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As a least squares analogue of quantiles, extremiles define a coherent risk measure determined by 
weighted expectations instead of tail probabilities. Estimating extremiles of heavy-tailed variables in a 
regression framework is a challenging task, especially for dependent cases. This paper develops some 
methods for the estimation of extreme conditional extremiles in the framework of heteroscedastic 
regression model with heavy-tail noises, specifically, direct and indirect methods based on the conditional 
extremile estimators for the residuals. We also construct corresponding bias-reduced estimators and 
investigate their asymptotic properties compared to the original versions. Our mathematical assumptions 
are satisfied in the mean-variance regression model and heteroscedastic single-index model, which makes 
it possible to apply our result in a series of important examples. We demonstrate our results through a 
simulation study and real sets of insurance and financial data analyses.
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1. Introduction

Assessing the extreme behaviors of a random phenomenon is a major issue in many fields such as finance, insurance, and environmen-
tal science (see Embrechts et al., 1997; Kazama et al., 2009). A typical way of handling extreme events is to estimate extreme quantiles 
of random variables of interest, for instance, the daily log-return of a stock market index, the claim amounts for an insurance company, 
or the flood intensity in a given region. Meanwhile, expectiles also can be used to serve such a purpose which is reflected in the recent 
literature (see Daouia et al., 2018, 2020; Davison et al., 2022; Girard et al., 2021, etc.). Assuming the event of interest is modeled by a 
quantitative random variable Y . For a fixed τ in (0, 1), the τ -th quantile or expectile of Y is defined as the solution of a minimization 
problem (see Koenker and Bassett, 1978; Newey and Powell, 1987):

arg min
θ

E [ρτ (Y − θ) − ρτ (Y )] , (1)

when the loss function takes the form of ρτ (y) = |τ −1{y≤0}||y|, Eq. (1) corresponds to the τ -th quantile qτ , and ρτ (y) = |τ −1{y≤0}|y2, 
Eq. (1) represents the τ -th expectile eτ . The connection between the quantile and expectile has been studied when Y belongs to the 
domain of attraction of generalized extreme value distribution (see Bellini et al., 2014; Mao et al., 2015; Mao and Yang, 2015, etc.).

Even though these risk measures so far are valuable tools, both quantiles and expectiles have been criticized in the literature for either 
axiomatic or practical reasons. Quantiles only use the information on whether an observation is below or above some specific value, while 
expectiles lack transparent interpretation due to the absence of an explicit expression. Apart from these two, expected shortfall (ES) is 
also a popular risk measure that compensates for the shortcomings of quantile by taking an expectation for the losses above quantile at 
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some high level. Unfortunately, this approach induces ES to be a conservative risk measure, making it less appealing for individual financial 
institutions. More discussion of these risk measures can be found in the literature, e.g., Emmer et al. (2015), Mao et al. (2015), and Stupfler 
(2020). Extremiles, as a new least squares analogue of quantiles introduced by Daouia et al. (2019), deal with these drawbacks. The τ -th 
extremile is defined by the following minimization problem:

ξτ = argminθ E
[

Jτ (F (Y )) ·
(
|Y − θ |2 − |Y |2

)]
,

where F is a continuous cumulative distribution function of Y , and the special-generating function Jτ (·) = K ′
τ (·), with

Kτ (t) =
{

1 − (1 − t)s(τ ) if 0 < τ ≤ 1/2

tr(τ ) if 1/2 ≤ τ < 1

being a distribution function with support [0, 1], and r(τ ) = s(1 − τ ) = log(1/2)/ log(τ ). As a new least squares analogue of quantiles, 
extremile were obtained by the alternative representation of quantiles. However, the theory of tail extremile is, in comparison to that of 
tail quantile and tail expectile, especially the former, relatively unexplored and still in full development. Following earlier work on quantile 
regression and expectile regression, the extension of extremile estimation to a regression context is a very natural step.

It is usual in practical applications that Y is recorded along with auxiliary information represented by a random covariate X . In this 
setting, the regression τ -th extremile of Y given X = x is defined as

ξτ (Y | x) = argminθ E
[

Jτ (FY ) ·
(
|Y − θ |2 − |Y |2

)
| X = x

]
.

Estimating extremiles under a regression framework was introduced in Daouia et al. (2022a), but it remains limited to independent and 
identically distributed heavy-tailed observations. Extending it to a framework of heteroscedastic regression model with heavy-tailed noise 
is challenging and is the main work of the present paper. We assume that the response variable and the covariate are linked by a 
heteroscedastic regression model of the form

Y = m(X) + σ(X)ε,

where m and σ > 0 are two measurable functions of X . This model is flexible since (i) no parametric assumptions are made on m(·), σ(·)
and ε; (ii) it allows for heterscedasticity via the function σ(·). There are some models that fit it, such as the location-scale model (see 
Spady and Stouli, 2018a,b; Daouia et al., 2022b) and the heteroscedastic single-index model (see Zhu et al., 2013). Moreover, we only 
consider the case when ε has a heavy-tailed distribution with a constant tail index, which can describe quite well the tail structure and 
sparseness of the data in most applications in financial and natural sciences. Then the response variable Y inherits its tail behavior from 
ε, which allows us to use extreme value theory as a useful tool for statistical inferences.

One issue in the above modeling is the assumption on level τ . Our focus is to make inference for extreme extremile so that it is 
appropriate to model τ as a sequence of the sample size n and τ = τn → 1 as n → ∞. Then we classifies τ into two categories: the 
intermediate level where τn → 1 and n(1 − τn) → ∞ as n → ∞, and the extreme level where τ = τ ′

n → 1 and n(1 − τ ′
n) → c ∈ [0, ∞)

as n → ∞. In order to obtain the extremile in the extreme level which suffers from the lack of sample on tail regions, we consider 
the intermediate level first, since extreme level usually requires Weissman’s extrapolation technique (Weissman, 1978) based on the 
results of intermediate level. The estimation of intermediate extremile is concentrated, on the one hand, by solving the weighted least 
squares problem called the direct method, and on the other hand, by using the asymptotic relationship between extreme extremiles and 
quantiles called the indirect method. Besides, the key of Weissman’s extrapolation method is a consistent estimator of the tail index of 
the underlying heavy-tailed distribution. One of the most well-known tail index estimators is the Hill estimator (see Hill, 1975), and some 
bias reduction versions have been proposed (see Caeiro et al., 2005; Gomes et al., 2015, 2016)) to improve the original Hill estimator. In 
this article, the resulting extrapolated estimator hinges upon a biased-reduced Hill estimator in Caeiro et al. (2005), which is combined 
with the biased-reduced extrapolation process to realize bias reduction for extreme extremile estimation.

The main contributions within the above model of this article are three-fold. First, we provide the estimation of extreme conditional 
extremile in the heteroscedastic regression model with heavy-tailed noise by the methods of both direct and indirect construction. Second, 
we study a bias-reduced version of the tail index estimator and further provide an automatic bias reduction methodology for extreme 
extremile estimation. Finally, the theory for the estimation of extreme conditional extremile in a heteroscedastic regression model can be 
applied in a number of specific models which are shown in the simulation study.

The remaining parts of the paper are organized as follows. The heteroscedastic regression model for heavy-tailed distributions is 
presented in detail in Section 2. The construction of the resulting estimators is stated in Section 3 under both intermediate level and 
extreme level, and their asymptotic distributions are provided. Section 4 provides the bias reduction for the estimation which can be 
viewed as a two-aspect procedure: bias reduction for the tail-index estimator and bias reduction for Wessiman’s extrapolation device. 
Section 5 investigates examples of regression models where the proposed form is fitted and shows how our methods adapt to a simulation. 
The applications of our methods and theory to real data are provided in Section 6. Finally, a conclusion is proposed in Section 7. All the 
auxiliary lemmas and proofs, as well as further results, are postponed to the Appendix.

2. Extremile in heavy-tailed heteroscedastic regression model

We consider the class of heteroscedastic regression models, where the relationship between a response variable Y ∈ R and a deter-
ministic covariate vector X ∈Rd is in the form of

Y = m(X) + σ(X)ε, σ (X) > 0, (2)
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where the noise variable ε ∈ R is centered with unit variance and independent of X . The random covariate X has a density function 
f X ∈Rd whose support is a compact set denoted as S . The measurable functions m and σ are the mean and standard deviation functions 
of Y on the covariate X . In fact, for any τ ∈ (0, 1), the condition extremile of Y given x in this model takes the form of

ξτ (Y | x) = m(x) + σ(x)ξτ (ε), (3)

by the location and scale equivariance of extremile and the assumption of the independence between the covariate X and ε.
Moreover, the real random variable ε with distribution F is assumed to be heavy-tailed, that is, its survival function F (·) := 1 − F (·)

satisfies

F (t) = t−1/γ L(t) (4)

for sufficiently large t > 0 and some γ > 0, where L is a slowly varying function at infinity, i.e. limt→∞ L(tx)/L(t) = 1, for all x > 0. Then, 
F is said to be regularly varying at infinity with index −1/γ and γ is called tail index which tunes the tail heaviness of X . That is, the 
larger the index, the heavier the right tail. As usual in extreme value analysis, it is more convenient to work with the tail quantile function 
defined as U (t) = inf

{
s ∈R : F (s) ≥ 1 − 1/t

}= q1−1/t for t > 1. Then the Eq. (4) is equivalent to the following condition:

lim
t→∞

U (tx)

U (t)
= xγ , for all x > 0, γ > 0. (5)

Let {(Yi, X i)}n
i=1 be a (strictly) stationary sequence of copies of the random pair (Y , X) which from the model in Eq. (2), then for any 

i ∈ {1, 2, . . . , n}
Yi = m(X i) + σ(X i)εi, σ (X i) > 0,

and X i is independent of εi . Moreover, throughout this paper, suppose that εi = (Yi − m (X i)) /σ (X i) , i ∈ {1, 2, . . . , n} are independent 
and share the same distribution F . From Eq. (3), the process of conditional extremile estimation in the heteroscedastic regression model 
falls into two steps: the model structure estimation of the conditional mean and variance function and the extremile estimation of ε. As 
we know, the estimation of m and σ can be solved accurately and robustly either under a parametric or a semi-parametric model setting. 
Moreover, the rate of convergence of model structure estimation is easily achieved faster than unconditional extreme extremile estimation. 
For this reason, we concentrate on the estimation of the extreme unconditional extremile of ε which combined with the estimation of 
m and σ can lead to the construction of the extreme conditional extremile estimator of Y given x. Throughout Section 3, we suppose 
that the measurable functions m and σ have been estimated by the consistent estimators m̄ and σ̄ so that the unobserved ε1, . . . , εn are 
estimated by the residuals ̂εi = (Yi − m̄ (X i)) /σ̄ (X i) for all i = 1, . . . , n, and then just focus on the asymptotic properties of the estimator 
of extreme extremile ξτ (ε) when τ = τn → 1.

3. Estimation of extreme extremile in heavy-tailed regression model

In order to obtain the asymptotic properties of the estimators, we make the following assumptions on the distribution function, density 
function, and tail quantile function of the residual ε.

Condition C1(γ ): Assume the density function f (·) = F ′(·) exists and satisfies

lim
t→+∞

t f (t)

1 − F (t)
= 1

γ
.

Condition C1(γ ) can be viewed as a strengthening condition of Eq. (4) since it implies that F (·) is regularly varying with index −1/γ
when γ > 0 (see Theorem 1.11 of de Haan and Ferreira (2006) and Proposition 2.1 of Beirlant et al. (2004)). We further make a classical 
second-order refinement of Eq. (5), that is,

Condition C2(γ ,ρ,A): For all x > 0,

lim
t→∞

1

A(t)

[
U (tx)

U (t)
− xγ

]
= xγ xρ − 1

ρ
,

where γ > 0, ρ ≤ 0 and A(·) is a positive or negative function satisfying limt→∞ A(t) = 0. Here, 
(
xρ − 1

)
/ρ is to be understood as log x

when ρ = 0.
In the context of extreme value analysis, the conditions C1(γ ) and C2(γ , ρ, A) required for the heavy-tailed distribution are used, for 
example, in Daouia et al. (2019) and Girard et al. (2022a). In addition, we need to make the following extra condition mentioned by 
Daouia et al. (2019):

Condition C3: The distribution F is twice differentiable on its support which is an interval, and its corresponding density function f
satisfies

sup
0<t<1

t(1 − t)
f ′ (qt)

[ f (qt)]2
< ∞.

By Proposition 2.4.9 in de Haan and Ferreira (2006), under the condition C3 , we can relate the empirical quantile process t 	→ ε[nt],n , for 
0 < t < 1, to a sequence of standard Brownian bridges.

According to the definition of unconditional extremile, it is required the first moment of Hτ is finite with the distribution function 
F Hτ = Kτ (F ). Since E|ε| < ∞ implies E|Hτ | < ∞ for any 0 ≤ τ ≤ 1, one of our minimal working assumptions throughout is that 0 < γ <
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1 and E |ε−| < ∞, where ε− = max(−ε, 0). The conditions above are standard and general in the extreme value literature. Before we state 
the main results, we introduce a quantity defined as max1≤i≤n

|̂εi−εi |
1+|εi | which measures the difference between the available residual ̂εi and 

unseen error εi for all 1 ≤ i ≤ n. The same quantity is used in Ahmad et al. (2020) and Girard et al. (2021) for the extreme conditional 
expectiles and quantiles under heavy-tailed distributions in the heteroscedastic regression model respectively.

Before making inference for extremile ξτ (ε) at a very extreme level, we first work with the extremile at the intermediate level. 
Section 3.1 concentrates on an M-estimator by solving the least squares problem directly. Section 3.2 provides another estimator based 
on the asymptotic relationship between extremiles and quantiles. Then, a tail extrapolation motivates the estimation for the extreme 
extremiles for ε in Section 3.3. We build a plug-in estimator of extreme conditional extremile for Y given X in Section 3.4.

3.1. Direct estimation of intermediate extremile

For the intermediate level, i.e. τn → 1 and n (1 − τn) → ∞, we solve the weighted least squares problem on the accessible residuals 
ε̂i, i = 1, . . . , n, to obtain the direct estimator:

ξ̂ M
τn

(ε) = arg min
t∈R

n∑
i=1

Jτn

(
i

n

)∣∣̂εi,n − t
∣∣2 ,

where ̂εi,n denotes the i-th order statistic of the residuals. Additionally, it is expressed explicitly as

ξ̂ M
τn

(ε) =
∑n

i=1 Jτn

(
i
n

)
ε̂i,n∑n

i=1 Jτn

(
i
n

) . (6)

In fact, the estimator in Eq. (6) can be obtained by replacing εi,n with ε̂i,n in the extremile estimator of the noised variable ε: ξ̃ M
τn

(ε) =∑n
i=1 Jτn

(
i
n

)
εi,n

/∑n
i=1 Jτn

(
i
n

)
. As the asymptotic properties of ξ̃ M

τn
(ε) have been tackled by Theorem 4 in Daouia et al. (2019), we are 

interested in demonstrating that ̂ξ M
τn

(ε) and ̃ξ M
τn

(ε) have the same asymptotic behavior. We are now ready for our first theorem giving the 
consistency and asymptotic normality of the intermediate estimator ̂ξ M

τn
(ε).

Theorem 3.1. Suppose that E|ε−| < ∞, C1(γ ), C2(γ , ρ, A) and C3 hold with 0 < γ < 1/2. Let τn ↑ 1 be such that n (1 − τn) → ∞ and √
n (1 − τn)A 

(
(1 − τn)−1)= O(1). If the residuals ̂εi, 1 ≤ i ≤ n, satisfy√

n (1 − τn) max
1≤i≤n

|̂εi − εi |
1 + |εi|

P−→ 0, (7)

then

√
n (1 − τn)

(
ξ̂ M
τn

(ε)

ξτn (ε)
− 1

)
d−→ γ

√
log 2

	(1 − γ )

∞∫
0

t−γ −1e−t W (t)dt,

where 	(·) is the Gamma function and W is a standard Brownian motion. In particular,

√
n (1 − τn)

(
ξ̂ M
τn

(ε)

ξτn (ε)
− 1

)
d−→ N (0, V (γ ))

with

V (γ ) =
(

γ
√

log 2

	(1 − γ )

)2 ∞∫
0

∞∫
0

(tu)−γ −1e−t−u(t ∧ u)dtdu.

Remark 1. Theorem 3.1 requires the tail index γ satisfies 0 < γ < 1/2 to guarantee that 
∫∞

0 t−γ −1e−t W (t) dt is well-defined, and the 
same condition appears in Theorem 3.4. The condition Eq. (7) can narrow the gap between ε̂i,n and εi,n such that ξ̂ M

τn
(ε)/̃ξ M

τn
(ε) − 1 is 

asymptotically negligible. Obviously, the condition (7) is related to the estimation of the conditional mean function and variance function 
at X1, . . . , Xn . From Theorem 3.1, it can be seen that the direct estimator ̂ξ M

τn
(ε) has the 

√
n (1 − τn)-asymptotic normality, similar to the 

sample M-statistic ξ̃ M
τn

(ε) under the weak condition (7) exclusively. More generally, Theorem 3.1 is an analogue based on the available 
residuals of Theorem 4 in Daouia et al. (2019).

3.2. Indirect estimation of intermediate extremile

Exploiting the asymptotic relationship between extremiles and quantiles, another indirect estimator can be considered. It has been 
found in Proposition 3(i) of Daouia et al. (2019) that under condition (4) or equivalently condition (5) with 0 < γ < 1, we have

ξτ ∼ g(γ ) as τ ↑ 1, (8)

qτ
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where g(t) = 	(1 − t){log 2}t and the notation “∼” means asymptotic equivalence. By resorting to Eq. (8), we construct an indirect esti-
mator based on quantile at the intermediate level,

ξ̂ Q
τn

(ε) = g(γ̄ ) · q̂τn(ε) = g(γ̄ ) · ε̂n−�n(1−τn)�,n.
Here, γ̄ is a consistent estimator of γ . In the existing literature, amounts of tail index estimators have been proposed and studied. The 
classic Hill-type estimator and its bias-reduced version will be introduced in Section 4. Denote the Digamma function by D(t) = 	′(t)

	(t) , 
where 	′(·) represents the first derivative of 	(·). The following theorem yields the asymptotic properties of the indirect estimator ̂ξ Q

τn (ε)

in the intermediate case.

Theorem 3.2. Suppose that E|ε−| < ∞ and C2(γ , ρ, A) holds with 0 < γ < 1. Let τn ↑ 1 be such that

n(1 − τn) → ∞,
√

n (1 − τn)A
(
(1 − τn)

−1)→ λ1 ∈R, (1 − τn)
√

n (1 − τn) → λ2 ∈R. (9)

Assume also that the estimator γ̄ satisfies 
√

n (1 − τn) (γ̄ − γ )
d−→ �, where � is nondegenerate, and is asymptotically independent from ̂qτn(ε). If 

the residuals ̂εi, i = 1, . . . , n, satisfy condition (7), then√
n (1 − τn)

(
ξ̂

Q
τn (ε)

ξτn (ε)
− 1

)
d−→ η(γ ) · � +  −

[
λ1

b1(γ ,ρ)

g(γ )
+ λ2

b2(γ )

g(γ )

]
,

where η(γ ) = −D(1 − γ ) + log(log 2),  ∼N
(
0, γ 2

)
is independent of �,

b1(γ ,ρ) =
{

g(γ +ρ)−g(γ )
ρ , ρ < 0

(log 2)γ
∫∞

0 t−γ e−t(log(log 2) − log(t))dt, ρ = 0

and

b2(γ ) = −1

2
g(γ ) +

(
1 + log 2

2

)
g(γ − 1) − log 2

2
g(γ − 2).

Remark 2. Theorem 3.2 shows the 
√

n (1 − τn)-asymptotic consistency of the indirect estimator ̂ξ Q
τn (ε). It can be noted that it holds under 

weaker regularity conditions than Theorem 3.1. The condition (9) guarantees that the bias arising from the asymptotic equivalent (8) is 
controlled, and the bias condition 

√
n (1 − τn)A 

(
(1 − τn)−1) → λ1 ∈ R is similar to the condition 

√
n (1 − τn)A

(
(1 − τn)−1 ) = O (1) in 

Theorem 3.1. The condition is a little stricter, but still standard in extreme value theory. One can refer to P.77 in de Haan and Ferreira 
(2006) for more details. The independence between � and  actually inherits that between γ̄ and ̂qτn (ε).

3.3. Estimation of extreme extremile based on extrapolation

We now deal with the extremile of ε at a very extreme level τ ′
n such that n 

(
1 − τ ′

n

)→ c < ∞. Motivated by the first-order regular 
variation condition (5) and the asymptotic relationship (8), it can be made that

ξτ ′
n

ξτn

≈ qτ ′
n

qτn

≈
(

1 − τ ′
n

1 − τn

)−γ

as n → ∞. (10)

This leads to an extremile estimator built on the extrapolation procedure

ξ̄ �
τ ′

n
(ε) =

(
1 − τ ′

n

1 − τn

)−γ̄

ξ̄τn(ε),

which is called the Weissman-type estimator (see Weissman, 1978). Here, γ̄ and ξ̄τn (ε) are consistent estimators of γ and ξτn (ε). We 
explore the asymptotic behavior of the extrapolated estimator.

Theorem 3.3. Suppose that E|ε−| < ∞ and C2(γ , ρ, A) holds with 0 < γ < 1 and ρ < 0. Let the sequences τn ↑ 1 and τ ′
n ↑ 1 be such that

n (1 − τn) → ∞, n
(
1 − τ ′

n

)→ c < ∞,
√

n (1 − τn)/ log [(1 − τn) /(1− τ ′
n

)]→ ∞, (11)√
n (1 − τn)max

(
A
(
(1 − τn)

−1) ,1 − τn
)= O(1). (12)

Assume also that 
√

n (1 − τn)(γ̄ −γ ) d−→ �, where � is nondegenerate. If ξ̄τn (ε) is a consistent estimator of ξτn (ε) satisfying 
√

n (1 − τn)
(

ξ̄τn (ε)

ξτn (ε)
− 1

)
= OP (1), then

√
n (1 − τn)

log
[
(1 − τn) /

(
1 − τ ′

n
)] ( ξ̄ �

τ ′
n
(ε)

ξτ ′
n
(ε)

− 1

)
d−→ � as n → ∞.

Remark 3. Theorem 3.3 states that the limiting distribution of ξ̄τn (ε) is dominated by 
√

n (1 − τn)-asymptotic distribution of the tail 
index estimator γ̄ , which is a common conclusion about Weissman-type estimator. For the consistent estimator ξ̄τn (ε) in Theorem 3.3, 
we provide ξ̂ M

τn
(ε) and ξ̂ Q

τn (ε) to estimate the intermediate extremile ξτn (ε). In particular, ξ̄τn (ε) may also be expressed as a convex 
combination of them, that is κξ̂ M

τn
(ε) + (1 − κ)̂ξ

Q
τn (ε), where κ is a constant satisfying 0 ≤ κ ≤ 1. The condition (12) ensures that the bias 

terms due to the relationship (8) and the Eq. (10) can be neglected asymptotically.
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3.4. Estimation of extreme conditional extremile

In this section, we aim to estimate the conditional extremiles of Y given x in extremely high levels τ . Recalling Eq. (3), we estimate 
the intermediate and extreme conditional extremile by

ξ̄τn(Y | x) = m̄(x) + σ̄ (x)ξ̄τn (ε)

and ξ̄ �
τ ′

n
(Y | x) = m̄(x) + σ̄ (x)ξ̄ �

τ ′
n
(ε) = m̄(x) + σ̄ (x)

(
1 − τ ′

n

1 − τn

)−γ̄

ξ̄τn(ε).
(13)

Specifically, we exploit the direct method to estimate ξτn (Y | x) and ξτ ′
n
(Y | x), which is denoted by ̂ξ M

τn
(Y | x) and ̂ξ M,�

τ ′
n

(Y | x), where ξ̄τn (ε)

in Eq. (13) is essentially replaced with ̂ξ M
τn

(ε). Facilitated by the results above, we study the asymptotic properties of these two estimators.

Theorem 3.4. Suppose that E|ε−| < ∞, C1(γ ), C2(γ , ρ, A) and C3 hold with 0 < γ < 1/2 and ρ < 0. Assume also that the sequences τn ↑ 1 and 
τ ′

n ↑ 1 satisfy conditions (11) and (12). Let the estimator γ̄ be such that 
√

n (1 − τn)(γ̄ − γ ) d−→ �, where � is nondegenerate. If the consistent 
estimators m̄ and σ̄ satisfy√

n (1 − τn) max
1≤i≤n

∣∣∣∣m̄(X i) − m(X i)

σ (X i)

∣∣∣∣ P−→ 0,
√

n (1 − τn) max
1≤i≤n

∣∣∣∣ σ̄ (X i)

σ (X i)
− 1

∣∣∣∣ P−→ 0, (14)√
n (1 − τn) (m̄(x) − m(x)) = OP (1),

√
n (1 − τn)

(
σ̄ (x)

σ (x)
− 1

)
= oP (1), (15)

then as n → ∞, we have√
n (1 − τn)

(
ξ̂ M
τn

(Y | x)

ξτn (Y | x)
− 1

)
d−→ N (0, V (γ ))

and
√

n (1 − τn)

log
[
(1 − τn) /

(
1 − τ ′

n
)]
⎛⎝ ξ̂

M,�

τ ′
n

(Y | x)

ξτ ′
n
(Y | x)

− 1

⎞⎠ d−→ �.

Remark 4. We observe that ̂ξ M
τn

(Y | x) and ̂ξ M,�

τ ′
n

(Y | x) have the same asymptotic distribution as ̂ξ M
τn

(ε) and ̂ξ M,�

τ ′
n

(ε), respectively. Note that 
condition (7) is replaced by condition (14) on the residuals ε̂i . Compared with the former, condition (14) works exclusively on m̄ and 
σ̄ which is more available for the estimation of model structure, although condition (7) is weaker. If we only require the consistency of 
ξ̂

M,�

τ ′
n

(Y | x), condition (15) can be reduced to
√

n (1 − τn)

log
(

1−τn
1−τ ′

n

) (m̄(x) − m(x)) = OP (1),

√
n (1 − τn)

log
(

1−τn
1−τ ′

n

) ( σ̄ (x)

σ (x)
− 1

)
= oP (1), (16)

or

m̄(x) − m(x) = OP (1),

√
n (1 − τn)

log
(

1−τn
1−τ ′

n

)
qτn(ε)

= O(1),

√
n (1 − τn)

log
(

1−τn
1−τ ′

n

) ( σ̄ (x)

σ (x)
− 1

)
= oP (1). (17)

The condition (17) relaxes the assumption for the conditional mean function m(·) by strengthening the control of the intermediate quantile 
qτn (ε) in contrast with condition (16). In practice, the consistent estimator m̄(·) converges as fast or faster than σ̄ (·). This means that the 
condition (16) is more likely to be fulfilled. Moreover, the rate of convergence of m̄ and σ̄ at the observations {X i}n

i=1 is assumed to be 
faster than at the ordinary point x clearly.

Similarly, the next result concentrates on the indirect estimators

ξ̂ Q
τn

(Y | x) = m̄(x) + σ̄ (x) · g(γ̄ )̂ε
(n)
n−�n(1−τn)�,n,

ξ̂
Q ,�

τ ′
n

(Y | x) = m̄(x) + σ̄ (x) ·
(

1 − τ ′
n

1 − τn

)−γ̄

g(γ̄ )̂ε
(n)
n−�n(1−τn)�,n.

Corollary 3.1. Suppose that E|ε−| < ∞, and C2(γ , ρ, A) holds with 0 < γ < 1 and ρ < 0. Assume also that the sequences τn ↑ 1 and τ ′
n ↑ 1 satisfies 

conditions (9) and (11). Let the estimator γ̄ be such that 
√

n (1 − τn) (γ̄ − γ )
d−→ �, where � is nondegenerate, and is asymptotically independent 

from ̂qτn (ε). If the consistent estimators m̄ and σ̄ satisfy conditions (14) and (15), then we have√
n (1 − τn)

(
ξ̂

Q
τn (Y | x)

ξτn(Y | x)
− 1

)
d−→ η(γ ) · � +  −

[
λ1

b1(γ ,ρ)

g(γ )
+ λ2

b2(γ )

g(γ )

]

and

√
n (1 − τn)

log
[
(1 − τn) /

(
1 − τ ′

n
)]
⎛⎝ ξ̂

Q ,�

τ ′
n

(Y | x)

ξτ ′
n
(Y | x)

− 1

⎞⎠ d−→ �, as n → ∞.
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Under appropriate assumptions, the indirect estimator ̂ξ Q ,�

τ ′
n

(Y | x) shares consistency with the direct estimator ̂ξ M,�

τ ′
n

(Y | x). A simulated 
performance assessment of these two extrapolated estimators is conducted in Section 5.

4. Bias reduction for extreme extremile estimation

Due to the relationship between the auxiliary function A(·) and the bias term, there are inevitable difficulties in analyzing the bias in 
extreme extremile estimation without extra assumptions on A(·). Consequently, we suppose A(t) = γ btρ with a nonzero constant b in 
the whole section. Furthermore, it is convenient to denote a sequence k(n) = �n (1 − τn)�, which is the size of the highest values in the 
residuals. We start by disposing of the estimation of the tail index in Section 4.1. The bias-reduced versions of the conditional extrapolated 
estimators ̂ξ M,�

τ ′
n

(Y | x) and ̂ξ Q ,�

τ ′
n

(Y | x) are introduced and studied in Section 4.2.

4.1. Bias reduction for tail index estimator

The conditional estimators ξ̂ M,�

τ ′
n

(Y | x) and ξ̂ Q ,�

τ ′
n

(Y | x) inherit the asymptotic distribution of the tail index γ . From this, we focus on 
reducing the bias caused by tail index estimators naturally. Here, consider the classical Hill estimator (see Hill, 1975),

γ̂ H
k = 1

k

k∑
i=1

log
ε̂n−i+1,n

ε̂n−k,n
,

where �·� is the floor function. Corollary 2.1 in Girard et al. (2021) has shown that under the assumptions C2(γ , ρ, A) with √
n (1 − τn)A 

(
(1 − τn)−1) → λ ∈ R and (7), the estimator γ̂ H

k constructed by the residuals is 
√

n (1 − τn)-asymptotically normal with 
expectation λ/(1 − ρ) and variance γ 2 and is asymptotically independent from . Inspired by bias-reduced strategy of Caeiro et al. 
(2005), it yields the bias-reduced Hill estimator

γ̂ H,RB
k = γ̂ H

k

(
1 − b̄

1 − ρ̄

(n

k

)ρ̄
)

,

where b̄ and ρ̄ are consistent estimators of b and ρ respectively. It is obtained that 
√

k
(
γ̂ H,RB

k − γ
)

is asymptotically Gaussian with 

variance equal to γ 2 and zero mean from Corollary B.1 in Appendix B. The tail index estimators mentioned above both require the 
optimal choice of the sequence k = k(n). Here, we select the intermediate level k by minimizing the asymptotic mean-squared error 
(AMSE) of the Hill estimator (see P.77 of de Haan and Ferreira, 2006):

k̂ =
⌊(

(1 − ρ̄)2

−2ρ̄b̄2

)1/(1−2ρ̄)

n−2ρ̄/(1−2ρ̄)

⌋
.

4.2. Bias reduction for extrapolation

In fact, even though we adopt the bias-reduced estimator γ̂ H,RB
k , the conditional extreme estimators ̂ξ M,�

τ ′
n

(Y | x) and ̂ξ Q ,�

τ ′
n

(Y | x) are still 
biased due to heavy-tailed extrapolation as shown in Eq. (10). Analyze the extrapolation process for the direct method in detail,(

1 − τ ′
n

1 − τn

)γ ξτ ′
n
(ε)

ξτn (ε)
= g(γ )qτn(ε)

ξτn (ε)︸ ︷︷ ︸
1+Rn,1

× ξτ ′
n
(ε)

g(γ )qτ ′
n
(ε)︸ ︷︷ ︸

1+Rn,2

×
(

1 − τ ′
n

1 − τn

)γ qτ ′
n
(ε)

qτn(ε)︸ ︷︷ ︸
1+Rn,3

. (18)

It’s motivated by the bias-reduced strategy for extreme expectiles introduced by Girard et al. (2022b). Both Rn,1 and Rn,2 are connected 
with the precise expansion of Eq. (8) at the intermediate level and extreme level, which is expressed as

Rn,1 =
(

1 + C1(γ ,ρ)A
(
(1 − τn)

−1
)

g(γ )
+ C2(γ )(1 − τn)

g(γ )
+ o(1)

)−1

− 1,

Rn,2 = C1(γ ,ρ)A
(
(1 − τ ′

n)
−1
)

g(γ )
+ C2(γ )(1 − τ ′

n)

g(γ )
+ o(1).

According to Theorem 2.3.9 in de Haan and Ferreira (2006), the bias term Rn,3 is defined as

Rn,3 = 1

ρ

[(
1 − τ ′

n

1 − τn

)−ρ

− 1

]
A

(
1

1 − τn

)
(1 + o(1)).

Under the assumption A(t) = γ btρ , by plugging in the consistent estimators γ̄ , b̄ and ρ̄ to estimate Rn,1, Rn,2 and Rn,3, this results in
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R̄n,1 =
(

1 + C1(γ̄ , ρ̄) · γ̄ b̄ (1 − τn)
−ρ̄

g(γ̄ )
+ C2(γ̄ )(1 − τn)

g(γ̄ )

)−1

− 1,

R̄n,2 = C1(γ̄ , ρ̄) · γ̄ b̄
(
1 − τ ′

n

)−ρ̄

g(γ̄ )
+ C2(γ̄ )(1 − τ ′

n)

g(γ̄ )
,

R̄n,3 = γ̄ b̄

ρ̄

[(
1 − τ ′

n

)−ρ̄ − (1 − τn)
−ρ̄
]
.

Thus, from Eq. (18), we propose a bias-reduced version of ̂ξ M,�

τ ′
n

(ε) as follows:

ξ̂
M,�,RB
τ ′

n
(ε) = ξ̂

M,�

τ ′
n

(ε)
(
1 + R̄n,1

) (
1 + R̄n,2

) (
1 + R̄n,3

)
.

Analogously, we apply another multiplicative correction for the indirect estimator based on quantile, that is

ξ̂
Q ,�,RB
τ ′

n
(ε) = ξ̂

Q ,�

τ ′
n

(ε)
(
1 + R̄n,2

) (
1 + R̄n,3

)
.

The next result provides the asymptotic properties of these bias-reduced estimators ̂ξ M,�,RB
τ ′

n
(ε) and ̂ξ Q ,�,RB

τ ′
n

(ε).

Theorem 4.1. Suppose that E|ε−| < ∞ and C2(γ , ρ, A) holds with A(t) = bγ tρ , 0 < γ < 1 and ρ < 0. The sequences τn ↑ 1 and τ ′
n ↑ 1 satisfy 

condition (11) and the residuals ̂εi satisfy condition (7). Further assume that 
√

n (1 − τn)(γ̄ − γ ) d−→ �, where � is nondegenerate. Let consistent 
estimators ρ̄ of ρ and b̄ of b be such that (ρ̄ − ρ) log(n) = oP (1).

(i) If 0 < γ < 1/2, C3 and condition (12) hold, then

√
n (1 − τn)

log
[
(1 − τn) /

(
1 − τ ′

n
)]
⎛⎝ ξ̂

M,�,RB
τ ′

n
(ε)

ξτ ′
n
(ε)

− 1

⎞⎠ d−→ � as n → ∞.

(ii) If 
√

n (1 − τn)A 
(
(1 − τn)−1)→ λ1 ∈R, then

√
n (1 − τn)

log
[
(1 − τn) /

(
1 − τ ′

n
)]
⎛⎝ ξ̂

Q ,�,RB
τ ′

n
(ε)

ξτ ′
n
(ε)

− 1

⎞⎠ d−→ � as n → ∞.

Remark 5. Theorem 4.1 states that the two bias-reduced estimators ξ̂ M,�,RB
τ ′

n
(ε) and ξ̂ Q ,�,RB

τ ′
n

(ε) have a limiting distribution controlled by 
the tail index estimator γ̄ , similar to their naive counterparts. The weak condition (ρ̄ −ρ) log(n) = oP (1) in Theorem 4.1 is used to control 
R̄n,1 and R̄n,2 and R̄n,3.

We now construct bias-reduced extreme conditional estimators, that is

ξ̂
M,�,RB
τ ′

n
(Y | x) = m̄(x) + σ̄ (x) ·

(
1 − τ ′

n

1 − τn

)−γ̄

ξ̂ M
1−k/n(ε)

(
1 + R̄n,1

) (
1 + R̄n,2

) (
1 + R̄n,3

)
and ξ̂

Q ,�,RB
τ ′

n
(Y | x) = m̄(x) + σ̄ (x) ·

(
1 − τ ′

n

1 − τn

)−γ̄

g(γ̂ H,RB
k )̂εn−k,n

(
1 + R̄n,2

) (
1 + R̄n,3

)
with the intermediate sequence k = k̂. It follows by Theorem 4.1 straightly that the bias-reduced estimators ̂ξ M,�,RB

τ ′
n

(Y | x) and ̂ξ Q ,�,RB
τ ′

n
(Y | x)

have the same asymptotic behaviors as their original versions.

5. Simulation study

Some examples of heteroscedastic regression models are considered and the performances of our conditional estimators on each 
situation are explored in this section.

Mean-variance regression model: We first study the conditional mean and variance functions m and σ 2 in model (2) with parametric 
forms such that

Y = α + β� X + s
(
θ� X + 1

)
ε.

Here, the positive scale function s(·) is given e.g. s(t) = t or s(t) = exp(t) and the vector θ satisfies P
(
s
(
θ� X + 1

)
> 0

)= 1. The task is 
to estimate the parameters α, β and θ . Here, we apply a simultaneous mean-variance regression loss function which is a globally convex 
problem introduced by Spady and Stouli (2018b):
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(α̂, β̂, θ̂) := arg min
α∈R, β,θ∈Rd

1

n

n∑
i=1

1

2

⎧⎨⎩
(

yi − α − β� X i

s
(
θ� X i + 1

) )2

+ 1

⎫⎬⎭ s
(
θ� X i + 1

)
,

s.t. s
(
θ� X i + 1

)
> 0, i = 1, . . . ,n.

(19)

Under suitable assumptions, especially for the conditional variance function σ(x)2 = s(θ�x + 1)2, the estimators α̂ of α, β̂ of β and ̂θ of θ
are 

√
n-asymptotically normal (see Theorem 6 of Spady and Stouli, 2018b). We use an algorithm called constrained optimization by linear 

approximation (COBYLA), for derivative-free optimization implemented with nloptr package. Plugging in these consistent estimators, one 
can write the following bias-reduced versions of the M-estimator and Q-estimator:

ξ̂
M,�

τ ′
n

(Y | x) = α̂ + β̂
�

x + s
(̂
θ

�
x + 1

)
· ξ̂ M,�,RB

τ ′
n

(ε)

and ξ̂
Q ,�

τ ′
n

(Y | x) = α̂ + β̂
�

x + s
(̂
θ

�
x + 1

)
· ξ̂ Q ,�,RB

τ ′
n

(ε).

Heteroscedastic single-index model: Concentrating on a more flexible model, we assume that both the conditional mean function and 
conditional variance function fit various single-index structures,

Y = m
(
β� X

)
+ σ

(
θ� X

)
ε,

where the support S has a nonempty interior S◦ . Both the conditional mean function m(·) and variance function σ 2(·) admit the single-
index structure where the direction of projections in m(·) and σ 2(·) are the vectors β and θ , respectively. The vectors β and θ are mainly 
estimated using the algorithm in section 2.2 of Zhu et al. (2013). A slight improvement is the use of orthoDr package in Zhu et al. (2018)
which adapts the algorithm proposed by Wen and Yin (2013) for optimization and is comparable with existing manifold optimization 
approaches instead of using Newton’s method. Then, we estimate m with

m̂
(
β̂

T
xi

)
=
∑n

j=1 Zh1

(
β̂

T
x j − β̂

T
xi

)
Y j1

{∣∣Y j
∣∣≤ tn

}
∑n

j=1 Zh1

(
β̂

T
x j − β̂

T
xi

) ,

where Zh(·) = Z(./h)/h is the kernel function and tn → ∞ is a positive truncating sequence. Next we calculate the residual ζ̂i = Yi −
m̂
(
β̂

T
xi

)
to obtain the estimator

σ̂ 2
(̂
θ

T
xi

)
=
∑n

j=1 Zh2

(̂
θ

T
x j − θ̂

T
xi

)
ζ̂ 2

j 1
{∣∣̂ζ j

∣∣≤ tn
}

∑n
j=1 Zh2

(̂
θ

T
x j − θ̂

T
xi

) .

It shows that both of these estimators converge uniformly at the rate n2/5/
√

log n under the condition nh5 → a ∈ (0, ∞) (see supplemen-
tary material of Girard et al., 2021; Zhu et al., 2018). By Theorem 3.4 and Corollary 3.1, it yields that k = nc where c ∈ (0, 45 ), and n and 
S are replaced by N =∑n

i=1 1 {X i ∈ S0} and S0, respectively, to ensure the asymptotic property of the extreme estimators (see Lemma 
C.4-C.6 in the supplementary material of Girard et al. (2021))

ξ̂
M,�

τ ′
N

(Y | x) = m̂
(
β̂

�
x
)

+ σ̂
(̂
θ

�
x
)(1 − τ ′

N

1 − τN

)−γ̄

· ξ̂τN (ε)

and ξ̂
Q ,�

τ ′
N

(Y | x) = m̂
(
β̂

�
x
)

+ σ̂
(̂
θ

�
x
)(1 − τ ′

N

1 − τN

)−γ̄

· g(γ̄ )̂ε
(N)
N−�N(1−τN )�,N .

In this section, we propose to study the finite-sample performance of the estimators and their bias-reduced versions. For this purpose, 
we consider the linear and single-index models:

(M1) Y = β� X + 2 + (
θ� X + 1

)
ε,

(M2) Y = exp
(
β� X − 2

)+ 1 + (
exp

(
θ� X − 1

)+ 1/2
)
ε.

In the models, the covariate X ∈R4 consists of four independent components, the first two following a uniform distribution U(0, 1), and 
the last two following a Beta(2, 2) distribution. Set the coefficient vectors β� = (1, 1, 2, 2), θ� = (1, 1, 1, 1). The noise ε is independent of 
X and follows a generalized Pareto distribution, that is ε = ε0 ·√(1/2 − γ )(1 − γ ) where ε0 has density f0(x) = (1 + γ |x|)−1/γ −1/2.

We simulate N = 1, 000 data sets of n = 1, 000 observations (X i, Yi) , 1 ≤ i ≤ n and consider the cases γ ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35}
with the second-order parameter ρ = −γ . We estimate the conditional extremile of level τ ′

n = 0.995 fixed x� = (2/5, 2/5, 1/2, 1/2) using 
four methods:

(1) Use the bias-reduced direct estimator ̂ξ M,�,RB
τ ′

n
(Y | x) with the bias-reduced Hill estimator γ̂ H,RB

k and k = k̂.

(2) Assume β and θ are known and use the bias-reduced direct estimator ξ̂ M,�,RB
τ ′

n
(Y | x) with the bias-reduced Hill estimator γ̂ H,RB

k and 
k = k̂.
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Table 1
RMSE and RMAD of extreme conditional extremile estimators in (M1).

Evaluation Methodology γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.35

RMSE

(1) 0.0182 0.0223 0.0276 0.0349 0.0463 0.0986
(2) 0.0195 0.0231 0.0271 0.0321 0.0376 0.0439
(3) 0.0251 0.0284 0.0320 0.0361 0.0408 0.0460
(4) 0.1070 0.1228 0.1402 0.1590 0.1791 0.1995

(1i) 0.0334 0.0392 0.0468 0.0572 0.0739 0.1041
(2i) 0.0351 0.0400 0.0450 0.0517 0.0584 0.0658
(3i) 0.0456 0.0495 0.0538 0.0585 0.0637 0.0694
(4i) 0.2729 0.3236 0.3863 0.4650 0.5656 0.6967

RMAD

(1) 0.0867 0.0959 0.1028 0.1049 0.1147 0.1219
(2) 0.0935 0.0983 0.1047 0.1088 0.1138 0.1177
(3) 0.1091 0.1119 0.1132 0.1174 0.1186 0.1179
(4) 0.2759 0.2907 0.3046 0.3150 0.3219 0.3241

(1i) 0.1324 0.1361 0.1451 0.1462 0.1559 0.1625
(2i) 0.1410 0.1396 0.1439 0.1452 0.1457 0.1455
(3i) 0.1659 0.1646 0.1622 0.1600 0.1560 0.1521
(4i) 0.4573 0.4857 0.5179 0.5521 0.5912 0.6229

M1: Y = β� X + 2 + (
θ� X + 1

)
ε

Table 2
RMSE and RMAD of extreme conditional extremile estimators in (M2).

Evaluation Methodology γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3 γ = 0.35

RMSE

(1) 0.0199 0.0228 0.0257 0.0292 0.0342 0.0411
(2) 0.0164 0.0191 0.0225 0.0266 0.0330 0.0406
(3) 0.0205 0.0226 0.0256 0.0293 0.0347 0.0417
(4) 0.0876 0.0973 0.1077 0.1218 0.1344 0.1509

(1i) 0.0353 0.0386 0.0418 0.0457 0.0509 0.0752
(2i) 0.0271 0.0302 0.0334 0.0380 0.0451 0.0529
(3i) 0.0361 0.0378 0.0403 0.0435 0.0485 0.0554
(4i) 0.2317 0.2652 0.3053 0.3646 0.4274 0.5263

RMAD

(1) 0.0911 0.0973 0.1010 0.1065 0.1124 0.1220
(2) 0.0832 0.0941 0.0975 0.1065 0.1170 0.1250
(3) 0.0951 0.0981 0.1044 0.1065 0.1126 0.1239
(4) 0.2384 0.2425 0.2445 0.2433 0.2380 0.2217

(1i) 0.1313 0.1269 0.1327 0.1330 0.1329 0.1355
(2i) 0.1059 0.1121 0.1147 0.1200 0.1263 0.1316
(3i) 0.1312 0.1273 0.1247 0.1275 0.1258 0.1292
(4i) 0.4131 0.4289 0.4410 0.4544 0.4659 0.4692

M2: Y = exp
(
β� X − 2

)+ 1 + (
exp

(
θ� X − 1

)+ 1/2
)
ε

(3) Assume β and θ are known and use the bias-reduced direct estimator ̂ξ M,�,RB
τ ′

n
(Y | x) with the bias-reduced Hill estimator γ̂ H,RB

k where 
the intermediate sequence is fixed k = 100.

(4) Assume β and θ are known and use the direct estimator ̂ξ M,�

τ ′
n

(Y | x) with the Hill estimator γ̂ H
k and k = 100.

Similar to methods (1)−(4), there are four methodologies for the indirect estimation numbered (1i)−(4i). To evaluate the performances of 
these strategies, we compute the relative mean squared error (RMSE) and the relative median absolute deviation (RMAD):

RMSE = 1

N

N∑
m=1

(
ξ̄ �
τ ′

n,m
(Y | x)

ξτ ′
n
(Y | x)

− 1

)2

and RMAD = median1≤m≤N

∣∣∣∣∣ ξ̄
�
τ ′

n,m
(Y | x)

ξτ ′
n
(Y | x)

− 1

∣∣∣∣∣ ,
where ξ̄ �

τ ′
n,m

(Y | x) denotes the consistent extrapolated estimator calculated on the m-th replication. The results are presented in Tables 1

and 2.
In both (M1) and (M2), it appears that the relative errors are mainly influenced by the tail heaviness. In particular, as the tail index 

γ becomes larger, the RMSE and RMAD both increase in all cases. A comparison of (1)−(4) and (1i)−(4i) shows that the direct method 
is better than the indirect method. On the whole, method (2) performs the best, followed by method (1), especially in the single-index 
model (M2). Comparing (1) with (2), we find that the model structure estimation impacts relatively the accuracy of the extreme conditional 
estimation. From (2) and (3), it can be seen that the optimal choice of the intermediate sequence k(n) is beneficial for the lighter-tailed 
model. We can conclude that the bias-reduction correction is an obvious advantage, as the comparison of (3) and (4) indicates. These 
conclusions are also applicable to the indirect method.
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Fig. 1. Vehicle Insurance Data: (a): estimation of the mean function m (red line) and standard deviation function σ (blue line) with a histogram of the ̂β�
X i . (b): estimator 

of the conditional extremile in the direct method (blue solid line) with bootstrap confidence intervals (blue dashed line) and Gaussian confidence intervals (blue dotted line), 
ES (pink line), quantile (purple line) and expectile (red line) at level τ ′

n = 0.9977 on the β̂�
x − y (scatter) plot. (c): bias-reduced Hill estimator based on residuals ̂εi (blue 

line) and response variables Yi (black line). (d): Exponential QQ-plot of the weight log-spacings log
(̂
εn−i+1,n /̂εn−̂k,n

)
for all 1 ≤ i ≤ k̂ = 286 with red line whose slope is 

γ̂ H,RB
k̂

= 0.2858. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

6. Real data study

6.1. Vehicle insurance customer data

The vehicle insurance customer data set includes n = 9, 134 customers according to their claim amounts Y , lifetime value X1 (in usd), 
income X2 (in usd), months since last claim X3 and months since policy inception X4. We propose to estimate the extreme extremile of 
the claim amount for each customer by applying the heteroscedastic single-index model to fit it. Before that, we shall test whether the 
conditional tail index is constant with the statistic T4 on response variables Y1, . . . , Yn which is introduced in Einmahl et al. (2016). Under 
the null hypothesis of a constant conditional tail index, we have kn T4

d−→ χ2
m−1 (see Einmahl et al., 2016). Here, we choose the number of 

blocks m = 4 and calculate the test statistic T4 = 0.041 and p-value is approximately 0.998. Hence, we cannot reject the hypothesis that 
the extreme value index γ is invariant.

For simplicity of calculation, we assume that single-index vectors β and θ are equivalent. The kernel function Zh(·) is the Gaussian 
kernel. We choose the bandwidth h = h1 = h2 = n−1/5/

√
12 ≈ 0.047 and tn = ∞ and obtain β̂ � (0.9146, −0.4043, −0.0040, −0.0005)�
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Fig. 2. Farm Data:(a): estimation of mean function m(·). (b): estimation of standard deviation function σ(·). (c): histogram of the inverse of the wheat yield Y1, ·, Y
x1), ·, ̂ξ M,�,RB

τ ′
n

(Y | xn). On all the three-dimensional diagrams, the x’theta axis is x� θ̂ and the x’beta axis is x�β̂ . As the color changes from blue to red, the corresponding v
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Fig. 3. Farm Data: (a): bias-reduced Hill estimator based on residuals ̂εi (blue line) and response variables Yi (black line). (b): Exponential QQ-plot of the weight log-spacings 
log

(̂
εn−i+1,n /̂εn−̂k,n

)
for all 1 ≤ i ≤ k̂ = 70 with red line whose slope is γ̂ H,RB

k̂
= 0.2985.

implying that the first two variables are crucial contributors for predicting the claim amount Y . The estimates of mean and standard 
deviation function m̂ and σ̂ are illustrated in Fig. 1(a). Obtaining the residuals ̂εi, . . . , ̂εn , the assumption of a heavy-tailed distribution is 
required to be confirmed. Fig. 1(c) gives the bias-reduced Hill estimators based on residuals and response variables. It appears that the 
former is more stable than the latter. The bias-reduced Hill estimator γ̂ H,RB

k on ̂εi, i = 1, . . . , n is approximately equal to 0.2858 with the 
intermediate sequence k = k̂ = 286 by the method of Section 4.1. Fig. 1(d) shows that the points on the QQ-plot lie roughly near the line 
with the slope γ̂ H,RB

k , which verifies the plausibility of the heavy-tailed assumption. Finally, we estimate the conditional extreme extremile 
of each customer and compare it with three other common risk measures: quantile, expectile and ES, at the same level τ ′

n = 1 − 1/(nh) ≈
0.9977. The results are reported in Fig. 1(b). These four curves are similar in shape. More specifically, the extreme estimator ̂ξ M,�,RB

τ ′
n

(Y | x)

is more pessimistic than quantile and expectile, but is more optimistic than ES following the asymptotic proportional relationship between 
extreme extremile and the three risk measures (see Propositions 3 and 6 in Daouia et al., 2019). Taking into account uncertainty, we offer 
two pointwise 95% confidence intervals: asymptotic Gaussian confidence interval and bootstrap confidence interval for the conditional 
extreme extremile ξτ ′

n
(Y | x). As a comparison, we find the bootstrap confidence interval is less conservative than the Gaussian confidence 

interval. In addition, the lower asymptotic Gaussian confidence band is close to the conditional extreme quantile. The generation of 
confidence intervals is explained in detail in Appendix C.

6.2. Farm income data

The farm income data set consists of n = 949 observations of 6 variables namely: the inverse of the wheat yield Y (in quintal/hectare), 
selling price X1 (in euro/quintal), works and services purchased for crops X2 (in euro), the real cost of seeds and seedlings X3 (in euro), 
purchases of works and services for crops X4 (in euro) and temperature X5 (◦C ) (see Bousebata et al., 2023). For the response variable 
Y , the test statistic is T4 = 0.6264 and the p-value is 0.8904 which provides evidence that we cannot reject the null hypothesis of con-
stant extreme value index. Fig. 2(c) displays the inverse of the wheat yield Y1, . . . , Yn . We consider the farm income data for the second 
application on the single-index model. We use the Gaussian kernel and set the bandwidth h = n−1/5 ≈ 0.2538 to calculate the estima-
tors of the index parameters β̂ � (0.7082, 0.4180, −0.4130, 0.1633, −0.3556)� and ̂θ � (−0.1990, 0.9634, 0.1364, 0.0248, −0.1142)� . The 
estimation results for m̂(·) and σ̂ (·) are plotted in Fig. 2(a) and Fig. 2(b), respectively. Fig. 2(b) indicates the heteroscedasticity via the 
standard deviation function. The bias-reduced version of the Hill estimator is graphed in Fig. 3(a) both on residuals and response data. The 
bias-reduced Hill estimator γ̂ H,RB

k is 0.2985 with the intermediate level ̂k = 70 computed on the residuals. As can be seen from Fig. 3(b), 
the exponential quantile–quantile plot is approximately linear which confirms that the residuals are heavy-tailed. The extreme conditional 
extremile estimator ξ̂ M,�,RB

τ ′
n

(Y | x) is evaluated at the level τ ′
n = 1 − 1/(nh) ≈ 0.9958, which is shown in Fig. 2(d). As a comparison of 

Figs. 2(c) and 2(d), the output variable and the extreme extremile estimator from the plane (x�θ̂, x�β̂) have similar behavior in shape. In 
addition, we estimate the extreme conditional quantile and observe that there are four samples where Yi exceeds ̂q�

τ ′
n
(Y | X i). It’s exactly 

the same as the theoretical value n(1 − τ ′
n) � 4.

7. Conclusion

This paper develops a general theory for the estimation of extreme conditional extremiles in the framework of a heteroscedastic re-
gression model with heavy-tail noises. Estimating extremiles for heavy-tailed variables under a regression framework is a challenging task, 
and the existing study remains limited to independent and identically distributed heavy-tailed observations. Our approach can estimate 
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the extremile in the framework of the heteroscedastic regression model by constructing extreme conditional extremile estimators based on 
available residuals. According to the methods used, the estimators fall into direct and indirect estimators, and their theoretical properties 
are explored. Moreover, taking the bias of the extreme estimators into consideration, we provided the bias-reduced version of the estima-
tors by a two-aspect procedure: bias reduction for the tail-index estimator and for Wessiman’s extrapolation device. Finally, finite-sample 
simulation is conducted and reflects that tail heaviness affects the relative errors and bias correction can greatly improve the accuracy. 
From the analysis of real data sets, we find the extreme conditional extremile estimator is more pessimistic than quantile and expectile 
but is more optimistic than ES in practice.
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Appendix A. Auxiliary lemmas

Lemma A.1 states that the convergence rate of the quantity max1≤i≤n
|̂εi−εi |
1+|εi | can be controlled by appropriate consistent estimators m̄

and σ̄ at the sample points, which is used in the proof of Theorem 3.3. It is an adaptation of Corollary 4.1 in Ahmad et al. (2020).

Lemma A.1. Assume there exists ωn → 0, such that the consistent estimators m̄ and σ̄ satisfy

max
1≤i≤n

∣∣∣∣m̄(X i) − m(X i)

σ (X i)

∣∣∣∣= OP (ωn), max
1≤i≤n

∣∣∣∣ σ̄ (X i)

σ (X i)
− 1

∣∣∣∣= OP (ωn).

Then

max
1≤i≤n

|̂εi − εi|
1 + |εi| = OP (ωn).

Proof. First, analyze the distance between ̂εi and εi ,

|̂εi − εi | =
∣∣∣∣m̄(X i) − m(X i)

σ (X i)
+
(

σ̄ (X i)

σ (X i)
− 1

)
εi

∣∣∣∣ · ∣∣∣∣σ(X i)

σ̄ (X i)

∣∣∣∣
≤ (1 + |εi |)max

{∣∣∣∣m̄(X i) − m(X i)

σ (X i)

∣∣∣∣ , ∣∣∣∣ σ̄ (X i)

σ (X i)
− 1

∣∣∣∣} ·
∣∣∣∣σ(X i)

σ̄ (X i)

∣∣∣∣ ,
which leads to

max
1≤i≤n

|̂εi − εi|
1 + |εi| ≤ max

1≤i≤n

∣∣∣∣σ(X i)

σ̄ (X i)

∣∣∣∣ · max

{
max

1≤i≤n

∣∣∣∣m̄(X i) − m(X i)

σ (X i)

∣∣∣∣ , max
1≤i≤n

∣∣∣∣ σ̄ (X i)

σ (X i)
− 1

∣∣∣∣}
= OP (1) · OP (ωn) = OP (ωn).

In detail, for all δ > 0, we can write

P

(
max

1≤i≤n

∣∣∣∣σ(X i)

σ̄ (X i)

∣∣∣∣> 2

)
≤ P

(
max

1≤i≤n

∣∣∣∣ σ̄ (X i)

σ (X i)
− 1

∣∣∣∣> 1

2

)
< δ

to obtain max1≤i≤n

∣∣∣ σ(X i)
σ̄ (X i)

∣∣∣= OP (1). �
Lemma A.2 states that the gap between the tail empirical quantile process of the residuals and that of the errors is uniformly bounded, 

which is used in the proof of Corollary B.1. In effect, it is analogous to Lemma A.3 supplementary material of Girard et al. (2021) so the 
proof is omitted here.

Lemma A.2. Suppose that the sequence τn ↑ 1 with n (1 − τn) → ∞. If the quantity δn := max
1≤i≤n

|̂εi−εi |
1+|εi | , satisfies δn

P−→ 0, then

max

∣∣∣∣log
ε̂n−i,n

∣∣∣∣= OP (δn).

1≤i≤k εn−i,n
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Appendix B. Proofs of main results

Proof of Theorem 3.1. Denote the unavailable M-statistic ̃ξ M
τn

(ε) =
∑n

i=1 Jτn

(
i
n

)
εi,n∑n

i=1 Jτn

(
i
n

) , then

(̂
ξ M
τn

(ε) − ξ̃ M
τn

(ε)
)

=
∑n

i=1 Jτn

(
i
n

) (̂
εi,n − εi,n

)
∑n

i=1 Jτn

(
i
n

)
≤
∑n

i=1 Jτn

(
i
n

)(
1 + |εi,n|

)
δn∑n

i=1 Jτn

(
i
n

)
= δn

⎛⎝1 +
∑n

i=1 Jτn

(
i
n

)
|εi,n|∑n

i=1 Jτn

(
i
n

)
⎞⎠

= δn

⎛⎝1 +
∑n

i=1 Jτn

(
i
n

)
εi,n − 2

∑n
i=1 Jτn

(
i
n

)
εi,n1{εi,n ≤ 0}∑n

i=1 Jτn

(
i
n

)
⎞⎠

= δn

⎛⎝1 + ξ̃ M
τn

(ε) −
2
∑n

i=1 Jτn

(
i
n

)
εi,n1{εi,n ≤ 0}∑n

i=1 Jτn

(
i
n

)
⎞⎠

= δnξ̃
M
τn

(ε) + OP (δn).

The inequality is due to ε̂i,n − εi,n ≤ δn(1 + |εi,n|) when δn < 1/2. In addition, the last equation relies on the assumption E|ε−| < ∞. 
Therefore,

ξ̂ M
τn

(ε)

ξτn(ε)
− 1 = ξ̂ M

τn
(ε)

ξ̃ M
τn

(ε)

(
ξ̃ M
τn

(ε)

ξτn(ε)
− 1

)
+ ξ̂ M

τn
(ε)

ξ̃ M
τn

(ε)
− 1

= (1 + OP (δn))

(
ξ̃ M
τn

(ε)

ξτn (ε)
− 1

)
+ OP (δn)

= ξ̃ M
τn

(ε)

ξτn(ε)
− 1 + OP (δn).

Finally, we use the asymptotic properties of ̃ξ M
τn

(ε) (see Theorem 4 in Daouia et al., 2019) to get

√
n (1 − τn)

(
ξ̂ M
τn

(ε)

ξτn (ε)
− 1

)
d−→ N (0, V (γ )),

with

V (γ ) =
(

γ
√

log 2

	(1 − γ )

)2 ∞∫
0

∞∫
0

(tu)−γ −1e−t−u(t ∧ u) dtdu. �

Proof of Theorem 3.2. As shown by Proposition 4 in Daouia et al. (2019), if τ ↑ 1,

ξτ (ε)

qτ (ε)
− g(γ ) = b1(γ ,ρ)A

(
(1 − τ )−1)+ b2(γ )(1 − τ ) + o

(
A
(
(1 − τ )−1))+ o(1 − τ ).

Moreover, denote r(γ ) such that ξτ (ε)
qτ (ε)

= g(γ )(1 + r(γ )). Then we write(
ξ̂

Q
τn (ε)

ξτn(ε)
− 1

)
=
(

g(γ̄ )

g(γ )
− 1

)
+
(

q̂τn(ε)

qτn(ε)
− 1

)
g(γ̄ )

g(γ )
−
(

ξτn(ε)

g(γ )qτn(ε)
− 1

)(
g(γ̄ )̂qτn(ε)

g(γ )qτn(ε)
· g(γ )qτn(ε)

ξτn(ε)

)
=
(

g(γ̄ )

g(γ )
− 1

)
+
(

q̂τn(ε)

qτn(ε)
− 1

)
(1 + oP (1)) −

(
ξτn (ε)

g(γ )qτn(ε)
− 1

)
(1 + oP (1))

=
(

g(γ̄ )

g(γ )
− 1

)
+
(

q̂τn(ε)

qτn(ε)
− 1

)
(1 + oP (1)) − r(τn)(1 + oP (1)).

By the delta-method, we get 
√

n (1 − τn)
(

g(γ̄ )
g(γ )

− 1
)

d−→ η(γ ) ·�. Note that 
√

n (1 − τn)
(

q̂τn (ε)

qτn (ε)
− 1

)
d−→  and 

√
n (1 − τn)r(τn)→λ1

b1(γ ,ρ)
g(γ )

+ λ2
b2(γ ) . This completes the proof. �
g(γ )
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Proof of Theorem 3.3. To simplify the exposition, we define dn = 1−τn
1−τ ′

n
. Note that this is the key point:

log

(
ξ̄ �
τ ′

n
(ε)

ξτ ′
n
(ε)

)
= (γ̄ − γ ) log(dn) + log

(
ξ̄τn (ε)

ξτn (ε)

)
− log

(
(dn)

−γ
ξτ ′

n(ε)

ξτn(ε)

)
.

For the first term,
√

n (1 − τn)

log(dn)
(γ̄ − γ ) log(dn) =√

n (1 − τn)(γ̄ − γ )
d−→ � as n → ∞.

For the second term,
√

n (1 − τn)

log(dn)
log

ξ̄τn(ε)

ξτn(ε)
= OP (

1

log(dn)
) = oP (1).

For the third term,
√

n (1 − τn)

log(dn)
log

(
(dn)

−γ
ξτ ′

n(ε)

ξτn(ε)

)
=

√
n (1 − τn)

log(dn)

(
log

ξτ ′
n(ε)

g(γ )qτ ′
n(ε)

− log
ξτn(ε)

g(γ )qτn(ε)

+ log

(
qτ ′

n(ε)

(dn)γ qτn(ε)

))

=
√

n (1 − τn)

log(dn)

(
O(1 − τn) + O

(∣∣∣∣A( 1

1 − τn

)∣∣∣∣)+ O
(
1 − τ ′

n

)+ O

(∣∣∣∣A( 1

1 − τ ′
n

)∣∣∣∣)
+ O

(∣∣∣∣A( 1

1 − τn

)∣∣∣∣))
=

√
n (1 − τn)

log(dn)

(
O(1 − τn) + O

(∣∣∣∣A( 1

1 − τn

)∣∣∣∣))
=O

(
1

log(dn)

)
= o(1).

In detail, the second equation is due to Theorem B.2.18 in de Haan and Ferreira (2006) and Proposition 4 in Daouia et al. (2019). Finally, 
combine these three elements to conclude the result. �
Proof of Theorem 3.4. According to Lemma A.1, the condition (7) is implied by condition (14). Applying Theorems 3.1 and 3.3, we have

√
n (1 − τn)

(
ξ̂ M
τn

(ε)

ξτn(ε)
− 1

)
d−→ N (0, V (γ ))

and

√
n (1 − τn)

log(dn)

⎛⎝ ξ̂
M,�

τ ′
n

(ε)

ξτ ′
n
(ε)

− 1

⎞⎠ d−→ � as n → ∞.

One can write

ξ̄τ (Y | x)

ξτ (Y | x)
− 1 = σ(x)ξτ (ε)

m(x) + σ(x)ξτ (ε)
·
(

ξ̄τ (ε)

ξτ (ε)
− 1

)
︸ ︷︷ ︸

Bτ ,1(x)

+ σ(x)ξτ (ε)

m(x) + σ(x)ξτ (ε)
· ξ̄τ (ε)

ξτ (ε)
·
(

σ̄ (x)

σ (x)
− 1

)
︸ ︷︷ ︸

Bτ ,2(x)

+ 1

m(x) + σ(x)ξτ (ε)
· (m̄(x) − m(x))︸ ︷︷ ︸

Bτ ,3(x)

.

(20)

Let’s consider the intermediate level τ = τn for the consistent estimator ξ̄τn (Y | x) = ξ̂ M
τn

(Y | x). For the first term, we have

√
n (1 − τn)Bτn,1(x) = σ(x)ξτn (ε)

m(x) + σ(x)ξτn (ε)
·√n (1 − τn)

(
ξ̂ M
τn

(ε)

ξτn (ε)
− 1

)
d−→ N (0, V (γ )), (21)

applying Theorem 3.1 and the convergence ξτn (ε) → ∞ as τn → 1. For the latter two terms, we use the condition (15) to get

√
n (1 − τn)Bτn,2(x) = oP

(
σ(x)ξτn(ε)

m(x) + σ(x)ξτn(ε)
· ξ̂ M

τn
(ε)

ξτn (ε)

)
= oP (1) (22)

and
√

n (1 − τn)Bτn,3(x) = OP

(
1

m(x) + σ(x)ξτn (ε)

)
= oP (1). (23)
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Therefore, we combine equations (21), (22) and (23) to obtain√
n (1 − τn)

(
ξ̂ M
τn

(Y | x)

ξτn (Y | x)
− 1

)
d−→ N (0, V (γ )).

Then, we focus on the extreme level τ = τ ′
n . For the conditional extreme estimator ̂ξ M,�

τ ′
n

(Y | x), it can be easily found that

√
n (1 − τn)

log(dn)
Bτ ′

n,1(x) = σ(x)ξτ ′
n
(ε)

m(x) + σ(x)ξτ ′
n
(ε)

·
√

n (1 − τn)

log(dn)

⎛⎝ ξ̂
M,�

τ ′
n

(ε)

ξτ ′
n
(ε)

− 1

⎞⎠ d−→ � (24)

by Theorem 3.3. Both Bτ ′
n,2(x) and Bτ ′

n,3(x) are controlled, that is

√
n (1 − τn)

log(dn)
Bτ ′

n,2(x) = oP

⎛⎝ 1

log(dn)
· σ(x)ξτ ′

n
(ε)

m(x) + σ(x)ξτ ′
n
(ε)

·
ξ̂

M,�

τ ′
n

(ε)

ξτ ′
n
(ε)

⎞⎠
= oP

(
1

log(dn)

)
, (25)

and

√
n (1 − τn)

log
[
(1 − τn) /

(
1 − τ ′

n
)] Bτ ′

n,3(x) = OP

(
1

log(dn)
· 1

m(x) + σ(x)ξτ ′
n
(ε)

)

= oP

(
1

log(dn)

)
. (26)

Combining equations (24), (25) and (26) yields

√
n (1 − τn)

log(dn)

⎛⎝ ξ̂
M,�

τ ′
n

(Y | x)

ξτ ′
n
(Y | x)

− 1

⎞⎠ d−→ �,

which completes the proof. �
Proof of Corollary 3.1. The proof is almost entirely similar to that of Theorem 3.3 for estimation of the direct conditional estimator. 
Following the same idea as Eq. (20) and using Theorem 3.2, for the indirect intermediate estimator ̂ξ Q

τn (Y | x), we have√
n (1 − τn)Bτn,1(x)

d−→ η(γ ) · � +  −
[
λ1

b1(γ ,ρ)

g(γ )
+ λ2

b2(γ )

g(γ )

]
,√

n (1 − τn)Bτn,2(x) = oP (1), and
√

n (1 − τn)Bτn,3(x) = oP (1),

to get √
n (1 − τn)

(
ξ̂

Q
τn (Y | x)

ξτn (Y | x)
− 1

)
d−→ η(γ ) · � +  −

[
λ1

b1(γ ,ρ)

g(γ )
+ λ2

b2(γ )

g(γ )

]
.

Focusing on the extreme estimator based on quantile, one can write⎛⎝ ξ̂
Q ,�

τ ′
n

(ε)

ξτ ′
n
(ε)

− 1

⎞⎠=g(γ̄ )
qτ ′

n
(ε)

ξτ ′
n
(ε)

(
q̂�
τ ′

n
(ε)

qτ ′
n
(ε)

− 1

)
+ qτ ′

n
(ε)

ξτ ′
n
(ε)

(g(γ̄ ) − g(γ ))

+ qτ ′
n
(ε)

ξτ ′
n
(ε)

(
g(γ ) − ξτ ′

n
(ε)

qτ ′
n
(ε)

)
,

(27)

where ̂q�
τ ′

n
(ε) =

(
1−τ ′

n
1−τn

)−γ̄
q̂τn (ε) = dγ̄

n ε̂n−k,n . For the first term in Eq. (27), we have

√
n (1 − τn)

log dn

(
q̂�
τ ′

n
(ε)

qτ ′
n
(ε)

− 1

)
=dγ

n qτn(ε)

qτ ′
n
(ε)

[√
n (1 − τn)

(
q̂τn(ε)

qτn(ε)
− 1

)
dγ̄ −γ

n

log dn
+

√
n (1 − τn)

log dn

(
dγ̄ −γ

n − 1
)

−
√

n (1 − τn)A
(

1
1−τn

)
log dn

· qτ ′
n
(ε)/

(
dγ

n qτn(ε)
)− 1

A
(

1
1−τn

) ]
.

Note that 
√

n (1 − τn)
(

q̂τn (ε)

qτn (ε)
− 1

)
= OP (1) and 

√
n(1−τn)
log dn

(
dγ̄ −γ

n − 1
)

d−→ �. It yields

√
n (1 − τn)

log dn

(
q̂�
τ ′

n
(ε)

qτ ′ (ε)
− 1

)
d−→ �,
n
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which is similar to the proof of Theorem 4.3.8 in de Haan and Ferreira (2006). For the second term, using delta-method, we have√
n (1 − τn)(g(γ̄ ) − g(γ )) = OP (1).

For the third term, we apply the assumptions for the sequences τn such that 
√

n (1 − τn)A 
(
(1 − τn)−1) → λ1 ∈ R and (1 −

τn)
√

n (1 − τn) → λ2 ∈R, to obtain

√
n (1 − τn)

(
g(γ ) − ξτ ′

n
(ε)

qτ ′
n
(ε)

)
=√

n (1 − τn)

[
O

(
A

(
1

1 − τ ′
n

))
+ O

(
1 − τ ′

n

)]
=√

n (1 − τn)

[
O

(
A

(
1

1 − τn

))
+ O (1 − τn)

]
= O(1),

controlling three terms results in

√
n (1 − τn)

log dn

⎛⎝ ξ̂
Q ,�

τ ′
n

(ε)

ξτ ′
n
(ε)

− 1

⎞⎠ d−→ �.

Returning to the conditional indirect estimator ̂ξ Q ,�

τ ′
n

(ε), similar to ̂ξ M,�

τ ′
n

(ε), we have

√
n (1 − τn)

log(dn)
Bτ ′

n,1(x)
d−→ � and

√
n (1 − τn)

log(dn)
Bτ ′

n,2(x) = oP

(
1

log(dn)

)
. (28)

It follows by equations (26) and (28) that

√
n (1 − τn)

log(dn)

⎛⎝ ξ̂
Q ,�

τ ′
n

(Y | x)

ξτ ′
n
(Y | x)

− 1

⎞⎠ d−→ �. �

Corollary B.1. Suppose that condition C2(γ , ρ, A) holds with 
√

n (1 − τn)A 
(
(1 − τn)−1)→ λ ∈ R, A(t) = bγ tρ and ρ < 0. Also assume that the 

residuals ̂εi, 1 ≤ i ≤ n, satisfy (7). Let consistent estimators ρ̄ of ρ and b̄ of b be such that (ρ̄ − ρ) log(n) = oP (1). Then

√
k
(
γ̂ H,RB

k − γ
)

d−→ N
(

0, γ 2
)

.

Proof of Corollary B.1. Denote Ā(t) = γ̄ b̄tρ̄ and the Hill estimator based on unseen error γ̃ H
k = 1

k

∑k
i=1 log εn−i+1,n

εn−k,n
. One can write that

√
k
(
γ̂ H,RB

k − γ
)

= √
k
(
γ̂ H

k − γ̃ H
k

)︸ ︷︷ ︸
In,1

+√
k
(
γ̃ H

k − γ
)− λ

1 − ρ︸ ︷︷ ︸
In,2

−
(√

kĀ(n
k )

1 − ρ̄
− λ

1 − ρ

)
︸ ︷︷ ︸

In,3

For the first term In,1, using Lemma A.2,

In,1 = √
k
(
γ̂ H

k − γ̃ H
k

)= √
k

(
1

k

k∑
i=1

log
ε̂n−i+1,n

εn−i+1,n
− log

ε̂n−k,n

εn−k,n

)
= OP (

√
kδn) = oP (1).

Note that In,2
d−→N

(
0, γ 2

)
. The consistency of ρ̄ implies (ρ − ρ̄) log(1 −τn) = oP (1). Using Slutsky’s theorem, we have Ā(n

k )/A(n
k ) − 1 =

oP (1). Then apply 
√

n (1 − τn)A 
(
(1 − τn)−1)→ λ ∈R to get

In,3 = Ā(n
k )

A(n
k )

· 1 − ρ̄

1 − ρ
·
√

kA(n
k )

1 − ρ
− λ

1 − ρ
= (1 + oP (1))

(
λ

1 − ρ
+ o(1)

)
− λ

1 − ρ
= oP (1).

As a consequence,

√
k
(
γ̂ H,RB

k − γ
)

d−→ N
(

0, γ 2
)

. �
Proof of Theorem 4.1. The key is to write that

log

⎛⎝ ξ̂
M,�,RB
τ ′

n
(ε)

ξτ ′
n
(ε)

⎞⎠=(γ̄ − γ ) log

(
1 − τn

1 − τ ′
n

)
+ log

(
ξ̂ M
τn

(ε)

ξτn(ε)

)
+ log

(
1 + R̄n,1

1 +Rn,1

)

+ log

(
1 + R̄n,2

)
+ log

(
1 + R̄n,3

)
(29)
1 +Rn,2 1 +Rn,3
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and log

⎛⎝ ξ̂
Q ,�,RB
τ ′

n
(ε)

ξτ ′
n
(ε)

⎞⎠=(γ̄ − γ ) log

(
1 − τn

1 − τ ′
n

)
+ log

(
g(γ̄ )

g(γ )

)
+ log

(
q̂τn(ε)

qτn(ε)

)

+ log

(
1 + R̄n,2

1 +Rn,2

)
+ log

(
1 + R̄n,3

1 +Rn,3

)
. (30)

By the assumptions on γ̄ , ̄b and ρ̄ , we have

log

(
1 + R̄n,1

1 +Rn,1

)
+ log

(
1 + R̄n,2

1 +Rn,2

)
+ log

(
1 + R̄n,3

1 +Rn,3

)
= oP

(
log dn√

n (1 − τn)

)
. (31)

The details are as follows. First, for R̄n,1 and Rn,1,

1

1 + R̄n,1
− 1

1 +Rn,1
= C1(γ̄ , ρ̄) · γ̄ b̄ (1 − τn)

−ρ̄

g(γ̄ )
+ C2(γ̄ )(1 − τn)

g(γ̄ )
− C1(γ ,ρ) · γ b (1 − τn)

−ρ

g(γ )
− C2(γ )(1 − τn)

g(γ )
+ o (1)

=
(

C1(γ̄ , ρ̄) · γ̄ b̄

g(γ̄ )
− C1(γ ,ρ) · γ b

g(γ )
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(1 − τn)

−ρ̄ +
(
(1 − τn)
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−ρ
) C1(γ ,ρ) · γ b

g(γ )

+
(

C2(γ̄ )

g(γ̄ )
− C2(γ )

g(γ )

)
(1 − τn) + o (1) .

Applying Slutsky’s theorem and the continuous mapping theorem, we can get C1(γ̄ ,ρ̄)·γ̄ b̄
g(γ̄ )

− C1(γ ,ρ)·γ b
g(γ )

= oP (1). It yields
√

n (1 − τn)
(

C2(γ̄ )
g(γ̄ )

− C2(γ )
g(γ )

)
= OP (1) by the delta method. According to (ρ̄ − ρ) log(n) = oP (1), we find

(ρ − ρ̄) log(1 − τn) = oP (1) ⇒ (1 − τn)
−ρ̄ = OP

(
(1 − τn)

−ρ
)
.

Using the assumption on the function A(·),

1

1 + R̄n,1
− 1

1 +Rn,1
= OP

(
(1 − τn)

−ρ
)+ OP

(√
1 − τn

n

)
= OP

(
1√
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.

Then
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(
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)
− log

(
1
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)
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(
1√
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.

The control of the second term uses the analogous technique

log

(
1 + R̄n,2

1 +Rn,2

)
= oP

(
1√

n (1 − τn)

)
.

Next, for R̄n,3 and Rn,3,

R̄n,3 −Rn,3 = γ̄ b̄

ρ̄

[(
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)−ρ̄ − (1 − τn)
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− γ b

ρ

[(
1 − τ ′

n

)−ρ − (1 − τn)
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+ o(1)
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ρ
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(
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Focus on In,4,

In,4 =
[

1 −
(

γ̄ b̄

ρ̄
/
γ b

ρ

)
(1 − τn)

ρ−ρ̄

]
· γ b

ρ
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(
1√
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,

which is also available for In,5. It results in

log

(
1 + R̄n,3

1 +Rn,3

)
= OP

(
1√

n (1 − τn)

)
.

Combining the three terms, Eq. (31) is obtained. The result (i) follows by using Theorem 3.1 and Eq. (29). To show (ii), we should recall 
that 

√
n (1 − τn)

(
q̂τn (ε)

qτn (ε)
− 1

)
d−→N

(
0, γ 2

)
(see Corollary 2.1 in Girard et al., 2021). It is then clear from Eq. (30) that

√
n (1 − τn)

log(dn)
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Q ,�,RB
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n
(ε)

ξτ ′
n
(ε)

− 1

⎞⎠ d−→ �. �
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Fig. 4. Vehicle Insurance Data: Pointwise 95% confidence intervals. (a): Asymptotic Gaussian confidence intervals (blue dotted line). (b): Semiparametric Pareto tail bootstrap 
confidence intervals (blue dashed line). Both panels display the estimates of the conditional extremile in the direct method (blue solid line), ES (pink line), quantile (purple 
line) and expectile (red line) at level τ ′

n = 0.9977 on the ̂β�
x − y (scatter) plot.

Appendix C. Supplement to the empirical procedure

Asymptotic confidence interval: If γ̄ is the estimator γ̂ H,RB
�n(1−τn)� , Theorem 3.4 and Corollary 3.1 show,

√
n (1 − τn)

log
[
(1 − τn) /

(
1 − τ ′

n
)] ( ξ̄ �

τ ′
n
(Y | x)

ξτ ′
n
(Y | x)

− 1

)
d−→ �,

where � is indeed 
√

n(1 − τn)-asymptotically Gaussian with mean 0 and variance γ 2 and ξ̄ �
τ ′

n
(Y | x) is the consistent estimator of ξτ ′

n
(Y | x), 

e.g., ξ̂ M,�

τ ′
n

(Y | x), ξ̂ Q ,�

τ ′
n

(Y | x) and their bias-reduced versions. We can naturally construct an asymptotic pointwise 95% confidence interval 
(Gaussian) for ξτ ′

n
(Y | x), that is

ÎG
τ ′

n
(x) =

[
ξ̄ �
τ ′

n
(Y | x)exp

(
±1.96

log
[
(1 − τn) /

(
1 − τ ′

n

)]
√

n (1 − τn)
γ̄

)]
.

Simultaneously, we use the semiparametric Pareto tail bootstrap method introduced by Girard et al. (2021) to obtain the 95% bootstrap 
confidence interval ̂ IB

τ ′
n
(x). The results are shown in Fig. 4.
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