commonly encountered in the literature. In order to evaluate the 
models’ usefulness for urban ES assessment supporting urban planning 
and decision-making, we applied a set of selection criteria to each model 
including i) applicable to an urban context, ii) enabling city-wide ES 
assessment, iii) providing spatially explicit outcomes, iv) enabling sce
nario analyses, v) including multiple ES, vi) open access, and vii) peer 
reviewed. For a full explanation of the criteria and evaluation of the 28 
ES modeling tools, see Tables A-1 and A-2. Based on these criteria, we 
selected three ES modeling tools for our analysis, namely the Integrated 
Valuation of Ecosystem Services and Trade Offs (InVEST; Sharp et al., 
2020), the Land Utilisation and Capability Indicator tool (LUCI; LUCI, 
2019) and the Natural Capital Model (NC-Model; Remme et al., 2018, 
Paulin et al., 2020b) (Box 1). 
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2.2. Ecosystem services models and indicators 

We selected three ES that were included in at least two of the three 
selected ES modeling tools: local temperature regulation, global climate 

regulation and flood protection (Table 1). While the models use the same 
indicators for local temperature regulation and global climate regula
tion, LUCI’s indicator of flood protection differs from the flood protec
tion indicators in InVEST and the NC-Model, but outputs are 

Box 1: Overview of the three selected ES modeling tools for the model comparison. 

InVEST is a software suite of open-source ES models for mapping and valuing ES provided by terrestrial and aquatic ecosystems, developed by 
the Natural Capital Project and Stanford University (Sharp et al., 2020, Natural Capital Project, 2022). The model aims to support decision 
makers by assessing trade-offs between ES associated with alternative management choices and by identifying areas where investment in nature 
can enhance human development and nature conservation. InVEST models are spatially explicit, combining land use and land cover (LULC) data 
with additional information (e.g., soil type, climate) to provide ES output values in biophysical and/or economic units. While InVEST provides a 
stand-alone user interface, additional spatial mapping software (e.g., ArcGIS) is needed to view the results. Originally developed for assessing ES 
in natural and rural areas, InVEST was recently extended to include also urban-specific models (Grafius et al., 2016, Bosch et al., 2021, Hamel 
et al., 2021). Currently, InVEST includes nine ES models, of which seven models are applicable to both natural or rural and urban landscapes (e. 
g., carbon sequestration and storage, pollination), and three were particularly developed for the urban context (i.e., urban cooling, urban 
stormwater retention and urban flood risk mitigation) (Hamel et al., 2021). 

The NC-Model is a suite of spatially explicit models for quantifying and mapping ES, developed by a consortium of Dutch knowledge institutes 
(Remme et al., 2018, Paulin et al., 2020b). The NC-Model aims to support the integration of ES within spatial planning and policy making to 
meet Dutch and international environmental policy targets and has been applied to various study areas in the Netherlands, including the city of 
Amsterdam (Paulin et al., 2020a). ES output maps, describing ES in biophysical and/or economic units, are produced by combining empirical 
model relationships (including look-up tables) with customizable, readily available input data (including standardized sets of spatial data and 
reference values). As the model does not provide a separate user interface, users need knowledge of spatial modeling and coding (Python) to 
customize and run the model for the area of interest. Model outputs need to be viewed in a mapping software (e.g., ArcGIS). The NC-Model 
estimates multiple ES, of which there are currently six particularly applicable to the urban environment (i.e., air quality regulation, contri
bution of urban nature to physical activity, property value attributed to urban nature, urban cooling, urban health improvement and water 
storage) (Paulin et al., 2020a). 

LUCI is a spatially explicit modeling tool designed to assess the consequences of land use change for various ES, aiming to support city and 
landscape planners to understand the impact of possible changes or interventions (Sharps et al., 2017; LUCI, 2019, 2022). LUCI has been applied 
in several countries, but most extensively in rural areas of the United Kingdom and New Zealand (Sharps et al., 2017, Trodahl et al., 2017). 
Recently it has also been applied to urban settings (Delpy et al., 2021, Nguyen et al., 2021). LUCI quantifies multiple ES and compares current ES 
with potential future ES due to interventions (land use and management change), based on absolute values (e.g., changes in ton carbon per grid 
cell stored) and/or color-coded output maps (default palette using a system with green: improvements in/existing provision of ES; red: decrease 
in/potential opportunities for ES). The model incorporates biophysical processes (e.g., hydrology) and uses look-up tables. The tool comes in the 
form of a GIS toolbox embedded within the ArcMAP or ArcPro user interfaces and has in-app data manipulation capabilities. To date, LUCI 
includes six ES models applicable to both natural or rural and urban environments (i.e., carbon sequestration, agricultural production, erosion 
risk reduction, flood mitigation, habitat suitability/connectivity and water quality) (Delpy et al., 2021, Nguyen et al., 2021).  

Table 1 
Selected urban ES and indicators used by the three ES modeling tools.  

Urban Ecosystem 
Services 

Brief description ES model Indicator (unit) Model approach 

Local 
temperature 
regulation 

Mitigation of the urban heat island (UHI) effect 
by urban vegetation and water 

InVEST – urban 
cooling model 

Air temperature 
reduction (◦C) 

The cooling effect is modeled as a function of air 
temperature, shade, evapotranspiration, albedo, and the 
additional cooling potential of larger urban green areas. 

NC-Model - 
urban cooling model 

Air temperature 
reduction (◦C) 

The cooling effect is modeled as a function of air 
temperature, vegetation cover (trees, shrubs/bushes, low 
vegetation), water cover, impervious cover, population 
density (as a proxy of building density) and wind speed. 

Global climate 
regulation 

Reduction of atmospheric carbon dioxide 
concentration due to the sequestration and 
storage of carbon in living and dead organic 
matter (vegetation and soil) 

InVEST - carbon 
sequestration & 
storage model 

Carbon storage 
(metric ton C 
/m2) 

Carbon storage is modeled as a function of LULC and 
associated carbon stocks in four pools (aboveground 
biomass, belowground biomass, soil and dead organic 
matter). 

LUCI – 
carbon stocks and 
fluxes model 

Carbon storage 
(metric ton C 
/m2) 

Carbon storage is modeled as a function of soil types and 
LULC combinations and associated carbon stocks at 
different soil depths. 

Flood protection Reduction of urban flood risk as rainfall is 
intercepted and retained by vegetation and soil 

InVEST - 
urban stormwater 
retention model1 

Avoided water 
runoff (m3/m2) 

Flood risk reduction is modeled as a function of rainfall, 
distance to roads and impervious areas, and the infiltration 
capacities of soil and LULC combinations. 

NC- Model – 
urban water storage 
model 

Avoided water 
runoff (m3/m2) 

Flood risk reduction is modeled as a function of rainfall and 
the vegetation’s capacity to store rainwater. 

LUCI – 
flood mitigation 
model 

Flood mitigation 
class 
(% of area) 

The model simulates water flow accumulation as a function 
of the actual rainfall, elevation and flow direction, 
evapotranspiration and infiltration capacities of soil and 
LULC.  

1 InVEST includes two flood protection models: an urban stormwater retention model and a flood risk mitigation model. For this study, we selected the urban 
stormwater retention model because it is more similar to the other flood protection models in terms of input data and biophysical processes and accounts for urban- 
specific processes (presence of a drainage network). 
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conceptually similar. 

2.3. Model parameterization 

We parameterized the models for the city of The Hague, located in 
the west of the Netherlands (Fig. 1). With nearly 550,000 inhabitants, 
The Hague is the most densely populated city and the third largest 
municipality of the Netherlands, covering an area of 9,813 ha (CBS, 
2020; 2021, Statista, 2020). The city is characterized by its close prox
imity to the North Sea, bordering the city over a distance of 11 km to the 
west. It contains a large share of built up area and infrastructure (e.g. 
roads) (71 %) interspersed with extensive (semi-)natural areas (24 %), 
including coastal nature reserves (West Dune Park, Meijendel), urban 
forests (Haagse Bos) and parks (Zuiderpark), particularly towards the 
outskirts of the city (Fig. 1, Fig B-1). Heat stress, drought and peak 
rainfall events are regular challenges (Gemeente Den Haag, 2022). 

To parameterize the models, we used a consistent set of input data 
from publicly available sources. For identical input variables (e.g., 
LULC, soil type, tree cover, climate data) we used the same input across 
all ES models. For example, all models require a LULC map, which we 
obtained from the European Urban Atlas dataset of the Copernicus Land 
Monitoring Service (EEA, 2018a). This LULC map distinguishes 27 
urban LULC classes (e.g., urban fabric, green urban areas, forests, roads, 
water bodies) at a resolution of 10 m. Some input data, however, needed 
to be translated to fit the model’s specific classification system. For 
example, we reclassified the Dutch soil type map to LUCI’s soil classi
fication system and to InVEST’s hydrological soil groups. In addition, 
each model also required specific input data (e.g., hydrological network, 
human population density, wind speed, water cover). Where possible, 
we tailored these input data to the study area (e.g., albedo and crop 
coefficient in InVEST, sealed surface in the NC-Model), otherwise we 
relied on the default values suggested by or built-in in the models (e.g., 

water storage capacity values in the NC-Model, soil carbon values in 
LUCI, relative weights of factors contributing to the cooling capacity 
index in InVEST). We parameterized all the models based on a 10 by 10 
m spatial resolution, as further detailed below, using a resampling 
approach if the input data was of a lower spatial resolution. 

2.3.1. Local temperature regulation 
InVEST’s local temperature regulation model requires values of 

shade, crop coefficient and surface albedo per LULC class. To estimate 
shade, we obtained tree cover density from the Copernicus Land Moni
toring Service (EEA, 2018b), representing tree cover in a range from 0 to 
100 % per 10 by 10 m grid cell, and calculated an average tree cover 
(shade) value per LULC class. We retrieved crop coefficient and surface 
albedo values per LULC class from the literature (Table B-2). InVEST 
further requires a city-wide value of potential evapotranspiration, which 
we obtained from a global climate database (Trabucco and Zomer, 
2019). To estimate the urban heat island (UHI) effect, InVEST requires 
air temperature data, which we obtained from nine weather stations 
with open-access data located within the city of The Hague and its 
surrounding (rural) areas. We selected measurements for the hottest day 
in August 2019 (Table B-3), representative of a day during a summer 
heatwave when cooling demands are highest. We defined the magnitude 
of the UHI as the difference between the urban and rural mean tem
peratures (i.e., 5.3 ◦C). 

The local temperature regulation module of the NC-Model requires 
the average urban temperature, for which we used measurements from 
the same day in August 2019 (i.e., 34.3 ◦C). To estimate the UHI effect, 
the NC-Model further requires data on the presence of sealed surfaces, 
which we obtained from the LULC map (Table B-4), and wind speed and 
human population density (as a proxy of the density of built-up area), 
both included in the default settings of the model (Remme et al., 2018) 
and tested in earlier NC-Model application studies in the Netherlands 

Fig. 1. Green, blue, open and built-up areas within the city of The Hague and the city’s location in the Netherlands. The land cover data is retrieved from the Urban 
Atlas (EEA, 2018a). Numbers indicate sites referred to in the text. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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(Paulin et al., 2020b). Moreover, the NC-Model requires vegetation 
coverage per grid cell, in addition to LULC types, to estimate UHI 
reduction capacities (Table B-4). For shrub/grass and low vegetation, we 
used national vegetation maps included in the default settings in the 
model (Remme et al., 2018). For trees, we used the tree cover density 
data from Copernicus Land Monitoring Service (EEA, 2018b). 

2.3.2. Global climate regulation 
InVEST requires values of carbon pools for each LULC type, which we 

derived from the literature (Bouwer et al., 2018, Table B-6). LUCI’s 
global climate regulation model requires LULC and soil type information 
to estimate carbon pools. Because LUCI is primarily parameterized for 
the United Kingdom and New Zealand, it was necessary to match the 
European Urban Atlas LULC classes (EEA, 2018a) and soil types from the 
Dutch soil map (Anon, 2014) to the classification system supported by 
LUCI (i.e., UK LULC map LCM2007BH, Table B-7; UK soil map NATMAP, 
Table B-8). 

2.3.3. Flood protection 
For the flood protection models (InVEST, NC-Model, LUCI), we ob

tained the annual precipitation sum for The Hague (i.e., 847 mm) from a 
public accessible global climate database (Climate Data.org., 2021), 
using the mean over a 20 year period (1999 – 2019). All flood protection 
models also require input on urban green, either as vegetation and tree 
cover density maps (NC-Model) or as a LULC map (InVEST, LUCI). In 
addition, both InVEST and LUCI require a map with soil types and 
associated hydrological properties. We retrieved soil types from the 
Dutch Soil Map (Anon, 2014) and reclassified these into the types 
distinguished by LUCI and InVEST (Tables B-8, B-10). InVEST further 
requires information on impervious LULC classes and road networks, as 
a proxy for the presence of the artificial drainage network, which we 
obtained from the LULC map (e.g., roads, urban fabric), as well as the 
coverage of tree and impervious surface per LULC to estimate runoff 
coefficients per each LULC and soil type combination (Table B-11). LUCI 
requires elevation data to simulate the flow of water through the land
scape, which we obtained from the Dutch digital elevation model 
(Actueel Hoogtebestand Nederland (AHN3); PDOK, 2020) as well as 
potential evapotranspiration rates per grid cell, which we retrieved from 
a global climate database (Trabucco and Zomer, 2019). 

More detail on the parametrization of each model (including as
sumptions, input variables, sources used and GIS model flow charts) is 
available in Appenidx A. Supplementary data (Table B-1, B-5 and B-9 
and Figure B-1, B-2, B-3, B-4). 

2.4. Model simulations 

In order to compare the models’ responses to changes in input values, 
we applied a scenario-based approach. The scenarios served as a means 
to understand how the different ES models react to changes in urban 
vegetation cover, and why. We designed two hypothetical scenarios 
representing situations with lower amounts of vegetation when 
compared to the current situation (reference). In the No-Park scenario, 
all urban parks (any urban green space of >2 ha) are removed, while the 
No-Green scenario represents a situation where any vegetation 
(including in parks or forests, street trees, shrubs) is largely removed 
from the city. We simulated these scenarios by replacing the respective 
vegetated urban LULC classes by the class ‘open space with little to no 
vegetation’ (see Table B-12 for the changes in LULC and vegetation 
classes per scenario). We preferred this class over other classes in order 
to prevent confounding effects of increasing the sealed surface. In the 
No-Park scenario, the cover of trees is reduced from 16 % to 9 % and 
green LULC (e.g., green urban areas, forests) from 24 % to 9 % of the 
total urban area. In the No-Green scenario, the cover of trees is reduced 
to 7 % and green LULC to 5 % of the total urban area. With more 
vegetation removed, the No-Green scenario is expected to result in 
larger declines in urban ES than the No-Park scenario. We implemented 

the scenarios via changes in urban LULC classes and associated LULC 
characteristics (e.g., shade, crop coefficient, impervious surface, runoff 
coefficients) when compared to the reference. We assumed no changes 
to water bodies and the vegetation of the coastal dunes (Appendix A. 
Supplementary data). 

2.5. Analysis of the results 

To reveal similarities and differences between the models, we first 
compared spatially explicit model outputs for the reference situation. 
We quantified the degree of agreement between model outputs for the 
same ES (in the same unit) from pairs of models using the Mean Absolute 
Error (MAE) (i.e., average absolute difference between the values) and 
the Spearman’s rank correlation coefficient (ρ) based on the grid-specific 
values (10 m × 10 m resolution), considering that the higher the MAE 
and the lower Spearman’s ρ, the higher the model uncertainty. Then, we 
estimated the relative changes in the indicator values for the two sce
narios when compared to the reference, as 

ES change (%) =

(
Xscenario − Xref erence

)

Xref erence
* 100 [1]  

where X represents the city-average ES indicator value. Finally, we 
tested for possible systematic differences in ES indicator values between 
the outputs of two models and three scenarios (reference, No-Parks, No- 
Green) using the Kruskal-Wallis test with a post-hoc Dunn test (p-values 
adjusted with Holm method). We used the model-scenario combination 
as a grouping factor, allowing us to identify differences between models 
for a given scenario as well as differences between scenarios for a given 
model. We performed the analyses in the R environment (R version 
4.2.0, R Core Team, 2022), including the FSA package for the Kruskal- 
Wallis test with post-hoc test (Olge et al. 2022), the multcompView and 
rcompanion packages for analysis and visualization of paired compari
sons (Graves et al. 2019, Mangiafico, 2022), the dplyr and tidyr packages 
for data transformation (Wickham et al., 2022, Wickham and Girlich, 
2022), and the ggplot2 and ggpubr packages for data visualization 
(Wickham, 2016; Kassambara, 2020). Statistical analyses were limited 
to those models capable of producing identical output indicators (ES 
values in the same unit), thus the flood protection outputs of the LUCI 
model were not included. 

3. Results 

3.1. Local temperature regulation 

For the reference situation, InVEST and the NC-Model produced 
output maps with similar spatial patterns in air temperature reduction 
(Fig. 2, Fig. 5a, ρ = 0.84, MAE = 0.31 ◦C). Both models estimated the 
lowest air temperature reduction for centrally located neighborhoods 
and the harbor area (Scheveningen), while attributing larger cooling 
effects to (semi-)natural areas (e.g., the coastal nature reserve Meijendal 
and West Dune Park and the Zuiderpark, Fig. 1). However, the models 
estimated significantly different temperature reduction values on 
average (InVEST 1.62 ◦C; NC-Model 1.78 ◦C, Fig. 6a). 

The scenarios revealed slightly lower similarities between the two 
models (ρ = 0.72 and MAE = 0.69 ◦C for the No-Park scenario, ρ = 0.76 
and MAE = 0.45 ◦C for the No-Green scenario) (Fig. 5b+c, Fig. 6a, 
Fig. C-1). In the No-Park scenario, the NC-Model projected a 4 % lower 
temperature reduction compared to the reference, while for InVEST the 
temperature reduction was 37 % lower, reflecting that InVEST attributes 
additional cooling capacities to parks. The removal of all vegetation (No- 
Green scenario) resulted in more similar changes in ES between the two 
models, with decreases in temperature reduction of 59 % (InVEST) and 
42 % (NC-Model) compared to the reference situation. InVEST estimates 
generally higher cooling values for residential areas than the NC-Model, 
even when nearly all vegetation was removed (Fig. C-1), which may 
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reflect the inclusion of the albedo effect associated with grey surfaces (e. 
g., buildings, paved areas, roads) (Fig. B-2). In contrast, the NC-Model 
accounts for an additional cooling potential of water bodies, and tem
perature reduction values for water bodies estimated by the NC-Model 
were always higher than those estimated by InVEST (Fig. C-1). 

3.2. Global climate regulation 

We found positive but only weak correlations between the carbon 
storage outputs of InVEST and LUCI (ρ = 0.31, MAE = 0.39 metric ton/ 
100 m2, Fig. 3, Fig. 5d). While LUCI attributes carbon storage mostly to 
the larger urban green areas, InVEST also accounts for carbon storage in 
(partially) built-up LULC classes. This difference is also reflected by a 
relatively larger systematic difference in city average outcomes (InVEST: 
0.42 metric ton/100 m2; LUCI: 0.04 metric ton/100 m2) (Fig. 6b). 

The correlation between the outputs decreased in the scenarios (ρ =
0.11 and ρ = 0.19 for the No-Park and No-Green scenario, respectively) 
(Fig. 5e+f, Fig. C-2). InVEST projected stronger declines in carbon 
storages than LUCI. In the No-Park scenario, InVEST projected a loss of 
nearly 50 % of the carbon stored compared to the reference, while in the 
No-Green scenario a reduction of 83 % was estimated. In contrast, LUCI 
calculated a smaller and non-significant reduction of 10 % and 13 % in 

the No-Park and No-Green scenario, respectively (Fig. 6b). 

3.3. Flood protection 

Although LUCI’s flood protection model uses a different ES indicator 
than the flood protection models of InVEST and the NC-Model (Table 1), 
the output maps for the reference situation revealed similar spatial 
patterns among the three models (Fig. 4). In general, (semi-)natural 
areas (e.g., coastal dunes and nature reserves (Meijendal and West Dune 
Park), urban park (Zuiderpark), forest (Haagse Bos)) showed the highest 
flood protection, while centrally located, predominantly built-up areas 
were characterized by the lowest flood protection values (lowest avoi
ded water runoff for InVEST and the NC-Model, non-mitigated flood 
prone land for LUCI). LUCI classified 22 % of city’s area as land receiving 
flood mitigation, due to the presence of flood mitigating land (15 % of 
the urban area). The outputs of InVEST and the NC-Model were 
moderately correlated (ρ = 0.44, MAE = 22.5 m3/100 m2, Fig. 5g, Fig. C- 
3) but average avoided water runoff estimates were significantly higher 
for InVEST (38 m3/100 m2 versus 19 m3/100 m2 for the NC-Model). 

Differences in model outcomes become more evident in the scenarios 
(Fig. 6c+d). The agreement between InVEST and the NC-Model outputs 
decreased, with no correlation in the No-Park scenario (ρ = 0) and the 

Fig. 2. Air temperature reduction (in ◦C) for (a) InVEST and (b) the NC-Model.  

Fig. 3. Carbon storage in metric ton/100 m2 for (a) InVEST and (b) LUCI model.  
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highest MAE between model outputs in the No-Green scenario (MAE =
34.7 m3/100 m2) (Fig. 5h+i, Fig. C-3). The NC-Model estimated average 
decreases in city-wide flood protection of 33 % and 90 % in the No-Park 
and No-Green scenarios, respectively (Fig. 6c), reflecting that the NC- 
Model defines flood protection by the vegetation’s capacity to inter
cept rainwater (Table 1). In the No-Green scenario, LUCI projected 
similar changes as the NC-Model, including a nearly complete loss of 
mitigated flood prone land (91 % due to a 99 % loss of flood mitigating 
land) (Fig. 6d). The much more moderate decline in flood protection 
services in the No-Park scenario (i.e., 35 %, although 83 % of the flood 
mitigating land is lost) illustrates LUCI’s spatially explicit and 
configuration-sensitive flow retention routing (i.e., remaining miti
gating features (e.g., dunes) can take up runoff from upstream). In 
contrast, InVEST projected only little and non-significant changes in 
flood protection (− 2,0 % and − 2.4 % for the No-Park and No-Green 
scenario, respectively), reflecting InVEST’s emphasis on runoff reten
tion provided by soil infiltration (which remained unchanged in the 
scenarios). 

4. Discussion 

4.1. Understanding similarities and differences between the models 

Our model intercomparison based on three urban ES (local 

temperature regulation, global climate regulation and flood protection) 
estimated by three commonly used ES modeling tools (InVEST, NC- 
Model and LUCI) applied to the city of The Hague, revealed mostly 
positive correlations between the estimates for a given ES. The local 
temperature regulation models showed the highest degree of agreement, 
but we found similarities also among the outputs of the flood protection 
models and carbon storage models. Moreover, Van Oorschot et al. 
(2021) recently estimated flood protection and local temperature 
regulation services for the same city, using different models, and re
ported spatial patterns similar to ours, with higher ES values in the less 
densely built-up areas of the city. The similarities in the model outputs 
reflect that they all rely on a LULC or vegetation map to quantify ES, 
whereby specific service-providing properties are assigned to different 
LULC or vegetation classes. For example, both local temperature models 
(NC-Model and InVEST) build upon cooling capacities assigned to urban 
nature, and the global climate regulation models (LUCI and InVEST) are 
both based on carbon stocks in biomass. As a result, the output maps of 
the different models reflect the spatial configuration of (larger) urban 
green areas. 

Yet, our comparison also identified significant differences in ES in
dicator values among the ES models (Fig. 5, Fig. 6, Fig C-1+2+3). Dif
ferences were particularly evident in the scenarios, which generally 
resulted in larger differences (higher MAE) and lower correlations 
(lower Spearman’s rho) between ES indicator values from different 

Fig. 4. Flood protection expressed as (a) annual avoided water runoff (m3/100 m2) by InVEST, (b) annual avoided water runoff (m3/100 m2) by the NC-Model, (c) 
and flood mitigation classes by the LUCI model. 
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models. These differences may stem from differences in model structure 
(i.e., differences in biophysical processes accounted for) and model 
parameterization (i.e., differences in the value used to quantify a given 
biophysical process), in line with two commonly recognized sources of 
uncertainties in environmental modelling (Refsgaard et al., 2007), and 
have distinct implications for model outputs (Table C-1). For example, 
InVEST accounts for an additional cooling effect of large green spaces 
(>2 ha) on surrounding areas, hence projects a stronger decrease of local 
temperature regulation services than the NC-Model, particularly in the 
No-Park scenario (Fig. 6a). Moreover, the two urban cooling models 
differ in how the cooling effect of urban nature is quantified, leading to 
different temperature reduction values. For instance, the NC-model ac
counts for the cooling capacity of water bodies and distinguishes be
tween different vegetation types (i.e., trees, shrubs/bushes, grass) in 
addition to distinction between LULC classes (Table B-4). In contrast, 
InVEST assigns cooling primarily to shading by trees and includes the 
cooling effect of other vegetation types and water bodies only via surface 
albedo and evapotranspiration estimates per LULC class (Table B-2), 
which may explain the generally lower city-average temperature 
reduction values for InVEST than for the NC-Model. 

We found pronounced differences in model parameterization also in 
the global climate regulation models. LUCI calculates carbon stocks for 
different soil and LULC combinations based on spatial LULC, soil data 
and look-up tables based on IPCC Tier 1 protocols on climate change, 
and assumes no carbon stock values for residential vegetation and soils. 
In contrast, InVEST calculates carbon stocks based on user-defined look- 
up tables (Table B-11), allowing to account also for carbon stocks in 
(partially vegetated) urban fabric LULC classes. As a result, city-average 
carbon storage values estimated by InVEST are larger than those 
modeled by LUCI and show a stronger decrease in response to the 

scenarios (Fig. 6b). Differences between the models become smaller 
when the amount of vegetation decreases, and the models showed the 
highest agreement in the No-Green scenario, reflecting the similar un
derlying model structure (i.e., assigning carbon pools to green LULC). 

Differences in model structure and parametrization were also 
evident for the flood protection models. While the NC-Model estimates 
water interception by vegetation only, InVEST accounts also for addi
tional water retention through infiltration in the soil and water flow to 
neighbouring grid cells (within a certain retention radius). Hence flood 
protection services estimates were generally higher for InVEST than for 
the NC-Model, and InVEST was less sensitive to the scenarios (Fig. 5c), 
which did not affect the soil structure. Compared to InVEST, LUCI 
simulates the flow of water through the urban areas more accurately, 
building on detailed hydrological and topographic information. This 
allows LUCI to account for the downstream effect of flood mitigating 
features (i.e., features that intercept rainfall such as parks, forests, 
dunes) beyond the grid cell level. As a result, the loss of flood mitigating 
features affects not only the grid cell itself (as for the NC-Model), or the 
neighboring grid cells (as for InVEST), but also grid cells further 
downstream, hence LUCI estimates more profound changes in ES loss 
than the NC-Model and InVEST when vegetation is reduced (Fig. 5c+d). 

4.2. Future research implications 

Spatially-explicit modelling approaches for quantifying the role of 
nature in addressing urban societal challenges are vital to better support 
urban planning and decision making in the light of current policy de
velopments (e.g., city greening initiatives such as European Green City 
Accord). Yet, the availability of ES models tailored to the urban context 
is rather limited, as highlighted by our initial selection process (Table A- 

Fig. 5. Pairwise model comparison of ES values per grid-cell, with associated correlation coefficient (Spearman’s rho, ρ), p-value and mean absolute error (MAE), for 
the reference (Ref) and the two scenarios (NP, NG referring to No-Park and No-Green scenario respectively) including a - c) local temperature regulation (air 
temperature reduction, ◦C) estimated by InVEST and the NC-Model; d - f) global climate regulation (carbon storage, metric ton/100 m2) estimated by InVEST and 
LUCI; and g - i) flood protection (avoided water runoff, m3/100 m2) estimated by InVEST and the NC-Model. 
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1) as well as earlier studies (Delpy et al., 2021, Hamel et al., 2021). We 
recommend further development of urban ES models by improving the 
representation of the urban nature, as we were limited in capturing 
small-scale natural elements. For example, we could not account for 
nature-based solutions integrating nature into the built environment (i. 
e., permeable parking lots, bioswales along roadsides, green roofs on 
buildings) or urban green consisting of highly heterogenous vegetation 
(e.g., allotment gardens, backyards), which may have resulted in an 
underestimation of the full potential of nature in cities (Derkzen et al., 
2015, Kain et al., 2016, Shafique et al., 2018, Chen et al., 2021). Part of 
this limitation lies in the spatial and thematic resolution of the LULC 
map that we used as input for all models and a more fine-grained rep
resentation of the urban LULC than applied here may improve the ac
curacy of ES estimates (Grafius et al., 2016; Hamstead et al., 2016; Rioux 
et al., 2019; Zawadzka et al., 2021). However, urban ES models can also 
be improved through a better representation of urban-specific condi
tions and processes influencing actual ES delivery. Examples include the 
presence of underground drainage networks, which strongly modify 
urban hydrology hence actual surface runoff (Guo et al., 2021), and 
building patterns and the height of buildings, which influence shading, 
wind and solar radiation (Norton et al., 2015, Wu et al., 2019), hence 

actual temperature values. Although some of these aspects were 
included in the models we used here (e.g., the NC-Model included a 
proxy of building density to estimate the UHI effect), further refinements 
would allow to quantify ES delivery more adequately. We also recom
mend to advance the parameterization of urban ES models based on data 
specific to cities. Urban soils in residential areas, for example, can store 
and sequester large amounts of soil organic carbon, potentially larger 
than agricultural or natural soils due to the absence of regular soil 
disturbance (Vasenev and Kuzyakov, 2018; Pouyat et al., 2006). The two 
models applied here (LUCI, InVEST), however, had limited opportu
nities to account for carbon stocks of urban soils, due to default settings 
within the models. Finally, future work should be done on how to better 
incorporate the effects of climate change into ES modeling as climate 
change affects not only climatic variables (e.g., temperature, rainfall) 
but also biophysical factors and processes, such as the cooling effect of 
urban green space (e.g., trees, parks) (Manoli et al., 2019; Kraemer and 
Kabisch, 2022), or the carbon uptake by vegetation and soil (Melillo 
et al., 2011). There are models available that assess the biophysical 
factors controlling certain urban ES supplies in more detail, such as 
hydrological models (e.g., Storm Water Management Model (SWMM), 
Model for Urban Stormwater Improvement Conceptualisation (MUSIC)), 

Fig. 6. City-average ES values per model for the reference and the two scenarios including a) local temperature regulation (air temperature reduction, ◦C), b) global 
climate regulation (carbon storage, metric ton/100 m2), c) flood protection by InVEST and the NC-Model (annually avoided water runoff, m3/100 m2), and d) flood 
protection by LUCI (area receiving and providing flood mitigation, %). Bars show the standard error, percentages in the bars reflect changes in the scenario relative to 
the reference, and letters above the bars represent the results of the statistical analysis. Different letters reflect that model-scenario combinations were significantly 
different (p < 0.05) according to the Kruskal-Wallis test with Dunn’s test. 
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microclimate models (e.g., ENVI-met model, RayMan model), or models 
focusing on specific urban nature types (e.g., i-tree model) (Table A-2), 
which can provide valuable elements to further advance urban ES 
models. 

In order to increase confidence in urban ES assessments, models can 
be parameterized and validated with local field-sampled values from the 
study area of concern. Bosch et al., (2021), for instance, compared the 
outputs of the InVEST cooling model with air temperature observation 
data, demonstrating similar spatial patterns, thus increasing confidence 
in the model outcomes. Similar, Delpy et al., (2021) conducted a field 
analysis on land cover features (e.g., small-scale green space) to evaluate 
LUCI outputs of seven ES (e.g., flood mitigation), and showed that model 
outputs can be improved by parameterization based on local field data. 
However, validation of models is often not possible due to lack of 
observational data, in particular for large-scale assessments or scenario 
applications. Especially in these cases, multi-model assessments serve as 
a valuable strategy to better understand the models and quantify asso
ciated uncertainties (IPBES, 2016, Leclère et al., 2020, Rosa et al., 2020). 
Multi-model assessments offer insights into characteristics of different 
models, identify options for model improvement, and help to evaluate 
the applicability of specific models for particular decision-making or 
research contexts (Dennedy-Frank et al., 2016, Sharps et al., 2017, 
Veerkamp et al., 2020, Delpy et al., 2021). Using multiple models also 
allows for additional or complementary dimensions of ES to be quanti
fied, either by highlighting a different aspect of the same ES (e.g., the 
different flood protection indicators used in this study) and by quanti
fying different ES (Veerkamp et al., 2020). This will provide valuable 
insights into the emergence of potential synergies and trade-offs be
tween ES, and help to identify priority areas for interventions (e.g., 
green infrastructure development) (Sylla et al., 2020, Van Oorschot 
et al., 2021). Finally, multi-model assessments are crucial to quantify 
uncertainties related to differences in model structure and parameteri
zation. This is particularly important when models are used to support 
policy and decision-making, as conclusions drawn from a single model 
may not fully inform end-users (e.g., urban planners, decision-makers) 
about the possible effectiveness of a given measure or strategy (e.g., 
city greening schemes). 
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