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Researchers use microdata to study the economic development of the United States and the causal 

effects of historical policies. Much of this research focuses on county- and state-level patterns 

and policies because comprehensive sub-county data is not consistently available. We describe 

a new method that geocodes and standardizes the towns and cities of residence for individuals 

and households in decennial census microdata from 1790–1940. We release public crosswalks 

linking individuals and households to consistently-defined place names, longitude-latitude pairs, 

counties, and states. Our method dramatically increases the number of individuals and households 

assigned to a sub-county location relative to standard publicly available data: we geocode an 

average of 83% of the individuals and households in 1790–1940 census microdata, compared 

to 23% in widely-used crosswalks. In years with individual-level microdata (1850–1940), our 

average match rate is 94% relative to 33% in widely-used crosswalks. To illustrate the value of 

our crosswalks, we measure place-level population growth across the United States between 1870 

and 1940 at a sub-county level, confirming predictions of Zipf’s Law and Gibrat’s Law for large 

cities but rejecting similar predictions for small towns. We describe how our approach can be 

used to accurately geocode other historical datasets. 

 

 

 

 

 

 

1. Introduction 

The public release of full-count decennial census microdata from 1790 to 1940 has increased the quantity and quality of research

studying trends and policies in the United States during this period. Much of this work uses state- or county-level data (e.g., Aaronson

and Mazumder, 2011; Desmet and Rappaport, 2017; Donaldson and Hornbeck, 2016 ) or focuses on a small number of counties or

large cities where researchers have detailed sub-county microdata (e.g., Aaronson et al., 2021; Brooks and Lutz, 2019; Fishback et al.,

2020; Michaels et al., 2012; Shertzer et al., 2016 ). One reason for this geographic focus is data availability: commonly-used historical

datasets only consistently identify states, counties, and large cities. However, states and counties cover broad geographic areas and

contain important heterogeneity in demographics, policies, and access to local amenities; while larger cities can be systematically 
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System. Our crosswalks can be downloaded at https://www.openicpsr.org/openicpsr/project/179401/ . The code that generates these crosswalks 

can be viewed at https://github.com/ezrakarger/census _ place _ project . 
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different from their smaller peers. In this paper, we use a new method to construct consistent measures of place for U.S. residents in the

1790–1940 decennial censuses. We create a crosswalk that allows researchers using public or restricted decennial census microdata 

to link respondents to consistently defined sub-county locations. 1 

To construct these links, we clean and analyze raw place names from census manuscripts corresponding to cities and townships.

After we identify all unique places within a given decade of census microdata, we iterate through the strings to identify a standardized

location name and latitude-longitude pair. To do this, we match strings to geocoded places in NHGIS historical place point files, GNIS

place files, and Google Maps. 2 When location strings are not reported or found, we exploit the existence of nearby enumeration

districts to impute an accurate sub-county location. After we perform these steps for every census year in our sample, we standardize

place names and locations across years to make our locations temporally consistent. We release both our code ( Berkes et al., 2022b )

and our resulting crosswalks ( Berkes et al., 2022a ) for public use. 

Relative to publicly available datasets, we map many more people to sub-county locations. We match an average of 83% of the

individuals and households in 1790–1940 census microdata to the longitudes and latitudes of their cities and towns of residence,

compared to 23% in currently widely-used crosswalks. In years with individual-level microdata (1850–1940), our average match rate 

is 94% relative to 33% in widely-used crosswalks. In 1870 (the year where we obtain our best match rate), we geocode 99.1% of

individuals relative to 19% in public crosswalks. 

We highlight the value of our new place data with two applications. First, we take the 69,393 unique geocoded places from our

census microdata crosswalks covering 1790–1940, and we iteratively cluster these places into 42,133 consistently-defined places over 

time. Our clustering approach is informed by the closeness and size of neighboring places and addresses the fuzziness of fixed place

definitions both over time and across borders. Our clusters account for shifting place borders, annexations, subsumed suburbs, and

ghost towns. We include these clusters as variables in our crosswalks, providing researchers with a data-driven definition of local

metropolitan areas. 

Next, we link our clusters to census microdata and create granular measures of place-level population growth over time. We

show that our clustered places consistently follow Zipf’s Law and Gibrat’s Law for large cities in historical time periods, matching

predictions from theory and modern-day empirical contexts (e.g., Gabaix, 1999; Giesen and Südekum, 2011; Ioannides and Overman, 

2003 ). We also find sharp deviations from Zipf’s Law and Gibrat’s Law for small places. To the best of our knowledge, we are the first

to document these patterns for smaller places across the entire U.S. in a historical context, since prior historical work focuses only on

large cities, county-level patterns (e.g. Desmet and Rappaport, 2017 ), or a small subset of states with high-quality sub-county data

( Michaels et al., 2012 ). 3 

Our work builds on past efforts to digitize, standardize, and improve the usability of the complete count census files. In particular,

IPUMS staff have standardized large portions of the historical census enumeration sheets and created standardized variables for many 

common fields that researchers commonly use ( Ruggles et al., 2021 ). Public IPUMS data generally identifies only larger cities, though

the effective city-size thresholds vary over time. 4 Our approach is informed by efforts like the Census Linking Project, which provides

public census data users a crosswalk that allows them to link census respondents across time, a process that otherwise would require

access to restricted census data ( Abramitzky et al., 2020 ). 

Many papers (including our own prior work) use raw census strings to define sub-county areas that are smaller than IPUMS-

provided cities for subsets of the historical censuses. 5 For example, Karger (2021) and Berkes and Nencka (2021) develop string

cleaning methods to identify small cities and towns that had Carnegie libraries in the early 1900s. Michaels et al. (2012) stan-

dardize sub-county areas in the 1880 census and link these areas to 2000 data to study long-run trends in population dynamics. 6 

Nagy (2020) standardizes cities in the 1790 to 1860 censuses to study city formation and the effects of transportation infrastructure.

Feigenbaum and Gross (2021) clean city names with more than 2000 people from 1910 to 1940 to track information on telephone

operators. Otterstrom et al. (2021) use linked census records from 1900–1940 to measure changes in city population size for the 1000

largest cities in 1900. Connolly (2021) digitizes locations in the 1920 census to study the impact of two-year colleges on children’s

adult outcomes. To our knowledge, we are the first to standardize raw location strings for the universe of all available full-count

census data, allowing us to use information across census years to improve the accuracy of matches. Moreover, we identify additional

sub-county locations for observations with missing or uninformative strings by relying on nearby, sequentially numbered enumera- 

tion districts. Finally, by publicly releasing our crosswalks and associated time-consistent clusters, we give all researchers the ability

to study sub-county trends and policies and reduce duplicated effort in the research community. 
1 We define a sub-county location as any location with a finer geography than county borders, not official census-defined sub-county areas. 
2 For more details about NHGIS place point files, see Manson et al. (2021) . For more details about the GNIS place files, see United States Geolog- 

ical Survey (2021) . 
3 For a review of prior historical work on city growth rates in a historical context, embedded in a larger discussion of historical urban economics, 

see Hanlon and Heblich (2021) . 
4 See the IPUMS documentation for a detailed description of the IPUMS “CITY ” variable, which is the primary temporally consistent source of 

sub-county place information in publicly available census microdata. We describe the IPUMS standardization more fully and compare our mapping 

to theirs in Section 3.1 . For 1940, IPUMS recently released a more comprehensive city variable that captures more (but not all) of the locations that 

we geocode. This variable is named “PLACENHG ” in the public 1940 data and is constructed using NHGIS place files. 
5 It would be difficult to highlight every paper that used sub-county historical variation. In this section, we highlight a number of illustrative 

examples. 
6 These areas are also used in Hodgson (2018) to study the effects of the railroad on population growth. 
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Fig. 1. Census observations with valid sub-county locations, by data source and census year. Notes: This figure shows the share of census observations 

with a valid sub-county location in each census year separately for publicly available IPUMS census data (dark bars) and the newly constructed 

Census Place Project data (light bars). An observation in 1790–1840 is a household. Starting in 1850, each observation is a non-slave member of 

the household. The 1890 census manuscripts were lost in a fire. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative to publicly released census data, our added value is highest when studying rural areas or smaller locations adjacent to

nearby cities. By contrast, we do not attempt to geocode within-city locations like addresses or neighborhoods, which are the subject

of recent valuable exercises focused on larger cities (e.g., Brooks and Lutz, 2019; Fishback et al., 2020; Logan et al., 2011; Shertzer

et al., 2016 ; Aaronson et al., 2021 ). Sub-city geocoding requires historically accurate street layouts, which makes it difficult to apply

to smaller or rural areas. Similarly, for broad rural townships, we are able to geocode respondents to a common sub-county location,

but not their position within a township. In recent work, Ferrara et al. (2022) construct population-based crosswalks of counties

and congressional districts using backward-looking population projections. Our work complements their contribution: we focus on 

matching individuals to geocoded places using contemporaneous location information when it is available, allowing researchers to 

use individual-level microdata to measure area characteristics. 7 

While our focus is historical U.S censuses, our methods apply more broadly. Along with our crosswalks, we release all code that

was used to construct them. This code provides a consistent and automatic methodological approach to geocoding and clustering 

townships, cities, and unincorporated places. We hope that these methods will be useful in other contexts where researchers need

to assign geocodes to historical documents that contain location strings. For example, U.S patents include the city, state, and county

of inventors, and birth certificates often include detailed birth locations. Our methods provide an easily applicable framework for

geocoding locations in these documents. 

The rest of the paper is structured as follows: in Section 2 we discuss our geocoding procedure. In Section 3 we compare our

geocode coverage to existing census data and show an illustrative example of how to use our data. In Section 4 we discuss how to

implement our method in other applications which involve sub-county data. In Section 5 we conclude. 

2. Method 

In this section, we describe the method that we use to geocode the historical censuses. We discuss our approach with reference to

the variables currently available in U.S. census microdata, though, as we discuss in Section 4 , many of the steps below will be similar

for any data involving historical locations. 

We begin by identifying all the geographic information available in IPUMS’ raw decennial census data from 1790–1940. These 

variables represent raw text strings, and, in some cases, IPUMS-standardized place names. The data includes between one and six raw
7 We do not assign sub-county locations when we cannot reliably match a census enumeration district to a local place based on place names or 

nearby identified districts. This most often happens in remote areas in the pre-1860 censuses; see Fig. 1 for our match rates. Ferrara et al. (2022) dis- 

cuss both the benefits and limits of their approach in Section 4 of their paper. 

3 
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Fig. 2. Waukesha County Wisconsin, modern map with 1930 census data coverage highlighted. Notes: This figure is a modern-day map of Waukesha 

County, accessed via Google Maps. Only the city of Waukesha (highlighted in black) is identified in public 1930 census data. Our geocoded data 

identifies all the cities highlighted in blue, in addition to smaller areas not labeled on the map. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

location strings each year along with contemporaneous county and state identifiers. 8 These text strings are sometimes broad (e.g., 

“New York City ”), but often contain granular information about places (e.g., “District 83, Beebe Volborg ”). 

We clean the text strings by applying a common set of criteria, described in more detail in our Data Appendix. To summarize

these steps, we standardize common prefixes, remove punctuation, remove common words (like “justice ward ” or “courthouse ”), and

standardize cardinal directions when they refer to an explicit quadrant of a town or city. For example, the text string “Precinct 10,

Aubrey [30] & Precinct 6, South Side [11] ” is cleaned into the location “Aubrey. ”

Next, we attempt to geocode all of our clean place names in several steps, relying on historical spatial databases from IPUMS’

National Historical Geographic Information System (NHGIS) and The Geographic Names Information System (GNIS). NHGIS contains 

the locations of incorporated and unincorporated places used by the U.S. Census Bureau from 1900 onward. GNIS is the U.S. Board

on Geographic Names’ consistent database of places, maintained by the federal government. We iterate over the raw census location

strings, starting with the most granular place name and then using less granular place names if we cannot find a match. 

For 1900–1940, we take each cleaned census place and its associated county in historical data, and we look for the most similarly

named place in NHGIS that is in the correct historical county. 9 We require that the census and NHGIS strings have a match score of
8 For a full list of the variables we use, see our Data Appendix. 
9 In most cases, we use county and state maps corresponding to the relevant census year. However, we have a penultimate round of matching that 

uses 1920 counties as our reference geography. The standardized census data uses some county or state names before they became official (e.g., 

West Virginia in 1860). Our baseline check would thus say that all 1860 West Virginia matches are invalid since the 1860 maps would have only 

had Virginia. Using the 1920 maps as a last check reduces false negative matches. 

4 
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Fig. 3. All clustered places. Notes: This figure maps all of our 69,393 unique places across the years 1790–1940 after assigning the places to 

consistent clusters (with 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 5 ). Places within a cluster are given the same color, highlighting large colors surrounding major metropolitan 

areas (like New York City). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.95 to identify accurate matches. 10 If we cannot find a match, we perform the same search within the GNIS place data, looking for

matches to different feature types, ranging from populated places to post offices and valleys. For any unmatched census place after

this step, we search NHGIS and then GNIS for place names in the correct county that have an edit distance of 1 with our census place.

Finally, we remove cardinal directions and look again for places in the NHGIS and GNIS files with a match score of 0.95. 

Our strategy for geocoding the 1790–1880 census years is similar to our process for 1900–1940. However, since NHGIS historical

place points are not available before 1900, we only use the GNIS place file to match census strings to place names. The matching

procedure is otherwise identical. 

Once we have initial geographic coordinates (longitudes and latitudes) for places in all census years from the NHGIS and GNIS

files, we complete four final steps to increase match rates and standardize those coordinates. First, we impute coordinates for places

in enumeration districts when another named place within that enumeration district was successfully geocoded. Second, we impute 

coordinates for enumeration districts that are numerically between two successfully geocoded, nearby enumeration districts. Third, 

we search Google Maps for all unmatched places. We use the Google Maps latitude and longitude if it falls within the correct historical

census county. Lastly, we compare across census years and standardize the spelling of matched place names and the exact coordinates

of each place. This standardizes small perturbations in the reported coordinates of places across NHGIS, GNIS, and Google Maps. In

our crosswalks, we include flags that indicate at which step each match is made so that researchers can exclude these imputed matches

as desired. The Data Appendix includes more details on all of these steps. 

After this procedure, there are 708,928 unique census year -by- cleaned location observations that we extract from the raw census

data. Of those year-place observations, we fail to geocode 42,155 places (6% of the total number). 390,913 places (55%) match to

NHGIS places in our first attempt, and an additional 198,491 (28%) match to the most common types of GNIS places in our first

attempt. 14,690 (2%) match to NHGIS and GNIS places using slight variation in the fuzziness of match requirements, and an additional

54,403 (8%) match through our two enumeration district imputation steps. By ensuring time-consistency of identically-named place 

names across census years, we geocode an additional 7357 (1%) of places. Lastly, we geocode 919 (0.2%) places using Google Maps.

Our crosswalks provide consistent longitudes and latitudes for each person’s town, city, or unincorporated place of residence. 

To increase the usability of our crosswalks, we also assign modern-day county and state identifiers to each geocoded place using

2016 United States County and State shapefiles. 11 This provides a temporally consistent measure of county and state of residence for

all geocoded observations. Our crosswalks provide an accurate and consistent way to identify the county of residence for the vast

majority of U.S. residents, complementing recently-constructed spatial harmonizations of changing county borders over time ( Ferrara 

et al., 2022; Hornbeck, 2010; Perlman, 2014 ). 
10 The match score is calculated using the string-matching process of the fuzzywuzzy library in Python. It combines several methods for calculating 

a measure of ‘distance’ between potential strings, normalizing by string length. 
11 Historical county identifiers are available in the public census data, but county boundaries can change over time. 

5 
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Fig. 4. State-level maps of clustered places. Notes: This figure maps our geocoded places in four states: Alabama, Florida, Oregon, and Pennsylvania. 

We highlight the five largest clusters in each state (with 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 5 ). 

 

 

 

 

 

 

 

 

 

 

 

3. Results and application 

3.1. Geocoding rates 

In this subsection, we describe the coverage of our geocoded data across decades and compare our match rates to existing public

data. In all years, our match rates allow researchers to observe more sub-county locations relative to previously available sources. To

see this, we calculate the share of observations in public census data that can be geocoded using extracts from IPUMS. In particular,

we compare our cities to observations with non-missing IPUMS standardized city variables “CITY ” or (for 1940 only) “PLACENHG. ”

We show our match rate comparison in Fig. 1 , which plots the percent of census observations with valid sub-county locations

across years for both our crosswalks and publicly available IPUMS data. We successfully match 56–99 percent of observations to a

sub-county location, depending on the census year. Our match rate generally increases over time, particularly when the census moves

to the collection of individual-level data in 1850. Match rates surpass 91% in all years from 1860 to 1940. 12 Our match rate differs

across years due to the various methods that censuses used to collect information on geographical locations. For example, the 1870

census has significantly more geographical digitized information relative to prior years. 

When are we unable to make a match? In the vast majority of cases, our failure to link a respondent to a valid latitude and longitude

occurs when there is no geographical information beyond the county recorded on census forms for a given enumeration district, and

we have limited information on adjoining enumeration districts. For example, some remote districts in earlier census years have no
12 In 1790–1840, each observation corresponds to a household. Starting in 1850, an observation is a person. We focus on census observations and 

not the count of people throughout this paper because the decennial population censuses did not collect information about the slave population in 

all years. 

6 
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Fig. 5. State-level maps of clustered places with county borders. Notes: This figure maps our geocoded places in four states: Alabama, Florida, 

Oregon, and Pennsylvania. We highlight the county borders in each state to emphasize the granularity of our geocoded places relative to the larger 

counties. 

 

 

 

 

 

 

 

 

 

informative name attached to them, simply bearing names like “District 10. ” Conceptually, it is possible to map these places manually

by consulting the original enumeration district maps, as is done by Connolly (2021) for a set of 1920 places. Unfortunately, since

enumeration district boundaries change over time, this procedure would need to be repeated for every decade in our sample. These

unnamed locations tend to be small rural areas. Our crosswalks focus on places where we have a high degree of certainty that we can

assign a valid sub-county location using contemporaneous location information. 

3.2. Example: Waukesha county 

To illustrate the value of our data and approach, consider Waukesha County in Wisconsin. Today, Waukesha County is Wisconsin’s

third-largest county by population and covers 581 square miles. The county is geographically diverse: its eastern portion is an extended

suburb of Milwaukee and is heavily commercialized with manufacturing and service industries, while the western and southern 

portions are rural and contain significant farmland. 

In 1930, Waukesha County had 52,000 people. In publicly available 1930 census data, the only available sub-county location is

the county seat, Waukesha. 13 In 1930, the city of Waukesha contained roughly 35% of the county population, leaving 65% of the

city lacking a valid sub-county location. By contrast, we assign 100% of the 1930 Waukesha County population to a valid sub-county
14 
location. 

13 This location starts to be identified in the public census microdata from IPUMS in 1900. Before this, there is no city identified in this county in 

the public census data. 
14 Our match rates for this example are similar if we focus on other census years with individual-level microdata. In 1940, IPUMS data also captures 

some of these sub-county locations with their newly constructed “PLACENHG ” variable. 

7 
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Fig. 6. Clusters in Washington State with different levels of 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 . Notes: This figure maps our geocoded places in Washington with more conser- 

vative clustering ( 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 5 ) and more aggressive clustering ( 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 500 ). The largest difference is in the implied size of the Seattle metropolitan 

area. 

 

 

 

 

 

 

 

 

 

In Fig. 2 , we illustrate the coverage of our geocoded 1930 places using a map of modern-day Waukesha County locations. The city

of Waukesha —framed in black —is the only sub-county 1930 location in public census data. By contrast, all of the cities highlighted

in blue are also included in our new geolocated place data. This includes extremely small locations in 1930 —for instance, Wales had

only 123 residents, while Dousman had 256 residents. Fig. 2 highlights that our new data shows the geographic diversity of Waukesha

County. Even in 1930, the jobs and industries of the eastern portions of the county were changing and becoming more industrialized

relative to the more rural parts of the county. With our location data linked to publicly-available IPUMS microdata, researchers can

observe and study the persistence of these within-county differences throughout history. 

3.3. Clustering 

While our place-level longitude-latitude mappings are comprehensive, these places are not defined consistently over time. To 

address this limitation, we use an iterative density-clustering approach to map our 69,393 unique locations across the 150-year

period of 1790–1940 to a smaller set of 42,133 consistently-defined places. While most places are distinct and not combined in this

step, larger cities like Atlanta, Pittsburgh, and Chicago have borders that expand over time as they merge with other towns and

experience high levels of in-migration. Our method captures these expanding borders, allowing us to consistently measure features 

of these cities over time. 15 
15 We cluster places consistently over time so that researchers can use our cluster identifiers to track city growth, shrinking urban borders, mergers, 

and annexation. For example, in 1907 Pittsburgh annexed nearby Allegheny City against the wishes of a majority of Allegheny residents who, in 

repeated referenda, rejected the annexation attempt. The annexation was forced on Allegheny by Pennsylvania, whose legislators passed a law 

allowing a majority of the combined voters from Pittsburgh and Allegheny City to determine the results of the annexation, even if a majority of the 

voters in the targeted city (Allegheny City) rejected the annexation attempt. For more discussion of this and related annexations, see Lonich (1993) . 

Researchers interested in the distinction between Pittsburgh and Allegheny City can use our data to differentiate those two places in years where 

8 
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Fig. 7. Zipf’s Law for 1870 places with population 20,000+ (CPP vs. IPUMS). Notes: This figure plots log(population) vs. log(rank) for all cities 

with population greater than 20,000 in 1870 labeled by IPUMS (top panel) and in our geocoded places (bottom panel). 

 

 

 

 

 

 

 

 

We iteratively cluster any neighboring places that are within three miles of each other within census years and across census years.

We also cluster together any two places 𝑖 and 𝑗 that are within 100 ∗ 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∗ 𝑚𝑎𝑥 { 𝑠ℎ𝑎𝑟𝑒𝑝𝑜𝑝 𝑖 , 𝑠ℎ𝑎𝑟𝑒𝑝𝑜𝑝 𝑖 } miles of each other, where

𝑠ℎ𝑎𝑟𝑒𝑝𝑜𝑝 𝑖 is the fraction of the population in decennial census data that we map to place 𝑖 across all years (1790–1940), assigning

equal weight to each year. For our main results, we rely on a constant 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 of 5. This choice of clustering allows large cities to

be combined with more of their suburbs. For example, Chicago contains roughly 2.5% of the people in decennial census microdata

from 1790 to 1940. When 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 5 , Chicago will be combined with any smaller place within 12.5 miles of it. We cluster places

consistently over time by defining each cluster to be the connected component of all close neighbors for each place. 

In Fig. 3 , we map all of our consistently defined places. We color each cluster to reflect close neighbors. Our individually-geocoded

places reflect the geographic distribution of people in the United States from 1790 to 1940, highlighting the densely populated New
the places were enumerated distinctly. But as the cities merged, the definition of Pittsburgh and Allegheny became amorphous, and our clusters 

provide a time-consistent approach to measuring the number and type of people living in the Pittsburgh area over time. 

9 
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Fig. 8. Zipf’s Law for 1940 places with population 20,000+ (IPUMS vs. CPP). Notes: This figure plots log(population) vs. log(rank) for all cities 

with population greater than 20,000 in 1940 labeled by IPUMS (top panel) and in our geocoded places (bottom panel). 

 

 

 

 

 

 

 

England corridor. Our clusters show consistently-defined metropolitan areas that can spread across state and county borders. We 

include these cluster definitions in our crosswalks so that other researchers can use them. 

To further show the value of our clusters, in Fig. 4 we focus on four representative states across different census regions and

highlight the individual geocoded places, our consistently-defined clusters, and the five largest clusters in each state. The top left

panel shows that our clustering combines the Birmingham, AL suburbs into one cluster. In the top right panel, Miami and Tampa Bay,

FL, are combined into distinct clusters with their nearby suburbs. In the bottom panels, the dense west coast of Oregon is clustered

into a small number of metropolitan areas. In Pennsylvania, Pittsburgh and Philadelphia form distinct clusters. 16 

In Fig. 5 , we show the same four states with modern-day county borders. These maps show the value of our geocoded places

to researchers who want to analyze spatial variation in access to policies or spatial outcomes in a historical setting. We geocode

an average of 23 places per modern-day county in the U.S. This granular classification of locations gives researchers the tools to
16 Figures A1–A4 show full-page versions of these state-level figures for easy readability. 
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Fig. 9. Zipf’s Law for all places in 1870 (IPUMS vs. CPP). Notes: This figure plots log(population) vs. log(rank) for all cities in 1870 labeled by 

IPUMS (top panel) and in our geocoded places (bottom panel). 

 

 

 

 

 

 

analyze distance-based access to local programs, within-county border discontinuity designs, and urban/rural migration patterns 

within counties. 17 

Our preferred value of 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 in the above specifications is 5 because that allows large cities to subsume close suburbs, but it

maintains the geographic distinctness of nearby small places. We also provide alternative clusters for different values of 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 so

that researchers can choose the clustering that best fits their analysis based on the level of geographical variation in which they are

interested. In Fig. 6 , we show our clusters for Washington with two levels of aggregation: 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 5 and 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 500 . With the

less aggressive level of aggregation, Seattle and Everett (29 miles away from each other) form distinct clusters with their respective

surrounding suburbs and nearby towns. With more aggressive clustering ( 𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 500 ), the Seattle and Everett clusters merge and

become one larger Seattle metropolitan area, and the Spokane cluster absorbs more nearby towns. 
17 Figures A5–A8 show full-page versions of these state-level figures for easy readability. 
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Fig. 10. Zipf’s Law for all places in 1940 (IPUMS vs. CPP). Notes: This figure plots log(population) vs. log(rank) for all cities in 1940 labeled by 

IPUMS (top panel) and in our geocoded places (bottom panel). 

 

 

 

 

 

 

 

 

 

3.4. Population dynamics 

To showcase our new crosswalks, we use our preferred clustered places to examine the size distribution of historical places in the

U.S. and place-specific population growth. A large literature in urban economics models and empirically quantifies the formation and

growth of cities. This literature focuses on two “laws ”: Zipf’s Law —which states that there is a linear relationship at the city-level

between log(population) and log(rank) of cities in terms of population —and Gibrat’s Law —which states that the population growth

rate is independent of city size. Gabaix (1999) showed that if a set of cities grow independently of their initial city size, following

Gibrat’s Law, then the steady-state size distribution will follow Zipf’s Law. Testing these predictions using high-quality historical data

gives urban economists the ability to evaluate theories of long-run city population dynamics. 

We use our geocoded historical places to evaluate these two laws. In Fig. 7 (for 1870 places) and 8 (for 1940 places), the top

panel shows the relationship between log(population) and log(rank) for IPUMS-defined cities and the bottom panel shows the same

relationship for our geocoded places. We focus on places with populations over 20,000. In the IPUMS-based top panels, there is
12 
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Fig. 11. Gibrat’s Law (IPUMS vs. CPP). Notes: This figure tests Gibrat’s Law by plotting the relationship between population growth rates between 

1870 and 1940 ( 𝑦 -axis) and baseline 1870 population levels for places labeled by IPUMS (top panel, 𝑥 -axis) and in our geocoded places (bottom 

panel, 𝑥 -axis). We plot binscattered growth rates. We focus on places with population less than 50,000 to emphasize the difference between the two 

approaches for small cities and towns. The 𝑦 -axis units is percent growth, so a value of 2 indicates that a place tripled in size from 1870 to 1940. 

 

 

 

 

 

 

 

a deviation from Zipf’s Law at the right tail of the city size distribution in both 1870 and 1940 —the most populous cities look

smaller than what Zipf’s Law predicts if we use IPUMS’s city classification. In the bottom panel of each figure, we plot the same

log(population)-log(rank) graph with our geocoded and clustered places. Our decision to cluster places combines large cities with 

their suburbs, and these clustered places match the predictions of Zipf’s Law. 

In Figs. 9 and 10 , we extend Zipf’s Law to all tracked places in 1870 and 1940 respectively. In the top panels, we show the

IPUMS-based log(population)-log(rank) plot, and in the bottom panels, we present the log(population)-log(rank) plot for all of our 

geocoded clusters. In both years (1870 and 1940), we see sharp deviations from Zipf’s Law for places with fewer than 500 residents

in our geocoded data. Focusing on the smallest places, we see that they are underrepresented in our sample of places relative to the

predictions of Zipf’s Law. In 1870, we do not see a similar pattern in IPUMS’s data because the publicly available crosswalks do not

contain the locations of small cities and towns. In 1940, when IPUMS coverage is higher, we do see the same deviation from Zipf’s

Law for smaller cities and towns. 
13 
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In Fig. 11 , we compare the prediction of Gibrat’s Law in IPUMS’ city data (panel A) and our geocoded clusters (panel B). We focus

on place-level population growth from 1870 to 1940 for places with populations less than 50,000 in 1870. 18 IPUMS consistently

tracks very few cities over this time period, but for the 144 cities with a population over 10,000 in 1870, we see a close match

to the predictions of Gibrat’s Law —city growth from 1870 to 1940 seems uncorrelated with the initial 1870 population. Cities of

all sizes quadrupled in size between 1870 and 1940. But in our geocoded places we see a strikingly different conclusion. We find

that population growth rates were U-shaped over this 70-year period. The population of smaller places grew almost nine-fold on

average, while the population of the largest places more than quadrupled. But for mid-sized places with populations around 1000

people, we see much lower growth rates around 150%. This is a pattern that also exists at the county level, as shown by Desmet and

Rappaport (2017) . We are the first to show these historical patterns at the town- and city-level for all places in the United States. 

4. Discussion and application to additional datasets 

So far, we have discussed our method and applications exclusively in the context of the historical U.S. decennial censuses. However,

much of the code that we release can be used to geocode other sources of historical data. In addition, the steps that we use can serve

as a conceptual guide for other researchers. However, like all methodological contributions, our approach will apply well in some

cases and less well in others. In this subsection, we discuss these tradeoffs. 

Our current code was developed to geocode historical U.S. cities and townships. It is most easily applied to other documents that

contain the same level of geographic detail. Two important examples are patent documents and birth/death certificates. Both typically

contain the city of the invention or event, and both —because of the limits of modern OCR software and historical record-keeping

practices —are often measured with some error. Our code can clean these location strings and fuzzily match them to historically

accurate geocoded places. All that is required as an input is a vector of possible strings for each document. Since our code was

developed using U.S. census data, it may need to be modified: For example, in the censuses, there are predictable strings that need

to be cleaned before geocoding (e.g., “WARD ”, “DISTRICT ”). To the extent that different datasets contain different strings that need

cleaning, this portion of the code should be adjusted accordingly. Otherwise, our procedure has few census-specific steps. 

By contrast, because of our setting, our code cannot directly geocode sub-city data (e.g., streets or blocks) or locations outside

the U.S. However, with appropriate changes, the structure of our code could be used in these cases as well. For example, to geocode

streets, one could take information on raw streets in the censuses, clean them using our algorithms, and match them to contemporary

street databases (instead of NHGIS/GNIS place points). Similarly, our approach and code can be generalized to other countries, though

many methodological choices will need to be made as a function of the underlying strings and location databases available for that

country. 

Beyond our code, our geocoded census locations can also be used in methodological projects. For example, researchers linking

birth certificates to decennial census microdata face the limitation that within a state or county, there can be multiple people with

similar names. Using our geocoded sub-county locations to block on geographical information and discard unlikely links can increase 

match rates and lower false positive rates. 

5. Conclusion 

Researchers often use place-level data to measure the causal effects of local policies and to describe historical trends. These analyses

are often done at the county- or state-level because it is challenging to link individuals to consistently defined local places across

census years. In this paper, we describe and release public crosswalks linking the vast majority of 1790–1940 census respondents to

longitudes and latitudes. These crosswalks allow analysts to explore sub-county research questions and trends using public census 

data. 

We present two applications of our crosswalks to demonstrate their value. First, we iteratively cluster geocoded places with close

neighbors, producing a consistent definition of place. This application addresses the common concern that regularly-updated county 

borders and shifting municipal boundaries make it difficult to match and compare places over time. Second, we test the predictions

of Zipf’s Law and Gibrat’s Law in a historical context, finding clear deviations from theoretical predictions about the city size and city

growth distribution. While these findings have been observed in more aggregated data, we are the first to illustrate these patterns

over long time periods with national data on “places. ”

The most important contribution of this paper is the method itself. Researchers spend significant and often-duplicated time stan-

dardizing common spatial datasets, particularly when working with historical sources. We hope that the process we present in this

paper will help researchers link other datasets that include unstructured place names —for example, patent data or birth and death

records —to sub-county locations. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.eeh.2022.101477 . 
18 The results are unchanged if we include the largest cities, but including the largest cities in the panels makes it more difficult to see the 

non-monotonic population growth rate dynamics for cities with lower initial population levels in 1870. 
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