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1. Introduction

The concept of net neutrality had a long history. In the era of
the Roman Empire, all monopoly hostels, ports, and even surgeons
in a community had an obligation to provide their services at a
reasonable price. This is known as the principle of common car-
riage (common carrier) which is regarded as an essential element
of net neutrality. This principle was adopted in the U.S. Communi-
cations Act of 1934 and inherited in the U.S. Telecommunications
Act of 1996, although whether Internet service providers (ISPs)
should be classified as Title I carrier with no common carrier obli-
gation or Title II carrier with a common carrier obligation has been
controversial. Formal net neutrality rules were established by Open
Internet Order 2010 and propelled by Open Internet Order 2015
when the U.S. Federal Communications Commission (FCC) classi-
fied ISPs as Title II carrier (common carriers).

However, in 2017, the FCC repealed the net neutrality rules that
barred ISPs from blocking or slowing Internet content or from of-
fering paid “fast lanes.” It is still controversial whether ISPs should
be forced to be neutral, that is, treat all traffic the same or should
be allowed to prioritize certain services over others. Nevertheless,

* This research was supported by the Ministry of Education of the Re-
public of Korea and the National Research Foundation of Korea (NRF-
2022S1A5A2A0304932311). We are grateful to the Editor Marc Bourreau and
two anonymous referees for their extremely helpful comments.
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1 Roughly speaking, the net neutrality rules include no blocking, no throttling,
and no prioritization.
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it seems clear that certain services such as YouTube or Netflix re-
quire more bandwidth than others, that is, it seems sensible to
prioritize such traffic because they would be almost unusable if
streaming were subject to irregular delays.

Under the current regime, without net neutrality, it is impor-
tant to decide for which priority should be granted. In a recent
study, Gautier and Somogyi (2020) compared the outcomes with
and without net neutrality when there is asymmetry between con-
tent providers (CPs). They showed that an ISP can extract more sur-
plus from consumers by privileging the relatively weaker content
to restore symmetry between CPs.2 In particular, with prioritiza-
tion,? they showed that it is preferable for an ISP to give priority
to weak CPs because the resulting price is higher than the price
when it gives priority to strong CPs. They used a specific function
form to model the effect of delay on the utility of end users.

In this study, we argue that, in general, the priority of ISP grants
crucially depends on the shape of the delay cost function. We show
that if the delay cost of contents from each CP increases with its
own traffic amount, the opposite is true, that is, the ISP prefers to

2 This issue can be regarded as a special one of intermediate market price dis-
crimination, that is, to which downstream producer a monopolistic input supplier
should give a favor. For input market price discrimination, DeGraba (1990) showed
that the input supplier gives a favor to a less efficient producer in the case of lin-
ear demand, and Li (2014) argued that whether the monopolist gives a favor to the
more efficient downstream firm or a less efficient downstream firm depends on the
shape of the demand function.

3 Prioritization can be either paid or unpaid. Gautier and Somogyi (2020) assume
that prioritization is unpaid. We also follow this assumption in this paper.
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give priority to the strong CP, whereas it prefers to give priority
to the weak CP if the delay cost of contents from the unpriori-
tized CP decreases with its traffic amount as in Gautier and Somo-
gyi (2020).4

The intuition behind this is as follows. If the ISP grants pri-
ority to the weak CP, there are two effects on the marginal end
user who uses contents from a strong CP, namely, a positive trans-
portation cost effect and a negative delay cost effect, because the
traveling distance of the marginal end user is shorter but the de-
lay cost is higher because of the absence of priority. However, the
disadvantage in the delay cost (of content from the unprioritized
CP) outweighs the advantage in the transportation cost for any
degree of asymmetry if the delay cost of contents from the un-
prioritized strong CP (with higher demands) increases with the
traffic amount. Consequently, the ISP will find it better to grant
priority to the strong content. On the other hand, if the delay
cost decreases with the traffic amount, the converse is true; the
disadvantage in the delay cost is outweighed by the advantage
in the transportation cost, meaning that it is better for the ISP
to grant priority to weak content. We then examine our insight
in two specific models; the M/M/1 queuing model of Choi and
Kim (2010) and Cheng et al. (2011), and the bandwidth subdivi-
sion model of Economides and Hermalin (2012). It turns out that
the M/M/1 model corresponds to the latter case, while the band-
width subdivision model corresponds to the former. we We obtain
the contrasting results that the ISP prefers to grant priority to the
weak CP for any level of asymmetry in the queuing model, whereas
it prefers to grant priority to the strong CP for any level of asym-
metry in the bandwidth subdivision model.

We also obtain some policy implication by comparing social
welfare when priority is granted to the weak CP and to the strong
CP. We first show under a linear delay cost that if the delay cost
of contents from each CP increases with its own traffic amount, it
is socially optimal as well as privately optimal to grant priority to
the strong CP, although the welfare comparison is ambiguous if the
delay cost of contents from the unprioritized CP decreases with its
traffic amount. We then show that in the queuing model, there is
a conflict between the private incentive and the social incentive
in terms of which CP is given priority. An ISP may grant priority
to the weak CP in equilibrium, even though this is actually wel-
fare inferior to the outcome when it grants priority to the strong
CP. On the other hand, in the bandwidth subdivision model, it is
privately and socially better for the ISP to prioritize the strong CP.
However, in both models, it is socially worse than the outcome un-
der net neutrality, regardless of who is given priority. This implies
that regulation of net neutrality is needed in terms of static social
welfare.

The remainder of this paper is organized as follows. In
Section 2, we provide an analysis of the model with a linear delay
cost to examine the ISP’s incentive to prioritize. In Section 3, we
consider two specific models, the M/M/1 queuing model and the
subbandwidth model to address the issue. Section 4 discusses so-
cial welfare. Finally, concluding remarks and caveats are presented
in Section 5.

4 Gautier and Somogyi (2020) make the assumption that the quality of contents
from the unprioritized CP increases with its market share, which is essentially
equivalent to the assumption that the delay cost of the traffic from the unpriori-
tized CP decreases with its market share.

5 In an earlier version, we examined the ISP’s dynamic incentive to invest in net-
work capacity along the line of Choi and Kim (2010), Krdmer and Wiewiorra (2012),
Bourreau et al. (2015), and Choi et al. (2018), and showed that the ISP prefers pri-
oritize the strong CP in the queuing model and the weak CP in the subbandwidth
model in terms of dynamic incentives to invest, contrary to the static preference of
the ISP who prefers to prioritize the weak CP in the queuing model and the strong
CP in the subbandwidth model.
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2. Model

End users (consumers) are uniformly distributed over [0, 1].
So, the mass of end users is normalized to one. CP 1 and CP 2
are located in x; = a and x, = 1 respectively where a € (0,1) a la
Gautier and Somogyi (2020). Each end user located at x requests
one unit of contents from at most one content provider by travel-
ing to x; or x, and gets some valuation v, implying that the sum
of consumers who receive contents from CP 1 and CP 2 is one in
which case the market is fully covered, or less than one in which
case the market is partially covered. The unit transportation cost is
t, so the traveling cost of the end user located at x is t|x; — x|. For
the time being, we restrict our attention to the case in which the
market is fully covered.

End users get disutility from delay as well as utility when they
receive contents. Without net neutrality, delay costs depend on
which contents are prioritized, what proportion is prioritized, etc.
because delay from congestion will be increasing in the amounts
of traffic from each CP. We denote the delay cost of consumers
who receive contents from CP i with the market share z; by ¢;(z).°
Due to the possibility of congestion by limited network capac-
ity denoted by «(< 1), we assume that c/(z;) >0 in case that
Z1 +2p =1 > k. Under net neutrality, we assume that ¢;(.) = c(.)
for i=1,2. We also assume that ¢;(z;) < cj(z;) (where j#1i) for
any z;,zj € (0,1) such that z; +2z, = 1, when a priority is given to
CP i’

We consider the following sequence of events. First, the ISP de-
cides to which CP it will give priority on an unpaid basis and then
sets the connection price for end users. Then, after forming expec-
tations about the market share of each CP® end users decide from
which CP they request contents.?

Let V;(x) be the net valuation of a consumer located at x who
buys contents from CP i. Then, we have

Vik) =v—c1(Z§) —p—tlx—al, (1)

Vo) =v—-c(z5) —p—t(1-%x), (2)

where z{ is the expectation about the market share of CP i and p
is the common price that the monopolistic ISP charges to all con-
sumers.

We first consider the case in which the market is fully covered.
The two content providers are not symmetric in the sense that CP
1 has a higher demand than CP 2 at the common price, because
a> 0. So, we call CP 1 and CP 2 a strong CP and a weak CP re-
spectively a la Gautier and Somogyi (2020).

To analyze the sequential game by backward induction, we first
examine the consumers’ purchasing decisions. If the ISP grants pri-
ority to CP 1 (strong CP), we denote the marginal consumer, if any,
who is indifferent between buying from CP 1 and CP 2 by x; which
is determined by

c1(z]) +t(xs —a) = c2(25) +t(1 — xs). (3)

Throughout the paper, we will assume that users’ expectations are
actually fulfilled. The assumption of fulfilled expectations implies

6 Of course, the average time to transmit contents from CP i depends on z; as
well as z;, but since z; = 1 —z; in the case of full market coverage, ¢;(z;) = Ci(z;, 1 —
z;) can be interpreted as a reduced form.

7 These assumptions on c;(z;) hold in the M/M/1 queuing model of Choi and
Kim (2010) and Cheng et al. (2011) which will be reexamined in Section 3.

8 The assumption on the sequence in the subgame that follows the ISP’s deci-
sion is not crucial. The equilibrium outcome remains unaffected even if we assume
that users’ expectations and decisions are made simultaneously insofar as they form
correct expectations.

9 Note that the ISP determines whom to give priority. Since we assume unpaid
prioritization just as in Gautier and Somogyi (2020), CPs have no means to compete
(such as a price bid for a priority) to obtain priority.
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that z{ =z; = X; and z§ =2z, = 1 — X;. So, we obtain

T+a 1
X = —— + 5l0(1 = X) —c1(x)]. (4)
On the other hand, if the ISP grants priority to CP 2 (weak CP),
xw which is similarly defined as the marginal consumer indifferent
between buying from CP 1 and CP 2 is determined by

c1(z1) +t(xw — a) = 2(22) + (1 — X), (5)
where z; = xy and z; = 1 — xy. Accordingly, we obtain

xw= 14 e x) — e Gl (6)

From now on, we will denote the cost functions from the priori-
tized CP and from the un-prioritized CP by cp(.) and cy(.) respec-
tively. So, if CP 1 is given priority, c,(.) =¢;(.) and c,(.) =3 (),
while ¢, (.) = c3(.) and ¢, () = c7(.) if CP 2 is given priority. In any
case, by assumption, we have c,(z) < cy(1 — z). By using this nota-
tion, we can rewrite (4) and (6) that determine the interior solu-
tions'? x; € (a,1) fori=s, w as

_14a 1

Xs = 5 E[Cu(l —X5) — Cp(xs)]’ (7)
X = % 211651 =) = i)l ®)

Note that the marginal consumer is x* = 12ﬂ under net neutrality,
because ¢;(x) = cp(x) for all x. Equations (7) and (8) imply that
Xw < X* < xs because c,(1—x) > cp(x) for any x under prioritiza-
tion.

Proposition 1. (i) x,(a) < x*(a) < xs(a) for any a € (0, 1). (ii) xs(a)
and xw(a) increase in a.

It is clear that if priority is granted to CP 1, its market share is
increased (xs > x*). It is also clear that if priority is granted to the
other CP, the market share of CP 1 is reduced, because its increased
delay cost gives CP 1 relative disadvantage. The intuition for the
second result is also clear. As a is larger, i.e., the demand for CP 1
is larger, the market share of CP 1 will be larger, regardless of who
is granted priority.

Now, we consider the pricing decision of the monopoly ISP. Let
ps (or py respectively) be the price of the ISP when it grants pri-
ority to strong CP (or weak CP respectively). The conditions for full
market coverage (i.e., z;1 +2z; = 1) in two cases — which will be
called individual rationality (IR) conditions - are that for i =1, 2,

Vixs) =V —Cp(Xs) — ps — t(Xs — @)
=V—C(1—-%)—ps—t(1-x) =0, (9)

Vitxw) =V — cu(Xw) — pw — t(Xw — @)

=V—Cp(1 —xw) — pw — (1 —xy) = 0. (10)
From (9) and (10), the profit-maximizing ISP will choose a price
Ps=V—Cp(Xs) —t(xs —a) =v —cy(1 —x5) —t(1 —Xs), (11)

if a strong CP is given priority and
Py =v—cp(1=xy) —t(1 —=xp) =V —Cu(Xw) —t(xw—a) (12)

if a weak CP is given priority. These prices make two (IR) condi-
tions binding and maximize the profit of the ISP, given that the

10 For linear functions c¢,(x) =ax+ B and c,(y) =’y + ', a sufficient condi-
tion guaranteeing interior solutions, xs, Xy € (a, 1), is that 8’ -~ =«a, a <1 and

a < =g - For detailed derivations, see the proof of Proposition 3 in Appendix A.
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market is fully covered.!! The equilibrium prices p: and p;, de-
pend on g, and in fact, both of them are increased with respect
to an increase in a.

Proposition 2. pi(a) and p},(a) increase in a.

The intuition behind this proposition goes as follows. As a is
larger, the transportation cost of the marginal consumer when he
buys from CP 2 is lower because x}(a) and xy(a) increase in a,
meaning that his net valuation of receiving contents (aside from
the price p) is higher. This implies that the ISP can raise the price
to extract all the consumer surplus of the marginal consumer. Also,
this argument holds whether priority is granted to a strong CP or
a weak CP.

However, the degree of a change in net valuation with respect
to a change in a depends on which CP is given priority, and so
would the degree of a change in the equilibrium prices. The fol-
lowing proposition may give some insight for the question.

Proposition 3. Let C° = cp(xs) + t(xs —a) and CV = ¢y (Xw) + t (Xw —
a). If cp(-) and cy(-) are linear in their arguments with c,(z) >
C;J(z) >0 for any z< (0,1), (i) C% —C is increasing in a, and (ii)
the ISP prefers to grant priority to the strong CP for any a > 0.

The two costs C5 and C% are the total costs that the marginal
consumer Xs and x,, bear when priority is given to the strong CP
and the weak CP respectively. This proposition implies that as a
gets larger, the marginal consumer’s cost gets higher when priority
is given to the weak CP relative to when priority is given to the
strong CP. This means that the ISP is more likely to grant priority to
the strong CP as a is larger, because it can charge a higher price.!2
Proposition 3 says that it turns out that the ISP finds it better to
grant priority to the strong CP for any a > 0 if the delay costs are
linear and ¢ (2) > ¢,(2) > 0.

To see this, Eqs. (11) and (12), which can be rewritten as
pt(@) =v—C5(a) and p;,(a) = v— C*(a), imply that pi(a) > p;,(a)
if and only if C¥(a) > C5(a). Since C"(0) = C5(0), Proposition 3(ii)
directly follows from Proposition 3(i). Contrary to Gautier and So-
mogyi (2020), the monopolist will find it to its advantage to grant
priority to a strong CP rather than a weak CP for any a > 0.

To elaborate, let cp(x) =ax+ B and cy(y) =o'y + B’ where x
and y are traffic volumes of the prioritized contents and the unpri-
oritized contents respectively, «’ > « > 0, and 8’ > 8 > 0. The as-
sumption that c,(z) < cy(1 —2) for any z € (0,1) can be satisfied
if B/ — B > «. So, to be consistent with this assumption, we only
consider the case that 8’ — > «. We have

o-c

Cu(Xw) +t(xw — @) — [Cp(xs) +t(xs — a)]
Cu(Xw) — Cp(Xs) + t(Xw — Xs)
= (a'xy —axs + B’ — B) +t(Xw — Xs). (13)

The first term of (13) is a disadvantage in the delay cost of the
marginal consumer using CP1 when priority is given to the weak
CP, while the second term of (13) is an advantage in the traveling
cost (xw —Xs < 0). As a gets larger, we have

(" -C) [, 0xy 0Xs 0Xyw  0Xs
aa—<"‘aa‘“aa %0 "9 ) (14)

" As an anonymous referee correctly pointed out, without the assumption of full
market coverage, the ISP may find it profitable to charge a price that makes the
market only partially covered, if the users’ demand for Internet access is inelastic.
The possibility of partial market coverage will be discussed in the end of this sec-
tion.

12 If a is too large, the market may not be fully covered because the end user lo-
cated at x = 0 would not want to purchase from neither CP. Assumption 1 of Gautier
and Somogyi excludes the possibility. We also maintain this feature by assuming
that a cannot be too large.
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Fig. 1. Demand Functions for CP 1 and CP 2 (blue: when strong CP is prioritized) (red: when weak CP is prioritized). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Since 35‘—;’ = aaias > 0 under the linear delay cost,’> the sign of the
first term is positive if &’ > «, while the sign of the second term is
zero. This means that the disadvantage in the delay cost gets larger,
while the advantage in the traveling cost remains the same. This
implies that the ISP finds it better to give priority to the strong CP
for any a > 0.

Next, we consider the case in which the market is partially
covered. If the ISP raises the connection price above pi (or pj,)
when it grants priority to a strong CP (or a weak CP respectively),
the market is not fully covered. For p > p%, define x;; and x,;
by

Vitxs1) =V —p—Cp(Xs1) —t(xs1 —a) =0, (15)

Va(Xs2) =V —p—cp(1 —X52) —t(1 —x55) =0. (16)

Then, x;; and X, determine the demand for CP 1 and CP 2
given p when a strong CP (CP1) is given a priority. Note that
consumers located at x € (x51,Xs2) buy contents from neither
CP.

Similarly, for p > p,, we can define x,,; and x,,, by'

Vi(Xw1) =V —p—Cu(Xw1) —t(xyw1—a) =0, (17)

Va(xw2) =V —p—cu(1 —Xy2) —t(1 —xy2) =0, (18)

while consumers located at x € (xy,1,Xy,2) request contents from
neither CP.

Figure 1 shows the demand functions for CP 1 and CP 2. Note
that the market is not fully covered if p > pf when CP 1 is given
priority and p > pj, if CP 2 is given priority. We will find the con-
dition for Proposition 3 to hold, i.e., a sufficient condition under
which raising the price from p§ or p}, slightly will not increase the
profit of the monopolistic ISP.

In the case in which the ISP slightly raises the price from p; so
that the market is only partially covered,’® the total demand for

13 This is easily shown from (A.5) and (A.6) in the proof of Proposition 3 in
Appendix A.

4 The market share for CP 1 is x, only if a is not too large, as we argued in
Footnote 11.

15 If the price is so high that z; +z, < k, the congestion problem does not occur.
To focus only on the case that the network is congested, we only consider a small
deviation from p} and pj,.

Internet connection can be computed as

D(p) = x51(p) + (1 = x52(p))
_v—p—-B+a v-p-p
- a+t al +t
when priority is given to the strong CP. The first term is the de-
mand of consumers using CP 1 and the second term is the demand
of consumers using CP 2. Then, from the profit of the ISP which is
7 = pD(p), we can obtain

: (19)

v—-pi—pB+at
a+t

U_p;ﬂ_ﬂ/_ *( 1 1 >
+ o +t Ps a+t+a/+t '
(20)

As is well known, if the ISP charges the price slightly, it has two
effects; the effect of increasing revenue by the price (the first term)
and the effect of reducing the demand (the second effect). From
pi(a) =v —C(a) where C*(a) is found from (A.5), the condition
for 7’ (p%) < 0 is reduced to

7'(p}) =

B-at , B
[ t ! I — + 57

yoolerold+rat+a’+p ﬂ]+2(ﬂ_at)_ ait Tt
2+a +o ot1+t+oz’1+t

(21)

It is clear that (21) holds if v is large enough. Intuitively, if v is very
large, p¥ is high so the second term which is the demand-reducing
effect outweighs the first term which is the revenue-increasing ef-
fect. Hence, the profit is reduced.

Similarly, if priority is given to the weak CP,

D(p) = xw1(p) + (1 — xw2(p))
v-p-pB'+at v-p-8

= 22
o +t T +t (22)
and thus, the condition for p}, to be optimal is that
ey V=P =B +at v—p,—pB
7 (pw) = a +t a+t
P (L T L) 0 (23)
Pwl & Yt Tawrt)

which is also satisfied if v is large enough.

Finally, it deserves to notice the crucial difference in this
model and Gautier and Somogyi (2020). Gautier and Somo-
gyi (2020) model disutility from delay as a quality degradation.
Let g; be the quality of CP i and k is the network capacity. They
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assume ¢q; =1 and ¢, = ";2"1 when x; <« and q; = % <1 and
q> = 0 when x; > « if the ISP grants priority CP 1. If the market
is covered, i.e., X +x; =1, this implies that g} (x,) > 0 because

Q= %2‘"‘) =1- 1)(;2" when x; < . On the other hand, we as-
sumed that ¢} (x;) >0 and c}(x;) <0, or equivalently, ¢} (x;) <0
and ¢} (xy) > 0 if x; +x, = 1. This is contrasted with the assump-
tion of Gautier and Somogyi (2020) in the sense that the utility of
CP 2’s consumer is decreased as CP 2’s market share increases.

If we adopt an alternative assumption that c,(x;) <0 as in
Gautier and Somogyi (2020), i.e., we assume that ¢, (x) = o’xp +
B’ where o’ <0 < «, the signs in (14) are reversed. Since «’ <0,
we have a’%‘—g“ —a% < 0 while 35‘—3“ - % =0, so that %%V < %T(:'
That is, when priority is given to the weak CP, the disadvantage in
the delay cost gets smaller as a gets larger, while the advantage in
the traveling cost remains the same. This implies that it is better
for the ISP to give priority to the weak CP as a gets larger. This
means that it is always better to give priority to the weak CP re-
gardless of a if o’ <0, i.e, if the delay cost of contents from the
unprioritized CP decreases as its traffic amount increases (corre-
spondingly, as the traffic from the prioritized CP decreases).

3. Specific models

In this section, we consider two specific models of prioritization
depending on different assumptions on the delay cost functions.

3.1. M/M/1 queuing model

Choi and Kim (2010) and Cheng et al. (2011) use the M/M/1
queuing model to model congestion and delay in data transmis-
sion. In this section, we consider the delay cost functions that can
be derived from the M/M/1 queuing model. For asymmetry be-
tween content providers, we follow the model of Gautier and So-
mogyi (2020).

Under net neutrality, both the interarrival time of content re-
quests and the service time of the Internet service provider (ISP)
follow exponential distributions with A and w. That is, the mean
of the time between content requests is 1/A and the mean of the
service time is 1/u. As usual, we assume that & > A to avoid the
possibility that the waiting time will explode.

On the other hand, under no net neutrality allowing prioriti-
zation, the total amounts of content requests from CP 1 and CP
2 are A1 =%\ and A, = (1 — X)A respectively where % is the ratio
of users who request contents from CP 1, if we assume that A is
preserved after prioritization.'® Under the preemptive priority sys-
tem,'” if CP 1 is granted priority, X is determined by

X)) +t(X—a)=c,(1-%)+t(1-%), (24)

where ¢p(8) = ;klﬂ and cu(1-%) = ;2 MJM. Note that ¢, (J) < 0,

where ¥ = 1 — X is the market share of the unprioritized CP. So, this

16 If net neutrality is repealed, users expect the contents they request to be trans-
mitted faster if the contents have priority, and thus they will demand more con-
tents with priority. This implies that the request rate for prioritized contents will
be generally higher than the request rate for unprioritized contents or contest un-
der net neutrality. Thus, Kim (2022) adopts the alternative assumption that if CP
1 is granted priority and CP 2 is not, A; > A;, since prioritized contents will be
more frequently requested. This corresponds to the case of the variable demand in
Gautier and Somogyi (2020), while the assumption that A; = A, = A corresponds to
the case of the fixed demand.

7 In the preemptive priority system, the service of a content request that is al-
ready being processed is interrupted and superseded by the prioritized content,
while it is not interrupted by the arrival of the content request with priority in
the non-preemptive priority system. Although Choi and Kim (2010) claim that the
following waiting times are obtained under the assumption of the non-preemptive
priority system, they are, in fact, the ones that can be obtained under the preemp-
tive priority system. See Kim (2022).
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delay cost corresponds to the assumption of Gautier and Somo-
gyi (2020).

We compare two cases; the case in which the ISP grants prior-
ity to a strong CP and the case in which the ISP grants priority to
a weak CP. Let x; and x,, be ¥ when priority is given to a strong CP
and a weak CP respectively. Then, x; and x,, must satisfy

TS+ t(xs—a) =T +t(1 —x;), (25)
TV +t(xw —a) = T3 +t(1 — Xw), (26)
where
1
S __
TS = TR (27)
I 1
=T s (28)
o1 (29)
m—(1—=xw)A
w_ M w M 1
T S TR T v, (30)

Here, T® and T are the expected waiting time of contents from
CP i (i=1,2) when priority is given to a strong CP and a weak CP
respectively. It is easy to see that cp(.) =T/(.) =T,"(.) and ¢y(.) =
TY(.) = T; (1) in this specific model.

To compare p} and pj, we only need to compare C° =T} +
t(xs—a) and C¥ =T}" + t(xw — a) by using the equilibrium values
of xs and x,, which can be obtained from (25) and (26).

As we saw in the previous section, granting priority to a CP en-
tails two effects, the effect on the transportation cost and the ef-
fect on the delay cost. If the ISP grants priority to a strong CP, two
conflicting effects on the marginal consumer who uses CP 1 oc-
cur. On one hand, it has a positive effect on the delay cost, and
on the other hand, it has a negative effect on the transportation
cost, because x; > x,, implies that the marginal consumer’s travel-
ing distance to x = a is longer. However, the following proposition
shows that the first effect is outweighed by the second effect in
this model for any a.

Proposition 4. p:(a) < p},(a) for any a in the M/M/1 model.

This proposition implies that it is always better to give prior-
ity to the weak content in the M/M/1 queuing model. To see this,
compare the total cost of the marginal consumer when he uses
privileged contents. If priority is given to the weak CP, the delay
cost for the prioritized CP is lower because Mi(lflw(a))}\ < /L—Xz(a))\
due to the lower volume of traffic, although the transportation
cost is higher because t(1 —xy(a)) > t(xs(a) —a) by (A.50) and
Lemma 3 (in Appendix A). We can confirm a tradeoff between
the delay cost and the transportation cost that was identified in
Section 2.

The main driving force for Proposition 4 is that ¢, (¥) < 0. Intu-
itively, under this feature, the utility of consumers using unpriori-
tized contents increases as the traffic of the unprioritized contents
increases as in Gautier and Somogyi (2020). We know that the traf-
fic of unprioritized contents is 1 — xs when priority is given to the
strong CP, while the traffic is x,, if priority is given to the weak CP.
We have xy(a) > 1 —xs(a) for any a > 0. The traveling cost of the
marginal consumer to the unprioritized CP is also lower when the
weak CP has priority, because x,, — a < 1 — x;.18 After all, when pri-
ority is given to the weak CP, the utility of the marginal consumer

8 We need to prove this for completing the proof of Proposition 4, but the
Appendix A provides an alternative proof of Proposition 4.
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of requesting unprioritized contents is higher and accordingly the
price that makes the (IR) condition binding (i.e., that makes the
marginal consumer’s net valuation zero) is higher.

3.2. Bandwidth subdivision model of economides and hermalin

Economides and Hermalin (2012) model prioritized service and
delay in a different way.'? Let k be a bandwidth that can be inter-
preted as the capacity of the ISP’s content transmission. Also, let kp
and k, be the sub-bandwidths allocated to contents from the prior-
itized CP and the unprioritized CP respectively, where k, + ky, =k
and kp > ky. So, unlike the M/M/1 queuing model in which the ISP
processes prioritized contents before unprioritized contents, prior-
itized contents and unprioritized contents are assumed to use sep-
arate portions of the bandwidth (fast lane and slow lane, respec-
tively).

We consider the following congestion model under unpaid pri-
oritization a la Economides and Hermalin (2012). First, given k,
and ky,%° the ISP decides whom to grant priority by allocating kp
and then chooses the connection fee for end users p. Second, end
users choose from which CP they request contents.

We assume that the valuation v for one unit of contents that
each end user requests is discounted by the average transmission
time. Let the adjustment factor be p(t;) = p7;,2! where p >0, T =
;‘7:: is the average transmission time of contents from CP i and x;
is the total amount of contents from CP i.>2 Then, the discounted

valuation from the service of CP i is pL For simplicity, we assume

that k = 1 which is equal to the size of end users (the total amount
of traffic), implying that kj > 7 > ky.

By abusing notation, let xs(a) and x,(a) be the location of the
borderline end user who is indifferent between two CPs when the
ISP grants priority to the strong CP and the weak CP respectively.
Assuming that v is large enough to cover the whole market, we can
find xs(a) and xy(a) by the following two Egs. (31) and (32) re-
spectively;

vkp v ky
574( )_51 —t(1-x), (31)
v ky v kp
—— -t = —t 1-x 32
St = 2 t(1 ), (32)
Let v (y) = 1—" Then, v,(y) = "’;“ < 0. So, this is essentially

equivalent to the assumption that ¢, (y) > 0, unlike the case of
Gautier and Somogyi (2020).

Let pi(a) and pj,(a) be the prices that maximize the profit of
the ISP when it grants priority to the strong CP and to the weak
CP respectively. Then, the conditions for full market coverage imply
that

vk v k
E;p—Ps—t(Xs—a)=;17u— s —t(1-x%) =0, (33)
v ky v kp
— = —pw—txy—a) = — —t(1—=2xw) =0, 34
o (o=@ = 23— pu (1 =) (34)
so that the profit-maximizing prices will be

v kp v ky
ps(a) = ——S—t(xs—a)_ﬁl_xS—t(]—xs), (35)

19 Hermalin and Katz (2007) discuss the issue of net neutrality in terms of pro-
viding different qualities rather than providing different priorities.

20 We will briefly discuss the issue of how to allocate the bandwidth k to the
prioritized CP and the unprioritized CP, i.e., how to determine k, and k, at the end
of this section.

21 The adjustment factor p(t;) is defined slightly differently from Economides and
Hermalin (2012) who assume that p(t;) is decreasing in 7;.

22 Since we assume that each end user requests one unit of contents, the total
amount of contents from CP i is the same as the size of end users who request
from CP i.
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if a strong CP is given priority and

v ky v kp

py(a )_*a—t(’(w—a)ZE]_xw

—t(1—xw) (36)

if a weak CP is given priority.

The following proposition shows that the ISP prefers to priori-
tize the strong CP in this congestion model, contrary to the M/M/1
queuing model.

Proposition 5. p}(a) > p},(a) for any a > 0 and for any kp, ky such
that ky, > ky in the congestion model of Economides and Herma-
lin (2012).

It is interesting that the result obtained in the queuing model
is reversed in this model. To make comparison easy, compare the
total costs of the marginal consumer only when he uses unpriori-
tized contents. The discounted valuation is higher when priority is
given to the strong CP, because 1"“ X , but the transportation
cost is also higher, because t(1 — xs) > t(xw — a). Again, we can see
the tradeoff between the delay cost and the transportation cost.

To see this more clearly, let VS and V" be the net valuations
that the marginal consumer (xs and x,,) enjoys from using unpri-
oritized contents when priority is given to the strong CP and the
weal CP respectively. Then, we have

s_V kg

Ve = 01—x t(1 —xs),
v ky

VW =—— —t(xw—a).
X (xw —a)

When priority is given to the strong CP, the distance in the
traveling cost is clearly higher because 1 —x; > x,, — a. If the dis-
counted utility were lower when the traffic amount is lower (1 —
Xs < Xw) as in the M/M/1 queuing model, it would be unambigu-
ously better for the ISP to grant priority to the weak CP. How-
ever, the discounted utility from the lower traffic is higher because
v,(¥) <0 in this subbandwidth model. So, it is possibly better for
the ISP to grant priority to the strong CP. Then, why does the ISP
prefer to grant priority to the strong CP for any a > 0? In other
words, what is the main driving force for obtaining the completely
opposite results in the queuing model and in the subbandwidth
model? The essential difference between the two models is that
an increase in the delay cost of prioritized contents due to an in-
crease in the traffic also increases the delay cost of unprioritized
contents in the queuing model, whereas an increase in discount-
ing for prioritized contents decreases discounting for unprioritized
contents. If x, is the traffic from the prioritization CP, delay costs
of the prioritized contents and unprioritized contents ( )L) and

( Mlu % +) both increase in x, in the queuing model Whereas
discounting for prioritized contents increases in x, but dis-

counting for unprioritized contents, 757 % /2 X5, decreases in xp.

Under the M/M/1 queuing model, the traffic amounts of the two
CPs are not very different, because the delay costs of prioritized
contents and unprioritized contents are affected in the same di-
rection as we described above. However, under the subbandwidth
model, a difference in the traffic amounts make the difference in
delay costs between prioritized contents and unprioritized con-
tents larger. So, the traffic difference of the two CPS tends to be
large. Accordingly, the delay cost effect outweighs the traveling
cost effect under the subbandwidth model, implying that the ISP
prefers to prioritize the strong CP.

Finally, we consider the ISP’s choice of A, i.e., how to allocate
bandwidth to two CPs. Since the only revenue source of the ISP is
the network access fee from users under unpaid prioritization and
the network access fee is always higher when priority is given to
the strong CP as shown in Proposition 5, we only need to examine

, 1/2+A’
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a change of ps(A) with respect to a change in A. Note that the
access fee ps(A) is determined by the borderline user when prior-
ity is given to the strong CP. The next proposition shows that ISP’s
profit decreases as A increases.

Proposition 6. The ISP prefers less difference in the bandwidths be-
tween prioritized CP and unprioritized CP.

If the ISP increases A, i.e., amplifies asymmetry in the capaci-
ties for the prioritized CP and the unprioritized CP, it has two ef-
fects when the marginal consumer uses prioritized CP. It increases
the transportation cost and also increases discounting of the value
for prioritized contents. However, an increase in A itself reduces
delay for prioritized contents. So, the overall effect may be am-
biguous. However, this proposition implies that the two indirect
negative effects outweigh the direct positive effect.

This proposition also suggests that the ISP prefers net neutral-
ity to prioritization in this model, because ps(0;a) = pw(0;a) >
ps(A; a) for any A > 0 and for any a > 0.

4. Social welfare

In this section, we discuss the implications of our results re-
garding the ISP’s prioritization choice on social welfare.

4.1. Model with linear delay cost

We compare social welfare when the ISP grants priority to the
strong CP and to the weak CP. If we assume that the market is fully
covered and all end users get the same utility from the Internet
service, we only need to compare the total costs consisting of the
transportation cost (TC) and the delay cost which can be measured
by the waiting time (T).

Let SC° and SC" be the total social cost when priority is given to
the strong CP and to the weak CP respectively. In the model with
a linear delay cost in Section 2, they are computed as follows:

SCs — /0 (cp(xs) + £(a — x))dx +/ “(ep (%) + £ (x — a))dx
1
+ [ (@l —x) + (1 - 0)dx
SV — / (Cu(xw) +£(a —x))dx+/ " (Ca ) + E(x — a))dx
0 a
1
+/ (€p(1 = %) +£(1 — %)) dx.
Thus, the difference is computed as
SCY —SC = /xw Kydx — /] Kydx
0 Xs
[0 =x) 461 =20~ ¢00) ~ £ @),
= fxw (/% + B’ — axs — B)dx
0
1
+/ @1 =) + B —a'(1—x5) — B)dx

+/X5(a(1 Zxw) 4+ B —X) —axs— B — t(x — a))dx,
(37)

where K; = cy(xw) — cp(xs) > 0 and Ky = cy(1 —Xs5) — cp(1 —xy) >
0. Note that K; > K, because
Ki—K =o'y + B —axs— B —[a'(1 —=x5) + B/ —a(1 —xy) — B']
=o' (Xs+Xw—1) —0(Xs + Xy — 1)
=@ -a)X+xw—1)>0,
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where @’ > o > 0 and x5 +xy > 1 for any a > 0. Since xyy > 1 — Xs,
it is clear that fé“” Kidx > fxls Kydx. In Fig. 4, P is the area between
Cu(Xw) + tla—x| and cp(xs) +tla—x| from x=0 to x =Xy, and S
is the area between ¢, (1 —x;) +t(1 —x) and cp(1 —xy) +t(1 —x)
from x = x; to x = 1. They correspond with the first term and the
second term of (37) respectively. The area Q — R, which is the dif-
ference between two triangles, corresponds with the third term
of (37). It is also clear from Fig. 4 that it is positive, because
Cw(a) > Gs(a). This implies that social welfare is higher when pri-
ority is given to the strong CP under a linear delay cost.

Proposition 7. Social welfare is higher when priority is given to the
strong CP than when it is given to the weak CP if c,(x) = ax+ 8 and
() =a’y+ B with o’ > 0.

The formal proof is omitted, because it is clear from the above
discussion and Fig. 4.

However, if o’ <0, it implies that K; <K, because (o’ —
o) (xs +xw — 1) < 0. In this case, although C% < C* implies that the
third term of (37) is negative, it is ambiguous to compare SWY (a)
and SW*(a) because it is not guaranteed that fé“” Kydx < /Xls Kydx
due to xy > 1 — ;.

4.2. Queuing model
In an M/M/1 queing model, we have

SCS = /(;Q(T1s +t(a,X))dx+/xs(Tls+t(Xfa))dX

1
+/ (T3 + £(1 - x))dx
=T +TC,
SCW=/ (T1w+t(a—x))dx+/ (T 4 t(x — a))dx
0 a
1
+/ (TY +t(1 - x))dx

=TY =+ TCW,

where

Xs 1 —
TS = / T15dx+f Tsdx = m X p_ 1%
0 X,

S Sk = —xh
Xw 1
/ Tdx + / T3dx
0 Xw
_ Xw n 1% Xw
=1 =xp)r  p—=2Apu—(1=xw)’

TCs = t[/oa(a—x)dx+/axs(x—a)dx+/x:(l —x)dx],

TW

1
= t[x§ —(1+a)xs+a*+ 5]’ (38)
e :t[foa(a—x)dx+/axw(x—a)dx+fxw1(1 —x)dx],
1
- t[va— 1+ a)xw + @ + j]. (39)

The following proposition implies that social welfare is higher
when priority is granted to the strong CP.

Proposition 8. The total social cost is lower when priority is granted
to the strong CP, i.e., SC°(a) < SC%¥(a), in the queuing model.

We know that the total delay costs are the same regardless of
which CP is given priority, i.e., TS = T" due to the invariance result
of Choi and Kim (2010). Thus, this proposition says that the total
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transportation cost is lower when priority is given to the strong CP.
This is again because x5(a) +xw(a) < 1+a, ie, xs— 139 < 3¢
xw for any a > 0, implying that the marginal consumer is closer to
% which minimizes the total transportation costs when priority
is given to the strong CP (CP 1) than when priority is given to the
weak CP (CP 2). Moreover, the equilibrium outcome under priori-
tization yields lower welfare than the equilibrium outcome under
net neutrality, because the traveling cost is minimized under net
neutrality. This justifies the regulation of net neutrality.

4.3. Bandwidth subdivision model

In the subbandwidth model of Economides and Hermalin, so-
cial welfare can be defined by the discounted utility of users mi-
nus their transportation costs. Let SWS, SWW and US, U" be social
welfare and the discounted utility of users when the ISP gives pri-
ority to the strong CP and to the weak CP, respectively. Then, we
have

SW*=U*-TC

a Xs
:/ (vkp—t(a—x)>dx+/ <Ukp—t(x—a))dx
0 o X a o X
Ty ky
+/XS (ozl — —t(1 —x))dx,

=U"-TC%

a Xw
:/ (Vk“—t(a—x)>dx+/ (Uk"—t(X—a)>dX
0 o Xy a O Xy
Yiv ky
+/xw (a]_XW—t(l—x)>dx.

As proved in the appendix, straightforward algebra shows that
US = UY (neutrality result), while TCS < TC%, implying that SW*S >
SWWY. This is again simply because the borderline user is closer to
%, meaning that the total transportation cost is lower when pri-
ority is given to the strong CP if a > 0.

swv

Proposition 9. For any a > 0, social welfare is higher when priority
is granted to the strong CP, i.e., SW*%(a) > SW"(a), in the congestion
model of Economides and Hermalin (2012).

The neutrality result that US> = U is mainly due to the assump-
tion that the adjustment factor is linear in delay t; = % For exam-
1

ple, if the adjustment factor is quadratic, i.e., a(7;) = ‘L'l-z, it may be
socially better to grant priority to the weak CP, because otherwise
the utility of a large amount of contents from the strong CP is dis-
counted too much.?

It is also easy to see that social welfare under prioritization is
lower than social welfare under net neutrality because the sum
of the transportation costs are minimized under net neutrality,
whereas the total utility of users is the same under the two
regimes if the adjustment factor is linear. Again, this implies that
net neutrality is socially desirable in this model of Economides and
Hermalin (2012). This result is contrasted with Economides and
Hermalin (2012) that derive conditions under which net neutral-
ity is welfare superior to prioritization. In our model, users have
different preferences for the two CPs. Prioritization gives some ad-
vantage to one of the two CPs thereby distorting the choice of
users between the CPs which otherwise would be split equally

23 To see this, assuming that v = 1, the weighted sum of utility can be computed
as U(x) = A+12” | (AU \here x is the market share of the prioritized CP.
Then, we have U’ (x) = ﬁ where ' = (A+1/2-x)(2xA - A —-1/2) <0 if A
is not very large, because we assume that A +1/2 > x for the prioritized CP. This
implies that consumer utility is higher when priority is given to the weak CP, be-
cause xs(a) > 1 —xy(a) for a > 0.
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among users. This negative effect of prioritization does not occur
in Economides and Hermalin (2012), because they do not assume
such different preferences of users towards CPs.2*

5. Conclusion and caveats

In this paper, we showed that the ISP may give priority to the
weaker content or to the stronger content, depending on the delay
costs. The general insight is that which content is granted a prior-
ity has two conflicting effects, the traveling cost effect favoring the
weak CP and the delay cost effect favoring the strong CP, and that
the first effect outweighs the second effect if the delay cost of the
unprioritized contents increases as the traffic increases.

Throughout the paper, we assumed that there are only two CPs
and all users are informed of which CP is prioritized or not when
they make decisions. However, it may be too optimistic to assume
that all users know whether each individual CP is prioritized or
not. In this incomplete information case, the ISP may strategically
disclose the priority information of all CPs or may engage in strate-
gic obfuscation by not revealing the information strategically. It
may be an interesting issue to compare social welfare in the two
cases and to examine the implications of the policy of the manda-
tory disclosure of priority information.

Of course, we admit that our simple model is still restrictive in
the sense that the decision of whom to give priority is, in reality,
determined by various other factors, in particular, heterogeneity in
contents in terms of the disutility from delay, the sensitivity of the
content requests to the possibility of delay, etc. Nonetheless, we
believe that our insight will be at least worth to the ISP who con-
siders prioritization when net neutrality is repealed.
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Proof of Proposition 1. Eq. (25) can be rewritten as

B8 (x5) = pF (o), (A1)

where @5 (x) = cp(x) +t(x —a) and PF(x) = cy(1 —x) +t(1 —x).
Total differentiation of (A.1) leads to

P1Sdx; + PpSda = pRdx,, (A2)

where ¢S = 998 PF = % and ¢ = 9" Erom (A.2), we ob-

dax 0x

LS
in @@ _ ¢ RS _ o _ S _
tain =7 _¢$5_¢%5>Obecause ¢ =—C,—t<0, P =c,+t>

0 and ¢55 = —t < 0.
Similarly, Eq. (26) can be written as ¢ (xy) = ¢fW (x,,) where
O (%) = cu(x) +t(x —a) and o™ (x) = cp(1 — x) +t(1 —x). By to-

. e d PRV
tal differentiation, we get "ga(”) = W > 0 because ¢ <0,

¢ >0 and ¢ < 0. (Note that the symbols “L” and “R” are
switched for the weak content because we find it more convenient
for proving Proposition 4.) O

24 Although we assume that users have inelastic demands for contents,
Economides and Hermalin (2012) allow variable demands for contents with respect
to the transmission time and argue that net neutrality is welfare superior to any
prioritization if the discounted utility function is concave by using Jensen'’s inequal-
ity. Kim (2022) also considered the case of variable demands and obtained a similar
result as Economides and Hermalin (2012) in a product differentiation model. See
Proposition 3 of Kim (2022).
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Proof of Proposition 2. From (11) and (12), we have
dpi(a)  , dxs(a) N (dxs(@)

da % da da 0,
dpj,(a)  , dxw(a) dxy(a)
da " da t da ~ 0,

due to ¢}, ¢; > 0 and Proposition 1. O

Proof of Proposition 3. Let cp(x) =ax+f and cu(y) =’y +
where @’ > o >0 and ' > B8 > 0. We assume that 8/ — 8>« to
be consistent with the assumption that c,(z) < (1 —2z) for any
ze(0,1).

(i) From (7) and (8), we have

_(+ot+a’+p - B

s 2t+a +o ’ (A3)
A+at+a+p-p
= . A4
v 2t+a +a (A4)
Note that %ias = %W. /’\150, if B/ — B > «, we can easily ctlleck that
Xs, Xw < 1 ifa<1—w. and x5, xw > a if a < %k 1).
Accordingly, we have
C(a) = cp(xs) +t(xs —a)
@+ +a)t+a' +p -]
- 2t+o +a +p-ta, (A5)
C"(a) = cu(xw) +t(xy —a)
@A +at+ta+B-1 L
= Nt ta + B’ —ta. (A.6)
Note that C5(0) = C%(0). Also, (A.5) and (A.6) lead to
C"(a) - C°(a) =A(1 +a)t + B,
where
(@ —a)
— A7
2t+o +a’ (A7)
’ _ AR — / [
p. WHD@+B-p)—(@+)(@+p -p) (AS)

2t+o’ +o

Since o’ > « it is clear that A > 0. Therefore, C¥(a) — C°(a) is in-
creasing in a.
(ii) This follows directly from (i), because C¥(0) = C5(0). O

ceov
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Proof of Proposition 4. Let z=1—-x. Egs. (25) and (26) are
rewritten as

__ M 1 _
F =) = o (X, (A.9)

U — XsA

m

=z +tzy = T Ty +t(1—a-zy),

(A.10)

where zy, = 1 — xy. Eqs. (A.9) and (A.10) can be rearranged into

0

M—xs/\:t(z"S_a_l)’ (A1)
L—t(Zz +a-1) (A12)
M*Zw)\_ v ’ '

where 6 = ﬁ > 0. If a=0, it follows from (A.11) and (A.12) that
Xs =2Zw =1 — Xy, i.e., Xs and x,y must be symmetric around 1, as-
suming the uniqueness of the solution. (The uniqueness will be
proved in Lemma 1.)

Let f(x) = MJM and g(x) = o f(x) where o = ;%5 > 1. Then,
we have

fx) = ﬁ >0, (A13)
2
') = (;,Lz—i)\kxﬁ > 0. (A.14)

Let the solutions for (A.9) and (A.10) given a be xs(a), zw(a) and
the corresponding x,, be x, (a). Figure 2 illustrates xs(a) and xy (a)
which are determined from (A.9) and (A.10) when a > 0.

Let us denote the left hand side (LHS) and the right hand side
(RHS) of (A.9) by ¢!5(x) and ¢®5(x) respectively, and denote LHS
and RHS of (A.10) by ¢ (z) and ¢ (2) respectively.

With a change in a, the solutions for xs(a) and z,(a) must
move along ¢®(x) and ¢ (z) respectively which are defined by

¢"(2) = f(2) +ty. (A15)
PR (x) =g(x) +t(1 - x). (A.16)
To elaborate on the definitions of C and C%, we have

C(a) = ™ (x5(a)) = 9" (x5(a)). (A17)
CY(a) = ™ (xw(a)) = ™ (xw(a)). (A18)

:ch‘(O) xw:(a)

1/2 9655(0)

x!(a) 1

Fig. 2. Comparison between C* and CV (a > 0).
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v 1/24+A
LU2HA 41 g
y 1/2—A
L1228 41— 1)
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v1/2-A
(e} x

—tx

Fig. 3. Comparison between ps(a) and py(a) (a > 0).

Then, we know that C5(0) = C%(0), i.e., ™ (x(0)) = ¢S (x5(0))
by symmetry between x;(0) and x,,(0). We also know that % =

dZW(O) d"‘g’éo) from (A.11) and (A.12). Also, by taking derivatives
of (A 15) and (A.16), we obtain

9™ (2) 99" (2) 32 ) _

o - ~f@+0=-f@-t.  (A19)
3¢3X(X) —gX)—t=0f(x)—t. (A20)
Now, let us compare C5(a) and C%(a). Since C5(0) =C"(0) and

dXs(O) dxw (0)

, we only need to compare changes in g(xs(a))
and f(zs(a)) in a, because the effects of a change in a on
the second terms of ¢™(z) and ¢®S(x) are the same. Since
gx >0 and f(2)>0 (e, YU _ /A0 _ gz _0)
it follows that CS(a) > C%(a) for any a > 0. (More specifically,
8(xs(a)) = 0 f(xs(a)) > 0 f(x5(0)) > f(zw(0)) > f(zw(a)),  since
f'(x) >0, x5(0) =z (0), xs(a) > xs(0) and z,(0) > zy(a) for any
a > 0.) This implies that p¥(a) < p},(a) forany a>0. O

Lemma 1. x;(0) and x,,(0) are unique if any.

Proof of Lemma 1. The uniqueness of xs(0) is clear from the ob-
servation that xs(0) is a solution for the quadratic equation (2x —
D —xA) = % where % > 1. Thus, due to symmetry, x,(0) is also
unique. 0

Proof of Proposition 5. Define ys(a) and yy (a) by

v k v ku
ys(a) = axs(l;) —t(xs(a) —a) = &m —t(1 —Xxs(a)),
(A.21)
ky v k
yw(a) = o X () —txw(a) —a) = aﬁi,(a) —t(1 —xw(a)).
(A.22)

Let kp = 2 + A and ky = 2 — A where A > 0. Consider the bench-
mark case that a = 0. Then, it is clear that y,,(0) = ys(0) because

10

xw(0) and x5(0) are symmetric around 1 . (See Fig. 3) If a > 0, xs(a)
and ys(a) are determined by (A.21), i

1_A
2
% (@) —-t(1

v1/24+A
o xs(a)

—t(xs(a) —a) = —xs(a)).
(A.23)

On the other hand, to compare y,(a) with ys(a), let z=1—x and
rewrite (A.22) in terms of z. Then, (A.22) can be rewritten as
v12-A vi+tA
e Y —zw(@) —a)=—
a1—z,(a) v -0 =g zw(a)
Let the solution of (A.24) be z,(a). Note that x;(0) = z,,(0) so that

ys(@) = g

—t(1

—tzy(a). (A.24)

¥s(0) = yw(0). Now, suppose that a is increased marginally from

a = 0. To compare % and %, define

oS a) = L12HA (), (A25)

OB ay= L1278 1y, (A.26)
a 1-

oW (7 )= L 1/12 ZA —t(d-z-a), (A27)

oW (7 = L12HA (A.28)
oz

Then, xs(a) and zy (a) satisfy

FS(x,a) = ®"(x,a) — d(x,a) =0 (A.29)

FY(z,a) = ®™(z,a) - @Y (z,a) =0 (A.30)

respectively. To compare % and %, we differentiate

(A.29) and (A.30) totally to get

Fidxs +tda=0 (A.31)

EVdz, +tda=0 (A.32)
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Fig. 4. Welfare Comparison under Linear Delay Cost.

where  F(x,a) = ®5(a) - @) and EY(z,a) =
®W (a). Therefore, it follows that
% __t
da = F
dzw _
da = EW’
where
124+4A 1/2-A
S _
E®x.a) = —[ a a2 +2t},
12+ A 1/2 A
w
EY(z. a) =—[ 2 (1 27 +2t].
Therefore, we obtain
0xs(a) t
= 1/2 A | 12-A ’

da o 2
dxw(a) _ dzu(@) _ t

9a  9da = 12+A

(1-x
To show that % > 8"5’#, it needs to show that
12+A  1/2-A 12+A 1/2-A
< ,
x? (1-x)2  (1—-xu)? X2,

or equivalently,

A)[(l—lxs)z_

= )2 <0 and

1 1 1
(1/2+A)[Xg ~da _xw)z} +(3-

Since xs(a) > 1—xw(a), we have xiz
S

Xiz > 0. Therefore, we only need to show that
w

1 1 1 1
V= [(1—x5)2 ‘xav}‘[(l—xwﬁ ‘xz} -0

Due to Lemma 2, we have

R 1 1 1 0
B KCET AR B PR (L]

D (a) -

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

]<0.

x2

<1x>2_

(A.39)

(A.40)

1

(1 —zs) +t(1—2)
(1= ay) +t(1 —x)
ps 1
since Xs + Xy > 1 implies that 5 — Xw < Xg — % Therefore, it follows

that d"gga) > d"ga(“) for any a > 0. Since xs(a) and zy(a) are deter-
mined on the curves ®&S(x, 0) and ®W (z, 0) which are symmetric

around % the proof is completed. (See Fig. 3) O
Lemma 2. Define h(x) = x2 +a x)2 for x e (0 1). Then, h(x) is
symmetric around x = % and K (x) z iffx= =
Proof of Proposition 6. We differentiate (A.29) with respect to A
and get
Fidxs + FAdA =0, (A41)
where Ff (x,a) = 1234 4 21/2 > +2t and F{ = 1 + . Thus, we
obtain
1 1
5+
= (a42)
+ (1 T +2t
Now, to find %, we have
PLs dxs(A)
— _q)LS S CI)LS
A xTaa TP
124+ A 1+ L1
——[ s r] s T4 <0 (A3)
+ (1 x)z +2t
To show that & dA < 0, we can see from (A.43) that we only need
to show that
1/2+A L2 gy

%)
1 1 1/2+A
(7+ﬁ)< v “)

1/24A 1/24A 1/2-A
Let x =x(}+ k) (1242 + 1) - [ 1242 +

Xs >

(A.44)

P a2t Zt]. We have

Xs 12+ A
= ——— 4+t -t>0, A.45
X T—x < 2 + > ( )
since X5 > 3 so that % > 1. This implies that ah) _ % <

0. O

Proof of Proposition 8. To compare SC°(a) and SC%(a), we first
compare the delay costs TS(a) and T%(a). Letting zyw = 1 — X, We
have

T(a) = 5@ pno 1-x(a)

+ s
H—=xs(@r - p—x(a)r
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wen _ Zw(@) u  1-zy(a)

O = @r Pz @i

Define H(x) =xf(x)+0(1 —x)f(x) =[x+0(1 —x)]f(x) where

fx) = u—lxk and o = ﬁ > 1. We have
H®) =1-0)f&) +[x+0-x)]f(x)

1 A
=(1—0)M_ k+lx+a(]_x)]m
_(-o)u+oi

(1 —xA)?
=0,

which implies that T5(a) = T%(a) for any a. This is mainly due to
Lemma 3(iii) of Choi and Kim (2010).

Now, we compare the transportation costs TC*(a) and TCY(a).
Let X be the marginal consumer who is indifferent between CP 1
and CP 2. From (38) and (39), we can write the total transportation
cost as

TC(R) = t[/a(a —X)dx + fi(x— a)dx + /1(1 —x)dx],
0 a X

= t[)?z —(1+a)f+a*+ %]
This is minimized at # = %! which can be attained under net neu-
trality.

To show that SC*(a) < SC%¥(a), it suffices to show that xs(a) —
X(a) < x(a) — xy(a) where x = ““ due to symmetry of TC(X)
around X = %

From (A.11) and (A.12), we have

)bz

+ 2t |dxs = tda, A.46

[(M—A)(M—xs)»)z } ; (A.45)
A d d

+ 2t |dzy, = —tda. A.47
[(M—k)(u—zw/\)z } v (A47)
Therefore, we obtain
X _ 1 1
=3y 0. (A48)
Xw Zw 1 1
da~ da~ 277 < *2 (A49)
where

)\2
X = 0,
E— M (i —xh)?
2
t( = A) (1 — zwA)?

Thus, we have
dxs  dxy
da + g = 1, (A.50)
implying that
dx; dx dx dxy
E_@<%_H’ (A.51)
where % = 1. This implies that x;(a) + xw(a) < 1+a, ie., xs(a) —

% < 1# —Xxw(a) by Lemma 3. By symmetry of TC(X) around
X= 12ﬂ it directly follows that TC’(a) < TCY(a), implying that
SCs(a) < SC¥(a). O

12

Information Economics and Policy 62 (2023) 101019

Lemma 3. (i) x;(0) + X, (0) = 1 and (ii) 5@ 4 2@ 1 —; iij)
xs(a) +xw(a) <1+a.

Proof of Lemma 3. (=) From (i), we have x;(0)+xw(0) =1
when a = 0. How, if a is increased by Aag, (ii) implies that

Axs(a) + Axy(a) < Aa
= (xs(a) —x5(0)) + (xw(a) —xw(0)) <a
= Xs(a) +xp(a) <x5(0) +x,(0) +a=1+a.

(<) This is trivial by differentiating (iii).
O

Proof of Proposition 9. We have

[ rxs 1 _
uszﬂf 1/2+Adx+/ 12-4
a|Jo Xs x 1=Xs

Vv
=9
[ rXw 1 _
UWZK/ 1/2+Adx+/ 12-4
O{_o Xw Xw 1_XW
_V
=

Thus, it remains to show that TCS(a) < TCY(a). From (A.52) and
(A.53), we have

dx; 1 1
% (1 . 1/2+A 12 5 € (0, j), (A.52)
/t) + {0 |t

dx., dz, 1 1

d@ T e 1ma @3- @)
( / ) (1*Xw)2 +

Therefore, it follows that

dx |, dxy _ 1

da = da At 1/2+A 12-8, 5
/ ) (17XS)2 +

! 1 (A.54)
<1, .

Tam[Ee s

which implies that % — 1 <1 — & je TCS(a) < TC"(a) for any

a > 0. This completes the proof. O
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