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a b s t r a c t 

Gautier and Somogyi (2020) showed that the monopolistic Internet service provider (ISP) can extract 

more surplus from consumers by giving priority to the weaker content to restore symmetry between 

content providers (CPs). In this study, we reexamine the issue and argue that their result depends criti- 

cally on the shape of the delay cost function. We first show that under a linear delay cost, if the delay 

cost of contents from each CP increases with its own traffic amount, the opposite is true, that is, the ISP 

prefers to give priority to a strong CP, whereas it prefers to give priority to a weak CP if the delay cost 

of contents from an unprioritized CP decreases with its traffic amount. We confirm our insight in two 

specific models; the M/M/1 queuing model and the bandwidth subdivision model. We also discuss some 

implications of the ISP’s prioritization choice for social welfare. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

The concept of net neutrality had a long history. In the era of 

he Roman Empire, all monopoly hostels, ports, and even surgeons 

n a community had an obligation to provide their services at a 

easonable price. This is known as the principle of common car- 

iage (common carrier) which is regarded as an essential element 

f net neutrality. This principle was adopted in the U.S. Communi- 

ations Act of 1934 and inherited in the U.S. Telecommunications 

ct of 1996, although whether Internet service providers (ISPs) 

hould be classified as Title I carrier with no common carrier obli- 

ation or Title II carrier with a common carrier obligation has been 

ontroversial. Formal net neutrality rules were established by Open 

nternet Order 2010 1 and propelled by Open Internet Order 2015 

hen the U.S. Federal Communications Commission (FCC) classi- 

ed ISPs as Title II carrier (common carriers). 

However, in 2017, the FCC repealed the net neutrality rules that 

arred ISPs from blocking or slowing Internet content or from of- 

ering paid “fast lanes.” It is still controversial whether ISPs should 

e forced to be neutral, that is, treat all traffic the same or should 

e allowed to prioritize certain services over others. Nevertheless, 
� This research was supported by the Ministry of Education of the Re- 

ublic of Korea and the National Research Foundation of Korea ( NRF- 

022S1A5A2A0304932311 ). We are grateful to the Editor Marc Bourreau and 

wo anonymous referees for their extremely helpful comments. 

E-mail address: jyookim@khu.ac.kr 
1 Roughly speaking, the net neutrality rules include no blocking, no throttling, 

nd no prioritization. 
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t seems clear that certain services such as YouTube or Netflix re- 

uire more bandwidth than others, that is, it seems sensible to 

rioritize such traffic because they would be almost unusable if 

treaming were subject to irregular delays. 

Under the current regime, without net neutrality, it is impor- 

ant to decide for which priority should be granted. In a recent 

tudy, Gautier and Somogyi (2020) compared the outcomes with 

nd without net neutrality when there is asymmetry between con- 

ent providers (CPs). They showed that an ISP can extract more sur- 

lus from consumers by privileging the relatively weaker content 

o restore symmetry between CPs. 2 In particular, with prioritiza- 

ion, 3 they showed that it is preferable for an ISP to give priority 

o weak CPs because the resulting price is higher than the price 

hen it gives priority to strong CPs. They used a specific function 

orm to model the effect of delay on the utility of end users. 

In this study, we argue that, in general, the priority of ISP grants 

rucially depends on the shape of the delay cost function. We show 

hat if the delay cost of contents from each CP increases with its 

wn traffic amount, the opposite is true, that is, the ISP prefers to 
2 This issue can be regarded as a special one of intermediate market price dis- 

rimination, that is, to which downstream producer a monopolistic input supplier 

hould give a favor. For input market price discrimination, DeGraba (1990) showed 

hat the input supplier gives a favor to a less efficient producer in the case of lin- 

ar demand, and Li (2014) argued that whether the monopolist gives a favor to the 

ore efficient downstream firm or a less efficient downstream firm depends on the 

hape of the demand function. 
3 Prioritization can be either paid or unpaid. Gautier and Somogyi (2020) assume 

hat prioritization is unpaid. We also follow this assumption in this paper. 

https://doi.org/10.1016/j.infoecopol.2023.101019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/iep
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infoecopol.2023.101019&domain=pdf
https://doi.org/10.13039/501100003725
mailto:jyookim@khu.ac.kr
https://doi.org/10.1016/j.infoecopol.2023.101019
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ive priority to the strong CP, whereas it prefers to give priority 

o the weak CP if the delay cost of contents from the unpriori- 

ized CP decreases with its traffic amount as in Gautier and Somo- 

yi (2020) . 4 

The intuition behind this is as follows. If the ISP grants pri- 

rity to the weak CP, there are two effects on the marginal end 

ser who uses contents from a strong CP, namely, a positive trans- 

ortation cost effect and a negative delay cost effect, because the 

raveling distance of the marginal end user is shorter but the de- 

ay cost is higher because of the absence of priority. However, the 

isadvantage in the delay cost (of content from the unprioritized 

P) outweighs the advantage in the transportation cost for any 

egree of asymmetry if the delay cost of contents from the un- 

rioritized strong CP (with higher demands) increases with the 

raffic amount. Consequently, the ISP will find it better to grant 

riority to the strong content. On the other hand, if the delay 

ost decreases with the traffic amount, the converse is true; the 

isadvantage in the delay cost is outweighed by the advantage 

n the transportation cost, meaning that it is better for the ISP 

o grant priority to weak content. We then examine our insight 

n two specific models; the M/M/1 queuing model of Choi and 

im (2010) and Cheng et al. (2011) , and the bandwidth subdivi- 

ion model of Economides and Hermalin (2012) . It turns out that 

he M/M/1 model corresponds to the latter case, while the band- 

idth subdivision model corresponds to the former. we We obtain 

he contrasting results that the ISP prefers to grant priority to the 

eak CP for any level of asymmetry in the queuing model, whereas 

t prefers to grant priority to the strong CP for any level of asym- 

etry in the bandwidth subdivision model. 

We also obtain some policy implication by comparing social 

elfare when priority is granted to the weak CP and to the strong 

P. We first show under a linear delay cost that if the delay cost 

f contents from each CP increases with its own traffic amount, it 

s socially optimal as well as privately optimal to grant priority to 

he strong CP, although the welfare comparison is ambiguous if the 

elay cost of contents from the unprioritized CP decreases with its 

raffic amount. We then show that in the queuing model, there is 

 conflict between the private incentive and the social incentive 

n terms of which CP is given priority. An ISP may grant priority 

o the weak CP in equilibrium, even though this is actually wel- 

are inferior to the outcome when it grants priority to the strong 

P. On the other hand, in the bandwidth subdivision model, it is 

rivately and socially better for the ISP to prioritize the strong CP. 

owever, in both models, it is socially worse than the outcome un- 

er net neutrality, regardless of who is given priority. This implies 

hat regulation of net neutrality is needed in terms of static social 

elfare. 5 

The remainder of this paper is organized as follows. In 

ection 2 , we provide an analysis of the model with a linear delay

ost to examine the ISP’s incentive to prioritize. In Section 3 , we 

onsider two specific models, the M/M/ 1 queuing model and the 

ubbandwidth model to address the issue. Section 4 discusses so- 

ial welfare. Finally, concluding remarks and caveats are presented 

n Section 5 . 
4 Gautier and Somogyi (2020) make the assumption that the quality of contents 

rom the unprioritized CP increases with its market share, which is essentially 

quivalent to the assumption that the delay cost of the traffic from the unpriori- 

ized CP decreases with its market share. 
5 In an earlier version, we examined the ISP’s dynamic incentive to invest in net- 

ork capacity along the line of Choi and Kim (2010) , Krämer and Wiewiorra (2012) , 

ourreau et al. (2015) , and Choi et al. (2018) , and showed that the ISP prefers pri- 

ritize the strong CP in the queuing model and the weak CP in the subbandwidth 

odel in terms of dynamic incentives to invest, contrary to the static preference of 

he ISP who prefers to prioritize the weak CP in the queuing model and the strong 

P in the subbandwidth model. 
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2 
. Model 

End users (consumers) are uniformly distributed over [0 , 1] . 

o, the mass of end users is normalized to one. CP 1 and CP 2

re located in x 1 = a and x 2 = 1 respectively where a ∈ (0 , 1) à la

autier and Somogyi (2020) . Each end user located at x requests 

ne unit of contents from at most one content provider by travel- 

ng to x 1 or x 2 and gets some valuation v , implying that the sum

f consumers who receive contents from CP 1 and CP 2 is one in 

hich case the market is fully covered, or less than one in which 

ase the market is partially covered. The unit transportation cost is 

, so the traveling cost of the end user located at x is t| x i − x | . For

he time being, we restrict our attention to the case in which the 

arket is fully covered. 

End users get disutility from delay as well as utility when they 

eceive contents. Without net neutrality, delay costs depend on 

hich contents are prioritized, what proportion is prioritized, etc. 

ecause delay from congestion will be increasing in the amounts 

f traffic from each CP. We denote the delay cost of consumers 

ho receive contents from CP i with the market share z i by c i (z i ) . 
6 

ue to the possibility of congestion by limited network capac- 

ty denoted by κ(< 1) , we assume that c ′ 
i 
(z i ) > 0 in case that

 1 + z 2 = 1 > κ . Under net neutrality, we assume that c i (. ) = c(. )

or i = 1 , 2 . We also assume that c i (z i ) < c j (z j ) (where j � = i ) for

ny z i , z j ∈ (0 , 1) such that z 1 + z 2 = 1 , when a priority is given to

P i . 7 

We consider the following sequence of events. First, the ISP de- 

ides to which CP it will give priority on an unpaid basis and then 

ets the connection price for end users. Then, after forming expec- 

ations about the market share of each CP, 8 end users decide from 

hich CP they request contents. 9 

Let V i (x ) be the net valuation of a consumer located at x who

uys contents from CP i . Then, we have 

 1 (x ) = v − c 1 (z e 1 ) − p − t| x − a | , (1)

 2 (x ) = v − c 2 (z e 2 ) − p − t(1 − x ) , (2)

here z e 
i 

is the expectation about the market share of CP i and p

s the common price that the monopolistic ISP charges to all con- 

umers. 

We first consider the case in which the market is fully covered. 

he two content providers are not symmetric in the sense that CP 

 has a higher demand than CP 2 at the common price, because 

 > 0 . So, we call CP 1 and CP 2 a strong CP and a weak CP re-

pectively à la Gautier and Somogyi (2020) . 

To analyze the sequential game by backward induction, we first 

xamine the consumers’ purchasing decisions. If the ISP grants pri- 

rity to CP 1 (strong CP), we denote the marginal consumer, if any, 

ho is indifferent between buying from CP 1 and CP 2 by x s which

s determined by 

 1 (z e 1 ) + t(x s − a ) = c 2 (z e 2 ) + t(1 − x s ) . (3)

hroughout the paper, we will assume that users’ expectations are 

ctually fulfilled. The assumption of fulfilled expectations implies 
6 Of course, the average time to transmit contents from CP i depends on z j as 

ell as z i , but since z j = 1 − z i in the case of full market coverage, c i (z i ) = ̃  c i (z i , 1 −
 i ) can be interpreted as a reduced form. 

7 These assumptions on c i (z i ) hold in the M/M/1 queuing model of Choi and 

im (2010) and Cheng et al. (2011) which will be reexamined in Section 3 . 
8 The assumption on the sequence in the subgame that follows the ISP’s deci- 

ion is not crucial. The equilibrium outcome remains unaffected even if we assume 

hat users’ expectations and decisions are made simultaneously insofar as they form 

orrect expectations. 
9 Note that the ISP determines whom to give priority. Since we assume unpaid 

rioritization just as in Gautier and Somogyi (2020) , CPs have no means to compete 

such as a price bid for a priority) to obtain priority. 
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11 As an anonymous referee correctly pointed out, without the assumption of full 

market coverage, the ISP may find it profitable to charge a price that makes the 

market only partially covered, if the users’ demand for Internet access is inelastic. 

The possibility of partial market coverage will be discussed in the end of this sec- 
hat z e 
1 

= z 1 = x s and z e 
2 

= z 2 = 1 − x s . So, we obtain 

 s = 

1 + a 

2 

+ 

1 

2 t 
[ c 2 (1 − x s ) − c 1 (x s )] . (4) 

n the other hand, if the ISP grants priority to CP 2 (weak CP), 

 w 

which is similarly defined as the marginal consumer indifferent 

etween buying from CP 1 and CP 2 is determined by 

 1 (z 1 ) + t(x w 

− a ) = c 2 (z 2 ) + t(1 − x w 

) , (5)

here z 1 = x w 

and z 2 = 1 − x w 

. Accordingly, we obtain 

 w 

= 

1 + a 

2 

+ 

1 

2 t 
[ c 2 (1 − x w 

) − c 1 (x w 

)] . (6) 

rom now on, we will denote the cost functions from the priori- 

ized CP and from the un-prioritized CP by c p (. ) and c u (. ) respec-

ively. So, if CP 1 is given priority, c p (. ) = c 1 (. ) and c u (. ) = c 2 (. ) ,

hile c p (. ) = c 2 (. ) and c u (. ) = c 1 (. ) if CP 2 is given priority. In any

ase, by assumption, we have c p (z) < c u (1 − z) . By using this nota-

ion, we can rewrite (4) and (6) that determine the interior solu- 

ions 10 x i ∈ (a, 1) for i = s, w as 

 s = 

1 + a 

2 

+ 

1 

2 t 
[ c u (1 − x s ) − c p (x s )] , (7) 

 w 

= 

1 + a 

2 

+ 

1 

2 t 
[ c p (1 − x w 

) − c u (x w 

)] . (8) 

ote that the marginal consumer is x ∗ = 

1+ a 
2 under net neutrality, 

ecause c 1 (x ) = c 2 (x ) for all x . Equations (7) and (8) imply that

 w 

< x ∗ < x s because c u (1 − x ) > c p (x ) for any x under prioritiza-

ion. 

roposition 1. (i) x w 

(a ) < x ∗(a ) < x s (a ) for any a ∈ (0 , 1) . (ii) x s (a )

nd x w 

(a ) increase in a . 

It is clear that if priority is granted to CP 1, its market share is

ncreased ( x s > x ∗). It is also clear that if priority is granted to the

ther CP, the market share of CP 1 is reduced, because its increased 

elay cost gives CP 1 relative disadvantage. The intuition for the 

econd result is also clear. As a is larger, i.e., the demand for CP 1

s larger, the market share of CP 1 will be larger, regardless of who

s granted priority. 

Now, we consider the pricing decision of the monopoly ISP. Let 

p s (or p w 

respectively) be the price of the ISP when it grants pri-

rity to strong CP (or weak CP respectively). The conditions for full 

arket coverage (i.e., z 1 + z 2 = 1 ) in two cases – which will be

alled individual rationality (IR) conditions – are that for i = 1 , 2 ,

 i (x s ) = v − c p (x s ) − p s − t(x s − a ) 

= v − c u (1 − x s ) − p s − t(1 − x s ) ≥ 0 , (9) 

 i (x w 

) = v − c u (x w 

) − p w 

− t(x w 

− a ) 

= v − c p (1 − x w 

) − p w 

− t(1 − x w 

) ≥ 0 . (10) 

rom (9) and (10) , the profit-maximizing ISP will choose a price 

p ∗s = v − c p (x s ) − t(x s − a ) = v − c u (1 − x s ) − t(1 − x s ) , (11)

f a strong CP is given priority and 

p ∗w 

= v − c p (1 − x w 

) − t(1 − x w 

) = v − c u (x w 

) − t(x w 

− a ) (12)

f a weak CP is given priority. These prices make two (IR) condi- 

ions binding and maximize the profit of the ISP, given that the 
10 For linear functions c p (x ) = αx + β and c u (y ) = α′ y + β ′ , a sufficient condi- 

ion guaranteeing interior solutions, x s , x w ∈ (a, 1) , is that β ′ − β = α, a < 1 and 

 < 

t 
t+ α′ −α . For detailed derivations, see the proof of Proposition 3 in Appendix A . 

t

c

a

t

3 
arket is fully covered. 11 The equilibrium prices p ∗s and p ∗w 

de- 

end on a , and in fact, both of them are increased with respect

o an increase in a . 

roposition 2. p ∗s (a ) and p ∗w 

(a ) increase in a . 

The intuition behind this proposition goes as follows. As a is 

arger, the transportation cost of the marginal consumer when he 

uys from CP 2 is lower because x ∗s (a ) and x w 

(a ) increase in a ,

eaning that his net valuation of receiving contents (aside from 

he price p) is higher. This implies that the ISP can raise the price

o extract all the consumer surplus of the marginal consumer. Also, 

his argument holds whether priority is granted to a strong CP or 

 weak CP. 

However, the degree of a change in net valuation with respect 

o a change in a depends on which CP is given priority, and so 

ould the degree of a change in the equilibrium prices. The fol- 

owing proposition may give some insight for the question. 

roposition 3. Let C s ≡ c p (x s ) + t(x s − a ) and C w = c u (x w 

) + t(x w 

−
 ) . If c p (·) and c u (·) are linear in their arguments with c ′ u (z) >

 

′ 
p (z) > 0 for any z ∈ (0 , 1) , (i) C w − C s is increasing in a , and (ii)

he ISP prefers to grant priority to the strong CP for any a > 0 . 

The two costs C s and C w are the total costs that the marginal 

onsumer x s and x w 

bear when priority is given to the strong CP 

nd the weak CP respectively. This proposition implies that as a 

ets larger, the marginal consumer’s cost gets higher when priority 

s given to the weak CP relative to when priority is given to the 

trong CP. This means that the ISP is more likely to grant priority to 

he strong CP as a is larger, because it can charge a higher price. 12 

roposition 3 says that it turns out that the ISP finds it better to 

rant priority to the strong CP for any a > 0 if the delay costs are

inear and c ′ u (z) > c ′ p (z) > 0 . 

To see this, Eqs. (11) and (12) , which can be rewritten as 

p ∗s (a ) = v − C s (a ) and p ∗w 

(a ) = v − C w (a ) , imply that p ∗s (a ) > p ∗w 

(a )

f and only if C w (a ) > C s (a ) . Since C w (0) = C s (0) , Proposition 3 (ii)

irectly follows from Proposition 3 (i). Contrary to Gautier and So- 

ogyi (2020) , the monopolist will find it to its advantage to grant 

riority to a strong CP rather than a weak CP for any a > 0 . 

To elaborate, let c p (x ) = αx + β and c u (y ) = α′ y + β ′ where x

nd y are traffic volumes of the prioritized contents and the unpri- 

ritized contents respectively, α′ > α > 0 , and β ′ ≥ β ≥ 0 . The as- 

umption that c p (z) < c u (1 − z) for any z ∈ (0 , 1) can be satisfied

f β ′ − β ≥ α. So, to be consistent with this assumption, we only 

onsider the case that β ′ − β ≥ α. We have 

 

w − C s = c u (x w 

) + t(x w 

− a ) − [ c p (x s ) + t(x s − a )] 

= c u (x w 

) − c p (x s ) + t(x w 

− x s ) 

= (α′ x w 

− αx s + β ′ − β) + t(x w 

− x s ) . (13) 

he first term of (13) is a disadvantage in the delay cost of the 

arginal consumer using CP1 when priority is given to the weak 

P, while the second term of (13) is an advantage in the traveling 

ost ( x w 

− x s < 0 ). As a gets larger, we have 

∂(C w − C s ) 

∂a 
= 

(
α′ ∂x w 

∂a 
− α

∂x s 

∂a 

)
+ t 

(
∂x w 

∂a 
− ∂x s 

∂a 

)
. (14) 
ion. 
12 If a is too large, the market may not be fully covered because the end user lo- 

ated at x = 0 would not want to purchase from neither CP. Assumption 1 of Gautier 

nd Somogyi excludes the possibility. We also maintain this feature by assuming 

hat a cannot be too large. 
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Fig. 1. Demand Functions for CP 1 and CP 2 (blue: when strong CP is prioritized) (red: when weak CP is prioritized). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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ince ∂x w 
∂a 

= 

∂x s 
∂a 

> 0 under the linear delay cost, 13 the sign of the 

rst term is positive if α′ > α, while the sign of the second term is

ero. This means that the disadvantage in the delay cost gets larger, 

hile the advantage in the traveling cost remains the same. This 

mplies that the ISP finds it better to give priority to the strong CP 

or any a > 0 . 

Next, we consider the case in which the market is partially 

overed. If the ISP raises the connection price above p ∗s (or p ∗w 

) 

hen it grants priority to a strong CP (or a weak CP respectively), 

he market is not fully covered. For p > p ∗s , define x s, 1 and x s, 2 
y 

 1 (x s, 1 ) = v − p − c p (x s, 1 ) − t(x s, 1 − a ) = 0 , (15)

 2 (x s, 2 ) = v − p − c p (1 − x s, 2 ) − t(1 − x s, 2 ) = 0 . (16)

hen, x s, 1 and x s, 2 determine the demand for CP 1 and CP 2 

iven p when a strong CP (CP1) is given a priority. Note that 

onsumers located at x ∈ (x s, 1 , x s, 2 ) buy contents from neither 

P. 

Similarly, for p > p ∗w 

, we can define x w, 1 and x w, 2 by 14 

 1 (x w, 1 ) = v − p − c u (x w, 1 ) − t(x w, 1 − a ) = 0 , 14 (17)

 2 (x w, 2 ) = v − p − c u (1 − x w, 2 ) − t(1 − x w, 2 ) = 0 , (18)

hile consumers located at x ∈ (x w, 1 , x w, 2 ) request contents from 

either CP. 

Figure 1 shows the demand functions for CP 1 and CP 2. Note 

hat the market is not fully covered if p > p ∗s when CP 1 is given

riority and p > p ∗w 

if CP 2 is given priority. We will find the con-

ition for Proposition 3 to hold, i.e., a sufficient condition under 

hich raising the price from p ∗s or p ∗w 

slightly will not increase the 

rofit of the monopolistic ISP. 

In the case in which the ISP slightly raises the price from p ∗s so

hat the market is only partially covered, 15 the total demand for 
13 This is easily shown from (A.5) and (A.6) in the proof of Proposition 3 in 

ppendix A . 
14 The market share for CP 1 is x w, 1 only if a is not too large, as we argued in 

ootnote 11. 
15 If the price is so high that z 1 + z 2 < κ , the congestion problem does not occur. 

o focus only on the case that the network is congested, we only consider a small 

eviation from p ∗s and p ∗w . 

w

m

g

L

4 
nternet connection can be computed as 

 (p) = x s, 1 (p) + (1 − x s, 2 (p)) 

= 

v − p − β + at 

α + t 
+ 

v − p − β ′ 
α′ + t 

, (19) 

hen priority is given to the strong CP. The first term is the de- 

and of consumers using CP 1 and the second term is the demand 

f consumers using CP 2. Then, from the profit of the ISP which is 

= pD (p) , we can obtain 

′ (p ∗s ) = 

v − p ∗s − β + at 

α + t 
+ 

v − p ∗s − β ′ 
α′ + t 

− p ∗s 

(
1 

α + t 
+ 

1 

α′ + t 

)
. 

(20) 

s is well known, if the ISP charges the price slightly, it has two 

ffects; the effect of increasing revenue by the price (the first term) 

nd the effect of reducing the demand (the second effect). From 

p ∗s (a ) = v − C s (a ) where C s (a ) is found from (A.5) , the condition

or π ′ (p ∗s ) < 0 is reduced to 

 > 2 

(α + t)[(1 + a ) t + α′ + β ′ − β] 

2 t + α′ + α
+ 2(β − at) −

β−at 
α+ t + 

β ′ 
α′ + t 

1 
α+ t + 

1 
α′ + t 

. 

(21) 

t is clear that (21) holds if v is large enough. Intuitively, if v is very

arge, p ∗s is high so the second term which is the demand-reducing 

ffect outweighs the first term which is the revenue-increasing ef- 

ect. Hence, the profit is reduced. 

Similarly, if priority is given to the weak CP, 

 (p) = x w, 1 (p) + (1 − x w, 2 (p)) 

= 

v − p − β ′ + at 

α′ + t 
+ 

v − p − β

α + t 
, (22) 

nd thus, the condition for p ∗w 

to be optimal is that 

′ (p ∗w 

) = 

v − p ∗w 

− β ′ + at 

α′ + t 
+ 

v − p ∗w 

− β

α + t 

−p ∗w 

(
1 

α + t 
+ 

1 

α′ + t 

)
< 0 , (23) 

hich is also satisfied if v is large enough. 

Finally, it deserves to notice the crucial difference in this 

odel and Gautier and Somogyi (2020) . Gautier and Somo- 

yi (2020) model disutility from delay as a quality degradation. 

et q be the quality of CP i and κ is the network capacity. They 
i 
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ssume q 1 = 1 and q 2 = 

κ−x 1 
x 2 

when x 1 < κ and q 1 = 

κ
x 1 

≤ 1 and

 2 = 0 when x 1 ≥ κ if the ISP grants priority CP 1. If the market

s covered, i.e., x 1 + x 2 = 1 , this implies that q ′ 2 (x 2 ) > 0 because

 2 = 

κ−(1 −x 1 ) 
x 2 

= 1 − 1 −κ
x 2 

when x 1 < κ . On the other hand, we as-

umed that c ′ 1 (x 1 ) > 0 and c ′ 2 (x 1 ) < 0 , or equivalently, c ′ 1 (x 2 ) < 0

nd c ′ 
2 
(x 2 ) > 0 if x 1 + x 2 = 1 . This is contrasted with the assump-

ion of Gautier and Somogyi (2020) in the sense that the utility of 

P 2’s consumer is decreased as CP 2’s market share increases. 

If we adopt an alternative assumption that c ′ 2 (x 2 ) < 0 as in

autier and Somogyi (2020) , i.e., we assume that c u (x 2 ) = α′ x 2 +′ where α′ < 0 < α, the signs in (14) are reversed. Since α′ < 0 ,

e have α′ ∂x w 
∂a 

− α ∂x s 
∂a 

< 0 while ∂x w 
∂a 

− ∂x s 
∂a 

= 0 , so that ∂C w 

∂a 
< 

∂C s 

∂a 
. 

hat is, when priority is given to the weak CP, the disadvantage in 

he delay cost gets smaller as a gets larger, while the advantage in 

he traveling cost remains the same. This implies that it is better 

or the ISP to give priority to the weak CP as a gets larger. This

eans that it is always better to give priority to the weak CP re-

ardless of a if α′ < 0 , i.e., if the delay cost of contents from the

nprioritized CP decreases as its traffic amount increases (corre- 

pondingly, as the traffic from the prioritized CP decreases). 

. Specific models 

In this section, we consider two specific models of prioritization 

epending on different assumptions on the delay cost functions. 

.1. M/M/1 queuing model 

Choi and Kim (2010) and Cheng et al. (2011) use the M/M/1 

ueuing model to model congestion and delay in data transmis- 

ion. In this section, we consider the delay cost functions that can 

e derived from the M/M/1 queuing model. For asymmetry be- 

ween content providers, we follow the model of Gautier and So- 

ogyi (2020) . 

Under net neutrality, both the interarrival time of content re- 

uests and the service time of the Internet service provider (ISP) 

ollow exponential distributions with λ and μ. That is, the mean 

f the time between content requests is 1 /λ and the mean of the 

ervice time is 1 /μ. As usual, we assume that μ > λ to avoid the

ossibility that the waiting time will explode. 

On the other hand, under no net neutrality allowing prioriti- 

ation, the total amounts of content requests from CP 1 and CP 

 are ˜ λ1 = ˜ x λ and 

˜ λ2 = (1 − ˜ x ) λ respectively where ˜ x is the ratio 

f users who request contents from CP 1, if we assume that λ is 

reserved after prioritization. 16 Under the preemptive priority sys- 

em, 17 if CP 1 is granted priority, ˜ x is determined by 

 p ( ̃  x ) + t( ̃  x − a ) = c u (1 − ˜ x ) + t(1 − ˜ x ) , (24)

here c p ( ̃  x ) = 

1 
μ− ˜ x λ

and c u (1 − ˜ x ) = 

μ
μ−λ

1 
μ− ˜ x λ

. Note that c ′ u ( ̃  y ) < 0 ,

here ˜ y = 1 − ˜ x is the market share of the unprioritized CP. So, this 
16 If net neutrality is repealed, users expect the contents they request to be trans- 

itted faster if the contents have priority, and thus they will demand more con- 

ents with priority. This implies that the request rate for prioritized contents will 

e generally higher than the request rate for unprioritized contents or contest un- 

er net neutrality. Thus, Kim (2022) adopts the alternative assumption that if CP 

 is granted priority and CP 2 is not, λ1 > λ2 , since prioritized contents will be 

ore frequently requested. This corresponds to the case of the variable demand in 

autier and Somogyi (2020) , while the assumption that λ1 = λ2 = λ corresponds to 

he case of the fixed demand. 
17 In the preemptive priority system, the service of a content request that is al- 

eady being processed is interrupted and superseded by the prioritized content, 

hile it is not interrupted by the arrival of the content request with priority in 

he non-preemptive priority system. Although Choi and Kim (2010) claim that the 

ollowing waiting times are obtained under the assumption of the non-preemptive 

riority system, they are, in fact, the ones that can be obtained under the preemp- 

ive priority system. See Kim (2022) . 
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5 
elay cost corresponds to the assumption of Gautier and Somo- 

yi (2020) . 

We compare two cases; the case in which the ISP grants prior- 

ty to a strong CP and the case in which the ISP grants priority to

 weak CP. Let x s and x w 

be ˜ x when priority is given to a strong CP

nd a weak CP respectively. Then, x s and x w 

must satisfy 

 

s 
1 + t(x s − a ) = T s 2 + t(1 − x s ) , (25) 

 

w 

1 + t(x w 

− a ) = T w 

2 + t(1 − x w 

) , (26) 

here 

 

s 
1 = 

1 

μ − x s λ
, (27) 

 

s 
2 = 

μ

μ − λ
T s 1 = 

μ

μ − λ

1 

μ − x s λ
, (28) 

 

w 

2 = 

1 

μ − (1 − x w 

) λ
, (29) 

 

w 

1 = 

μ

μ − λ
T w 

2 = 

μ

μ − λ

1 

μ − (1 − x w 

) λ
. (30) 

ere, T s 
i 

and T w 

i 
are the expected waiting time of contents from 

P i ( i = 1 , 2 ) when priority is given to a strong CP and a weak CP

espectively. It is easy to see that c p (. ) = T s 
1 
(. ) = T w 

2 
(. ) and c u (. ) =

 

w 

1 (. ) = T s 
2 
(. ) in this specific model. 

To compare p ∗s and p ∗w 

, we only need to compare C s = T s 
1 

+
(x s − a ) and C w = T w 

1 
+ t(x w 

− a ) by using the equilibrium values 

f x s and x w 

which can be obtained from (25) and (26) . 

As we saw in the previous section, granting priority to a CP en- 

ails two effects, the effect on the transportation cost and the ef- 

ect on the delay cost. If the ISP grants priority to a strong CP, two

onflicting effects on the marginal consumer who uses CP 1 oc- 

ur. On one hand, it has a positive effect on the delay cost, and 

n the other hand, it has a negative effect on the transportation 

ost, because x s > x w 

implies that the marginal consumer’s travel- 

ng distance to x = a is longer. However, the following proposition 

hows that the first effect is outweighed by the second effect in 

his model for any a . 

roposition 4. p ∗s (a ) < p ∗w 

(a ) for any a in the M/M/ 1 model. 

This proposition implies that it is always better to give prior- 

ty to the weak content in the M/M/1 queuing model. To see this, 

ompare the total cost of the marginal consumer when he uses 

rivileged contents. If priority is given to the weak CP, the delay 

ost for the prioritized CP is lower because 1 
μ−(1 −x w (a )) λ

< 

1 
μ−x s (a ) λ

ue to the lower volume of traffic, although the transportation 

ost is higher because t(1 − x w 

(a )) > t(x s (a ) − a ) by (A.50) and

emma 3 (in Appendix A ). We can confirm a tradeoff between 

he delay cost and the transportation cost that was identified in 

ection 2 . 

The main driving force for Proposition 4 is that c ′ u ( ̃  y ) < 0 . Intu-

tively, under this feature, the utility of consumers using unpriori- 

ized contents increases as the traffic of the unprioritized contents 

ncreases as in Gautier and Somogyi (2020) . We know that the traf- 

c of unprioritized contents is 1 − x s when priority is given to the 

trong CP, while the traffic is x w 

if priority is given to the weak CP.

e have x w 

(a ) > 1 − x s (a ) for any a > 0 . The traveling cost of the

arginal consumer to the unprioritized CP is also lower when the 

eak CP has priority, because x w 

− a < 1 − x s . 
18 After all, when pri-

rity is given to the weak CP, the utility of the marginal consumer 
18 We need to prove this for completing the proof of Proposition 4 , but the 

ppendix A provides an alternative proof of Proposition 4 . 
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f requesting unprioritized contents is higher and accordingly the 

rice that makes the (IR) condition binding (i.e., that makes the 

arginal consumer’s net valuation zero) is higher. 

.2. Bandwidth subdivision model of economides and hermalin 

Economides and Hermalin (2012) model prioritized service and 

elay in a different way. 19 Let k be a bandwidth that can be inter-

reted as the capacity of the ISP’s content transmission. Also, let k p 
nd k u be the sub-bandwidths allocated to contents from the prior- 

tized CP and the unprioritized CP respectively, where k p + k u = k 

nd k p > k u . So, unlike the M/M/1 queuing model in which the ISP

rocesses prioritized contents before unprioritized contents, prior- 

tized contents and unprioritized contents are assumed to use sep- 

rate portions of the bandwidth (fast lane and slow lane, respec- 

ively). 

We consider the following congestion model under unpaid pri- 

ritization à la Economides and Hermalin (2012) . First, given k p 
nd k u , 

20 the ISP decides whom to grant priority by allocating k p 
nd then chooses the connection fee for end users p. Second, end 

sers choose from which CP they request contents. 

We assume that the valuation v for one unit of contents that 

ach end user requests is discounted by the average transmission 

ime. Let the adjustment factor be ρ(τi ) = ρτi , 
21 where ρ > 0 , τ =

x i 
k i 

is the average transmission time of contents from CP i and x i 

s the total amount of contents from CP i . 22 Then, the discounted 

aluation from the service of CP i is v 
ρτi 

. For simplicity, we assume 

hat k = 1 which is equal to the size of end users (the total amount

f traffic), implying that k p > 

1 
2 > k u . 

By abusing notation, let x s (a ) and x w 

(a ) be the location of the

orderline end user who is indifferent between two CPs when the 

SP grants priority to the strong CP and the weak CP respectively. 

ssuming that v is large enough to cover the whole market, we can 

nd x s (a ) and x w 

(a ) by the following two Eqs. (31) and (32) re-

pectively; 

v 
ρ

k p 

x 
− t(x − a ) = 

v 
ρ

k u 

1 − x 
− t(1 − x ) , (31) 

v 
ρ

k u 

x 
− t(x − a ) = 

v 
ρ

k p 

1 − x 
− t(1 − x ) . (32) 

et v u (y ) = 

v 
ρ

k u 
y . Then, v ′ u (y ) = − v 

ρ
k u 
y 2 

< 0 . So, this is essentially

quivalent to the assumption that c ′ u (y ) > 0 , unlike the case of

autier and Somogyi (2020) . 

Let p ∗s (a ) and p ∗w 

(a ) be the prices that maximize the profit of

he ISP when it grants priority to the strong CP and to the weak 

P respectively. Then, the conditions for full market coverage imply 

hat 

v 
ρ

k p 

x s 
− p s − t(x s − a ) = 

v 
ρ

k u 

1 − x s 
− p s − t(1 − x s ) = 0 , (33) 

v 
ρ

k u 

x w 

− p w 

− t(x w 

− a ) = 

v 
ρ

k p 

1 − x w 

− p w 

− t(1 − x w 

) = 0 , (34) 

o that the profit-maximizing prices will be 

p ∗s (a ) = 

v 
ρ

k p 

x s 
− t(x s − a ) = 

v 
ρ

k u 

1 − x s 
− t(1 − x s ) , (35) 
19 Hermalin and Katz (2007) discuss the issue of net neutrality in terms of pro- 

iding different qualities rather than providing different priorities. 
20 We will briefly discuss the issue of how to allocate the bandwidth k to the 

rioritized CP and the unprioritized CP, i.e., how to determine k p and k u at the end 

f this section. 
21 The adjustment factor ρ(τi ) is defined slightly differently from Economides and 

ermalin (2012) who assume that ρ(τi ) is decreasing in τi . 
22 Since we assume that each end user requests one unit of contents, the total 

mount of contents from CP i is the same as the size of end users who request 

rom CP i . 

d
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t

6 
f a strong CP is given priority and 

p ∗w 

(a ) = 

v 
ρ

k u 

x w 

− t(x w 

− a ) = 

v 
ρ

k p 

1 − x w 

− t(1 − x w 

) (36) 

f a weak CP is given priority. 

The following proposition shows that the ISP prefers to priori- 

ize the strong CP in this congestion model, contrary to the M/M/1 

ueuing model. 

roposition 5. p ∗s (a ) > p ∗w 

(a ) for any a > 0 and for any k p , k u such

hat k p > k u in the congestion model of Economides and Herma- 

in (2012) . 

It is interesting that the result obtained in the queuing model 

s reversed in this model. To make comparison easy, compare the 

otal costs of the marginal consumer only when he uses unpriori- 

ized contents. The discounted valuation is higher when priority is 

iven to the strong CP, because k u 
1 −x s 

> 

k u 
x w 

, but the transportation 

ost is also higher, because t(1 − x s ) > t(x w 

− a ) . Again, we can see

he tradeoff between the delay cost and the transportation cost. 

To see this more clearly, let V s and V w be the net valuations 

hat the marginal consumer ( x s and x w 

) enjoys from using unpri- 

ritized contents when priority is given to the strong CP and the 

eal CP respectively. Then, we have 

 

s = 

v 
ρ

k u 

1 − x s 
− t(1 − x s ) , 

 

w = 

v 
ρ

k u 

x w 

− t(x w 

− a ) . 

When priority is given to the strong CP, the distance in the 

raveling cost is clearly higher because 1 − x s > x w 

− a . If the dis-

ounted utility were lower when the traffic amount is lower ( 1 −
 s < x w 

) as in the M/M/ 1 queuing model, it would be unambigu- 

usly better for the ISP to grant priority to the weak CP. How- 

ver, the discounted utility from the lower traffic is higher because 

 

′ 
u (y ) < 0 in this subbandwidth model. So, it is possibly better for

he ISP to grant priority to the strong CP. Then, why does the ISP 

refer to grant priority to the strong CP for any a > 0 ? In other

ords, what is the main driving force for obtaining the completely 

pposite results in the queuing model and in the subbandwidth 

odel? The essential difference between the two models is that 

n increase in the delay cost of prioritized contents due to an in- 

rease in the traffic also increases the delay cost of unprioritized 

ontents in the queuing model, whereas an increase in discount- 

ng for prioritized contents decreases discounting for unprioritized 

ontents. If x p is the traffic from the prioritization CP, delay costs 

f the prioritized contents and unprioritized contents ( 1 
μ−x p λ

) and 

 

μ
μ−λ

1 
μ−x p λ

) both increase in x p in the queuing model, whereas 

iscounting for prioritized contents, 
x p 

1 / 2+
 , increases in x p but dis- 

ounting for unprioritized contents, 1 − ˜ x 
1 / 2 −
 , decreases in x p . 

Under the M/M/1 queuing model, the traffic amounts of the two 

Ps are not very different, because the delay costs of prioritized 

ontents and unprioritized contents are affected in the same di- 

ection as we described above. However, under the subbandwidth 

odel, a difference in the traffic amounts make the difference in 

elay costs between prioritized contents and unprioritized con- 

ents larger. So, the traffic difference of the two CPS tends to be 

arge. Accordingly, the delay cost effect outweighs the traveling 

ost effect under the subbandwidth model, implying that the ISP 

refers to prioritize the strong CP. 

Finally, we consider the ISP’s choice of 
, i.e., how to allocate 

andwidth to two CPs. Since the only revenue source of the ISP is 

he network access fee from users under unpaid prioritization and 

he network access fee is always higher when priority is given to 

he strong CP as shown in Proposition 5 , we only need to examine 
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 change of p s (
) with respect to a change in 
. Note that the

ccess fee p s (
) is determined by the borderline user when prior- 

ty is given to the strong CP. The next proposition shows that ISP’s 

rofit decreases as 
 increases. 

roposition 6. The ISP prefers less difference in the bandwidths be- 

ween prioritized CP and unprioritized CP. 

If the ISP increases 
, i.e., amplifies asymmetry in the capaci- 

ies for the prioritized CP and the unprioritized CP, it has two ef- 

ects when the marginal consumer uses prioritized CP. It increases 

he transportation cost and also increases discounting of the value 

or prioritized contents. However, an increase in 
 itself reduces 

elay for prioritized contents. So, the overall effect may be am- 

iguous. However, this proposition implies that the two indirect 

egative effects outweigh the direct positive effect. 

This proposition also suggests that the ISP prefers net neutral- 

ty to prioritization in this model, because p s (0 ; a ) = p w 

(0 ; a ) >

p s (
; a ) for any 
 > 0 and for any a > 0 . 

. Social welfare 

In this section, we discuss the implications of our results re- 

arding the ISP’s prioritization choice on social welfare. 

.1. Model with linear delay cost 

We compare social welfare when the ISP grants priority to the 

trong CP and to the weak CP. If we assume that the market is fully

overed and all end users get the same utility from the Internet 

ervice, we only need to compare the total costs consisting of the 

ransportation cost ( T C) and the delay cost which can be measured 

y the waiting time ( T ). 

Let SC s and SC w be the total social cost when priority is given to

he strong CP and to the weak CP respectively. In the model with 

 linear delay cost in Section 2 , they are computed as follows: 

SC s = 

∫ a 

0 

(c p (x s ) + t(a − x )) dx + 

∫ x s 

a 

(c p (x s ) + t(x − a )) dx 

+ 

∫ 1 

x s 

(c u (1 − x s ) + t(1 − x )) dx, 

C w = 

∫ a 

0 

(c u (x w 

) + t(a − x )) dx + 

∫ x w 

a 

(c u (x w 

) + t(x − a )) dx 

+ 

∫ 1 

x w 

(c p (1 − x w 

) + t(1 − x )) dx. 

hus, the difference is computed as 

C w − SC s = 

∫ x w 

0 

K 1 dx −
∫ 1 

x s 

K 2 dx 

+ 

∫ x s 

x w 

(c p (1 − x w ) + t(1 − x ) − c p (x s ) − t(x − a )) dx, 

= 

∫ x w 

0 

(α′ x w + β ′ − αx s − β) dx 

+ 

∫ 1 

x s 

(α(1 − x w ) + β − α′ (1 − x s ) − β ′ ) dx 

+ 

∫ x s 

x w 

(α(1 − x w ) + β + t(1 − x ) − αx s − β − t(x − a )) dx, 

(37) 

here K 1 = c u (x w 

) − c p (x s ) > 0 and K 2 = c u (1 − x s ) − c p (1 − x w 

) >

 . Note that K 1 > K 2 because 

 1 − K 2 = α′ x w + β ′ − αx s − β − [ α′ (1 − x s ) + β ′ − α(1 − x w ) − β ′ ] 
= α′ (x s + x w − 1) − α(x s + x w − 1) 

= (α′ − α)(x s + x w − 1) > 0 , 
7 
here α′ > α > 0 and x s + x w 

> 1 for any a > 0 . Since x w 

> 1 − x s ,

t is clear that 
∫ x w 

0 K 1 dx > 

∫ 1 
x s 

K 2 dx . In Fig. 4 , P is the area between

 u (x w 

) + t| a − x | and c p (x s ) + t| a − x | from x = 0 to x = x w 

, and S

s the area between c u (1 − x s ) + t(1 − x ) and c p (1 − x w 

) + t(1 − x )

rom x = x s to x = 1 . They correspond with the first term and the

econd term of (37) respectively. The area Q − R , which is the dif- 

erence between two triangles, corresponds with the third term 

f (37) . It is also clear from Fig. 4 that it is positive, because

 w 

(a ) > C s (a ) . This implies that social welfare is higher when pri-

rity is given to the strong CP under a linear delay cost. 

roposition 7. Social welfare is higher when priority is given to the 

trong CP than when it is given to the weak CP if c p (x ) = αx + β and

 u (y ) = α′ y + β ′ with α′ > 0 . 

The formal proof is omitted, because it is clear from the above 

iscussion and Fig. 4 . 

However, if α′ < 0 , it implies that K 1 < K 2 because (α′ −
)(x s + x w 

− 1) < 0 . In this case, although C w < C s implies that the

hird term of (37) is negative, it is ambiguous to compare SW 

w (a )

nd SW 

s (a ) because it is not guaranteed that 
∫ x w 

0 K 1 dx < 

∫ 1 
x s 

K 2 dx

ue to x w 

> 1 − x s . 

.2. Queuing model 

In an M/M/ 1 queing model, we have 

SC s = 

∫ a 

0 

(T s 1 + t(a − x )) dx + 

∫ x s 

a 

(T s 1 + t(x − a )) dx 

+ 

∫ 1 

x s 

(T s 2 + t(1 − x )) dx 

= T s + T C s , 

C w = 

∫ a 

0 

(T w 

1 + t(a − x )) dx + 

∫ x w 

a 

(T w 

1 + t(x − a )) dx 

+ 

∫ 1 

x w 

(T w 

2 + t(1 − x )) dx 

= T w + T C w , 

here 

T s = 

∫ x s 

0 

T s 1 dx + 

∫ 1 

x s 

T s 2 dx = 

x s 

μ − x s λ
+ 

μ

μ − λ

1 − x s 

μ − x s λ
, 

 

w = 

∫ x w 

0 

T w 

1 dx + 

∫ 1 

x w 

T w 

2 dx 

= 

x w 

μ − (1 − x w 

) λ
+ 

μ

μ − λ

x w 

μ − (1 − x w 

) λ
, 

 C s = t 

[∫ a 

0 

(a − x ) dx + 

∫ x s 

a 

(x − a ) dx + 

∫ 1 

x s 

(1 − x ) dx 

]
, 

= t 

[ 
x 2 s − (1 + a ) x s + a 2 + 

1 

2 

] 
, (38) 

 C w = t 

[∫ a 

0 

(a − x ) dx + 

∫ x w 

a 

(x − a ) dx + 

∫ 1 

x w 

(1 − x ) dx 

]
, 

= t 

[ 
x 2 w 

− (1 + a ) x w 

+ a 2 + 

1 

2 

] 
. (39) 

he following proposition implies that social welfare is higher 

hen priority is granted to the strong CP. 

roposition 8. The total social cost is lower when priority is granted 

o the strong CP, i.e., SC s (a ) < SC w (a ) , in the queuing model. 

We know that the total delay costs are the same regardless of 

hich CP is given priority, i.e., T s = T w due to the invariance result 

f Choi and Kim (2010) . Thus, this proposition says that the total 
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ransportation cost is lower when priority is given to the strong CP. 

his is again because x s (a ) + x w 

(a ) < 1 + a , i.e., x s − 1+ a 
2 < 

1+ a 
2 −

 w 

for any a > 0 , implying that the marginal consumer is closer to
a +1 

2 which minimizes the total transportation costs when priority 

s given to the strong CP (CP 1) than when priority is given to the

eak CP (CP 2). Moreover, the equilibrium outcome under priori- 

ization yields lower welfare than the equilibrium outcome under 

et neutrality, because the traveling cost is minimized under net 

eutrality. This justifies the regulation of net neutrality. 

.3. Bandwidth subdivision model 

In the subbandwidth model of Economides and Hermalin, so- 

ial welfare can be defined by the discounted utility of users mi- 

us their transportation costs. Let SW 

s , SW 

w and U 

s , U 

w be social 

elfare and the discounted utility of users when the ISP gives pri- 

rity to the strong CP and to the weak CP, respectively. Then, we 

ave 

SW 

s = U 

s − T C s 

= 

∫ a 

0 

(
v 
α

k p 

x s 
− t(a − x ) 

)
dx + 

∫ x s 

a 

(
v 
α

k p 

x s 
− t(x − a ) 

)
dx 

+ 

∫ 1 

x s 

(
v 
α

k u 

1 − x s 
− t(1 − x ) 

)
dx, 

W 

w = U 

w − T C w 

= 

∫ a 

0 

(
v 
α

k u 

x w 

− t(a − x ) 

)
dx + 

∫ x w 

a 

(
v 
α

k u 

x w 

− t(x − a ) 

)
dx 

+ 

∫ 1 

x w 

(
v 
α

k p 

1 − x w 

− t(1 − x ) 

)
dx. 

s proved in the appendix, straightforward algebra shows that 

 

s = U 

w (neutrality result), while T C s < T C w , implying that SW 

s >

W 

w . This is again simply because the borderline user is closer to 
a +1 

2 , meaning that the total transportation cost is lower when pri- 

rity is given to the strong CP if a > 0 . 

roposition 9. For any a > 0 , social welfare is higher when priority 

s granted to the strong CP, i.e., SW 

s (a ) > SW 

w (a ) , in the congestion

odel of Economides and Hermalin (2012) . 

The neutrality result that U 

s = U 

w is mainly due to the assump- 

ion that the adjustment factor is linear in delay τi = 

x i 
k i 

. For exam- 

le, if the adjustment factor is quadratic, i.e., α(τi ) = τ 2 
i 

, it may be

ocially better to grant priority to the weak CP, because otherwise 

he utility of a large amount of contents from the strong CP is dis- 

ounted too much. 23 

It is also easy to see that social welfare under prioritization is 

ower than social welfare under net neutrality because the sum 

f the transportation costs are minimized under net neutrality, 

hereas the total utility of users is the same under the two 

egimes if the adjustment factor is linear. Again, this implies that 

et neutrality is socially desirable in this model of Economides and 

ermalin (2012) . This result is contrasted with Economides and 

ermalin (2012) that derive conditions under which net neutral- 

ty is welfare superior to prioritization. In our model, users have 

ifferent preferences for the two CPs. Prioritization gives some ad- 

antage to one of the two CPs thereby distorting the choice of 

sers between the CPs which otherwise would be split equally 
23 To see this, assuming that v = 1 , the weighted sum of utility can be computed 

s U(x ) = 

(
+1 / 2) 2 

x 
+ 

(
−1 / 2) 2 

1 −x 
where x is the market share of the prioritized CP. 

hen, we have U ′ (x ) = 

�
x 2 (1 −x ) 2 

where � = (
 + 1 / 2 − x )(2 x 
 − 
 − 1 / 2) < 0 if 


s not very large, because we assume that 
 + 1 / 2 > x for the prioritized CP. This 

mplies that consumer utility is higher when priority is given to the weak CP, be- 

ause x s (a ) > 1 − x w (a ) for a > 0 . 

E

t

p

i

r

P

8 
mong users. This negative effect of prioritization does not occur 

n Economides and Hermalin (2012) , because they do not assume 

uch different preferences of users towards CPs. 24 

. Conclusion and caveats 

In this paper, we showed that the ISP may give priority to the 

eaker content or to the stronger content, depending on the delay 

osts. The general insight is that which content is granted a prior- 

ty has two conflicting effects, the traveling cost effect favoring the 

eak CP and the delay cost effect favoring the strong CP, and that 

he first effect outweighs the second effect if the delay cost of the 

nprioritized contents increases as the traffic increases. 

Throughout the paper, we assumed that there are only two CPs 

nd all users are informed of which CP is prioritized or not when 

hey make decisions. However, it may be too optimistic to assume 

hat all users know whether each individual CP is prioritized or 

ot. In this incomplete information case, the ISP may strategically 

isclose the priority information of all CPs or may engage in strate- 

ic obfuscation by not revealing the information strategically. It 

ay be an interesting issue to compare social welfare in the two 

ases and to examine the implications of the policy of the manda- 

ory disclosure of priority information. 

Of course, we admit that our simple model is still restrictive in 

he sense that the decision of whom to give priority is, in reality, 

etermined by various other factors, in particular, heterogeneity in 

ontents in terms of the disutility from delay, the sensitivity of the 

ontent requests to the possibility of delay, etc. Nonetheless, we 

elieve that our insight will be at least worth to the ISP who con- 

iders prioritization when net neutrality is repealed. 
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roof of Proposition 1. Eq. (25) can be rewritten as 

LS (x s ) = φRS (x s ) , (A.1) 

here φLS (x ) ≡ c p (x ) + t(x − a ) and φRS (x ) ≡ c u (1 − x ) + t(1 − x ) .

otal differentiation of (A.1) leads to 

LS 
1 dx s + φLS 

2 da = φRS 
1 dx s , (A.2) 

here φLS 
1 

≡ ∂φLS 

∂x 
, φLS 

2 
≡ ∂φLS 

∂a 
and φRS 

1 
≡ ∂φRS 

∂x 
. From (A.2) , we ob- 

ain 

dx s (a ) 
da 

= 

φLS 
2 

φRS 
1 

−φLS 
1 

> 0 because φRS 
1 

= −c ′ u − t < 0 , φLS 
1 

= c ′ p + t >

 and φLS 
2 

= −t < 0 . 

Similarly, Eq. (26) can be written as φLW (x w 

) = φRW (x w 

) where 
RW (x ) ≡ c u (x ) + t(x − a ) and φLW (x ) ≡ c p (1 − x ) + t(1 − x ) . By to-

al differentiation, we get dx w (a ) 
da 

= 

φRW 

2 

φLW 

1 
−φRW 

1 

> 0 because φLW 

1 < 0 , 

RW 

1 
> 0 and φRW 

2 
< 0 . (Note that the symbols “L” and “R” are 

witched for the weak content because we find it more convenient 

or proving Proposition 4 .) �
24 Although we assume that users have inelastic demands for contents, 

conomides and Hermalin (2012) allow variable demands for contents with respect 

o the transmission time and argue that net neutrality is welfare superior to any 

rioritization if the discounted utility function is concave by using Jensen’s inequal- 

ty. Kim (2022) also considered the case of variable demands and obtained a similar 

esult as Economides and Hermalin (2012) in a product differentiation model. See 

roposition 3 of Kim (2022) . 
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roof of Proposition 2. From (11) and (12) , we have 

dp ∗s (a ) 

da 
= c ′ u 

dx s (a ) 

da 
+ t 

dx s (a ) 

da 
> 0 , 

dp ∗w 

(a ) 

da 
= c ′ p 

dx w 

(a ) 

da 
+ t 

dx w 

(a ) 

da 
> 0 , 

ue to c ′ p , c ′ u > 0 and Proposition 1 . �

roof of Proposition 3. Let c p (x ) = αx + β and c u (y ) = α′ y + β ′ 
here α′ > α > 0 and β ′ ≥ β ≥ 0 . We assume that β ′ − β ≥ α to 

e consistent with the assumption that c p (z) < c u (1 − z) for any

 ∈ (0 , 1) . 

(i) From (7) and (8) , we have 

 s = 

(1 + a ) t + α′ + β ′ − β

2 t + α′ + α
, (A.3) 

 w 

= 

(1 + a ) t + α + β − β ′ 
2 t + α′ + α

. (A.4) 

ote that ∂x s 
∂a 

= 

∂x w 
∂a 

. Also, if β ′ − β ≥ α, we can easily check that 

 s , x w 

< 1 if a < 1 − β ′ −β−α
t , and x s , x w 

> a if a < 

t+ α+ β−β ′ 
t+ α′ + α (< 1) . 

Accordingly, we have 

 

s (a ) = c p (x s ) + t(x s − a ) 

= 

(α + t)[(1 + a ) t + α′ + β ′ − β] 

2 t + α′ + α
+ β − ta, (A.5) 

 

w (a ) = c u (x w 

) + t(x w 

− a ) 

= 

(α′ + t)[(1 + a ) t + α + β − β ′ ] 
2 t + α′ + α

+ β ′ − ta. (A.6) 

ote that C s (0) = C w (0) . Also, (A.5) and (A.6) lead to 

 

w (a ) − C s (a ) = A (1 + a ) t + B, 

here 

 = 

(α′ − α) 

2 t + α′ + α
, (A.7) 

 = 

(α′ + t)(α + β − β ′ ) − (α + t)(α′ + β ′ − β) 

2 t + α′ + α
. (A.8) 

ince α′ > α it is clear that A > 0 . Therefore, C w (a ) − C s (a ) is in-

reasing in a . 

(ii) This follows directly from (i), because C w (0) = C s (0) . �
Fig. 2. Comparison betwee

9 
roof of Proposition 4. Let z = 1 − x . Eqs. (25) and (26) are

ewritten as 

1 

μ − x s λ
+ t(x s − a ) = 

μ

μ − λ

1 

μ − x s λ
+ t(1 − x s ) , (A.9) 

1 

μ − z w 

λ
+ tz w 

= 

μ

μ − λ

1 

μ − z w 

λ
+ t(1 − a − z w 

) , (A.10) 

here z w 

= 1 − x w 

. Eqs. (A .9) and (A .10) can be rearranged into 

θ

μ − x s λ
= t(2 x s − a − 1) , (A.11) 

θ

μ − z w 

λ
= t(2 z w 

+ a − 1) , (A.12) 

here θ = 

λ
μ−λ

> 0 . If a = 0 , it follows from (A.11) and (A.12) that

 s = z w 

= 1 − x w 

, i.e., x s and x w 

must be symmetric around 

1 
2 , as-

uming the uniqueness of the solution. (The uniqueness will be 

roved in Lemma 1 .) 

Let f (x ) = 

1 
μ−λx 

and g(x ) = σ f (x ) where σ = 

μ
μ−λ

> 1 . Then,

e have 

f ′ (x ) = 

λ

(μ − λx ) 2 
> 0 , (A.13) 

f ′′ (x ) = 

2 λ2 

(μ − λx ) 3 
> 0 . (A.14) 

et the solutions for (A.9) and (A.10) given a be x s (a ) , z w 

(a ) and

he corresponding x w 

be x w 

(a ) . Figure 2 illustrates x s (a ) and x w 

(a )

hich are determined from (A.9) and (A.10) when a > 0 . 

Let us denote the left hand side (LHS) and the right hand side 

RHS) of (A.9) by φLS (x ) and φRS (x ) respectively, and denote LHS 

nd RHS of (A.10) by φLW (z) and φRW (z) respectively. 

With a change in a , the solutions for x s (a ) and z w 

(a ) must

ove along φRS (x ) and φLW (z) respectively which are defined by 

LW (z) = f (z) + ty, (A.15) 

RS (x ) = g(x ) + t(1 − x ) . (A.16) 

o elaborate on the definitions of C s and C w , we have 

 

s (a ) = φRS (x s (a )) = φLS (x s (a )) , (A.17) 

 

w (a ) = φRW (x w 

(a )) = φLW (x w 

(a )) . (A.18) 
n C s and C w ( a > 0 ). 
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Fig. 3. Comparison between p s (a ) and p w (a ) ( a > 0 ). 
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hen, we know that C s (0) = C w (0) , i.e., φRW (x w 

(0)) = φLS (x s (0))

y symmetry between x s (0) and x w 

(0) . We also know that dx s (0) 
da 

=
dz w (0) 

da 
= 

dx w (0) 
da 

from (A.11) and (A.12) . Also, by taking derivatives 

f (A.15) and (A.16) , we obtain 

∂φLW (z) 

∂x 
= 

∂φLW (z) 

∂z 

∂z 

∂x 
= −( f ′ (z) + t) = − f ′ (z) − t, (A.19) 

∂φRS (x ) 

∂x 
= g ′ (x ) − t = σ f ′ (x ) − t. (A.20) 

ow, let us compare C s (a ) and C w (a ) . Since C s (0) = C w (0) and
dx s (0) 

da 
= 

dx w (0) 
da 

, we only need to compare changes in g(x s (a )) 

nd f (z s (a )) in a , because the effects of a change in a on

he second terms of φLW (z) and φRS (x ) are the same. Since 

 

′ (x ) > 0 and f ′ (z) > 0 (i.e., ∂ f (1 −x ) 
∂x 

= 

∂ f (1 −x ) 
∂z 

∂z 
∂x 

= − f ′ (z) < 0 ),

t follows that C s (a ) > C w (a ) for any a > 0 . (More specifically,

(x s (a )) = σ f (x s (a )) > σ f (x s (0)) > f (z w 

(0)) > f (z w 

(a )) , since

f ′ (x ) > 0 , x s (0) = z w 

(0) , x s (a ) > x s (0) and z w 

(0) > z w 

(a ) for any

 > 0 .) This implies that p ∗s (a ) < p ∗w 

(a ) for any a > 0 . �

emma 1. x s (0) and x w 

(0) are unique if any. 

roof of Lemma 1. The uniqueness of x s (0) is clear from the ob-

ervation that x s (0) is a solution for the quadratic equation (2 x −
)(μ − xλ) = 

θ
t where μ

λ
> 1 . Thus, due to symmetry, x w 

(0) is also

nique. �

roof of Proposition 5. Define y s (a ) and y w 

(a ) by 

 s (a ) ≡ v 
α

k p 

x s (a ) 
− t(x s (a ) − a ) = 

v 
α

k u 

1 − x s (a ) 
− t(1 − x s (a )) , 

(A.21) 

 w 

(a ) ≡ v 
α

k u 

x w 

(a ) 
− t(x w 

(a ) − a ) = 

v 
α

k p 

1 − x w 

(a ) 
− t(1 − x w 

(a )) . 

(A.22) 

et k p = 

1 
2 + 
 and k u = 

1 
2 − 
 where 
 > 0 . Consider the bench-

ark case that a = 0 . Then, it is clear that y w 

(0) = y s (0) because
10 
 w 

(0) and x s (0) are symmetric around 

1 
2 . (See Fig. 3 ) If a > 0 , x s (a )

nd y s (a ) are determined by (A.21) , i.e., 

 s (a ) ≡ v 
α

1 / 2 + 


x s (a ) 
− t(x s (a ) − a ) = 

v 
α

1 
2 

− 


1 − x s (a ) 
− t(1 − x s (a )) . 

(A.23) 

n the other hand, to compare y w 

(a ) with y s (a ) , let z = 1 − x and

ewrite (A.22) in terms of z. Then, (A.22) can be rewritten as 

v 
α

1 / 2 − 


1 − z w 

(a ) 
− t(1 − z w 

(a ) − a ) = 

v 
α

1 
2 

+ 


z w 

(a ) 
− tz w 

(a ) . (A.24) 

et the solution of (A.24) be z w 

(a ) . Note that x s (0) = z w 

(0) so that

 s (0) = y w 

(0) . Now, suppose that a is increased marginally from 

 = 0 . To compare dy w (a ) 
da 

and 

dy s (a ) 
da 

, define 

LS (x, a ) = 

v 
α

1 / 2 + 


x 
− t( x − a ) , (A.25) 

RS (x, a ) = 

v 
α

1 / 2 − 


1 − x 
− t( 1 − x ) , (A.26) 

LW (z, a ) = 

v 
α

1 / 2 − 


1 − z 
− t( 1 − z − a ) , (A.27) 

RW (z, a ) = 

v 
α

1 / 2 + 


z 
− tz . (A.28) 

hen, x s (a ) and z w 

(a ) satisfy 

 

S (x, a ) = �LS (x, a ) − �RS (x, a ) = 0 , (A.29)

 

W (z, a ) = �RW (z, a ) − �LW (z, a ) = 0 , (A.30)

espectively. To compare ∂x s (a ) 
∂a 

and 

∂z w (a ) 
∂a 

, we differentiate 

A.29) and (A.30) totally to get 

 

S 
x d x s + td a = 0 , (A.31) 

 

W 

z d z w 

+ td a = 0 , (A.32) 
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Fig. 4. Welfare Comparison under Linear Delay Cost. 
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here F S x (x, a ) = �LS 
x (a ) − �RS 

x (a ) and F W 

z (z, a ) = �RW 

z (a ) −
LW 

z (a ) . Therefore, it follows that 

dx s 

da 
= − t 

F S x 

, (A.33) 

dz w 

da 
= − t 

F W 

z 

, (A.34) 

here 

 

S 
x (x, a ) = −

[
1 / 2 + 


x 2 
+ 

1 / 2 − 


(1 − x ) 2 
+ 2 t 

]
, (A.35) 

 

W 

z (z, a ) = −
[

1 / 2 + 


z 2 
+ 

1 / 2 − 


(1 − z) 2 
+ 2 t 

]
. (A.36) 

herefore, we obtain 

∂x s (a ) 

∂a 
= − t 

1 / 2+

x 2 

+ 

1 / 2 −

(1 −x ) 2 

+ 2 t 
, (A.37) 

∂x w 

(a ) 

∂a 
= −∂z w 

(a ) 

∂a 
= 

t 
1 / 2+

(1 −x ) 2 

+ 

1 / 2 −

x 2 

+ 2 t 
. (A.38) 

o show that ∂x s (a ) 
∂a 

> 

∂x w (a ) 
∂a 

, it needs to show that 

1 / 2 + 


x 2 s 

+ 

1 / 2 − 


(1 − x s ) 2 
< 

1 / 2 + 


(1 − x w 

) 2 
+ 

1 / 2 − 


x 2 w 

, 

r equivalently, 

1 / 2 + 
) 

[
1 

x 2 s 

− 1 

(1 − x w 

) 2 

]
+ 

(
1 

2 

− 

)[

1 

(1 − x s ) 2 
− 1 

x 2 w 

]
< 0 . 

ince x s (a ) > 1 − x w 

(a ) , we have 1 

x 2 s 
− 1 

(1 −x w ) 2 
< 0 and 

1 
(1 −x s ) 2 

−
1 

x 2 w 
> 0 . Therefore, we only need to show that 

 ≡
[

1 

(1 − x s ) 2 
− 1 

x 2 w 

]
−

[
1 

(1 − x w 

) 2 
− 1 

x 2 s 

]
> 0 . (A.39) 

ue to Lemma 2 , we have 

 = 

[
1 

(1 − x s ) 2 
+ 

1 

x 2 s 

]
−

[
1 

x 2 w 

+ 

1 

(1 − x w 

) 2 

]
> 0 , (A.40) 
11 
ince x s + x w 

> 1 implies that 1 
2 − x w 

< x s − 1 
2 . Therefore, it follows

hat ∂x s (a ) 
∂a 

> 

∂x w (a ) 
∂a 

for any a > 0 . Since x s (a ) and z w 

(a ) are deter-

ined on the curves �RS (x, 0) and �LW (z, 0) which are symmetric 

round 

1 
2 , the proof is completed. (See Fig. 3 ) �

emma 2. Define h (x ) = 

1 
x 2 

+ 

1 
(1 −x ) 2 

for x ∈ (0 , 1) . Then, h (x ) is

ymmetric around x = 

1 
2 and h ′ (x ) � 0 iff x � 

1 
2 . 

roof of Proposition 6. We differentiate (A.29) with respect to 


nd get 

 

S 
x d x s + F 
d 
 = 0 , (A.41) 

here F S 



(x, a ) = 

1 / 2+


x 2 
+ 

1 / 2 −


(1 −x ) 2 
+ 2 t and F S 



= 

1 
x s 

+ 

1 
1 −x s 

. Thus, we

btain 

dx s (
) 

d

= 

1 
x 

+ 

1 
1 −x 

1 / 2+

x 2 

+ 

1 / 2 −

(1 −x ) 2 

+ 2 t 
> 0 . (A.42) 

ow, to find 

dp s (
) 
d


, we have 

�LS 

d

= −�LS 

x 

dx s (
) 

d

+ �LS 




= −
[

1 / 2 + 


x 2 
+ t 

]
1 
x 

+ 

1 
1 −x 

1 / 2+

x 2 

+ 

1 / 2 −

(1 −x ) 2 

+ 2 t 
+ 

1 

x 
< 0 . (A.43) 

o show that �LS 

d

< 0 , we can see from (A.43) that we only need

o show that 

 s > 

1 / 2+

x 2 s 

+ 

1 / 2 −

(1 −x s ) 2 

+ 2 t (
1 
x s 

+ 

1 
1 −x s 

)(
1 / 2+


x 2 s 
+ t 

) . (A.44) 

et χ ≡ x 
(

1 
x + 

1 
1 −x 

)(
1 / 2+


x 2 s 
+ t 

)
−

[ 
1 / 2+


x 2 
+ 

1 / 2 −


(1 −x ) 2 
+ 2 t 

] 
. We have 

= 

x s 

1 − x s 

(
1 / 2 + 


x 2 s 

+ t 

)
− t > 0 , (A.45) 

ince x s > 

1 
2 so that x s 

1 −x s 
> 1 . This implies that dp s (
) 

d

= 

d�LS 

d

< 

 . �

roof of Proposition 8. To compare SC s (a ) and SC w (a ) , we first

ompare the delay costs T s (a ) and T w (a ) . Letting z w 

= 1 − x w 

, we

ave 

T s (a ) = 

x s (a ) 

μ − x s (a ) λ
+ 

μ

μ − λ

1 − x s (a ) 

μ − x s (a ) λ
, 
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12 
 

w (a ) = 

z w 

(a ) 

μ − z w 

(a ) λ
+ 

μ

μ − λ

1 − z w 

(a ) 

μ − z w 

(a ) λ
. 

efine H(x ) = x f (x ) + σ (1 − x ) f (x ) = [ x + σ (1 − x )] f (x ) where

f (x ) = 

1 
μ−xλ

and σ = 

μ
μ−λ

> 1 . We have 

 

′ (x ) = (1 − σ ) f (x ) + [ x + σ (1 − x )] f ′ (x ) 

= (1 − σ ) 
1 

μ − xλ
+ [ x + σ (1 − x )] 

λ

(μ − xλ) 2 

= 

(1 − σ ) μ + σλ

(μ − xλ) 2 

= 0 , 

hich implies that T s (a ) = T w (a ) for any a . This is mainly due to

emma 3(iii) of Choi and Kim (2010) . 

Now, we compare the transportation costs T C s (a ) and T C w (a ) .

et ˜ x be the marginal consumer who is indifferent between CP 1 

nd CP 2. From (38) and (39) , we can write the total transportation

ost as 

 C( ̃  x ) = t 

[∫ a 

0 

(a − x ) dx + 

∫ ˜ x 

a 

(x − a ) dx + 

∫ 1 

˜ x 

(1 − x ) dx 

]
, 

= t 

[ 
˜ x 2 − (1 + a ) ̃  x + a 2 + 

1 

2 

] 
. 

his is minimized at ˜ x = 

a +1 
2 which can be attained under net neu- 

rality. 

To show that SC s (a ) < SC w (a ) , it suffices to show that x s (a ) −
¯ (a ) < x̄ (a ) − x w 

(a ) where x̄ = 

a +1 
2 , due to symmetry of T C( ̃  x )

round ˜ x = 

a +1 
2 . 

From (A.11) and (A.12) , we have 

λ2 

(μ − λ)(μ − x s λ) 2 
+ 2 t 

]
d x s = td a, (A.46) 

λ2 

(μ − λ)(μ − z w 

λ) 2 
+ 2 t 

]
d z w 

= −td a. (A.47) 

herefore, we obtain 

x s 

da 
= 

1 

2 + X 

∈ (0 , 
1 

2 

) , (A.48) 

x w 

da 
= − z w 

da 
= 

1 

2 + Y 
∈ (0 , 

1 

2 

) , (A.49) 

here 

 = 

λ2 

t(μ − λ)(μ − x s λ) 2 
> 0 , 

 = 

λ2 

t(μ − λ)(μ − z w 

λ) 2 
> 0 . 

hus, we have 

dx s 

da 
+ 

dx w 

da 
< 1 , (A.50) 

mplying that 

dx s 

da 
− d ̄x 

da 
< 

d ̄x 

da 
− dx w 

da 
, (A.51) 

here d ̄x 
da 

= 

1 
2 . This implies that x s (a ) + x w 

(a ) < 1 + a , i.e., x s (a ) −
1+ a 

2 < 

1+ a 
2 − x w 

(a ) by Lemma 3 . By symmetry of T C( ̃  x ) around

˜  = 

1+ a 
2 , it directly follows that T C s (a ) < T C w (a ) , implying that

C s (a ) < SC w (a ) . �
emma 3. (i) x s (0) + x w 

(0) = 1 and (ii) x s (a ) 
da 

+ 

x w (a ) 
da 

< 1 ⇐⇒ (iii)

 s (a ) + x w 

(a ) < 1 + a . 

roof of Lemma 3. ( �⇒ ) From (i), we have x s (0) + x w 

(0) = 1

hen a = 0 . How, if a is increased by 
a , (ii) implies that 


x s (a ) + 
x w 

(a ) < 
a 

⇐⇒ (x s (a ) − x s (0)) + (x w 

(a ) − x w 

(0)) < a 

⇐⇒ x s (a ) + x w 

(a ) < x s (0) + x w 

(0) + a = 1 + a. 

( ⇐�) This is trivial by differentiating (iii). 

�

roof of Proposition 9. We have 

U 

s = 

v 
α

[∫ x s 

0 

1 / 2 + 


x s 
dx + 

∫ 1 

x s 

1 / 2 − 


1 − x s 
dx 

]

= 

v 
α

, 

 

w = 

v 
α

[∫ x w 

0 

1 / 2 + 


x w 

dx + 

∫ 1 

x w 

1 / 2 − 


1 − x w 

dx 

]

= 

v 
α

. 

hus, it remains to show that T C s (a ) < T C w (a ) . From (A.52) and

A.53) , we have 

dx s 

da 
= 

1 

(1 /t) 
[ 

1 / 2+

x 2 s 

+ 

1 / 2 −

(1 −x s ) 2 

] 
+ 2 

∈ (0 , 
1 

2 

) , (A.52) 

dx w 

da 
= −dz w 

da 
= 

1 

(1 /t) 
[ 

1 / 2+

x 2 w 

+ 

1 / 2 −

(1 −x w ) 2 

] 
+ 2 

∈ (0 , 
1 

2 

) . (A.53) 

herefore, it follows that 

dx s 

da 
+ 

dx w 

da 
= 

1 

(1 /t) 
[ 

1 / 2+

x 2 s 

+ 

1 / 2 −

(1 −x s ) 2 

] 
+ 2 

+ 

1 

(1 /t) 
[ 

1 / 2+

x 2 w 

+ 

1 / 2 −

(1 −x w ) 2 

] 
+ 2 

< 1 , (A.54) 

hich implies that dx s 
da 

− 1 
2 < 

1 
2 − dx w 

da 
, i.e., T C s (a ) < T C w (a ) for any

 > 0 . This completes the proof. �
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