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Estimating tail risk measures is an important task in many financial and actuarial applications and 
often requires nested simulations, with the outer simulations representing real world scenarios, and the 
inner simulations typically used for risk neutral pricing or conditional risk measurement. The standard 
nested simulation method is highly flexible, able to incorporate complex asset models and exotic payoff 
structures, but it is also computationally highly burdensome, particularly in a multi-period setting, 
when inner simulation paths are required at each time step of each outer level scenario. In this study, 
we propose and analyze a two-stage simulation procedure that efficiently estimates the conditional 
tail expectation of cost of a dynamic hedging program for a Variable Annuity Guaranteed Minimum 
Withdrawal Benefit (GMWB), under a multi-period nested simulation. In each of the two stages, the 
method re-uses the same set of inner level simulation paths for each outer scenario at each time point, 
using a likelihood ratio method to re-weight the probabilities of each individual path for the different 
outer scenarios. Our numerical study shows that our two-stage, likelihood ratio weighted procedure 
can offer a very significant improvement in efficiency, of the order of 95% as measured by the RMSE, 
compared with a standard nested simulation with the same computational cost.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Estimating tail risk measures for complex financial derivatives is an important risk management task, often requiring nested simulation. 
In a standard two-tier simulation, the outer simulation is used to generate paths of the underlying risk factors. These are typically 
simulated under the real-world probability measure and are known as the scenarios. The second tier is the inner simulations, which 
may be used to estimate the value of the derivative payoff, conditional on the outer scenario path. Typically in financial and actuarial 
valuation of hedging costs, the inner sample paths are generated under a risk-neutral measure.

Nested simulation is highly flexible and adaptable, and has therefore become an important risk management tool in both financial and 
actuarial applications, where complex asset models or complex payoff structures make analytic approaches infeasible. However, it can be 
extremely computationally burdensome, creating a barrier to its application when results are needed at short notice, or where there a 
large number of model points, for example, within a seriatim valuation of an insurance portfolio.

In this paper, we are concerned with the evaluation of tail risk measures for Variable Annuity (VA) guarantees. VAs are long-term 
insurance contracts that are widely used for wealth accumulation and for providing retirement income, with annual US sales of around 
$100 billion (LIMRA, 2019). A VA contract is very similar to a mutual fund investment, but with additional guarantees and options. The 
contract premium is invested into a sub-account. The insurer layers additional benefits in the form of guaranteed minimum payouts which 
protect policyholders from downside market risks. The guarantees are funded through regular deductions from the sub-account. From the 
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insurer’s perspective, the guarantees can be viewed as embedded financial options, creating significant market risk exposure that can 
be mitigated using dynamic hedging programs. However, the hedging programs will not be self-financing. Discrete hedging, asset model 
basis risk, complex guarantee structures and very long terms to maturity all contribute to potentially significant costs arising from hedge 
rebalancing. Determining tail risk measures for the hedge costs presents a particular computational challenge, as the guarantees are often 
far out-of-the-money. In this case, a large number of inner simulations are required to accurately evaluate the out-of-the-money options, 
and a large number of outer scenarios are required to accurately describe the tail of the loss distribution.

Methods to mitigate the computational burden of nested simulation have attracted much research attention. Broadie et al. (2011)
propose an algorithm that sequentially allocates a simulation budget to different outer scenarios, one inner simulation at a time. The 
high level idea of concentrating the inner simulation computation budget on tail scenarios is an inspiration for our work, although we 
are working with a different problem and a different risk measure from that of Broadie et al. (2011), who use nested simulation to 
estimate the probability that the loss exceeds a given threshold. Their approach is to allocate the computational budget disproportionately 
to scenarios just below or above the given threshold, in order to add precision at the key point of the loss distribution. This method is 
not directly applicable for estimation of tail risk measures such as Value-at-Risk (VaR) or Conditional Tail Expectation (CTE). In the case 
of VaR estimation, the key threshold is unknown, and indeed is precisely the target of the estimation. In the case of CTE estimation, the 
entire tail loss distribution above the unknown threshold is critical for accurate estimation of the risk measure.

Other examples from finance include Lee and Glynn (2003), and Gordy and Juneja (2010), who consider the optimal allocation of fixed 
simulation budgets between the outer and inner simulations by analyzing the asymptotically optimal rates of convergence for different 
estimators, Broadie et al. (2015), who replace inner simulations by regression estimators, and Hong et al. (2017) who replace inner 
simulations with a kernel smoothing approach. In actuarial science, recent studies applying efficient nested simulation include Gan and 
Lin (2015), Lin and Yang (2020), and Feng et al. (2020), which are all concerned with the dual problem of reducing the model points 
within a large portfolio, as well as estimating the tail risk from that portfolio. Our work takes a different approach to each of these. We 
treat the outer scenarios as fixed, and focus the computational budget allocation on the inner simulation step. This has some advantage 
in a life insurance context, where the outer scenarios may be centrally generated and used for multiple portfolios. We do not eliminate or 
replace the inner simulation step; instead, we propose a method for increasing the efficiency by reusing inner simulations across multiple 
scenarios, and we focus on methods for accurate and efficient valuation of the tail risk measure of a single contract. Our approach may be 
combined with cluster analysis for selecting representative contracts to address the dual problem.

Given a set of outer scenarios, tail risk measure estimation can be viewed as a two stage process. The first stage is to identify the 
tail scenarios from the full set of outer scenarios, and the second stage is to accurately and efficiently estimate the losses in the tail 
scenarios. Other work using this two-stage approach, with a given set of outer scenarios, includes Lan et al. (2010), who propose an 
iterative screening procedure to eliminate scenarios that are unlikely to have large losses, Liu and Staum (2010), who use stochastic 
kriging to select the tail scenarios from the full set, and Dang et al. (2020) and Dang et al. (2022), who identify likely tail scenarios based 
on a proxy analytic evaluation, saving most of the computation budget for the second stage. Each of these approaches is limited in its 
applicability; for example, the Lan et al. (2010) method requires the standard deviation of the losses to be relatively small, and Dang et 
al. (2022) require the existence of an effective proxy valuation model, which will not be available for some of the more complex dynamic 
guarantees embedded in VA policies. In this paper our approach is very general, which means that it can be applied more widely than 
previous methods. For both stages, we use simulation. In the first stage, we use a small part of the simulation budget to achieve a rough 
valuation, sufficient to identify the likely tail scenarios. In the second stage, the remaining simulation budget is applied to the scenarios 
that are most likely to generate tail losses, to ensure that the tail risk measure is accurately evaluated for the given set of outer scenarios. 
The inner simulation efficiency in both stages is improved by using the likelihood ratio estimator, which allows the simulated inner sample 
paths to be re-used across different outer scenarios. Reusing simulation outputs to improve efficiency is the key idea of green simulation, 
which was first proposed by Feng and Staum (2017) and further developed by Feng and Staum (2021). Our work builds on theirs, but 
with a very different focus. Their work considered repeated experiments whose parameters are driven by an ergodic stochastic process, 
with an analysis of the asymptotic convergence of the estimator. Our focus is more applied; in particular, our aim is to increase efficiency 
in the context of inner simulations which are parametrized by the given outer scenarios.

The likelihood ratio (LR) method (also known as the score function method), was first studied by Beckman and McKay (1987), and has 
subsequently been used in a wide range of applications, including metamodeling, sensitivity analysis, and optimization. See, for exam-
ple, Kleijnen and Rubinstein (1996) and Maggiar et al. (2018), who use LR for optimization of complex computational simulation results, 
and Glasserman and Xu (2014), who use LR to examine and quantify model risk in the context of portfolio management. Concurrently 
with our work, Feng and Li (2022) developed an application of the LR method to variable annuities. Their method differs from ours in re-
quiring the user to set blocks of scenarios, such that inner simulations are only shared within blocks, to ensure that variances are limited. 
Our method manages the problem of unlimited variance using a mixture likelihood approach, described in Section 3, which eliminates the 
need for the user to identify scenario blocks.

The VA problem that we consider requires a multi-period nested simulation, as the inner simulation step is repeated at each hedge 
rebalancing date. This means that many of the single-period methods developed in the finance literature cannot be used. Fig. 1 illustrates 
the difference between the single period problem and the multi-period problem. If a 30-year contract is dynamically hedged monthly, 
then nested simulation requires T = 360 inner simulations for each scenario, compared to a single inner simulation required for the single 
period problem.

This study has two contributions:

1. We develop a two-stage procedure for tail risk estimation that uses the likelihood ratio method to reuse inner simulation paths, 
significantly improving efficiency compared with a standard nested simulation. The first stage uses small-scale inner simulations to 
identify a set of highly likely tail scenarios. In the second stage, the remaining computational budget is concentrated on the scenarios 
identified in the first stage, again using likelihood ratio estimators to pool inner samples from different scenarios to improve efficiency.

2. We adapt the likelihood ratio estimators to the special case of the Guaranteed Minimum Withdrawal Benefit (GMWB) (described in 
Section 4), which creates an unusual challenge arising from (i) the very complex nature of the guarantee, and (ii) the possibility that 
the policyholder’s fund becomes fully depleted.
2
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Fig. 1. Nested simulation structure. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3. We briefly discuss how the likelihood ratio estimators can be applied to a portfolio of VA contracts, with a mixture of GMWB and 
Guaranteed Minimum Maturity Benefit (GMMB).

The rest of this paper is organized as follows. In Section 2 we present the mathematical settings for the multi-period nested simulation 
problems studied in this paper. In Section 3 we present details of the two-stage simulation procedure using likelihood ratio estimators. 
In Section 4 we adapt the two-stage procedure to estimate the tail risks of the dynamically hedged GMWB. In Section 5 we examine 
the performance of the two-stage procedure for the GMWB numerically. In Section 6 we illustrate with a numerical example how the 
two-stage procedure is applied to the nested simulation of a portfolio of GMWB and GMMB contracts. Section 7 concludes this paper and 
summarizes a few possible future lines of research.

2. Mathematical settings and problem statement

Consider a variable annuity contract whose embedded option value depends on some state variables, such as equity returns, interest 
rates, demographics or loss indices. We are interested in estimating a tail risk measure of a loss random variable that depends on the 
current and future values of this option.

Let t=0 be the current time and let T > 0 be the maturity date of the embedded option. We denote the state variable at time t , which 
may be a vector or a scalar, by St , and we assume that the state process {St , 0 ≤ t ≤ T } is modeled by a sufficiently regular stochastic 
process, defined on a probability space (�, F , P ), with a natural filtration Ft governing its evolution, where P denotes the real-world 
physical measure. We assume the existence of a risk-neutral measure Q, equivalent to P , such that financial assets can be valued as the 
expected discounted payoff under Q. We assume the state process is simulated at discrete times t = 0, 1, . . . , T .

For any t = 0, . . . , T , we denote the real-world state variables up to time t by S t = {S0, . . . , St}. The entire real-world path from time 0
to T , i.e., S T , is the outer scenario.

At each time t = 0, . . . , T − 1 of an outer scenario, an inner simulation is run for the period from t + 1 to T , under the risk neutral 
measure, conditional on the outer scenario up time t , i.e. on S t . The inner sample path process from time t + 1 to time T is denoted by 
S̃ t+ = {̃St+1, . . . , ̃ST }.

Given a time-t scenario S t for t = 0, . . . , T − 1, the inner simulation is performed to estimate the conditional expected output:

�t(S t) = Et
[

Ht (̃S t+)|S t
]
, (1)

where Ht is a time-t loss function that depends on the random path S̃ t+ , and on the particular contract being valued. At T , given the 
outer scenario S T there is no further uncertainty, and

�T (S T ) = HT (S T )

Examples of Ht( S̃ t+) and �t(S t) in discrete time hedging applications are provided in Section 2.1.
We assume that the loss random variable of interest can be expressed as a function of all the outputs from t = 0, . . . , T , and so can be 

written as

L(S T ) = L
(
�0(S0),�1(S1), . . . ,�T (S T )

)
. (2)

In our context, the loss comprises the total discounted hedge costs, net of fee income. The initial cost is the value of the initial hedge 
portfolio. The hedge cost at each subsequent rebalancing date t = 1, 2, ..., T is the difference between the value of time t hedge portfolio 
and the time (t−1) hedge portfolio. For t = 1, 2, . . . , T , this difference depends only on �t(S t) and �t−1(S t−1). Note that the loss L(S T )

may be negative when the fee income exceeds the hedge costs.
As noted above, in this paper we consider a fixed set of outer scenarios. Our concern is on the accuracy of tail risk assessment given 

the scenario set. Thus, the ‘true’ loss random variable that we are concerned with is that associated with the given set of outer scenarios, 
and the error measures that we use are relative to the most accurate possible assessment of loss for the given outer scenario set. The 
overall error will depend on the inner simulation accuracy of the tail scenarios, which is the focus of this paper, and the sampling error 
from the outer simulation step. Our approach is consistent with how nested simulations are carried out in practice in the life insurance 
industry. The outer scenarios are typically simulated according to regulatory requirements or internal risk management practices, and may 
be used for several different portfolios, involving different contract types and durations.
3
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We assume that we have M given outer scenarios S T ,i , i = 1, . . . , M . We denote the true losses for the i-th scenario by Li = L(S T ,i), 
and we let L(1) < L(2) < · · · < L(M) be the corresponding ordered losses (assume no ties for convenience). We are interested in estimating 
the α-Conditional Tail Expectation (CTE) (Wirch and Hardy, 1999), which, if αM is an integer, is given by

C T Eα = 1

(1 − α)M

M∑
i=αM+1

L(i) = 1

(1 − α)M

∑
i:S T ,i∈Tα

Li, (3)

where Tα = {S T ,i : Li > L(αM)} is the set of scenarios that are included in the calculation of C T Eα in (3); we call Tα the true tail scenario 
set.1

In a standard nested simulation, for each time step t of each scenario, we simulate N independent and identically distributed inner 
sample paths to estimate �t(S t,i) via the following Monte Carlo estimator:

�̂NS
t (S t,i) = 1

N

N∑
j=1

Ht (̃S t+,i j), S̃ t+,i j
i.i.d.∼ f (̃st+|S t,i), ∀ j = 1, . . . , N, (4)

where f (̃st+|S t,i) is the conditional probability density function (pdf) of the inner sample paths, given the outer scenario S t,i . We refer 
to S̃ t+,i j as the (i j)-th inner sample path and Ht( S̃ t+,i j) the (i j)-th inner simulation output. A standard multi-period nested simulation 
is computationally burdensome as it requires M × N × T inner simulation outputs. In some applications, each inner simulation output 
requires significant computations – in Section 4, we consider discrete time hedging of a complex variable annuity contract, for which the 
inner simulation outputs are calculated via recursion.

Using �̂NS
t (S t,i) in (4) for all t = 0, . . . , T , the estimated value of loss for scenario i is

L̂NS
i = L(�̂NS

0 (S0,i), �̂NS
1 (S1,i), . . . , �̂NS

T (S T ,i)), i = 1 . . . , M.

Denote the ordered estimated losses by ̂LNS
(1) < L̂NS

(2) < · · · < L̂NS
(M) , then the C T Eα can be estimated by

̂C T E
NS
α = 1

(1 − α)M

M∑
i=αM+1

L̂NS
(i) = 1

(1 − α)M

∑
i:S T ,i∈T̂ NS

α

L̂NS
i , (5)

where T̂ NS
α = {S T ,i : L̂NS

i > L̂NS
(αM)} is the set of scenarios associated with the (1 − α)M largest simulated losses, and that are therefore 

included in the calculation of ̂C T E
NS
α in (5). T̂ NS

α is the nested simulation tail scenario set.
We observe some drawbacks of the standard nested simulation procedure.

• The delta estimate for scenario i, from equation (4), is an average of only the simulation outputs in scenario i. The simulation outputs 
in the other scenarios are ignored, which may be an inefficient use of the computation involved. In Section 3.1, we show how the 
likelihood ratio method is employed to reuse all available simulation outputs.

• As we are treating the M outer scenarios as fixed, the difference between the CTE estimates in equation (5) and equation (3) is due 
solely to the inner simulation sampling error. Specifically, the inner simulation noise affects the accuracy of equation (5) in two ways:
(1) Classification of tail scenarios. Due to the inner simulation sampling variability, the estimated losses L̂NS

i will differ from true 
losses Li . As a result, the corresponding tail scenario sets may be different, i.e., T̂ NS

α �= Tα .
(2) Estimation of tail losses for scenarios in the true tail scenario set Tα . We see from equation (3) that losses from non-tail scenarios 

are irrelevant for estimating the CTE.

Our two-stage procedure is specifically designed to identify tail scenarios and accurately estimate tail losses. Very little computation is 
spent on non-tail scenarios.

2.1. Hedging loss in discrete time delta hedging

In this section we describe the simulation model function Ht ( S̃ t+), the expected value of the inner simulation output �t(S t), and the 
loss random variable L(S T ), in the context of discrete time hedging for the embedded option of a variable annuity contract.

Let vt(S t+) be the value at t of the future liability beyond time t , based on the sample path S t+ . The risk-neutral value of the liability 
at t , conditioning on S t , is denoted by Vt(S t) = E[vt( S̃ t+)|S t]. Let v0(S0+) = v0(S T ) denote the present value at the contract inception 
of the embedded option payoff at maturity, for scenario S T . We assume that the insurer uses a delta hedge to mitigate the potential loss. 
This requires the insurer to hold a hedge portfolio at t of �t St in stocks, and Bt = Vt(S t) − �t St in zero coupon bonds, where

�t = ∂Vt(S t)

∂ S t

In perfect conditions we could set up and dynamically rebalance a perfect self-financing hedge, at a cost of P0 = �0 S0 + B0, which 
would perfectly replicate the payoff. In practice, there are many reasons why the hedge portfolio does not provide perfect replication, with 
the main factors being that the hedge is rebalanced at discrete time intervals, and that there is a basis risk from the pricing model.

1 Typically, in practice, αM will be an integer. If it is not, then we can use the floor function �αM	.
4
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In a discrete rebalancing plan, cash infusions or withdrawals arise at each rebalancing date. The hedging error at t is the difference 
between the cost of the hedge required at t , and the value of the hedge brought forward from the previous rebalancing date. The hedging 
error can be positive or negative. The loss random variable is the initial cost of the hedge portfolio plus the discounted expected value of 
the hedging errors.

At each time t = 0, 1, . . . , T − 1, the delta hedge portfolio value is given by

Pt = �t St + Bt . (6)

This hedge is held for one period and then rebalanced at t + 1. If we assume a constant interest rate r in each period, then for t =
1, 2, . . . , T , the value at t of the hedge portfolio brought forward from t − 1 is

P bf
t = �t−1 St + Bt−1er . (7)

The hedge error at t is the difference between the cost of the hedge portfolio, and the value of the hedge brought forward from the 
previous period, i.e.,

H Et = Pt − P bf
t , t = 1,2, . . . T − 1. (8)

So we have

L(S T ) = P0 +
T −1∑
t=1

e−rt H Et + [v0(S T ) − e−rT P bf
T ]

=
T −1∑
t=0

�t

[
e−rt St − e−r(t+1)St+1

]
+ v0(S T ). (9)

For complex embedded options, inner simulations are required to estimate the deltas. A common estimation method is the path-
wise estimate, or the infinitesimal perturbation analysis (IPA), which is based on the following identity that holds under some condi-
tions (Glasserman, 2013):

∂Vt(S t)

∂ S t
= ∂

∂ S t
E[vt (̃S t+)|S t] = E

[
∂

∂ S t
vt (̃S t+)

∣∣∣∣ S t

]
.

Denote Ht( S̃ t+) = ∂
∂ St

vt( S̃ t+), then �t(St) = E 
[

Ht( S̃ t+)|S t
]

so the delta can be estimated via inner simulation. We show the derivation 
of Ht( S̃ t+) for a GMWB in Section 4.1.

Although we only consider delta hedging in this study, our procedure is applicable to discrete time hedging programs involving multiple 
option Greeks, if they can be estimated via inner simulation using, for example, the pathwise estimate.

3. Two-stage nested simulation with likelihood ratio estimators

3.1. Reusing simulation outputs using mixture likelihood ratio estimators

The green simulation design paradigm of Feng and Staum (2017) reuses simulation outputs in temporally repeated experiments, so that 
simulation outputs from previous studies can be used to improve the efficiency in future studies, using likelihood ratio based estimators. 
The principle can be adapted to the context of nested simulations, which can be viewed as artificial temporally repeated experiments.

Assumption 3.1 ensures that the likelihood ratio estimators in this paper are well-defined and can be calculated.

Assumption 3.1. The conditional probability density functions, f (̃st+|S t,i), are well-defined and can be calculated for all i = 1, . . . , M and 
t = 0, 1, . . . , T − 1. Moreover, for each t = 0, 1, . . . , T − 1, the supports of f (̃st+|S t,i) for all i = 1, . . . , M are identical.

If Assumption 3.1 holds, then we have the following importance sampling identity.

�t(S t,i) =E
[

Ht (̃S t+)|S t,i
]

=
∫

Ht (̃st+) f (̃st+|S t,i)d̃st+ =
∫

Ht (̃st+)
f (̃st+|S t,i)

f (̃st+|S t,k)
f (̃st+|S t,k)d̃st+

=E

[
Ht (̃S t+)

f (̃S t+|S t,i)

f (̃S t+|S t,k)

∣∣∣∣ S t,k

]
. (10)

Equation (10) allows us to use the inner simulation outputs from the k-th scenario, S t,k , to estimate the delta output for the ith scenario, 
�t(S t,i), using the likelihood ratio (LR) estimator:

�̂LR
t,k(S t,i) = 1

N

N∑
j=1

Ht (̃S t+,kj)
f (̃S t+,kj|S t,i)

f (̃S t+,kj|S t,k)
, S̃ t+,kj

i.i.d.∼ f (̃st+|S t,k),∀ j = 1, . . . , N. (11)

The intuition behind the LR estimator in equation (11) is that reweighting the k-scenario’s inner simulation outputs Ht(S t+,kj), j =
1, . . . , N using the likelihood ratios effectively adjusts the probability such that the scenario k output can be applied to the scenario i
5
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Fig. 2. Schematic illustration of reusing simulation outputs via likelihood ratio estimators. Scenario S T ,i represents the target scenario whereas scenario S T ,k and S T ,M

represent two different sampling scenarios.

estimate. We refer to the k-th scenario here as the sampling scenario and the i-th scenario as the target scenario. Since we can do this 
for any k and i �= k, all of the inner simulation paths can be used with each of the outer scenarios, at each time step. This pooling 
of simulation outputs is expected to greatly improve the estimation accuracy for each target scenario compared to averaging only the 
simulation outputs in that scenario.

Equation (11) shows that the likelihood ratio method is mathematically identical to importance sampling, but it differs in means and 
goals. Importance sampling seeks the best sampling distribution for the goal of reducing variance. The likelihood ratio method, however, 
has no control over the sampling distribution. The goal is to reduce computation; variance reduction is expected but not guaranteed.

Fig. 2 depicts the reuse of simulation outputs: The left to right solid lines represent outer scenarios, while the upward solid lines 
represent the specific inner sample paths generated for each scenario. The broken lines illustrate how the inner simulations from scenario 
k and M are reused for scenario i, along with the paths generated specifically for scenario i.2 The phrase “reuse simulation outputs” 
includes two aspects:

1. Reuse the sampling scenario’s simulation outputs, Ht( S̃ t+,kj), j = 1, . . . , N , to estimate the target scenario’s expected output �t(S t,i). 
These outputs are only calculated once but are reused M times for the M scenarios. As shown in Fig. 2, reusing simulation outputs 
effectively increases the number of outputs in the target scenario and is expected to improve accuracy. Note that reusing the simula-
tion outputs does not require any additional inner simulation; likelihood ratio calculations are needed but these generally require less 
computation than new simulations. Section 3.1.1 elaborates on the computational aspects of the likelihood ratio method.

2. Concatenate the sampling scenario’s inner sample paths S̃ t+,kj to the target scenario S t,i , as shown by the upward dashed lines in 

Fig. 2. Usually, this concatenation is a useful visual aid for the likelihood ratio calculation f (̃S t+,kj |St,i)

f (̃S t+,kj |S t,k)
. For complex embedded options, 

such as the GMWB, direct concatenation may be invalid and adaptations are needed before applying the likelihood ratio method. This 
is discussed further in Section 4.2.

Note that, similarly to importance sampling, the LR estimator can have large or even infinite variance due to the skewness of the 

likelihood ratio. Specifically, even though the likelihood ratio is positive and has unit expectation, that is, even though 
f ( S̃ t+|S t,i)

f ( S̃ t+|S t,k)
> 0

and E
[

f ( S̃ t+|S t,i)

f ( S̃ t+|S t,k)

∣∣∣∣ S t,k

]
=E

[
1|S t,i

]= 1, the likelihood ratio itself can be unbounded. For example, consider the exponential distribution 

f (x|λ) = λe−λx . For λ2 > λ1 > 0, the likelihood ratio f (x|λ1)
f (x|λ2)

= λ1
λ2

e−(λ1−λ2)x → ∞ as x → ∞. Such a highly-skewed likelihood ratio can 
lead to LR estimators with infinite variance. In the context of nested simulation, this problem can arise when the sampling scenario is 
significantly different from the target scenario.

The LR estimator �̂LR
t,k(S t,i) in equation (11) uses inner simulation outputs from a single sampling scenario, the k-th scenario, to 

estimate the i-th scenario delta, �t(S t,i). Given M sampling scenarios, �̂LR
t,k(S t,i), k = 1, . . . , M are all unbiased estimators of �t(S t,i). One 

way to combine these is to average them, i.e.,

�̂ILR
t (S t,i) = 1

M

M∑
k=1

�̂LR
t,k(S t,i).

This is the individual likelihood ratio (ILR) estimator in Feng and Staum (2017). The ILR estimator’s variance is a weighted sum of the 
variances of the individual LR estimators �̂LR

t,k(S t,i) for k = 1, . . . , M , therefore the ILR estimator will have infinite variance when one or 
more of the LR estimators has infinite variance.

A remedy proposed by Feng and Staum (2017) is the mixture likelihood ratio (MLR) estimator, which is given by

�̂MLR
t (S t,i) = 1

MN

M∑
k=1

N∑
j=1

Ht (̃S t+,kj)
f (̃S t+,kj|S t,i)

f̄ M (̃S t+,kj)
, (12)

2 The individual likelihood ratios are shown in Fig. 2 for illustration only. We use the mixture likelihood ratios in our numerical experiments.
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where the mixture pdf for the inner paths is defined as

f̄ M (̃st+) = 1

M

M∑
i=1

f (̃st+|S t,i). (13)

The intuition behind the MLR estimator (12) is similar to that for the LR estimator (11), as both reweight the simulation outputs by the 
appropriate likelihood ratios, but they differ in the interpretation of the sampling distributions for inner paths. The LR estimator in equa-
tion (11) treats the inner sample paths 

{
S̃ t+,kj, j = 1, . . . , N

}
, for k = 1, 2, . . . , M as M different samples, each following the conditional 

distribution f (̃st+|S t,k), k = 1, 2, . . . , M . The MLR estimator, in contrast, views 
{

S̃ t+,kj,k = 1, . . . , M, j = 1, . . . , N
}

as one sample from the 
mixture distribution f̄ M (̃st+).

The MLR estimator has been studied by Veach and Guibas (1995), Feng and Staum (2017), and Elvira et al. (2019). We show here that 
it is unbiased (like the LR estimator) and that the likelihood ratio for the MLR is bounded (unlike the LR estimator). To show that it is 
unbiased, recall that the sampling distribution for S̃ t+,kj is f (̃st+|S t,k) for all j = 1, . . . , N , so we have

E
[
�̂MLR

t (S t,i)
]

= 1

MN

M∑
k=1

N∑
j=1

E

[
Ht (̃S t+,kj)

f (̃S t+,kj|S t,i)

f̄ M (̃S t+,kj)

]
, S̃ t+,kj ∼ f (̃st+|S t,k)

= 1

MN

M∑
k=1

N∑
j=1

∫
Ht (̃st+)

f (̃st+|S t,i)

f̄ M (̃st+)
f (̃st+|S t,k)d̃st+

= 1

N

N∑
j=1

∫
Ht (̃st+)

f (̃st+|S t,i)

f̄ M (̃st+)

1

M

M∑
k=1

f (̃st+|S t,k)d̃st+

(∗)= 1

N

N∑
j=1

∫
Ht (̃st+) f (̃st+|S t,i)d̃st+ = 1

N

N∑
j=1

E
[

Ht (̃S t+)|S t,i
]

= E
[

Ht (̃S t+)|S t,i
]= �t(S t,i),

where (∗) holds by the definition of f̄ M (̃st+) in (13).
Also, the likelihood ratio for the MLR estimator is always bounded above by M , because

f (̃st+|S t,i)

f̄ M (̃st+)
= f (̃st+|S t,i)

1
M

∑M
j=1 f (̃st+|S t, j)

≤ f (̃st+|S t,i)

f̄ M (̃st+)
= f (̃st+|S t,i)

1
M

∑M
i=1 f (̃st+|S t,i)

= M.

The MLR produces more stable estimates than the LR and ILR estimators because the mixture likelihood ratio is less extreme, as seen in 
the following example. Suppose f0(x) and f3(x) are the pdf’s for two normal distributions, each with standard deviation equal to 1, and 
with means of 0 and 3 respectively. The different means can be viewed as the given outer scenarios so f0 and f3 are used to generate 
inner samples. Suppose a sample 3.5 is drawn from the sampling distribution f0 , and is reused in the target distribution f3. The individual 
likelihood ratio is f3(3.5)

f0(3.5)
= 403.43, which is extremely high; this likelihood ratio is in fact unbounded as the sample value approaches 

infinity. The mixture likelihood ratio, in contrast, is f3(3.5)
1
2 [ f0(3.5)+ f3(3.5)]

= 1.995 which is a much more reasonable value.

3.1.1. LR estimators with Markov state processes
When reusing simulation outputs using the ILR estimator, or the MLR estimator, the simulation outputs Ht ( S̃ t+,kj) only need to be 

computed once, and then can be reused multiple times for different target scenarios. When the likelihood ratio calculation is faster than 
computing a new inner simulation output, which is often the case in practical applications, the computational saving is significant.

In general, both the individual likelihood ratio and the mixture likelihood ratio require the conditional pdf to be calculated for the 
whole inner sample path beyond time t , S̃ t+,kj , given the whole outer scenario up to time t , St,i . This calculation is simplified to a one-
step transition probability f (̃St+1,kj |St,i) when the state process is Markov, which greatly reduces the computations needed in reusing 
simulation outputs. The simplification as summarized in Proposition 3.1.

Proposition 3.1. If Assumption 3.1 holds, and the concatenated stochastic process (St , ̃S t+) is Markov, then the LR estimator in equation (11) can be 
written as

�̂LR
t,k(S t,i) = 1

N

N∑
j=1

Ht (̃S t+,kj)
f (̃St+1,kj|St,i)

f (̃St+1,kj |St,k)
, where S̃ t+,kj

i.i.d.∼ f (̃st+|St,k) ∀ j = 1, . . . , N. (14)

Moreover, the MLR estimator in equation (12) can be written as

�̂MLR
t (S t,i) = 1

MN

M∑
k=1

N∑
j=1

Ht (̃S t+,kj)
f (̃St+1,kj|St,i)

f̄ M (̃St+1,kj)
,

where f̄ M (̃st+1) = 1 ∑M
i=1 f (̃st+1|St,i) and ̃S t+,kj

i.i.d.∼ f (̃st+|St,k) for all j = 1, . . . , N, and for all k = 1, . . . , M.
M

7
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Proof. By the Markov property of (S t , ̃S t+), for any scenario S t the conditional pdf f ( S̃ t+|S t) can be written as

f (̃S t+|S t) = f (̃S t+|St) = f (̃S t+1|St, S̃t+1) · f (̃St+1|St) = f (̃S t+1 |̃St+1) · f (̃St+1|St),

where the second equality holds by the Bayes’s theorem.
Then, the likelihood ratio in (14) can be simplified as

f (̃S t+,kj|S t,i)

f (̃S t+,kj|S t,k)
= f (̃S t+1,kj |̃St+1,kj) · f (̃St+1,kj|St,i)

f (̃S t+1,kj |̃St+1,kj) · f (̃St+1,kj |St,k)
= f (̃St+1,kj|St,i)

f (̃St+1,kj|St,k)
.

For the MLR estimator, its mixture likelihood ratio can be simplified as

f (̃S t+,kj|S t,i)

f̄ M (̃S t+,kj)
= f (̃S t+,kj|S t,i)

1
M

∑M
i′=1 f (̃S t+,kj|S t,i′)

(15)

= f (̃S t+1,kj |̃St+1,kj) · f (̃St+1,kj |St,i)

1
M

∑M
i′=1 f (̃S t+1,kj |̃St+1,kj) · f (̃St+1,kj |St,i′)

= f (̃St+1,kj|St,i)

1
M

∑M
i′=1 f (̃St+1,kj|St,i′)

= f (̃St+1,kj|St,i)

f̄ M (̃St+1,kj)
,

as desired. �
Proposition 3.1 shows that even though the entire inner simulation path ̃S t+,kj is simulated and used to calculate the simulation output 

Ht( S̃ t+,kj), we only need to calculate the likelihood ratio for the one-step transition density from time t to t + 1. This means that the 
likelihood ratio calculation can be very efficient even for embedded options with complex path-dependent payoffs.

3.2. Two-stage nested simulation procedure

In Section 2 we identified two main tasks in tail risk estimation: (1) classification of tail scenarios and (2) estimation of tail losses. 
Following Broadie et al. (2011) and Dang et al. (2020), we use a two-stage procedure under which the first step focuses on Task (1) and 
the second on Task (2).

In our numerical experiments, we assume that the simulation budget is a multiple of the number of scenarios M and the number 
of time steps T , that is, � = T MN for some N . This setting allows us to compare our procedure with a standard multi-period nested 
simulation with N inner simulation outputs in each outer scenario at each time.

The two-stage procedure is as follows:

Stage 1: Classification of tail scenarios
In this stage, we use a fraction of the simulation budget, say T MN1 < � for some N1, to identify a set of tail scenarios that are highly 
likely to belong to the true tail scenario set, Tα . The number N1 ≤ N is a design parameter selected by the user.
(1.A) For each time-t scenario S t,i , i = 1, . . . , M and t = 0, . . . , T − 1, simulate N1 inner sample paths and compute the inner simula-

tion outputs. There are MN1 inner simulation outputs at each time t = 0, . . . , T − 1.
(1.B) Use the MLR estimator (12) to estimate �t(S t,i), for all i = 1, . . . , M and t = 0, . . . , T − 1. Denote these first stage estimators by 

�̂
MLR1
t (S t,i). The same MN1 inner samples are reused in all M target scenarios, but weighted by different likelihood ratios.

(1.C) Use the estimates �̂MLR1
t (S t,i) in Step (1.B) to estimate the loss Li by

L̂MLR1
i =

T −1∑
t=0

�̂
MLR1
t (S t,i)

[
e−rt St,i − e−rt+1 St+1,i

]+ V T (S T ,i), i = 1, . . . , M.

(1.D) Sort the estimated losses in Step (1.C), ̂LMLR1
(1) < L̂MLR1

(2) < · · · < L̂MLR1
(M) (assume no ties for simplicity). Identify the set of scenarios 

with the Mh highest estimated losses.

T̂ HL
α =

{
S T ,i : L̂MLR1

i > L̂MLR1
(M−Mh)

}
.

The number Mh ≥ (1 − α)M is a design parameter selected by the user. The set T̂ HL
α is called the highly likely tail scenario set.

Stage 2: Estimation of tail losses
In this stage, we concentrate the remaining simulation budget on the scenarios in T̂ HL

α . Stage 1 uses T MN1 simulation outputs, so the 
remaining simulation budget in Stage 2 is � − T MN1 = T M(N − N1). Therefore, each of the Mh highly likely tail scenarios generates 
approximately N2 = �M(N − N1)/Mh� simulation outputs at each time t = 0, . . . , T − 1.
(2.A) For each scenario S T ,i ∈ T̂ HL

α , simulate N2 inner sample paths at t = 0, 1, . . . , T − 1, and compute the inner simulation outputs. 
There are Mh N2 newly simulated outputs at each time t = 0, . . . , T − 1.

(2.B) Use the MLR estimator �̂MLR
t (S t,i) to estimate �t(S t,i) for all S T ,i ∈ T̂ HL

α and for all t = 0, . . . , T − 1. The outputs simulated for 
S t,i ∈ T̂ HL

α in Stage 1 are also included, so there are Mh(N1 + N2) inner simulation outputs in total that are reused by the MLR 
estimators.

(2.C) Use the estimates �̂MLR
t (S t,i), t = 0, 1, . . . , T − 1 in Step (2.B) to estimate the losses ̂LMLR = L̂MLR(S T ,i) for all S T ,i ∈ T̂ HL

α .
i

8
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(2.D) Sort the estimated losses in Step (2.C), ̂LMLR
(1)

< L̂MLR
(2)

< · · · < L̂MLR
(Mh)

, then estimate the α-CTE by

̂C T E
MLR
α = 1

(1 − α)M

Mh∑
i=Mh−(1−α)M

L̂MLR
(i) = 1

(1 − α)M

∑
S T ,i∈T̂ MLR

α

L̂MLR
i , (16)

where the set of MLR tail scenarios is

T̂ MLR
α = {S T ,i ∈ T̂ HL

α : L̂MLR
i > L̂MLR

(Mh−(1−α)M)
}.

The MLR tail scenarios, T̂ MLR
α , are the (1 − α)M scenarios generating the largest estimated losses, according to the Stage 2 MLR 

estimators, from the Mh scenarios in S T ,i ∈ T̂ HL
α .

We see that Steps (2.A)–(2.C) are similar to Steps (1.A)–(1.C), but the simulation and estimation involve only on the highly likely tail 
scenarios, T̂ HL

α .
Both design parameters N1 and Mh affect the classification of tail scenarios and estimation of tail losses. The optimal selection of these 

parameters will be considered in future studies. We find in our experiments that judicious choices of the design parameters N1 and Mh

will improve performance. Here we provide some guidelines based on our experience:

• We recommend that N1, which is the number of inner simulations per outer simulation in Stage 1, should be small, e.g., 1 or 2. In 
Stage 1, the goal is to identify the highly likely tail scenarios. We can afford coarse estimates for the values of the scenario losses, as 
long as their relative rankings are similar to the rankings of the true losses. The MLR estimator reuses the inner sample paths from 
all M scenarios, thus every �MLR

t (S t) is estimated using MN1 inner sample paths; so a small N1 suffices for our purpose in Stage 1. 
Moreover, the smaller N1 is, the larger the remaining simulation budget is for more accurate estimation in Stage 2.

• We recommend that Mh , which is the number of highly likely tail scenarios in Stage 1, should be the number of true tail scenarios 
plus a safety margin. Due to simulation noise, the rankings of the MLR loss estimates will be different from the rankings of the true 
losses. Ideally, we would like Tα ⊆ T̂ HL

α . Increasing Mh increases the probability of this, but if Mh is too large, the Stage 2 simulation 
budget will be smaller. The appropriate safety margin varies for different applications. We find in our experiments that a margin 
between 5%M and 15%M strikes a good balance between ensuring a good coverage of the true tail scenarios in Stage 1, and leaving 
sufficient simulation budget for Stage 2.
Note that Mh and N1 are connected – a smaller value for N1 will give a rougher first estimate of the losses for each scenario, which 
may necessitate a larger value of Mh , for example.

4. Applying the two-stage MLR approach to a GMWB

4.1. Financial modeling and dynamic hedging for GMWB

The policyholder of a GMWB option may periodically withdraw a guaranteed amount from their sub-account, until a prescribed time 
or until their death. The withdrawals often begin at a specified date (typically 5-7 years) after the initial premium investment.

The guaranteed withdrawal amount is based on a specified percentage of the guarantee base. The policyholder is entitled to withdraw 
this amount even if their sub-account is entirely depleted. The guarantee base is usually set at the higher watermark of the sub-account 
value.

Consider a GMWB with ratchet that expires in T months. We denote the sub-account value at time t by Ft . We assume that the 
account is invested in a stock index whose time t value is denoted by St . For simplicity, we assume that the withdrawal benefit starts 
immediately after the contract commences.

Let Gt be the ratcheted guarantee base at time t . The contract offers a guaranteed periodic withdrawal benefit in the amount of 
It = γ Gt for some fixed γ . We assume the GMWB is issued to a policyholder age x at t = 0. Let s px denote the probability of this 
policyholder surviving all decrements, including mortality and lapse, up to time s, in months, and we let px,t denote the probability of 
survival from time t to time t + 1, in months. For monthly withdrawals in a 20-year contract, we need to consider the evolution of Ft , St , 
and Gt , for t = 0, 1, 2, . . . , T . At t = 0, we assume that the whole fund is invested in the stock index and the guarantee base is set to the 
fund value, so

F0 = S0 = G0.

Also, set I0 = 0 as the first withdrawal starts at time 1.
At each withdrawal date, the follow events take place in order:

(1) The fund value from t − 1, after the withdrawal at that time, changes according to the growth of the underlying stock, deduction of 
management fee, and reduction proportional to mortality and lapse decrements.

(2) The guarantee base ratchets up if the fund value exceeds the previous guarantee base, reduced proportionally for decrements.
(3) The fund value is reduced by the amount of the withdrawal benefit, subject to a minimum value of 0.

Mathematically, at t = 1, . . . , T , we have

Ft = max

(
(Ft−1 − It−1)

St
e−ηg · px,t−1,0

)
= (Ft−1 − It−1)

+eRt e−ηg · px,t−1, (17)

St−1
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where Rt = ln
St

St−1

Gt = max(Gt−1 · px+t−1, Ft), (18)

It = γ Gt . (19)

Here Rt is the log-return of the stock index at t , and ηg is the gross management fee that is deducted from the sub-account each month. 
Part of the gross management fee covers the expenses incurred by the insurer and the other part is the income for the insurer. Denote 
the net-of-expenses rate of management fee by ηn; thus the insurer’s income at time t is Ft(eηn − 1).

We see from (17)–(19) that the status of a GMWB at any time t can be summarized by the triplet (St , Ft , Gt), so this triplet is the 
state variable. We note that the evolution of the triplet is driven only by the stochasticity of the stock price process St . We denote the 
state variables up to time t by (S t , F t , Gt) and the inner simulated state variables from time t to T by ( S̃ t+, ̃F t+, ̃Gt+).

The insurer’s liability in a GMWB contract is the present value of all the withdrawal benefits paid after the depletion of the sub-account, 
offset by the present value of all the net management fees, Ft (eηn − 1), collected as income. At any time t , the insurer is interested in 
hedging the future liability (beyond time t), which has value at t of

vt+ =
T∑

s=t+1

e−r(s−t) [(Is − Fs)
+ − Fs(eηn − 1)

]
. (20)

Consider a discrete time delta hedging program for this GMWB contract. The insurer sets up an initial hedge portfolio at time 0 then 
rebalances it at times t = 1, . . . , T to offset the future liabilities, based on a delta hedge. The time t hedge portfolio consists of �t units 
of the underlying stock St , where �t is the derivative of the GMWB liability value at t , with respect to the time t stock price St . This 
derivative can be estimated as follows.

1. If Ft ≤ γ Gt , then �t = 0 because the sub-account would be depleted after the withdrawal at time t so the liability value does not 
depend on St . In this case, we set �t = 0 without any inner simulation. In implementation, these scenarios are flagged as they do not 
reuse any output and do not create any simulation output to be reused by other scenarios.

2. If Ft > γ Gt , then �t = �t(S t , F t , Gt) is estimated using inner simulation. Following Glasserman (2013) and Cathcart et al. (2015), 
based on equation (20) the pathwise estimator of �t(S t , F t , Gt), based on a single inner simulation path, is given by

Ht (̃S t+, F̃ t+, G̃t+) =
T∑

s=t+1

e−r(s−t)
[
1
{̃

Is > F̃ s
} ·
(

d̃Is

dSt
− dF̃s

dSt

)
− dF̃s

dSt
(eηn − 1)

]
. (21)

Using equations (17)–(19), the sensitivities

dF̃s

dSt
,

dG̃s

dSt
, and

d̃Is

dSt

are calculated recursively for s = t+1, t+2, . . . , T as

dF̃s

dSt
= 1

{̃
Is−1 < F̃ s−1

} ·
(

dF̃s−1

dSt
− d̃Is−1

dSt

)
eR̃s e−ηg · px,s−1, where R̃s = ln

S̃ s

S̃ s−1
(22)

dG̃s

dSt
= 1

{
G̃s−1 · px,s−1 < F̃ s

} dF̃s

dSt
+ 1

{
Gs−1 · px,s−1 ≥ Fs

} dG̃s−1

dSt
, (23)

d̃Is

dSt
= γ

dG̃s

dSt
. (24)

The boundary conditions of these recursions are given by

dF̃t

dSt
= Ft

St
,

dG̃t

dSt
= 0, and

d̃It

dSt
= 0, (25)

because
• At time t , the fund Ft has Ft

St
unit of stocks so a unit change in stock price results in Ft

St
units of change in fund value, i.e.,

dFt

dSt
= Ft

St
.

• Also, the inner simulation sample path at time t is initialized by setting (̃St , ̃Ft , ̃Gt) = (St , Ft , Gt). Therefore

dF̃t

dSt
= dFt

dSt
= Ft

St
.

• Given the guarantee base Gt , the guarantee base G̃t = Gt and the withdrawal amount ̃ It = γ Gt is fixed, which means that

dG̃t = 0 and
d̃It = 0.
dSt dSt

10
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Note that inner simulation is only required when Ft > γ Gt , in which case the indicator function in equation (22) is equal to 1. Also, 
based on the boundary conditions (25), provided that Ft > γ Gt , we have

dF̃t+1

dSt
=
(

dF̃t

dSt
− d̃It

dSt

)
eR̃t+1 e−ηg · px,t = Ft

St
eR̃t+1 e−ηg · px,t, (26)

where R̃t+1 = ln
S̃t+1

S̃t
= ln

S̃t+1

St
.

In summary, in a standard nested simulation, for any scenario (S t,i, F t,i, Gt,i), i = 1, . . . , M , the time t pathwise delta estimator for 
GMWB is given by

�̂NS
t (S t,i, F t,i, Gt,i) =

⎧⎪⎪⎨⎪⎪⎩
0, if Ft,i ≤ γ Gt,i,

1

N

N∑
j=1

Ht (̃S t+,i j, F̃ t+,i j, G̃t+,i j), if Ft,i > γ Gt,i,
(27)

where S̃ t+,i j
i.i.d.∼ f (̃st+|S t,i) for all j = 1, . . . , N . Then, in a standard multi-period nested simulation procedure, for the ith scenario S T ,i , 

the discrete time hedging loss is estimated as

L̂NS
i =

T −1∑
t=0

�̂NS
t (S t,i, F t,i, Gt,i)[e−rt St,i − e−r(t+1)St+1,i] + v0(S T ,i, F T ,i, G T ,i), (28)

where v0(S T ,i, F T ,i, G T ,i) =∑T
t=1 e−rt

[
(It − Ft)

+ − Ft(eηn − 1)
]

is the value at the policy inception of the GMWB liability.
Note the similarity between equation (28) and equation (9), where the former specifically considers GMWB’s liability and estimates 

the deltas by the Monte Carlo estimator (27).

4.2. Adapting the likelihood ratio method to the GMWB loss

To conform with the evolution of the GMWB state variables, we need to adapt the likelihood ratio method before applying it to the 
delta hedging of GMWB’s liability.

Recall from Section 3.1 that when reusing inner simulation outputs from sampling scenario k to a target scenario i, the inner sample 
paths from scenario k are concatenated with the outer path (up to time t) from scenario i, to form a notional path:

︸ ︷︷ ︸(
S t,i ,F t,i ,Gt,i

)
(

S0,i, F0,i, G0,i
)
, . . . ,

concatenated time-(t + 1) inner simulation step︷ ︸︸ ︷(
St,i, Ft,i, Gt,i

)
, ︸ ︷︷ ︸(

S̃ t+,kj , F̃ t+,kj ,G̃t+,kj
)

(̃
St+1,kj, F̃t+1,kj, G̃t+1,kj

)
. . . ,

(̃
ST ,kj, F̃ T ,kj, G̃ T ,kj

)

If this notional path is valid, by which we mean that it represents a feasible evolution of the state variables, the (kj)-th simulation output 
is reused as the output of this notional path, after reweighting by the appropriate likelihood. However, some of these notional paths are 
invalid, as they do not satisfy the relationships among St , Ft , and Gt implied by equations (17)–(19). We make adaptations to these paths 
and to the corresponding simulation outputs so they can still be reused.

From Equation (18), we see that Gt+1 = max{Fs · t−s+1 px,s : s = 0, . . . , t + 1} so the ratcheted guarantee base without decrement can 
never decrease. Also, if the guarantee base, without decrements, is increased at time t + 1, then it must be the case that the fund value 
Ft+1 has reached a high water mark. Mathematically, Gt+1 > Gt · px,t only if Gt+1 = Ft+1. A concatenated notional path can violate these 
relationships in two ways:

(1) G̃t+1,kj < Gt,i · px,t : The generation of the (kj)-th inner sample path is conditioned on the sampling scenario k, so its guarantee base, 
without decrement, is non-decreasing within that scenario, i.e., G̃t+1,kj ≥ Gt,k · px,t . However, when concatenated with the target 
scenario i, one may have G̃t+1,kj < Gt,i · px,t , which forms an invalid notional path.

(2) G̃t+1,kj > Gt,i · px,t but G̃t+1,kj �= F̃t+1,kj : Though G̃t+1,kj is the running maximum of fund values up to time t + 1 for the sampling 
scenario k, it may not be the running maximum of the target scenario S T ,i fund value up to time t + 1.

We do not want to remove all the invalid notional paths, as this is a wasteful use of simulation budget. Instead, we adjust the inner 
sample paths so that, after the adjustment, the concatenated notional paths are valid. We also adjust the corresponding inner simulation 
outputs accordingly so they can be reused in different target scenarios.

Consider a fixed time t = 1, . . . , T − 1, a target scenario S T ,i , such that Ft,i > It,i , and a sampling scenario S T ,k , that satisfies Ft,k > It,k . 
As discussed in Section 4.1, at time t , scenario S T ,i requires inner simulation and scenario S T ,k has inner simulation outputs to be reused. 
In what follows, we adjust the ( j)-th inner sample path from S T ,k , and its simulation output, for reuse in the target scenario S T ,i
11
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Consider the following adjusted j-th inner sample path from the sampling scenario, S T ,k .⎛⎜⎜⎜⎜⎜⎜⎝
S̃

adj
t+,kj

F̃
adj
t+,kj

G̃
adj
t+,kj

⎞⎟⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

S̃ t+,kj · St,i

St,k
· Gt,i

Gt,k
· Ft,k − It,k

Ft,i − It,i

F̃ t+,kj · Gt,i

Gt,k

G̃t+,kj · Gt,i

Gt,k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (29)

We claim that the adjusted notional path 
((

S t,i, F t,i, Gt,i
)
,
(

S̃
adj
t+,kj, F̃

adj
t+,kj, G̃

adj
t+,kj

))
is a valid evolution of GMWB state variables. First, we 

re-examine the two aforementioned violations:

(I) Since G̃t+,kj is the jth inner sample path from the kth scenario, the guarantee base without decrement is non-decreasing so G̃t+1,kj ≥
Gt,k · px,t . By construction, in equation (29),

G̃adj
t+1,kj = G̃t+1,kj · Gt,i · px,t

Gt,k · px,t
≥ Gt,i · px,t

so the first violation no longer occurs.
(II) Consider any adjusted notional path where G̃adj

t+1,kj > Gt,i · px,t . By equation (29), this means that G̃t+1,kj · Gt,i · px,t
Gt,k · px,t

> Gt,i · px,t and 
so G̃t+1,kj > Gt,k · px,t . Since G̃t+,kj is from an inner sample path of the kth scenario, if G̃t+1,kj > Gt,k · px,t then it must be that 
G̃t+1,kj = F̃t+1,kj . Then, by (29), in this case

G̃adj
t+1,kj = G̃t+1,kj · Gt,i

Gt,k
= F̃t+1,kj · Gt,i

Gt,k
= F̃ adj

t+1,kj

so the second violation no longer occurs either.

Secondly, we show that the adjusted stock price path S̃
adj
t+,kj is aligned with the adjustments made to F̃

adj
t+,kj and G̃

adj
t+,kj . By equations (17)

and (29), we have

(Ft,i − It,i)
+ · S̃adj

t+1,kj

St,i
e−ηg · px,t

(17)= F̃ adj
t+1,kj

(29)= F̃t+1,kj · Gt,i

Gt,k

(17)= (Ft,k − It,k)
+ · S̃t+1,kj

St,k
e−ηg · Gt,i

Gt,k
· px,t .

As we consider target and sampling scenarios with Ft,i > It,i and Ft,k > It,k , the adjusted stock price is

S̃adj
t+1,kj = S̃t+1,kj · St,i

St,k
· Gt,i

Gt,k
· Ft,k − It,k

Ft,i − It,i
= St,i · eR̃adj

t+1,kj ,

where

R̃adj
t+1,kj = ln

S̃adj
t+1,kj

St,i
= R̃t+1,kj + ln

[
Gt,i

Gt,k
· Ft,k − It,k

Ft,i − It,i

]
and R̃t+1,kj = ln

S̃t+1,kj

St,k
.

This shows that, to align with the adjusted fund value F̃ adj
t+1 and guarantee base G̃adj

t+1 at time t + 1, the time (t + 1) log-return is 

adjusted from R̃t+1,kj to R̃adj
t+1,kj . For subsequent time steps no adjustment is made to the log-returns, so S̃adj

s

S̃adj
s−1

= S̃ s
S̃ s−1

. Then, according to 

equations (17)-(19), the stock price S̃adj
s , the fund value F̃ adj

s , and the guarantee based G̃adj
s all are the same multiple of their unadjusted 

value as they are at time t + 1. This justifies the proportionate change for the entire inner path in equation (29).
The adjustment (29) enables us to reuse the adjusted inner sample paths. The simulation output for an adjusted inner sample path is 

Ht( S̃
adj
t+,kj, ̃F

adj
t+,kj, ̃G

adj
t+,kj), where Ht is as defined in equation (21), and requires the recursions from equations (22)–(25). We show that the 

recursion can be circumvented by reusing the unadjusted simulation outputs Ht ( S̃ t+,kj, ̃F t+,kj, ̃Gt+,kj). Specifically,

Ht (̃S
adj
t+,kj, F̃

adj
t+,kj, G̃

adj
t+,kj) = Ht (̃S t+,kj, F̃ t+,kj, G̃t+,kj) · eR̃adj

t+1,kj

eR̃t+1,kj
· Ft,i

St,i
· St,k

Ft,k
, (30)

where

R̃t+1,kj = ln
S̃t+1,kj

St,k
and R̃adj

t+1,kj = R̃t+1,kj + ln

[
Gt,i

Gt,k
· Ft,k − It,k

Ft,i − It,i

]
.

Firstly, the adjustment in equation (29) implies that, for any s = t + 1, . . . , T ,

dF̃ adj
s,kj

dF̃
= dF̃ adj

t+1,kj

dF̃
= Gt,i

G
.

s,kj t+1,kj t,k

12
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Using the chain rule, we have

dF̃ adj
s,kj

dSt,i
= dF̃s,kj

dSt,k
·

dF̃ adj
t+1,kj

dSt,i

dF̃t+1,kj
dSt,k

(26)= dF̃s,kj

dSt,k
· eR̃adj

t+1,kj

eR̃t+1,kj
·

Ft,i
St,i

Ft,k
St,k

, ∀s = t + 1, . . . , T . (31)

Equation (31) can be interpreted as two adjustments to the (kj)-th simulation output: one for the log-return and one for the boundary 
condition. Both adjustments are results of the inner path adjustment from equation (29).

Secondly, the adjustment implies that, for any s = t + 1, . . . , T ,

dG̃adj
s,kj

dG̃s,kj
= dF̃ adj

s,kj

dF̃ s,kj
= Gt,i

Gt,k
⇒ dG̃adj

s,kj

dF̃ adj
s,kj

= dG̃s,kj

dF̃ s,kj

=⇒ dG̃adj
s,kj/dSt,i

d F̃ adj
s,kj/dSt,i

= dG̃adj
s,kj

dF̃ adj
s,kj

= dG̃s,kj

dF̃ s,kj
= dG̃s,kj/dSt,k

dF̃s,kj/dSt,k

=⇒ dG̃adj
s,kj

dSt,i
= dG̃s,kj

dSt,k

dF̃ adj
s,kj

dSt,i

dF̃ s,kj
dSt,k

(31)= dG̃s,kj

dSt,k
· eR̃adj

t+1,kj

eR̃t+1,kj
·

Ft,i
St,i

Ft,k
St,k

, ∀s = t + 1, . . . , T . (32)

Thirdly, the withdrawal It is a fixed proportion (γ ) of the guarantee base, regardless of the adjustment. This means that

d̃Iadj
s,kj

dG̃adj
s,kj

= d̃Is,kj

dG̃s,kj
= γ

=⇒ d̃Iadj
s,kj/dSt,i

dG̃adj
s,kj/dSt,i

= d̃Is,kj/dSt,i

dG̃s,kj/dSt,i

=⇒ d̃Iadj
s,kj

dSt,i
= d̃Is,kj

dSt,i

dG̃adj
s,kj

dSt,i

dG̃s,kj
dSt,i

(32)= d̃Is,kj

dSt,i
· eR̃adj

t+1,kj

eR̃t+1,kj
·

Ft,i
St,i

Ft,k
St,k

, ∀s = t + 1, . . . , T . (33)

Finally, we see that equation (30) holds by plugging equations (31)–(33) into equation (21).
Let 
t := {(S T ,i, F T ,i, G T ,i) : i = 1, . . . , M, Ft,i > It,i} be the outer scenarios that require inner simulations at time t and let Mt = |
t |. 

In light of (12), (27), and (30), for any target scenario (S T ,i, F T ,i, G T ,i) ∈ 
t , the MLR estimator for the time t delta is

�̂MLR
t (S t,i, F t,i, Gt,i) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Ft,i ≤ γ Gt,i,

1

Mt N

∑
k:(S T ,k,F T ,k,G T ,k)∈
t

e R̃adj
t+1,kj

eR̃t+1,kj
·

Ft,i
St,i

Ft,k
St,k

×
N∑

j=1

Ht (̃S t+,kj, F̃ t+,kj, G̃t+,kj)
f (̃S

adj
t+,kj|S t,i)

f̄ M (̃S
adj
t+,kj)

if Ft,i > γ Gt,i,
(34)

where

R̃t+1,kj = ln
S̃t+1,kj

St,k
and R̃adj

t+1,kj = R̃t+1,kj + ln

[
Gt,i

Gt,k
· Ft,k − It,k

Ft,i − It,i

]
.

The likelihood ratio 
f ( S̃

adj
t+,kj |S t,i)

f̄ M( S̃
adj
t+,kj)

can be calculated using equation (15) if the state process is Markov. We provide an example of its 

calculation in Section 5.
We see from equation (34) that the unadjusted simulations outputs Ht ( S̃ t+,kj, ̃F t+,kj, ̃Gt+,kj) are computed once and reused Mt times 

in different target scenarios. The adjustment adds negligible computation.
As mentioned in Section 4.1, the stochasticity of GMWB state variable (St , Ft , Gt) is driven entirely by the underlying stock St , so 

the likelihood ratio calculation in (34) is based on the conditional densities of inner sample paths of S̃ t+ , given the outer scenario. The 
adjustment in equation (29) does not affect the Markov property of the state process. To calculate the MLR estimator for other types of 
VA contracts, particularly where the stochastic state variables are driven by the underlying stock price and are path-dependent, similar 
adaptation can be made. We show an example using a GMMB contract in Section 6.

In the following section we illustrate the two-stage procedure numerically for a fixed term GMWB. In Appendix B, we also present 
results of a numerical experiment using a simplified GMMB contract with a log-normal asset model.
13
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Table 1
Parameters for the regime-switching lognormal asset model in 
the numerical experiments.

(Monthly rate) Real World

Risk-free Rate: r 0.002
Mean - Regime 1 (ρ = 1): μ1 0.0085
Mean - Regime 2 (ρ = 2): μ2 -0.0200
Standard Deviation - Regime 1: σ1 0.035
Standard Deviation - Regime 2: σ2 0.080
Transition Probability - from Regime 1: p12 0.04
Transition Probability - from Regime 2: p21 0.20

5. Numerical experiments

In this section we compare a standard, multi-period nested simulation to the two-stage procedure described above, in the context of 
estimating the 95%-CTE of the hedging losses for a delta-hedged GMWB contract. Our experiments show that the proposed two-stage 
procedure produces more accurate estimates than the standard procedure with much less runtime.

We consider a fixed term GMWB contract with the following characteristics:

• The initial fund value is F0 = 1000, which is also the initial guarantee base G0. The guarantee base is ratcheted monthly to the higher 
of the previous month’s guarantee base and the current month’s fund value prior to the withdrawal.

• It has a 20-year time-to-maturity and is hedged monthly, so T = 240.
• The policyholder is allowed to make monthly withdrawals of γ = 0.375% of the guarantee base Gt .
• A management fee of ηg = 0.2% is deducted monthly from the fund value and half of it is treated as income for the contract 

guarantees, that is, ηn = 0.1%.
• For the purpose of comparison between the methods, we simplify the calculations by ignoring mortality, and assuming a constant 

risk-free interest rate, r. We also assume that withdrawals exactly meet the guaranteed minimum each month.

We assume that the underlying stock follows a regime-switching lognormal (RSLN) asset model with two regimes, with parameters 
as specified in Table 1 for the real world measure. The risk neutral measure is identical, except that the mean log returns are r − σ 2

i
2

for regimes i = 1, 2; the other parameters are unchanged. This is a common approach in the literature (See Bollen, 1998; Hardy, 2001; 
Dang et al., 2020, for example). The RSLN model is popular in practice for its ability to model volatility clustering and other asset price 
characteristics. It also satisfies the Markov property, allowing the use of Proposition 3.1 to simplify the likelihood ratio calculations.

The likelihood ratio in the MLR estimator in equation (34) is calculated as

f (̃S
adj
t+,kj|S t,i)

f̄ M (̃S
adj
t+,kj)

= f (̃St+1,kj|St,i)

1
M

∑M
i′=1 f (̃St+1,kj|St,i′)

=
φ

(
ln(

S̃t+1,kj
St,i

); r − σ 2
ρt,i′
2 ,σ 2

ρt,i

)
· P
[
ρt+1,kj|ρt,i

]
1
M

∑M
i′=1 φ

(
ln(

S̃t+1,kj
St,i′

); r − σ 2
ρt,i′
2 ,σ 2

ρt,i′

)
· P
[
ρt+1,kj|ρt,i′

]
where φ(x; μ; σ 2) is the probability density function of a normal distribution with mean μ and variance σ 2.

We first simulate M = 10, 000 stock paths S T ,i , i = 1, . . . , M , and use them to compute the fund value paths F T ,i and guarantee 
base paths G T ,i . All experiments in this section will use the same set of scenarios. The objective is to estimate the tail risk measure as 
accurately and efficiently as possible for this fixed set of scenarios. This requires identifying the 500 scenarios generating the largest losses, 
and accurately evaluating the losses for these scenarios.

As the hedging loss for the GMWB contract under the RSLN model cannot be calculated analytically, we run a large scale standard 
nested simulation with N = 10, 000 inner simulations at each time step of each scenario, to obtain accurate estimates for the hedging 
loss for each scenario. These accurate estimates are used as benchmarks to access the accuracy of different simulation procedures. We are 
interested in estimating the 95%-CTE of these benchmark losses, which is the average of the largest 500 benchmark losses corresponding 
to the true tail scenarios.

We first provide a holistic view of the performance of the two-stage procedure. Though not all scenarios require inner simulation, we 
assign the same number of inner sample paths (some unused) to all scenarios. Consider a two-stage procedure with N1 = 2 inner sample 
paths per sampling scenario (for a total of 20,000 inner simulation outputs reused in each target scenarios) in Stage 1, and Mh = 1, 500
highly likely tail scenarios (that is, a 10%M safety margin).

In Stage 1, the MLR estimator reuses 20,000 simulation outputs to estimate the loss in each scenario. Fig. 3a depicts the estimated 
losses in Stage 1 versus the benchmark losses. We see that the MLR estimates of the losses are close to the benchmark losses, as the 
points in Fig. 3a are near the 45-degree line. Moreover, 497 of the 500 true tail scenarios are included in the Mh = 1, 500 highly likely 
tail scenarios.

In Stage 2, each of the 1,500 highly likely tail scenarios are assigned an additional N2 = 80 inner simulations, so the MLR estimator 
reuses (N1 + N2) · Mh = 123, 000 simulation outputs to estimate the loss in each scenario. Fig. 3b shows the estimated losses in Stage 
2 versus the benchmark losses. We see that, with the concentrated simulation budget, the Stage 2 simulation significantly improves the 
accuracy of the loss estimates in the highly likely tail scenarios, which will in turn improve the accuracy of the CTE estimate. The subfigure 
14
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Fig. 3. Illustration of the proposed two-stage simulation procedure.

Table 2
Average runtime of one repetition of each experiment, to the 
nearest hour.

Experiment Design Runtime of One Repetition

Two-stage procedures
(a1) Mh = 1,500, N2 = 80 8 hours
(a2) Mh = 1,000, N2 = 170 10 hours
(a3) Mh = 500, N2 = 620 8 hours

(b) Standard nested, N = 350 32 hours

in Fig. 3b zooms into the border between tail and non-tail scenarios: In this illustration, the CTE estimate by the two-stage procedure 
includes 481 of the 500 true tail scenarios. Among the 19 tail scenarios that were not included in the CTE estimate, 3 were missed in 
Stage 1, and 16 were missed in Stage 2.

Next we examine the performance of the two-stage procedure in more detail. We repeat the following four experiments 100 times:

Experiment (a): The proposed two-stage procedure with
(a1) Mh = 1500, and N2 = 80 (the same configuration as in Figs. 3a and 3b),
(a2) Mh = 1000, and N2 = 170, and
(a3) Mh = 500, and N2 = 620.
Experiment (b): Standard multi-period full nested simulation with N = 350 inner simulations for each outer scenario.

In Experiment (a), N1 is set equal to 2 in each case. We chose Mh = 500, 1000, 1500 to test the impact of different sizes for the highly 
likely tail scenario set; the N2 values are then determined such that Experiments (a1), (a2), and (a3) all require similar computation time. 
Note that Mh = 500 is the minimum size for the highly likely tail scenario set.

Runtime for a single repetition of the experiments shown in Table 3 is summarized in Table 2. These were conducted with 40 cores on 
a Dell PowerEdge R840 server with 4 Intel Xeon Gold 6230 20-core 2.1 GHz (Cascade Lake) CPU and 768 GB memory. Experiments (a1), 
(a2), and (a3) take around a quarter of the runtime of a standard nested simulation shown in Table 3.

The likelihood ratio computations reduce the number of inner simulations available for a given runtime. In the standard nested simu-
lation experiment, where no likelihood computation is needed, the total number of inner sample paths in all scenarios is 10, 000 × 350 =
3, 500, 000. In Experiment (a1), the total number of inner sample paths reduces to 10, 000 × 2 + 1, 500 × 80 = 140, 000, which is only 4% 
of that in Experiment (b), but the run time of Experiment (a1) is 25% of the run time of Experiment (b) due to the likelihood computations 
required.

Each of the 100 repetitions of the above experiments produces a 95%-CTE estimate. By comparing these estimates with the benchmark 
95%-CTE estimate we can estimate the Root Mean Squared Errors (RMSEs), bias and standard deviation, relative to the true CTE value, for 
each of the four experiments.
15
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Table 3
Accuracy measures from 100 repetitions of different configurations of the two-stage procedure 
and the standard nested simulation.

Experiment Design Relative RMSE Relative Bias Relative SD

(a) Two-stage procedures
a1. Mh = 1,500, N2 = 80 0.146% -0.002% 0.146%
a2. Mh = 1,000, N2 = 170 0.147% -0.069% 0.130%
a3. Mh = 500, N2 = 620 1.417% -1.405% 0.182%

(b) Standard nested sim. with N = 350 1.263% 1.201% 0.392%

Fig. 4. Box-and-whisker plot of 95%-CTE estimates from 100 repetitions of three configurations of two-stage procedure using MLR estimators, and standard nested simulation.

The relative RMSE is

Relative RMSE = 1

C T Eα

√√√√√ n∑
i=1

(
̂C T Eα,i − C T Eα

)2

n
,

where n = 100 is the number of repetitions of the experiment, ̂C T Eα,i is the estimated α-CTE of the ith repeated experiment, and C T Eα

is the α-CTE value estimated by the large scale benchmark full nested simulation, which stands in for the true α-CTE for the 10,000 
scenarios. The relative bias is

1

C T Eα

n∑
i=1

(
̂C T Eα,i − C T Eα

)
n

,

and the relative standard deviation is

1

C T Eα

√√√√√ n∑
i=1

(
̂C T Eα,i − 1

n

∑n
i=1

̂C T Eα,i

)2

n
.

Table 3 and Fig. 4 summarize these performance measures. We make the following observations.

(1) Experiments (a1) and (a1) provide substantially more accurate estimates of the 95% CTE for the GMWB, with lower bias and lower 
variance, compared with the standard nested simulation used in Experiment (b). Recall that the run times for Experiments (a1) and 
(a2) are only 25% of the full nested approach used in Experiment (b).

(2) Experiment (a3), which allows no safety margin in the highly likely tail scenario set, gives a worse estimator than (a1), (a2), or (b), 
in terms of the RMSE, with relatively high standard deviation and a significant negative bias. The negative bias is caused by the fact 
that the first step does not exactly predict the 500 true tail scenarios; a number will be misclassified and will therefore be replaced 
in the CTE calculation with scenarios that generate smaller losses. The second step of the inner simulation process provides more 
16
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Table 4
True tail scenarios captured in 100 repetitions of two-stage nested simulation using MLR estimator of 
different configurations of the two-stage procedure and the standard nested simulation.

# of repetitions
# true tail T̂ H L

α includes all # true tail
Experiment Design scen. in T̂ H L

α true tail scenarios scen. in T̂ MLR
(1−α)M

(a) Two-stage procedures
a1. N1 = 2, Mh = 1,500, N2 = 80 499.6 66/100 476.9
a2. N1 = 2, Mh = 1,000, N2 = 170 498.0 17/100 478.9
a3. N1 = 2, Mh = 500, N2 = 620 438.6 0/100 438.6

(b) Standard nested sim. with N = 350 n/a n/a 434.4

accurate loss evaluation for the scenarios selected, but the number of misclassified scenarios will inevitably decrease the estimated 
CTE compared with the accurate value. Experiments (a1) and (a2) use 1,500 and 1,000 Stage 1 tail scenarios, respectively, to capture 
the largest 500 loss values. Compared with (a1), (a2) uses more inner simulations, giving a smaller variance in the CTE estimate, but 
also displays a small negative bias, indicating that some of the true tail scenarios are misclassified in Stage 1, similarly to Experiment 
(a3), but with much less severe impact.
We examine this misclassification in more detail in Table 4, which summarizes the number of the true tail scenarios identified in 
Stage 1 of the two stage process, averaged over the 100 repetitions. In the second column, we show the average number of true 
tail scenarios that are correctly classified in Stage 1 into the highly likely tail scenario set, T̂ H L

α . In the third column, we show how 
many times the Stage 1 process correctly classified all of the true tail scenarios into T̂ H L

α . In the fourth column, we show the average 
number of true tail scenarios included in the final CTE calculation.
From the table we see that in Experiment (a3), none of the 100 repeated experiments correctly classifies all 500 true tail scenarios 
in the highly-likely tail scenario set; on average, 438.6 of the 500 true tail scenarios are correctly classified, resulting in the bias 
identified in Fig. 4. As each of the scenarios allocated to T̂ H L

α is used in the CTE calculation, the second and fourth columns are the 
same.
Increasing the safety margin to 5%M , as in Experiment (a2), drastically reduces the misclassification of tail scenarios. On average, 498.0 
of the 500 true tail scenarios are correctly classified into the highly likely tail scenario set, T̂ H L

α . In 17 of 100 repeated experiments, 
T̂ H L

α includes all the true tail scenarios, and on average, Experiment (a2) includes 478.9 true tail scenarios in the CTE estimate.
In Experiment (a1) the number of highly-likely tail scenarios is increased to Mh = 1, 500. The average number of true tail scenarios 
allocated to T̂ H L

α is 499.6, and all of the true tail scenarios were correctly allocated in 66 of the 100 repeated experiments. However, 
the inner simulation step is a little less accurate than Experiment (a2), as the budget is computation budget applied more widely, 
resulting in a smaller number of true tail scenarios included in the final CTE calculation, on average, than Experiment (a2). As we see 
from Table 3, though, the slightly different misclassification between Experiments (a1) and (a2) has little effect on their RMSEs.

(4) Experiment (b), the standard nested simulation, has high bias and high variance. This is a well documented result of using an insuffi-
cient number of inner simulations - see, for example, Gordy and Juneja (2010), Dang (2021), and Broadie et al. (2011). The explanation 
is that using a small number of inner simulations causes significant noise in the estimated losses for the outer scenarios, creating 
the high variance. In addition, because the estimated CTE is the average of the (1 − α)M largest simulated losses, the losses that are 
underestimated because of sampling variability fall out of the CTE calculation and the losses that are over-estimated are therefore 
disproportionately represented in the calculation, leading to a general positive bias. In simple terms, suppose the true loss value for 
each of the worst 1000 scenarios is equal to 80. The 95% CTE is estimated from the average of the largest 5000 simulated losses. 
Now suppose that inner sampling noise will give a loss estimate for each scenario of either 70 or 90, with equal probability. Overall 
there is no bias, but when we average the largest 500 simulated losses to find the CTE, we get a value of 90, on average, as we 
disproportionately capture the high-side estimates.

(5) Clearly, using more inner simulations produces a more accurate estimate of the loss for a given scenario. In Experiment (b) we use 
only 350. The estimate in Experiment (a1), uses only 82 (that is, N1 + N2) original inner simulation paths for each scenario, but it also 
uses an additional 1499 × 82 inner simulation results that are re-purposed from the other scenarios, for a total of 123,000. Similarly, 
including re-used simulations, Experiment (a2) uses 1, 000 × 172 = 172,000 inner simulation outputs for each scenario. However, the 
re-used simulation paths are not all equally likely, unlike the 350 paths used in Experiment (b). If the likelihood ratios are very small, 
meaning that the re-used simulated outputs are not very helpful across different scenarios, then the estimate might not be much 
better than simply using the 82 inner simulations specific to the individual scenario. A more appropriate comparison is to consider 
the effective sample size, which is the number of i.i.d. simulations that would have achieved the same mean squared error as the 
likelihood ratio estimator. This is a common diagnostic in importance sampling. In Kong (1992) and Liu (1996), under some technical 
assumptions, it can be shown that the effective sample size, Ñ , of a likelihood ratio estimator can be estimated by

Ñ(i)
t =

(∑M
k=1
∑N

j=1 w(k, j)
t

)2

∑M
k=1
∑N

j=1

(
w(k, j)

t

)2

where w(k, j)
t is the likelihood ratio used in the MLR estimator. Fig. 5 depicts the log of the average effective sample sizes for each of 

the experiments at different times t (in months) along the outer scenario. We see from this figure that the effective sample size for 
the two-stage procedure is higher than that of the standard nested simulation at all times, even in the first stage, where only two 
original inner simulations are generated for each of the 10,000 scenarios. In the second stage, the effective sample size is very much 
higher than the standard nested approach for the scenarios selected in the first stage.
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Fig. 5. Estimated effective sample size (in log scale) in one repetition of Stage 1 MLR, Stage 2 MLR, and SMC experiment.

(6) We note that Lan et al. (2010) also propose a two-stage (single-period) nested simulation procedure. We implemented their method 
for our sample contract and scenarios, but the results were not satisfactory. Using their screening (Stage 1) procedure to identify the 
5% true tail scenarios with 95% confidence resulted in around 35% of the 10,000 scenarios being selected for Stage 2. Moreover, the 
pairwise student-t test used in their screening algorithm requires estimating the standard errors for M(M−1)

2 pairs of scenarios. In 
our example, with M = 10, 000, the screening procedure itself takes longer to run than our entire two-stage procedure, leaving no 
computational budget for Stage 2.

6. Portfolio of VA contracts

In practice, insurers’ VA portfolios usually include of contracts of various types, issued to a large number of policyholders with different 
demographic characteristics. Interested readers may refer to Hardy (2003) for a comprehensive discussion of various types of VA contracts.

In this work, we have focused on improving the computational efficiency of a single VA contract. Nevertheless, our proposed two-stage 
procedure using MLR estimators can be applied in nested simulations of a portfolio of VA contracts. When considering nested simulation 
of a VA portfolio, each stage of our proposed procedure can be applied independently to every contract in the model, be it a contract from 
the original portfolio or a representative contract as proposed in, for example, Gan and Lin (2015) and Lin and Yang (2020). At the end of 
each stage, the highly likely tail scenario set is identified as the set of scenarios with the worst aggregate losses for the whole portfolio.

We illustrate using a numerical example how our proposed two-stage procedure using MLR estimators is applied to improve the 
computation efficiency of a hypothetical portfolio consisting of three VA contracts:

1. One GMWB contract as described in Section 5.
2. One GMWB contract with the same characteristic as 1, except that it has 10-years to maturity, and a monthly withdrawal rate of 

γ = 0.5%.
3. One GMMB contract.

6.1. Characteristics of a GMMB contract

The simplest form of GMMB contract pays a maturity benefit equal to the greater of the sub-account value and a fixed guarantee value. 
The payoff of the GMMB resembles that of a European put option.

The GMMB contract in this numerical example is modeled with the following characteristics.

• The initial fund value is F0 = 1000, which is also the guarantee base G0 = 1000. The guarantee base only reduces due to lapse 
throughout the projection.

• It has a 20-year time-to-maturity and is hedged monthly, so T = 240.
• A management fee of ηg = 0.146% is deducted monthly from the fund value and of which 0.025% is treated as income per month for 

the contract guarantees, that is, ηn = 0.025%.
• We ignore decrements from mortality.
• We assume the lapse behavior of the policyholder is dynamic in the sense that it is dependent on the moneyness of the contract. 

More precisely, we assume that the monthly lapse rate from t − 1 to t is

ql
x,t−1 = min

(
1,max

(
0.5,1 − 1.25 ×

(
Gt−1

Ft−1
− 1.1

)))
× ql−base

x,t−1 (35)

and

ql−base
x,t =

{
0.00417 if t < 84,

0.00833 if t ≥ 84.
(36)

The mathematical modeling of the GMMB contract is detailed in Appendix A.
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Table 5
Accuracy measures from 20 repetitions of the two-stage procedure for the portfolio 
of VA contracts.

Experiment Design Relative RMSE Relative Bias Relative SD

(a) Two-stage procedure
Mh = 1,500, N2 = 80 0.37% 0.305% 0.21%
(b) Standard nested, N = 350 1.38% 1.325% 0.39%

Fig. 6. Box-and-whisker plot of 95%-CTE estimates of the VA portfolio from 20 repetitions of the two-stage procedure using MLR estimators, and standard nested simulation.

6.2. Numerical experiment

We considered two experiments for the 3-contract VA portfolio:

(a) Two-stage MLR procedure with N1 = 2, Mh = 1, 500, and N2 = 80 (Same as experiment (a1) in Section 5)
(b) Standard full nested simulation with N = 350, M = 10, 000 (Same as experiment (b) in Section 5)

The experiment was repeated 20 times. The relative RMSE, bias and standard deviation of the CTE estimates from each set of repeated 
experiments were compared to the CTE of the benchmark experiment. As in Section 5, the benchmark experiment is a standard nested 
simulation with N = 10, 000 inner simulations.

The asset model is the same as the one used in Section 5. All these experiments use the same outer scenarios. Table 5 summarizes the 
performance measures of this experiment. The same results are also summarized in Fig. 6.

The results in Table 5 show much higher accuracy using the two-stage procedure with MLR estimators than in standard Monte Carlo 
simulation, while the two-stage procedure takes roughly a quarter of the runtime of the standard nested simulation. This demonstrates 
the potential for applying the two-stage procedure using MLR estimators to a heterogeneous VA portfolio.

7. Concluding remarks

In this paper, we have presented a two-stage nested simulation procedure for estimating the tail risks associated with dynamic hedging 
of complex, path-dependent embedded options. The mixture likelihood ratio estimator is used in both stages to reuse simulation outputs 
and to improve the estimation accuracy. In the numerical illustrations, we apply the proposed two-stage procedure to the GMWB, and 
also to a heterogeneous portfolio containing GMWBs and a GMMB. Compared with a standard nested simulation, the method offers very 
significant improvement in the accuracy of the CTE, with much shorter run times.

There are a few potential refinements and extensions to our proposed procedure in future studies.

1. In this paper we have focused entirely on the inner simulation stage. It may be possible to develop a dynamic that trades the 
computation budget between inner and outer simulations.

2. The parameters Mh and N1 have been selected somewhat arbitrarily. Further research could identify more objective methods of setting 
these parameters.

3. The propositions in this study are mainly computational. Convergence analysis of the proposed procedure could be an area of future 
study.
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Appendix A. Mathematical modeling of the GMMB contract detailed in Section 6.1

At t = 1, . . . , T , the fund value Ft and guarantee value Gt of the GMMB contract evolves as follows.

Ft = max

(
Ft−1

St

St−1
e−ηg · px,t−1,0

)
= Ft−1eRt−ηg · px,t−1, where Rt = ln

St

St−1

Gt = Gt−1 · px,t−1,

where px,t is the probability of surviving all decrements from time t to t + 1.
At any time t , the future liability beyond time t has value of

vt+ = e−r(T −t)(G T − F T )+ −
T∑

s=t+1

e−r(s−t) Fs(eηn − 1). (37)

The pathwise estimator of �t(S t , F t , Gt), the number of units of the underlying stock St in a delta hedging program, based on a single 
inner simulation path, is given by

Ht (̃S t+, F̃ t+, G̃t+) = −e−r(T −t)1
{

G̃ T > F̃t
} · dF̃ T

dSt
−

T∑
s=t+1

e−r(s−t) dF̃s

dSt
(eηn − 1), (38)

where 
dF̃s

dSt
= Ft

St
e
∑s

u=t+1(R̃u−ηg ) · s−t px,t .

Similar to the GMWB case in Section 4.2, to conform with the evolution of the GMMB state variables, we also need to adapt the 
likelihood ratio method before applying it to the delta hedging of GMMB’s liability. Let 
t := {(S T ,i, F T ,i, G T ,i) : i = 1, . . . , M, Ft,i > It,i}
be the outer scenarios that require inner simulations at time t and let Mt = |
t |, for any target scenario (S T ,i, F T ,i, G T ,i) ∈ 
t , the MLR 
estimator for the time t delta of the GMMB contract is

�̂MLR
t (S t,i, F t,i, Gt,i) = 1

Mt N

∑
k:(S T ,k,F T ,k,G T ,k)∈
t

px,t,i

px,t,k
· eR̃adj

t+1,kj

eR̃t+1,kj
·

Ft,i
St,i

Ft,k
St,k

×
N∑

j=1

Ht (̃S t+,kj, F̃ t+,kj, G̃t+,kj)
f (̃S

adj
t+,kj|S t,i)

f̄ M (̃S
adj
t+,kj)

(39)

where R̃t+1,kj = ln
S̃t+1,kj

St,k
and R̃adj

t+1,kj = R̃t+1,kj + ln

[
Gt,i

Gt,k
· Ft,k

Ft,i

]
.

The above MLR estimator is derived as follows. Given equation (38), we have

Hadj
t (̃S t+,kj, F̃ t+,kj, G̃t+,kj) = −e−r(T −t)1

{
G̃adj

T ,kj > F̃ adj
T ,kj

}
· dF̃ adj

T ,kj

dSt,i
−

T∑
s=t+1

e−r(s−t)
dF̃ adj

s,kj

dSt,i
(eηn − 1) (40)

In this equation, we have

G̃adj
T ,kj > F̃ adj

T ,kj (41)

⇐⇒Gt,i · T −t padj
x,t,kj > Ft,i · e(R̃adj

u,kj−ηg )+∑T
u=t+2(R̃u,kj−ηg ) · T −t padj

x,t,kj

⇐⇒Gt,i > Ft,i · eR̃adj
t+1,kj−ηg · e

∑T
u=t+2

(
R̃u,kj−ηg

)
⇐⇒Gt,i > Ft,i · eR̃t+1,kj−ηg · Gt,i

Gt,k
· Ft,k

Ft,i
· e
∑T

u=t+2
(

R̃u,kj−ηg
)

by R̃adj
t+1,kj = R̃t+1,kj + ln

[
Gt,i

Gt,k
· Ft,k

Ft,i

]
⇐⇒Gt,k > Ft,k · e

∑T
u=t+1

(
R̃u,kj−ηg

)
⇐⇒Gt,k · T −t px,t,kj > Ft,k · e

∑T
u=t+1

(
R̃u,kj−ηg

)
· T −t px,t,kj

⇐⇒G̃ T ,kj > F̃ T ,kj
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Table 6
Parameters for the lognormal asset model in 
the numerical experiments.

(Monthly rate) Real World

Risk-free Rate: r 0.002
Mean: μ 0.00375
Standard Deviation: σ 0.0457627

In addition, for s = t + 1, . . . , T , we have

dF̃ adj
s,kj

dSt,i
= Ft,i

St,i
· eR̃adj

t+1,kj−ηg e
∑s

u=t+2(R̃s,kj−ηg ) · px,t,i · s−t−1 padj
x,t+1,kj (42)

= px,t,i

px,t,k
· eR̃adj

t+1,kj

eR̃t+1,kj
·

Ft,i
St,i

Ft,k
St,k

· Ft,k

St,k
· eR̃t+1,kj−ηg e

∑s
u=t+2(R̃s,kj−ηg ) · px,t,i · s−t px,t+1,kj

= px,t,i

px,t,k
· eR̃adj

t+1,kj

eR̃t+1,kj
·

Ft,i
St,i

Ft,k
St,k

dF̃ s,kj

dSt,k

By substituting (41) and (42) into (40), we have

Hadj
t (̃S t+,kj, F̃ t+,kj, G̃t+,kj)

= − e−r(T −t)1
{

G̃adj
T ,kj > F̃ adj

T ,kj

}
· dF̃ adj

T ,kj

dSt,i
−

T∑
s=t+1

e−r(s−t)
dF̃ adj

s,kj

dSt,i
(eηn − 1)

= − e−r(T −t)1
{

G̃ T ,kj > F̃ T ,kj
} · px,t,i

px,t,k
· eR̃adj

t+1,kj

eR̃t+1,kj
·

Ft,i
St,i

Ft,k
St,k

dF̃ s,kj

dSt,k

−
T∑

s=t+1

e−r(s−t) px,t,i

px,t,k
· eR̃adj

t+1,kj

eR̃t+1,kj
·

Ft,i
St,i

Ft,k
St,k

dF̃ s,kj

dSt,k
(eηn − 1)

= px,t,i

px,t,k
· eR̃adj

t+1,kj

eR̃t+1,kj
·

Ft,i
St,i

Ft,k
St,k

· Ht (̃S t+,kj, F̃ t+,kj, G̃t+,kj)

Finally, by equation (12), we have

�̂MLR
t (S t,i, F t,i, Gt,i)

= 1

Mt N

∑
k:(S T ,k,F T ,k,G T ,k)∈
t

px,t,i

px,t,k
· eR̃adj

t+1,kj

eR̃t+1,kj
·

Ft,i
St,i

Ft,k
St,k

×
N∑

j=1

Ht (̃S t+,kj, F̃ t+,kj, G̃t+,kj)
f (̃S

adj
t+,kj|S t,i)

f̄ M (̃S
adj
t+,kj)

Appendix B. Numerical example using a GMMB contract

To further demonstrate the validity and effectiveness of the proposed method, we apply the proposed two-stage procedure to estimate 
the CTE of a simplified Guaranteed Minimum Maturity Benefit (GMMB) contract with a log-normal asset model. It is well-known that the 
liability of a GMMB contract can be modeled by a put option (Hardy, 2003). With a log-normal asset model, put option value and delta 
can be calculated in closed-form. So, unlike the GMWB example in Section 5, inner simulation is unnecessary for GMMB experiments 
as it can be replaced by a closed-form calculation. In the experiments in this section, we use the closed-form calculation of delta to 
replace inner simulations for GMMB. The resulting benchmark CTE value is then used to estimate relative RMSE and bias, rather than 
resorting to the large-scale benchmark run described in the GMWB example in Section 5. As shown below, we observe similar results 
in the GMMB experiments as those of the GMWB experiments. In particular, compared to the standard nested simulation procedure, the 
proposed two-stage procedure produces more accurate CTE estimates in shorter runtime.

The GMMB contract we consider has the same characteristics as documented in Section 6.1 except that we ignore decrements from 
lapse in this experiment. We assume that the underlying stock follows a log-normal asset model, with parameters as specified in Table 6
for the real world measure.

The same four experiment designs as in Section 5, e.g., a1, a2, a3, and standard, were repeated 100 times for the GMMB contract. 
A fixed set of 10,000 outer scenarios were used in all experiments. The C T E95% estimate from these experiments is compared with the 
benchmark C T E95% estimate. To estimate the benchmark C T E95%, at each time step in the 10,000 outer scenarios, the GMMB’s delta is 
calculated using closed-form formula. Table 7 and Fig. 7 summarize the performance measures of each set of experiment.

The results from these experiments demonstrate superior accuracy from using the two-stage compared to standard nested simulation 
with similar computation budget. In this GMMB experiment, experiment (a3) achieves the highest accuracy (e.g., smallest relative RMSE). 
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Table 7
Accuracy measures from 100 repetitions of different configurations of the two-stage procedure 
and the standard nested simulation.

Experiment Design Relative RMSE Relative Bias Relative SD

(a) Two-stage procedures
a1. Mh = 1,500, N2 = 80 3.200% 3.197% 0.130%
a2. Mh = 1,000, N2 = 170 2.236% 2.233% 0.118%
a3. Mh = 500, N2 = 620 0.327% -0.260% 0.199%

(b) Standard nested sim. with N = 350 5.296% 5.287% 0.306%

Fig. 7. Box-and-whisker plot of 95%-CTE estimates from 100 repetitions of three configurations of two-stage procedure using MLR estimators, and standard nested simulation.

Table 8
True tail scenarios captured in 100 repetitions of two-stage nested 
simulation using MLR estimator of different configurations of the 
two-stage procedure and the standard nested simulation.

# true tail
Experiment Design scen. in T̂ MLR

(1−α)M

(a) Two-stage procedures
a1. N1 = 2, Mh = 1,500, N2 = 80 385.6
a2. N1 = 2, Mh = 1,000, N2 = 170 391.4
a3. N1 = 2, Mh = 500, N2 = 620 350.7

(b) Standard nested sim. with N = 350 278.8

Fig. 8 shows that the MLR estimates of the losses are close to the closed-form calculation. In addition, the Stage 2 MLR estimates further 
improve the accuracy of the loss estimation.

As GMMB’s payoff is less complicated than GMWB’s, losses of the former in different scenarios are more clustered than the latter’s. 
The clustering of losses is evident in Fig. 8, which has the same x- and y-axis range as Fig. 3 but more clustered losses. This means that 
it is more difficult for a GMMB contract to separate the tail scenarios from non-tail scenarios than it is for a GMWB contract. Comparing 
Table 8 with Table 4, we see that less true tail scenarios are correctly captured in the GMMB example than in the GMWB example. The 
higher misclassification of tail scenarios then leads to higher relative bias, as it is evident by comparing the relative biases in Table 7 and 
those in Table 3.

Run times for a single repetition of the experiments shown in Table 7 are summarized in Table 9. These were conducted with 40 cores 
on a Dell PowerEdge R840 server with 4 Intel Xeon Gold 6230 20-core 2.1 GHz (Cascade Lake) CPU and 768 GB memory. Experiments 
(a1), (a2), and (a3) take around a quarter of the runtime of a standard nested simulation shown in Table 7. Compared to the GMWB 
experiments, the standard nested simulation takes similar run time as the complexity of its computation is driven by the number of inner 
simulations M , the number of outer simulations N , and the number of projection periods T . The two-stage experiments take less time 
than the GMWB experiments because fewer adjustments, as documented in Section 4.2 are required for this simplified GMMB contracts.
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Fig. 8. Illustration of the proposed two-stage simulation procedure in the GMMB example.

Table 9
Average runtime of one repetition of each experiment, to the 
nearest hour.

Experiment Design Runtime of One Repetition

Two-stage procedures
(a1) Mh = 1,500, N2 = 80 3.5 hours
(a2) Mh = 1,000, N2 = 170 3.6 hours
(a3) Mh = 500, N2 = 620 3.6 hours

(b) Standard nested, N = 350 32.5 hours

In summary, Table 7 and Table 9 present the same conclusion as that for the GMWB experiment in Section 5: Compared to the standard 
nested simulation procedure, with well-chosen experiment design (e.g., a3) the proposed two-stage experiment can produce more accurate 
(e.g., 5.295% vs. 0.327% in relative RMSE) CTE estimator in shorter runtime (e.g., 32.5 hours vs. 3.6 hours).

References

Beckman, R.J., McKay, M.D., 1987. Monte Carlo estimation under different distributions using the same simulation. Technometrics 29 (2), 153–160.
Bollen, N.P., 1998. Valuing options in regime-switching models. The Journal of Derivatives 6 (1), 38–49.
Broadie, M., Du, Y., Moallemi, C.C., 2011. Efficient risk estimation via nested sequential simulation. Management Science 57 (6), 1172–1194.
Broadie, M., Du, Y., Moallemi, C.C., 2015. Risk estimation via regression. Operations Research 63 (5), 1077–1097.
Cathcart, M.J., Lok, H.Y., McNeil, A.J., Morrison, S., 2015. Calculating variable annuity liability “greeks” using Monte Carlo simulation. ASTIN Bulletin: The Journal of the IAA 45 

(2), 239–266.
Dang, O., 2021. Efficient Nested Simulation of Tail Risk Measures for Variable Annuities.
Dang, O., Feng, M., Hardy, M.R., 2020. Efficient nested simulation for conditional tail expectation of variable annuities. North American Actuarial Journal 24 (2), 187–210.
Dang, O., Feng, M., Hardy, M.R., 2022. Dynamic importance allocated nested simulation for variable annuity risk measurement. Annals of Actuarial Science 16 (2), 319–348.
Elvira, V., Martino, L., Luengo, D., Bugallo, M.F., 2019. Generalized multiple importance sampling. Statistical Science 34 (1), 129–155.
Feng, M., Staum, J., 2017. Green simulation: reusing the output of repeated experiments. ACM Transactions on Modeling and Computer Simulation 27 (4), 1–28.
Feng, M., Staum, J., 2021. Green simulation with database Monte Carlo. ACM Transactions on Modeling and Computer Simulation 31 (1), 1–26.
Feng, M., Tan, Z., Zheng, J., 2020. Efficient simulation designs for valuation of large variable annuity portfolios. North American Actuarial Journal 24 (2), 275–289.
Feng, R., Li, P., 2022. Sample recycling method–a new approach to efficient nested Monte Carlo simulations. Insurance. Mathematics & Economics 105, 336–359.
Gan, G., Lin, X.S., 2015. Valuation of large variable annuity portfolios under nested simulation: a functional data approach. Insurance. Mathematics & Economics 62, 138–150.
Glasserman, P., 2013. Monte Carlo Methods in Financial Engineering, vol. 53. Springer Science & Business Media.
Glasserman, P., Xu, X., 2014. Robust risk measurement and model risk. Quantitative Finance 14 (1), 29–58.
Gordy, M.B., Juneja, S., 2010. Nested simulation in portfolio risk measurement. Management Science 56 (10), 1833–1848.
Hardy, M.R., 2001. A regime-switching model of long-term stock returns. North American Actuarial Journal 5 (2), 41–53.
Hardy, M.R., 2003. Investment Guarantees: Modeling and Risk Management for Equity-Linked Life Insurance, vol. 215. John Wiley & Sons.
Hong, L.J., Juneja, S., Liu, G., 2017. Kernel smoothing for nested estimation with application to portfolio risk measurement. Operations Research 65 (3), 657–673.
Kleijnen, J.P., Rubinstein, R.Y., 1996. Optimization and sensitivity analysis of computer simulation models by the score function method. European Journal of Operational 

Research 88, 413–427.
Kong, A., 1992. A Note on Importance Sampling using Standardized Weights. Technical report. Department of Statistics, University of Chicago.
Lan, H., Nelson, B.L., Staum, J., 2010. A confidence interval procedure for expected shortfall risk measurement via two-level simulation. Operations Research 58 (5), 1481–1490.
Lee, S.H., Glynn, P.W., 2003. Computing the distribution function of a conditional expectation via Monte Carlo: discrete conditioning spaces. ACM Transactions on Modeling 

and Computer Simulation 13 (3), 238–258.
23

http://refhub.elsevier.com/S0167-6687(22)00111-1/bib5B85D82148F8215E2A59355272492D0As1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibD686431078BF8EFDFADF93F593E67D92s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibE7F202C7BF17F4539EF730F58647B3A0s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibC728D3DF8E227BADAAC7A178DF9B53AFs1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib0E5E91CC3DE3763259182477D26A8E16s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib0E5E91CC3DE3763259182477D26A8E16s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibCA1860700EE60204E397DB514AEF07E7s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib4635021D7D5827FF9ECAB8A0F4150FA1s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibCB151C449484290D46C5F872F8B762F3s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibAB8F4FAAB396B42A48446CC830087577s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibA85F21EB51CBCABA6B416A3D79C98AA4s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib50203626E899E38E8C11EF12D2DACBB6s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibE6B9E99531FA5A35D88FCE049C90F240s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib7EECFD53E9C79889F590B5CACE3FA9D8s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibDCE2D6449D6D66CB9B8607CF8D6062CAs1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibC991E5D40FB387C4A17158F9B709FE9Cs1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibAEFB35031467D8FC2DAF0514552538CCs1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibDDAB3C0ED1363D574BA41868495A18DCs1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib098C14881D7D48178E434D018E9F4E89s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibF6808AAB9B801FD0922E135CBF8E2C98s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib0F59D302C3B2CAAFFE8BFBD65A5F2D93s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib12D194F52A2BC5B565E5429078430A74s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib12D194F52A2BC5B565E5429078430A74s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib20C62383F1B60EC4627B9DE9B473F4C9s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibF27BFC463F7006AD0D9A7D41DD895A32s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib2DECA24D19DF2747C1D36793845D9929s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib2DECA24D19DF2747C1D36793845D9929s1


O. Dang, M. Feng and M.R. Hardy Insurance: Mathematics and Economics 108 (2023) 1–24
LIMRA, 2019. LIMRA Secure Retirement Institute Annuity Sales Estimates. U.S. Individual Annuities Survey. Online (Accessed 8 December 2020).
Lin, X.S., Yang, S., 2020. Fast and efficient nested simulation for large variable annuity portfolios: a surrogate modeling approach. Insurance. Mathematics & Economics 91, 

85–103.
Liu, J.S., 1996. Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Statistics and Computing 6 (2), 113–119.
Liu, M., Staum, J., 2010. Stochastic kriging for efficient nested simulation of expected shortfall. The Journal of Risk 12 (3), 3.
Maggiar, A., Wachter, A., Dolinskaya, I.S., Staum, J., 2018. A derivative-free trust-region algorithm for the optimization of functions smoothed via gaussian convolution using 

adaptive multiple importance sampling. SIAM Journal on Optimization 28 (2), 1478–1507.
Veach, E., Guibas, L.J., 1995. Optimally combining sampling techniques for Monte Carlo rendering. In: Proceedings of the 22nd Annual Conference on Computer Graphics and 

Interactive Techniques. ACM, pp. 419–428.
Wirch, J.L., Hardy, M.R., 1999. A synthesis of risk measures for capital adequacy. Insurance. Mathematics & Economics 25 (3), 337–347.
24

http://refhub.elsevier.com/S0167-6687(22)00111-1/bib8FC460F4264817B75502CFD2C731A67Es1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib2A304F4AB5F5F4E8609299002DBBBD6Fs1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib2A304F4AB5F5F4E8609299002DBBBD6Fs1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib13156D9CF0E0F42C753FAD4718062B3Es1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib223EEBBEFCB8B5BE2F7221EB78EDC3D4s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibF09B016DA3506337570D3FCA3B10F204s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibF09B016DA3506337570D3FCA3B10F204s1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibB56563F0CC14D7EBC8E2387662A092BFs1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bibB56563F0CC14D7EBC8E2387662A092BFs1
http://refhub.elsevier.com/S0167-6687(22)00111-1/bib5ABE43F3AB2448A526FB3E50C24AB028s1

	A likelihood ratio approach
	1 Introduction
	2 Mathematical settings and problem statement
	2.1 Hedging loss in discrete time delta hedging

	3 Two-stage nested simulation with likelihood ratio estimators
	3.1 Reusing simulation outputs using mixture likelihood ratio estimators
	3.1.1 LR estimators with Markov state processes

	3.2 Two-stage nested simulation procedure

	4 Applying the two-stage MLR approach to a GMWB
	4.1 Financial modeling and dynamic hedging for GMWB
	4.2 Adapting the likelihood ratio method to the GMWB loss

	5 Numerical experiments
	6 Portfolio of VA contracts
	6.1 Characteristics of a GMMB contract
	6.2 Numerical experiment

	7 Concluding remarks
	Declaration of competing interest
	Acknowledgement
	Appendix A Mathematical modeling of the GMMB contract detailed in Section 6.1
	Appendix B Numerical example using a GMMB contract
	References


