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We investigate the probability equivalent level of Value at Risk and nth-order Expected Shortfall (called 
PELVEn), which can be considered as a variant of the notion of the probability equivalent level of Value 
at Risk and Expected Shortfall (called PELVE) due to Li and Wang (2022). We study the finiteness, 
uniqueness and several properties of PELVEn , we calculate PELVEn of some notable distributions, 
PELVE2 of a random variable having generalized Pareto excess distribution, and we describe the 
asymptotic behaviour of PELVE2 of regularly varying distributions as the level tends to 0. Some 
properties of nth-order Expected Shortfall are also investigated. Among others, it turns out that the Gini 
Shortfall at some level p ∈ [0, 1) corresponding to a (loading) parameter λ � 0 is the linear combination 
of the Expected Shortfall at level p and the 2nd-order Expected Shortfall at level p with coefficients 1 −2λ

and 2λ, respectively.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The Fundamental Review of the Trading Book (FRTB) was introduced by the Basel Committee on Banking Supervision in the years 
following the Global Financial Crisis of 2007-2009. FRTB is expected to make a complete revision of the approach to calculating risk-based 
capital requirements for investments. It was originally supposed to be implemented in January 2023, but a new starting date, January 
2025, has been recently announced. Value at Risk (VaR, see Definition 1.1) and Expected Shortfall (ES, see Definition 1.2) are popular risk 
measures used to measure portfolio risk. According to FRTB, the banks are supposed to use ES at the level 0.975 instead of VaR at the 
level 0.99 for the bank-wide internal models to determine market risk capital requirements.

Motivated by the FRTB, Li and Wang (2022) have recently introduced the notion of probability equivalent level of VaR and ES (PELVE, 
see Definition 1.4). Roughly speaking, for an integrable random variable X and ε ∈ (0, 1), the PELVE of X at the level ε is the infimum of 
those values c ∈ [1, 1ε ] for which the ES of X at level 1 − cε is less than or equal to the VaR of X at the level 1 − ε. One can see that 
the level ε = 0.01 corresponds to the replacement of VaR at the level 0.99 with the ES at some appropriate level, which has particular 
importance due to the FRTB.

Very recently, Fiori and Rosazza Gianin (2022) have proposed two generalizations of PELVE. As a first generalization, they have replaced 
the pair (VaR, ES) in the definition of PELVE with a general pair of monotone risk measures (�, ̃�), where �̃ is obtained from � by 
integration similarly as ES can be obtained from VaR by integration, for more details, see Definition 1.5. As a special case of their 
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https://doi.org/10.1016/j.insmatheco.2022.11.004
0167-6687/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.insmatheco.2022.11.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ime
http://crossmark.crossref.org/dialog/?doi=10.1016/j.insmatheco.2022.11.004&domain=pdf
mailto:barczy@math.u-szeged.hu
mailto:nfanni@math.u-szeged.hu
mailto:suto71528@gmail.com
https://doi.org/10.1016/j.insmatheco.2022.11.004
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generalization, Fiori and Rosazza Gianin (2022) have also considered the so-called conditional PELVE, where � is chosen to be the ES. 
As a second generalization, Fiori and Rosazza Gianin (2022, Definition 2) have introduced the so-called distorted PELVE associated to a 
family of distortions, for more details, see Remark 1.7.

Both the PELVE due to Li and Wang (2022) and its generalizations due to Fiori and Rosazza Gianin (2022) are defined under the 
minimal assumption that the random variable representing the risk has a finite first moment. These risk measures enjoy satisfactory 
invariance and ordering properties, and they have interesting links to the tail index of a regularly varying random variable. Fiori and 
Rosazza Gianin (2022, Section 4) have also studied PELVE and conditional PELVE of a random variable having generalized Pareto excess 
distribution.

In the present paper we study the probability equivalent level of VaR and a higher-order ES (see Definition 1.2), i.e., we replace ES
with a higher-order ES in the definition of PELVE due to Li and Wang (2022). We note that this variant of PELVE is a special case of 
the newly introduced notion, called distorted PELVE, in Fiori and Rosazza Gianin (2022, Definition 2) (for more details, see Remark 1.7). 
In Appendix B, we point out that the Gini Shortfall at some level p ∈ [0, 1) corresponding to a (loading) parameter λ � 0, introduced in 
Furman et al. (2017, formula (4.1)), is the linear combination of the Expected Shortfall at level p and the 2nd-order Expected Shortfall 
at level p with coefficients 1 − 2λ and 2λ, respectively. This underlines the importance of studying the previously mentioned variant of 
PELVE in a more detailed way.

Let N and R denote the set of positive integers and real numbers, respectively. For a function f : R → R, its range { f (x) : x ∈ R} is 
denoted by Range( f ). The random variables will be defined on an appropriate probability space (�, F , P ). The distribution function of a 
random variable X : � → R is given by F X : R → [0, 1], F X (x) := P (X � x), x ∈ R. The set of random variables X satisfying E(|X |) < ∞
is denoted by L1. Convergence in distribution is denoted by D−→.

First, we recall the notion of Value at Risk.

Definition 1.1. Let X be a random variable. The Value at Risk of X at a level p ∈ [0, 1] is defined by

VaRX (p) := inf{x ∈R : F X (x) � p},
with the convention inf ∅ := ∞.

Note that VaRX (p) is also called the (lower) quantile or a generalized inverse of X at a level p ∈ (0, 1). One may think about X as the 
loss and profit of some financial position at a given time point, and, using actuarial notation, positive values of X represent losses, while 
negative values profit. For each p ∈ (0, 1), VaRX (p) is the smallest value x such that the probability of a loss X greater than x is at most 
1 − p, or, roughly speaking, VaRX (p) is the loss that is likely to be exceeded only (1 − p)100% of the time. While VaR is widely used and 
easy to compute, it has no information on the magnitude of the biggest (1 − p)100% of the losses. Note also that VaRX (0) = −∞ for any 
random variable X .

Next, we recall the notion of nth-order Expected Shortfall due to Fuchs et al. (2017, Example 2, part (4)).

Definition 1.2. Let X be a random variable such that X ∈ L1, and let n ∈ N . The nth-order Expected Shortfall of X at a level p ∈ [0, 1) is 
defined by

ESX,n(p) := n

1 − p

1∫
p

(
s − p

1 − p

)n−1

VaRX (s)ds.

Note that ESX,n(p) can be written in the form ESX,n(p) = ∫ 1
p

n(s−p)n−1

(1−p)n−1 VaRX (s) ds, where the function n(s−p)n−1

(1−p)n−1 , s ∈ [p, 1], can be 
considered as a weight function with integral 1 on [p, 1] such that higher losses are weighted higher.

In the next remark we recall some basic properties of higher-order Expected Shortfalls. For some further properties of higher-order 
Expected Shortfalls, see Appendix A.

Remark 1.3. (i). For X ∈ L1, n ∈N , and p ∈ [0, 1), we have ESX,n(p) ∈R, see Lemma A.1. Note also that the first order Expected Shortfall 
coincides with the usual Expected Shortfall (also called Conditional Value at Risk), so ESX,1 is simply denoted by ESX .

(ii). By Lemma 2 in Fuchs et al. (2017), the nth-order Expected Shortfall is monotone (in the sense that if X � Y , X, Y ∈ L1, then 
ESX,n(p) � ESY ,n(p), p ∈ [0, 1)), positive homogeneous and translation invariant. Further, using that the distortion function corresponding 
to the nth-order Expected Shortfall (see the function hp in the proof of Lemma A.1) is convex, we get that the nth-order Expected Shortfall 
is subadditive, see Fuchs et al. (2017, Example 1/(4) and Theorem 4). The above mentioned properties of the nth-order Expected Shortfall 
also follow from Proposition 2 and Theorem 3 in Wang et al. (2020). All in all, the nth-order Expected Shortfall is a coherent risk measure 
on L1.

(iii). For X ∈ L1 and n1, n2 ∈N with n1 � n2, we have

VaRX (p) � ESX (p), p ∈ [0,1), and ESX,n1(p) � ESX,n2(p), p ∈ [0,1), (1.1)

where the second inequality is a consequence of Fuchs et al. (2017, Corollary 4, part (1)). Indeed,

ESX,n(p) =
1∫
VaRX (s)dDn,p(s), n ∈N, p ∈ [0,1),
0
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where Dn,p(s) := ( s−p
1−p

)n
1[p,1](s), s ∈ [0, 1], and we have that Dn2,p(s) � Dn1,p(s), s ∈ [0, 1] for each n1, n2 ∈N with n1 � n2. In particular, 

we have that ESX (p) � ESX,n(p), n ∈N , p ∈ [0, 1). The second inequality in (1.1) also follows by Wang et al. (2020, part (i) of Proposition 
2). �

In Appendix B, we point out the fact that the 2nd-order Expected Shortfall is nothing else but a special Gini Shortfall introduced in 
Furman et al. (2017, formula (4.1)), and a (general) Gini Shortfall is a linear combination of Expected Shortfall and 2nd-order Expected 
Shortfall. This observation could also underline the importance of studying properties of higher-order (especially, 2nd-order) Expected 
Shortfalls.

Next, we recall the notion of probability equivalent level of Value at Risk and Expected Shortfall (abbreviated as PELVE) due to Li and 
Wang (2022, formula (2)).

Definition 1.4. Let X be a random variable such that X ∈ L1. The probability equivalent level of Value at Risk and Expected Shortfall 
(abbreviated as PELVE) of X at a level ε ∈ (0, 1) is defined by

�ε(X) := inf
{

c ∈
[

1,
1

ε

]
: ESX (1 − cε) � VaRX (1 − ε)

}
,

where inf∅ = ∞.

We give a motivation why the infimum in Definition 1.4 of �ε(X) is taken over 
[
1, 1ε

]
. The level 1 − cε of ESX should be non-negative 

yielding that c � 1
ε ; and, by (1.1), we have VaRX (1 − cε) � ESX (1 − cε) for any c ∈ (0, 1ε ], which together with the requested inequality 

ESX (1 − cε) � VaRX (1 − ε) in the definition of �ε(X) imply that VaRX (1 − cε) � VaRX (1 − ε). Provided that [1 − ε, 1) � p �→ VaRX (p)

is strictly monotone increasing, this yields that c � 1, since otherwise 1 − cε > 1 − ε implying that VaRX (1 − cε) > VaRX (1 − ε).
Next, we recall a generalization of PELVE due to Fiori and Rosazza Gianin (2022, Definition 8).

Definition 1.5. For each α ∈ (0, 1), let �α : L1 → R be a risk measure such that the family {�α : α ∈ (0, 1)} is monotone, i.e., if 0 < α1 �
α2 < 1, then �α1 (X) � �α2(X), X ∈ L1. For each p ∈ (0, 1), let us introduce the risk measure �̃p : L1 →R ∪ {∞},

�̃p(X) := 1

1 − p

1∫
p

�α(X)dα, X ∈ L1.

Given a random variable X ∈ L1, the generalized PELVE of X at a level ε ∈ (0, 1) corresponding to the pair ((�α)α∈(0,1), (̃�p)p∈(0,1)) is 
defined by

�
g
ε (X) := inf

{
c ∈

[
1,

1

ε

]
: �̃1−cε(X) � �1−ε(X)

}
,

where inf∅ = ∞. In the special case �α(X) = ESX (α), α ∈ (0, 1), X ∈ L1, the corresponding generalized PELVE is called the conditional 
PELVE (abbreviated as c-PELVE).

By Proposition 7 in Fiori and Rosazza Gianin (2022), the family {̃�p : p ∈ (0, 1)} is monotone, and �̃p � �p , p ∈ (0, 1). Hence one 
can give a similar motivation why the infimum in the definition of �g

ε (X) is taken over 
[
1, 1ε

]
just as we did in case of �ε(X) (see 

the paragraph after Definition 1.4). Further, note that if one chooses �α(X) = VaRX (α), α ∈ (0, 1), X ∈ L1 in Definition 1.5, then the 
corresponding generalized PELVE is nothing else but (usual) PELVE due to Li and Wang (2022) recalled in Definition 1.4.

Both Li and Wang (2022, Propositions 1-2 and Theorem 1) and Fiori and Rosazza Gianin (2022, Propositions 9-11) have studied finite-
ness, uniqueness, and some properties of PELVE and the generalized PELVE in Definition 1.5, respectively. The PELVE values of some 
notable distributions, such as uniform, exponential, normal, lognormal, t and Pareto distributions, have been calculated or approximated 
in Li and Wang (2022). The conditional PELVE values of uniform, normal and Pareto distributions have been also calculated in Fiori and 
Rosazza Gianin (2022), and it turned out that for uniform and Pareto distributions, the corresponding PELVE and conditional PELVE
values coincide, see Fiori and Rosazza Gianin (2022, Subsection 3.2.1). Li and Wang (2022, Section 4.2) have described convergence of 
PELVE of regularly varying random variables as the level tends to 0, while Fiori and Rosazza Gianin (2022, Proposition 15) showed that 
PELVE and conditional PELVE of a random variable having generalized Pareto excess distribution coincide.

In the following definition we replace the Expected Shortfall in Definition 1.4 by the nth-order Expected Shortfall, where n ∈N .

Definition 1.6. Let X be a random variable such that X ∈ L1, and let n ∈N . The probability equivalent level of Value at Risk and nth-order 
Expected Shortfall (abbreviated as PELVEn) of X at a level ε ∈ (0, 1) is defined by

�ε,n(X) := inf
{

c ∈
[

1,
1

ε

]
: ESX,n(1 − cε) � VaRX (1 − ε)

}
,

where inf∅ = ∞.

First of all, we emphasize that the notion of PELVEn given in Definition 1.6 is a special case of the so-called distorted PELVE in-
troduced in Fiori and Rosazza Gianin (2022, Definition 2) that we recall below in Remark 1.7. The research on distorted PELVE in Fiori 
and Rosazza Gianin (2022, Section 3.1) and our research on PELVEn have been carried out parallelly, and hence we decided to keep our 
original presentation as it is, but we always mention those results in Fiori and Rosazza Gianin (2022) which generalize our results.
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M. Barczy, F. K. Nedényi and L. Sütő Insurance: Mathematics and Economics 108 (2023) 107–128
Remark 1.7. Let g : [0, 1] → [0, 1] be an increasing and concave function that is continuous at 0 with g(0) = 0 and g(1) = 1. Let us 
consider the corresponding family of distortions gp : [0, 1] → [0, 1], p ∈ [0, 1), given by

gp(x) :=
{

g
(

x
1−p

)
if x ∈ [0,1 − p),

1 if x ∈ [1 − p,1).

For each p ∈ [0, 1) and X ∈ L1, let us introduce the so-called Wang premia of X at level p given by

gVaRX (p) :=
1∫

0

VaRX (1 − s)dgp(s),

provided that 
∫ 1

0 VaRX (1 − s) dgp(s) ∈ R. Fiori and Rosazza Gianin (2022, Definition 2) have recently introduced the notion of distorted 
PELVE associated to the family of distortions gp , p ∈ [0, 1), by replacing ESX,n(1 − cε) with gVaRX (1 − cε) in Definition 1.6. For each 
n ∈N , one can check that ESX,n(p) = gVaRX (p), p ∈ [0, 1), with the function g(x) := 1 − (1 − x)n , x ∈ [0, 1], which implies that PELVEn
is a distorted PELVE associated to the family of distortions gp with the given function g . �

Note that, just like the original PELVE, for each n ∈ N , PELVEn is defined under the minimal assumption that the random variable 
representing the risk has a finite first moment. Remark also that, since ESX,n(p) � VaRX (p), p ∈ [0, 1) (see (1.1)), we can give a similar 
motivation why the infimum in the definition of �ε,n(X) is taken over 

[
1, 1ε

]
just as we did in case of �ε(X) (see the paragraph after 

Definition 1.4). Note also that, since ESX,n1(p) � ESX,n2(p) for p ∈ [0, 1) and n1, n2 ∈ N with n1 � n2 (see (1.1)), we have �ε,n1 (X) �
�ε,n2(X) for ε ∈ (0, 1) and n1, n2 ∈N with n1 � n2 (for more details, see Remark 2.2). In particular, �ε(X) ��ε,n(X), ε ∈ (0, 1), n ∈N .

We will prove results that can be considered as counterparts of the above mentioned results of Li and Wang (2022) and Fiori and 
Rosazza Gianin (2022). Our forthcoming Propositions 2.1, 2.3 and Theorem 2.4 are special cases of Propositions 3, 4, and 5 in Fiori and 
Rosazza Gianin (2022) for distorted PELVE, respectively. As we mentioned earlier, the two research works have been carried out parallelly, 
and hence we decided to present proofs of our Propositions 2.1, 2.3 and Theorem 2.4.

The paper is organized as follows. In Section 2 we study the finiteness, uniqueness and some basic properties of PELVEn such as 
inequalities for PELVEn of sum of comonotonic random variables (see Definition A.4), see Propositions 2.1, 2.3 and Theorem 2.4. In 
Section 3, under some appropriate conditions, we show that for each n ∈N , we have �ε,n(Xm) → �ε,n(X) as m → ∞ whenever Xm

D−→ X
as m → ∞. In Section 4, we calculate the PELVEn-values of uniform, exponential and Pareto distributions for each n � 2, n ∈N , and we 
approximate the PELVE2-values of normal distributions. In particular, it turns out that, for a uniformly distributed random variable X , the 
PELVEn value �ε,n(X) of X equals n +1 for each ε ∈ (0, 1

n+1 ], i.e., it is the same constant for ε ∈ (0, 1
n+1 ]. Similar phenomena occur in case 

of exponential and Pareto distributions, but not in case of normal distributions. In Section 5, we study PELVE2 of a non-negative random 
variable having a generalized Pareto excess distribution function; and in Section 6 we describe the asymptotic behaviour of PELVE2 of 
regularly varying distributions as the level tends to 0. In Sections 5 and 6, we consider the PELVE2-values, and not the PELVEn-values of 
the random variables in question mainly due to the less complexity of computation in case of PELVE2. However, note that the 2nd-order 
Expected Shortfall plays a central role in the decomposition of Gini Shortfall presented in Appendix B.

Section 7 is devoted to presenting some simulations and real data analysis for PELVE2 on S&P 500 daily returns. An interesting 
phenomenon occurs, PELVE2 clearly shows the effect of the COVID-19 pandemic via analysing S&P 500 daily returns. We close the paper 
with three appendices. In Appendix A, we study some properties of higher-order Expected Shortfalls given in Definition 1.2 such as 
finiteness, continuity, monotonicity, additivity for comonotonic random variables and connection with weak convergence. Our results on 
finiteness and the connection with weak convergence are in fact consequences of recent results of Wang et al. (2020, Proposition 1 and 
Theorem 6) on so called distortion risk metrics. For completeness, we present independent proofs of these results as well. Appendix B is 
devoted to develop a connection between 2nd-order Expected Shortfall and Gini Shortfall. Finally, in Appendix C, we formulate a Karamata 
theorem for regularly varying functions at 0 with index κ > −1.

2. Finiteness, uniqueness and basic properties of PELVEn

In what follows, when we write ESX,n , �ε,n(X) and PELVEn we always mean that n ∈ N without mentioning it explicitly. The 
following result for PELVEn can be considered as the counterpart of the corresponding result for PELVE due to Li and Wang (2022, 
Proposition 1). It is a special case of Proposition 3 for distorted PELVE in Fiori and Rosazza Gianin (2022).

Proposition 2.1. Let X be a random variable such that X ∈ L1 , ε ∈ (0, 1) and n ∈N . Then the following statements are equivalent:

(i) There exists c0 ∈ [1, 1/ε] such that

ESX,n(1 − c0ε) = VaRX (1 − ε). (2.1)

(ii) �ε,n(X) ∈ [1, 1/ε] and (2.1) holds for �ε,n(X), i.e., ESX,n(1 − �ε,n(X)ε) = VaRX (1 − ε).
(iii) ESX,n(0) � VaRX (1 − ε).
(iv) �ε,n(X) < ∞.

Proof. (i) ⇒ (ii): By (i), the set {c ∈ [1, 1/ε] : ESX,n(1 −cε) � VaRX (1 −ε)} is nonempty yielding that �ε,n(X) < ∞ and �ε,n(X) ∈ [1, 1/ε]. 
By the definition of infimum, there exists a sequence (cm)m∈N in [1, 1/ε] such that cm ↓ �ε,n(X) as m → ∞, and ESX,n(1 − cmε) �
VaRX (1 − ε), m ∈N . By Lemma A.2, the function [0, 1) � p �→ ESX,n(p) is continuous and monotone increasing, so it is continuous at the 
point 1 − �ε,n(X)ε ∈ [0, 1), and consequently, by taking the limit of both sides of ESX,n(1 − cmε) � VaRX (1 − ε) as m → ∞, we have
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ESX,n(1 − �ε,n(X)ε) � VaRX (1 − ε). (2.2)

Further, using again (i), there exists c0 ∈ [1, 1/ε] such that ESX,n(1 − c0ε) = VaRX (1 − ε), and hence, by the definition of infimum, 
�ε,n(X) � c0. Since the function [0, 1) � p �→ ESX,n(p) is continuous and monotone increasing,

VaRX (1 − ε) = ESX,n(1 − c0ε) � ESX,n(1 − �ε,n(X)ε). (2.3)

Inequalities (2.2) and (2.3) yield (ii).
(ii) ⇒ (iii): Since the function [0, 1) � p �→ ESX,n(p) is continuous and monotone increasing (see Lemma A.2), we have

inf
c∈[1,1/ε]ESX,n(1 − cε) = ESX,n(0) = n

1∫
0

sn−1 VaRX (s)ds.

On the contrary to (iii), let us suppose that ESX,n(0) > VaRX (1 − ε). Then infc∈[1,1/ε] ESX,n(1 − cε) > VaRX (1 − ε), and hence inf{c ∈
[1, 1/ε] : ESX,n(1 − cε) � VaRX (1 − ε)} = ∅. Consequently, by definition, �ε,n(X) = ∞, which leads us to a contradiction, since �ε,n(X) <
∞ (due to �ε,n(X) ∈ [1, 1/ε]).

(iii) ⇒ (iv): By (iii), choosing c = 1/ε, the set {c ∈ [1, 1/ε] : ESX,n(1 − cε) � VaRX (1 − ε)} is nonempty, so �ε,n(X) < ∞, as desired.
(iv) ⇒ (i): Using (1.1), we have ESX,n(p) � VaRX (p), p ∈ (0, 1). In fact, this inequality is a direct consequence of the fact that the 

function (0, 1) � p �→ VaRX (p) is monotone increasing:

ESX,n(p) = n

1 − p

1∫
p

(
s − p

1 − p

)n−1

VaRX (s)ds � n

(1 − p)n

1∫
p

(s − p)n−1 VaRX (p)ds

= n

(1 − p)n
VaRX (p)

(1 − p)n

n
= VaRX (p).

Further, ESX,n(0) � VaRX (1 − ε), since otherwise �ε,n(X) = ∞ would hold, which can be checked similarly as in the proof of part (ii) ⇒
(iii). Consequently, by the previous two inequalities, we have

ESX,n(1 − ε) � VaRX (1 − ε) � ESX,n(0). (2.4)

Since the function [1, 1/ε] � c �→ ESX,n(1 − cε) is continuous and monotone decreasing (see Lemma A.2), by Bolzano’s intermediate value 
theorem and (2.4), there exists c0 ∈ [1, 1/ε] such that (2.1) holds, as desired. �

In the next remark, we formulate a consequence of part (iii) of Proposition 2.1, and we also compare �ε(X) and �ε,n(X), where 
ε ∈ (0, 1) and X ∈ L1.

Remark 2.2. (i). For X ∈ L1 and ε ∈ (0, 1), the inequality ESX,n(0) � VaRX (1 −ε) in part (iii) in Proposition 2.1 implies E(X) � VaRX (1 −ε)

(since E(X) = ESX (0)), which is nothing else but the inequality in part (iii) in Proposition 1 in Li and Wang (2022).
(ii). For X ∈ L1, the inequality ESX,n1 (p) � ESX,n2 (p) for p ∈ [0, 1) and n1, n2 ∈ N with n1 � n2 (see (1.1)) yields �ε,n1 (X) � �ε,n2 (X)

for ε ∈ (0, 1) and n1, n2 ∈N with n1 � n2. In particular, �ε(X) ��ε,n(X) for ε ∈ (0, 1) and n ∈N . �
The following result for PELVEn can be considered as the counterpart of the corresponding result for PELVE due to Li and Wang 

(2022, Proposition 2). It is a special case of Proposition 4 for distorted PELVE in Fiori and Rosazza Gianin (2022).

Proposition 2.3. Let X be a random variable such that X ∈ L1 , ε ∈ (0, 1), and n ∈N . Let us suppose that the function (0, 1) � p �→ VaRX (p) is not 
constant on the interval [1 − ε, 1), and let us assume that ESX,n(0) � VaRX (1 − ε). Then there exists a unique c0 ∈ [1, 1/ε] such that (2.1) holds.

Proof. By part (iii) ⇒ (i) of Proposition 2.1, there exists c0 ∈ [1, 1/ε] such that (2.1) holds. Further, the function [0, 1) � p �→ ESX,n(p)

is continuous and it is strictly monotone increasing on [0, 1 − ε] (see Lemmas A.2 and A.3), yielding that the function [1, 1/ε] � c �→
ESX,n(1 − cε) is continuous and strictly monotone decreasing. This together with the existence of c0 ∈ [1, 1/ε] satisfying (2.1) yields the 
uniqueness of such a c0, as desired. �

Note that the assumption ESX,n(0) � VaRX (1 − ε) in Proposition 2.3 yields that ESX (0) � VaRX (1 − ε) (due to the second inequality 
in (1.1)), which is nothing else but the corresponding condition for PELVE in Proposition 2 in Li and Wang (2022). Consequently, under 
the assumptions of Proposition 2.3 we also have that �ε(X) < ∞ and ESX (1 − �ε(X)ε) = VaRX (1 − ε).

The following result for PELVEn can be considered as the counterpart of the corresponding result for PELVE due to Li and Wang 
(2022, Theorem 1). It is a special case of Proposition 5 for distorted PELVE in Fiori and Rosazza Gianin (2022).

Theorem 2.4. Let X be a random variable such that X ∈ L1 , ε ∈ (0, 1), and n ∈ N . Let us suppose that ESX,n(0) � VaRX (1 − ε) holds. Then the 
following statements hold:

(i) scale-location invariance: �ε,n(λX + a) = �ε,n(X) for each λ > 0 and a ∈R.
(ii) �ε,n( f (X)) ��ε,n(X) for each monotone increasing and concave function f :R →R with f (X) ∈ L1 .

(iii) �ε,n(X) ��ε,n(g(X)) for each strictly monotone increasing and convex function g :R →R with Range(g) =R and g(X) ∈ L1 .
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(iv) quasi-convexity and quasi-concavity for comonotonic random variables:

min{�ε,n( f (X)),�ε,n(g(X))} � �ε,n(λ f (X) + (1 − λ)g(X)) � max{�ε,n( f (X)),�ε,n(g(X))}
for each λ ∈ [0, 1] and monotone increasing functions f , g :R →R with f (X), g(X) ∈ L1 .

Proof. First, we prove that (ii) yields (i). Let λ > 0, a ∈R, f :R →R, f (x) := λx +a, x ∈R, and g :R →R, g(y) := 1
λ
(y −a), y ∈R. Then 

f and g are monotone increasing, linear (hence convex and concave) functions, and they are inverses of each other. Further, f (X), g(X) ∈
L1, since E(| f (X)|) � λ E(|X |) + |a| < ∞ and E(|g(X)|) � 1

λ
E(|X |) + |a|

λ
< ∞ due to X ∈ L1. Consequently, by (ii),

�ε,n( f (X)) � �ε,n(X) = �ε,n((g ◦ f )(X)) � �ε,n( f (X)),

yielding �ε,n( f (X)) = �ε,n(X), i.e., (i), as desired.
Now we prove (ii). Let f :R →R be a monotone increasing and concave function with f (X) ∈ L1. Since f is concave and defined on 

(the open interval) R, we have f is continuous. Further, it is known that for any monotone increasing and continuous function h : R →R, 
we have VaRh(X)(p) = h(VaRX (p)), p ∈ (0, 1), see, e.g., Shorack and Wellner (2009, Exercise 3, page 9) or Dhaene et al. (2002, part (a) of 
Theorem 1). Consequently, we get

VaR f (X)(p) = f (VaRX (p)), p ∈ (0,1). (2.5)

Let c1 := �ε,n(X) and c2 := �ε,n( f (X)). Since, by assumption, ESX,n(0) � VaRX (1 − ε), using the equivalence of (ii), (iii) and (iv) in 
Proposition 2.1, we have c1 < ∞ and

ESX,n(1 − c1ε) = VaRX (1 − ε). (2.6)

Note that for each p ∈ [0, 1), the function σp : [0, 1) → [0, ∞), σp(s) := n
(1−p)n (s − p)n−11[p,1](s), s ∈ [0, 1], is a distortion function in 

the sense of Definition 3.6 in Pflug and Pichler (2014), since it is non-negative, monotone increasing and 
∫ 1

0 σp(s) ds = 1. Hence for each 
p ∈ [0, 1) one can apply Corollary 3.19 in Pflug and Pichler (2014) with the distortion function σp , and we have

ES f (X),n(p) = sup
U is uniformly distributed on [0,1]

E( f (X)σp(U )), p ∈ [0,1).

Here we implicitly assumed that the underlying probability space is rich enough such that there exists a random variable on it with 
uniform distribution on [0, 1]. This assumption is not a restriction, see, e.g., Rachev (1991, Theorem 2.5.1). In particular, if the underlying 
probability space (�, F , P ) is atomless, then there exists a random variable U : � → R with uniform distribution on [0, 1], see, e.g., 
Rachev (1991, Theorems 2.4.1 and 2.5.2). Further, one can check that for any random variable U which is uniformly distributed on [0, 1], 
we have Q(A) := ∫

A(σp(U ))(ω) P (dω), A ∈ F , is a probability measure on (�, F) such that Q is absolutely continuous with respect to 
P and E( f (X)σp(U )) =EQ( f (X)). Hence, for any random variable U which is uniformly distributed on [0, 1], by Jensen’s inequality, we 
get

E( f (X)σp(U )) = EQ( f (X)) � f (EQ(X)) = f (E(Xσp(U ))).

Consequently, using also that f is monotone increasing, we have

ES f (X),n(p) � sup
U is uniformly distributed on [0,1]

f (E(Xσp(U ))) � f
(

sup
U is uniformly distributed on [0,1]

E(Xσp(U ))
)

= f (ESX,n(p)), p ∈ [0,1).

(2.7)

Since the functions f , [0, 1) � p �→ ESX,n(p) and [0, 1) � p �→ ES f (X),n(p) are continuous (see Lemma A.2), by taking the limit of both 
sides of the inequality (2.7) as p ↓ 0, we have

ES f (X),n(0) � f (ESX,n(0)) � f (VaRX (1 − ε)) = VaR f (X)(1 − ε),

where, for the second inequality, we used that f is monotone increasing and ESX,n(0) � VaRX (1 − ε) (by assumption), and, for the 
equality, (2.5). So, by Proposition 2.1, we have c2 = �ε,n( f (X)) < ∞ and ES f (X),n(1 − c2ε) = VaR f (X)(1 − ε). Using (2.7) with the choice 
of p := 1 − c1ε, (2.6) and (2.5), we get

ES f (X),n(1 − c1ε) � f (ESX,n(1 − c1ε)) = f (VaRX (1 − ε)) = VaR f (X)(1 − ε),

and, by Definition 1.6 of PELVEn , we have �ε,n( f (X)) � c1, i.e., �ε,n( f (X)) ��ε,n(X), as desired.
(iii). Since g is a convex function defined on R, it is continuous. Further, due to our assumptions, g−1 :R →R is a strictly monotone 

increasing and concave function with Range(g−1) =R, and since g(X) ∈ L1 and g−1(g(X)) = X ∈ L1, part (ii) yields that

�ε,n(X) = �ε,n(g−1(g(X))) � �ε,n(g(X)),

as desired.
(iv). One can easily check that for any c, d ∈ [1, 1ε ] and Y ∈ L1, we have

d < �ε,n(Y ) � c ⇐⇒ ESY ,n(1 − cε) � ESY ,n(1 − �ε,n(Y )ε) = VaRY (1 − ε) < ESY ,n(1 − dε), (2.8)
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for a proof, see our ArXiv version Barczy et al. (2022, the proof of formula (2.8)).
Since f , g :R →R are monotone increasing and λ ∈ [0, 1], we have λ f (X) and (1 − λ)g(X) are comonotonic random variables, so, by 

the additivity of VaR for comonotonic random variables (see, e.g., McNeil et al., 2015, Proposition 7.20 or Dhaene et al., 2006, Theorem 
4.2.1), we get

VaRλ f (X)+(1−λ)g(X)(1 − ε) = VaRλ f (X)(1 − ε) + VaR(1−λ)g(X)(1 − ε).

Let c1 := �ε,n( f (X)) and c2 := �ε,n(g(X)). Let us suppose that c1 = ∞ and c2 = ∞. In this case min(c1, c2) = ∞ and max(c1, c2) = ∞, 
so it is enough to check that �ε,n(λ f (X) + (1 − λ)g(X)) = ∞. By Proposition 2.1, the positive homogeneity and comonotonic additivity of 
Value at Risk and nth-order Expected Shortfall (see Proposition A.5), we have

�ε,n(λ f (X) + (1 − λ)g(X)) = ∞ ⇔ ESλ f (X)+(1−λ)g(X),n(0) > VaRλ f (X)+(1−λ)g(X)(1 − ε)

⇔ λES f (X),n(0) + (1 − λ)ESg(X),n(0) > λVaR f (X)(1 − ε) + (1 − λ)VaRg(X)(1 − ε).

Here the last inequality is satisfied, since using again Proposition 2.1, c1 = �ε,n( f (X)) = ∞, c2 = �ε,n( f (X)) = ∞, and f (X), g(X) ∈ L1, 
we have

ES f (X),n(0) > VaR f (X)(1 − ε) and ESg(X),n(0) > VaRg(X)(1 − ε).

Let us suppose now that at least one of c1 and c2 is finite. Then for each d < min{c1, c2} with d ∈ [1, 1ε ], using (2.8) and Proposition 2.1, 
we get

VaR f (X)(1 − ε) < ES f (X),n(1 − dε) and VaRg(X)(1 − ε) < ESg(X),n(1 − dε).

Indeed, if both c1 and c2 are finite, then it readily follows by (2.8); and if c1 < ∞ and c2 = ∞, then, by (2.8), VaR f (X)(1 −ε) < ES f (X),n(1 −
dε), and, by Proposition 2.1 and the monotone increasing property of the function [0, 1) � p �→ ESg(X),n(p), we have VaRg(X)(1 − ε) <
ESg(X),n(0) � ESg(X),n(1 − dε), as desired. The case c1 = ∞ and c2 < ∞ can be handled similarly.
As a consequence, for each λ ∈ [0, 1], we have

λVaR f (X)(1 − ε) + (1 − λ)VaRg(X)(1 − ε) < λES f (X),n(1 − dε) + (1 − λ)ESg(X),n(1 − dε),

and using again the positive homogeneity and comonotonic additivity of Value at Risk and nth-order Expected Shortfall, we have

VaRλ f (X)+(1−λ)g(X)(1 − ε) < ESλ f (X)+(1−λ)g(X),n(1 − dε), λ ∈ [0,1].
Hence, by Definition 1.6 and the continuity and monotone increasing property of the function [0, 1) � p �→ ESλ f (X)+(1−λ)g(X),n(p), we have 
d < �ε,n(λ f (X) + (1 − λ)g(X)) for λ ∈ [0, 1] and d < min{c1, c2}. By taking the limit d ↑ min{c1, c2}, we have

min{c1, c2}� �ε,n(λ f (X) + (1 − λ)g(X)),

as desired.
If max(c1, c2) = ∞, then the second inequality in (iv) automatically holds. If max(c1, c2) < ∞, i.e., both c1 and c2 are finite, then let 

c := max{c1, c2}. Then �ε,n( f (X)) = c1 � c and �ε,n(g(X)) = c2 � c, so, by (2.8),

ES f (X),n(1 − cε) � VaR f (X)(1 − ε) and ESg(X),n(1 − cε) � VaRg(X)(1 − ε).

Hence for each λ ∈ [0, 1],
λES f (X),n(1 − cε) + (1 − λ)ESg(X),n(1 − cε) � λVaR f (X)(1 − ε) + (1 − λ)VaRg(X)(1 − ε),

and then the positive homogeneity and comonotonic additivity of VaR and nth-order Expected Shortfall yield that

ESλ f (X)+(1−λ)g(X),n(1 − cε) � VaRλ f (X)+(1−λ)g(X)(1 − ε).

Consequently, using (2.8) with Y := λ f (X) + (1 − λ)g(X), we have

�ε,n(λ f (X) + (1 − λ)g(X)) � c = max{c1, c2},
as desired. �

In the next remark, we point out that part (iii) of Theorem 2.4 does not hold for a general monotone increasing and convex function 
g :R →R.

Remark 2.5. Let g : R → R, g(x) = A, x ∈ R, with some A ∈ R. Then for any random variable X , n ∈ N , and p ∈ (0, 1), we have 
VaRg(X)(p) = A and

ESg(X),n(p) = n

1 − p

1∫ (
s − p

1 − p

)n−1

VaRg(X)(s)ds = nA

(1 − p)n

1∫
(s − p)n−1 ds = A,
p p
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and hence for each ε ∈ (0, 1),

�ε,n(g(X)) = inf
{

c ∈
[

1,
1

ε

]
: ESg(X),n(1 − cε) � VaRg(X)(1 − ε)

}
= inf

[
1,

1

ε

]
= 1.

Consequently, if X is random variable such that �ε,n(X) > 1, then �ε,n(g(X)) ��ε,n(X) cannot hold. Note that g is not strictly increasing 
and Range(g) = {A} �= R. All in all, part (iii) of Theorem 2.4 does not hold for a general monotone increasing and convex function 
g :R →R. �
3. Convergence properties of PELVEn

The following result for PELVEn can be considered as the counterpart of the corresponding result for PELVE due to Li and Wang 
(2022, Theorem 2).

Theorem 3.1. Let Xm ∈ L1 , m ∈N , and X ∈ L1 be random variables. Let ε ∈ (0, 1) and n ∈N . If

(i) ESX,n(0) < VaRX (1 − ε),
(ii) the function (0, 1) � p �→ VaRX (p) is not constant on the interval [1 − ε, 1) and it is continuous at 1 − ε,

(iii) Xm
D−→ X as m → ∞,

(iv) {Xm : m ∈N} is uniformly integrable,

then �ε,n(Xm) → �ε,n(X) as m → ∞.

Proof. By the second part of (ii) and (iii), the quantile convergence theorem (see, e.g., Shorack and Wellner, 2009, Exercise 5, page 10) 
yields that

VaRXm (1 − ε) → VaRX (1 − ε) as m → ∞. (3.1)

Using (iii), (iv) and Lemma A.6, we have

ESXm,n(t) → ESX,n(t) as m → ∞ for each t ∈ [0,1). (3.2)

Let us introduce the functions fm : [0, 1) →R, m ∈N , and f : [0, 1) →R, given by

fm(t) := ESXm,n(t) − VaRXm(1 − ε), t ∈ [0,1),

and

f (t) := ESX,n(t) − VaRX (1 − ε), t ∈ [0,1).

By (3.1) and (3.2), we have fm converges pointwise to f on [0, 1) as m → ∞, and, using also Lemma A.2, we get that fm , m ∈N , and f
are continuous and monotone increasing functions. Further, the first part of (ii) and Lemma A.3 yield that f is strictly monotone increasing 
on the interval [0, 1 − ε]. Then, by a result from calculus, we have that fm converges uniformly on any interval [0, 1 − δ] to f as m → ∞, 
where δ ∈ (0, 1).

Let us consider the reparametrizations gm : [1, 1ε ] →R, m ∈N , and g : [1, 1ε ] →R of fm , m ∈N , and f , respectively, given by

gm(c) := fm(1 − cε) = ESXm,n(1 − cε) − VaRXm (1 − ε), c ∈
[

1,
1

ε

]
,

and

g(c) := f (1 − cε) = ESX,n(1 − cε) − VaRX (1 − ε), c ∈
[

1,
1

ε

]
.

Then gm , m ∈ N , and g are continuous and monotone decreasing functions, and g is strictly monotone decreasing as well. Further, gm
converges uniformly on [1, 1ε ] to g as m → ∞.

Using (i), (3.1) and (3.2) with t = 0, we have ESXm,n(0) < VaRXm (1 − ε) for large enough m ∈ N . Hence, by Proposition 2.1, for large 
enough m ∈N , we have �ε,n(Xm) ∈ [1, 1ε ] and �ε,n(Xm) solves the equation gm(c) = 0, c ∈ [1, 1ε ], and we also have �ε,n(X) ∈ [1, 1ε ] and 
�ε,n(X) solves the equation g(c) = 0, c ∈ [1, 1ε ].

Then for each m ∈N ,

|g(�ε,n(Xm))| = |g(�ε,n(Xm)) − gm(�ε,n(Xm))| � sup
c∈[1, 1

ε ]
|gm(c) − g(c)| → 0 as m → ∞,

since gm converges uniformly on [1, 1ε ] to g as m → ∞. So limm→∞ g(�ε,n(Xm)) = 0. Further, if ̃c ∈ [1, 1ε ] is a limit point of the sequence 
(�ε,n(Xm))m∈N , then there exists a subsequence (�ε,n(Xmk ))k∈N in [1, 1ε ] such that �ε,n(Xmk ) �= c̃, k ∈N , and �ε,n(Xmk ) → c̃ as k → ∞. 
Since g is continuous, we have g(�ε,n(Xmk )) → g(̃c) as k → ∞, where g(̃c) = 0 due to limm→∞ g(�ε,n(Xm)) = 0. Hence ̃c ∈ [1, 1ε ] is a 
root of g , and using that g has a unique root �ε,n(X) on [1, 1ε ] (since we already checked that �ε,n(X) is a root of g and g is continuous 
and strictly monotone decreasing), we get c̃ = �ε,n(X). All in all, for any limit point c̃ of (�ε,n(Xm))m∈N , we have c̃ = �ε,n(X). Since 
(�ε,n(Xm))m∈N is a bounded sequence in [1, 1ε ], it has a limit point, and taking into account our previous considerations, �ε,n(Xm)

converges to its unique limit point �ε,n(X) as m → ∞. �
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4. PELVEn of some notable distributions

In this section, we calculate the PELVEn-values of uniform, exponential and Pareto distributions for each n � 2, n ∈ N , and we ap-
proximate the PELVE2-values of normal distributions. Some direct computations are omitted in this section, for the details, see our ArXiv 
version Barczy et al. (2022, Section 4).

Example 4.1 (Uniform distribution). Let X be a random variable with uniform distribution on the interval [0, 1], and let n ∈ N . Then 
VaRX (p) = p, p ∈ (0, 1), and

ESX,n(p) = p

n + 1
+ n

n + 1
, p ∈ [0,1).

So for each ε ∈ (0, 1), the inequality ESX,n(0) � VaRX (1 − ε) is equivalent to n
n+1 � 1 − ε, and hence, by Proposition 2.1, if ε ∈ (0, 1

n+1 ], 
then �ε,n(X) is a solution of the equation ESX,n(1 − cε) = VaRX (1 − ε), c ∈ [1, 1ε ], taking the form

1 − cε

n + 1
+ n

n + 1
= 1 − ε, c ∈

[
1,

1

ε

]
.

Hence �ε,n(X) = n + 1 for ε ∈ (0, 1
n+1 ]. If ε ∈ ( 1

n+1 , 1), then, by Definition 1.6, �ε,n(X) = ∞. Note that, by Li and Wang (2022, part (i) of 
Example 5), �ε(X) = 2 for ε ∈ (0, 12 ], and hence �ε,n(X) > �ε(X) for ε ∈ (0, 1

n+1 ] (as it is expected, see part (ii) of Remark 2.2).
Let Y be a random variable with uniform distribution on the interval [a, b], where a < b, a, b ∈ R. Using that the distribution of Y

coincides with that of (b − a)X + a, part (i) of Theorem 2.4 yields �ε,n(Y ) = �ε,n((b − a)X + a) = �ε,n(X), so

�ε,n(Y ) =
{

n + 1 if ε ∈ (0, 1
n+1 ],

∞ if ε ∈ ( 1
n+1 ,1).

�

Example 4.2 (Exponential distribution). Let X be an exponentially distributed random variable with parameter 1, and let n ∈ N . Then 
VaRX (p) = − ln(1 − p), p ∈ (0, 1), and

ESX,n(p) = − n

(1 − p)n

1−p∫
0

(1 − p − s)n−1 ln(s)ds, p ∈ [0,1).

Using formula 2.725/2 in Gradshteyn and Ryzhik (2007) with a := 1 − p, b := −1 and m := n − 1, we have∫
(1 − p − s)n−1 ln(s)ds = −1

n

(
(1 − p − s)n − (1 − p)n

)
ln(s) −

n−1∑
k=0

(
n − 1

k

)
(−1)k

(k + 1)2
(1 − p)n−1−ksk+1 + C,

where C ∈R. It yields that

ESX,n(p) = − ln(1 − p) + n
n−1∑
k=0

(
n − 1

k

)
(−1)k

(k + 1)2
= Hn − ln(1 − p), p ∈ [0,1),

where Hn :=∑n
k=1

1
k denotes the n-th harmonic number. In particular, we have

ESX,2(p) = − ln(1 − p) + 3

2
, p ∈ [0,1).

So for each ε ∈ (0, 1), the inequality ESX,n(0) � VaRX (1 − ε) is equivalent to Hn �− ln(ε), i.e., ε ∈ (0, e−Hn ]. Hence, by Proposition 2.1, 
if ε ∈ (0, e−Hn ], then �ε,n(X) is a solution of the equation ESX,n(1 − cε) = VaRX (1 − ε), c ∈ [1, 1ε ], taking the form

− ln(cε) + Hn = − ln(ε), c ∈
[

1,
1

ε

]
.

Hence

�ε,n(X) = eHn for ε ∈ (0,e−Hn ].
If ε ∈ (e−Hn , 1), then, by Definition 1.6, �ε,n(X) = ∞

In particular, we have �ε,2(X) = e
3
2 ≈ 4.482 for ε ∈ (0, e−3/2], and �ε,2(X) = ∞ for ε ∈ (e−3/2, 1).

Note that, by Li and Wang (2022, Example 5, part (ii)), �ε(X) = e for ε ∈ (0, e−1], so �ε,n(X) > �ε(X) for ε ∈ (0, e−Hn ] (as it is 
expected, see part (ii) of Remark 2.2).

Let Y be an exponentially distributed random variable with parameter λ > 0. Using that the distribution of Y coincides with that of 
1
λ

X , part (i) of Theorem 2.4 yields �ε,n(Y ) = �ε,n( 1
λ

X) = �ε,n(X), so

�ε,n(Y ) =
{

eHn if ε ∈ (0,e−Hn
]
,

∞ if ε ∈ (e−Hn ,1
)
.

�
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Example 4.3 (Normal distribution). Let X be a standard normally distributed random variable. Let � and ϕ denote the distribution function 
and density function of X , respectively. Then VaRX (p) = �−1(p), p ∈ (0, 1), and, by substitution s = �(x), we have

ESX,2(p) = 2

(1 − p)2

⎛⎜⎝ ∞∫
�−1(p)

x�(x)ϕ(x)dx − p

∞∫
�−1(p)

xϕ(x)dx

⎞⎟⎠ , p ∈ [0,1),

where �−1(0) is defined to be −∞. Here, since ϕ(x) = 1√
2π

e− x2
2 , x ∈R, we have

−p

∞∫
�−1(p)

xϕ(x)dx = −pϕ(�−1(p)), p ∈ [0,1).

Further, by partial integration and then substitution x = y√
2

, we get

∞∫
�−1(p)

x�(x)ϕ(x)dx = pϕ(�−1(p)) + 1

2
√

π
(1 − �

(√
2�−1(p)

)
), p ∈ [0,1).

Hence

ESX,2(p) = 1√
π(1 − p)2

(1 − �
(√

2�−1(p)
)
), p ∈ [0,1).

So for each ε ∈ (0, 1), the inequality ESX,2(0) � VaRX (1 − ε) is equivalent to 1√
π
� �−1(1 − ε), i.e., ε ∈ (0, 1 − �(1/

√
π)], and hence, by 

Proposition 2.1, if ε ∈ (0, 1 − �(1/
√

π)] ≈ (0, 0.286], then �ε,2(X) is a solution of the equation ESX,2(1 − cε) = VaRX (1 − ε), c ∈ [1, 1ε ], 
taking the form

1√
πc2ε2

(1 − �
(√

2�−1(1 − cε)
)
) = �−1(1 − ε), c ∈

[
1,

1

ε

]
. (4.1)

If ε ∈ (1 − �(1/
√

π), 1), then, by Definition 1.6, �ε,2(X) = ∞.
Let Y be a normally distributed random variable with mean m and variance σ 2, where m ∈ R and σ > 0. Using that the distribution 

of Y coincides with that of σ X + m, part (i) of Theorem 2.4 yields �ε,2(Y ) = �ε,2(σ X + m) = �ε,2(X).
Using the software R, for levels ε ∈ {0.1, 0.05, 0.01, 0.005} we calculate an approximated value of the unique root �ε,2(X) of the 

equation (4.1), see Table 1. �
Table 1
Approximations of PELVE2-values of normal 
distribution N (m, σ 2) (m ∈R, σ > 0).

ε PELVE2 of N (m, σ 2)

0.100 3.92217
0.050 4.04082
0.010 4.18527
0.005 4.22188

Example 4.4 (Pareto distribution). Let X be a random variable with Pareto distribution having parameters k > 0 and α > 0, i.e., the distri-
bution function of X takes the form F X :R → [0, 1],

F X (x) :=
{

1 −
(

k
x

)α
if x � k,

0 if x < k.

Further, let n ∈N . Then

VaRX (p) = k(1 − p)−
1
α , p ∈ (0,1).

In what follows we suppose that α > 1, yielding that X ∈ L1. In this case we have

ESX,n(p) = kn(1 − p)−
1
α

n−1∑
j=0

(
n − 1

j

)
(−1) j

j − 1
α + 1

, p ∈ [0,1).

In particular, we have

ESX,2(p) = 2kα2

(α − 1)(2α − 1)
(1 − p)−

1
α , p ∈ [0,1).
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So for each ε ∈ (0, 1), the inequality ESX,n(0) � VaRX (1 − ε) is equivalent to

kn
n−1∑
j=0

(
n − 1

j

)
(−1) j

j − 1
α + 1

� kε− 1
α , i.e., ε ∈

⎛⎝0,

⎛⎝n
n−1∑
j=0

(
n − 1

j

)
(−1) j

j − 1
α + 1

⎞⎠−α⎤⎦ ,

and hence, by Proposition 2.1, if ε ∈
(

0, 
(

n
∑n−1

j=0

(n−1
j

)
(−1) j

j− 1
α +1

)−α ]
, then �ε,n(X) is a solution of the equation ESX,n(1 − cε) = VaRX (1 −

ε), c ∈ [1, 1ε ], taking the form

kn(cε)−
1
α

n−1∑
j=0

(
n − 1

j

)
(−1) j

j − 1
α + 1

= kε− 1
α , c ∈

[
1,

1

ε

]
.

Hence

�ε,n(X) =
⎛⎝n

n−1∑
j=0

(
n − 1

j

)
(−1) j

j − 1
α + 1

⎞⎠α

for ε ∈
⎛⎝0,

⎛⎝n
n−1∑
j=0

(
n − 1

j

)
(−1) j

j − 1
α + 1

⎞⎠−α⎤⎦.

If ε ∈
((

n
∑n−1

j=0

(n−1
j

)
(−1) j

j− 1
α +1

)−α

, 1
)

, then, by Definition 1.6, �ε,n(X) = ∞.

In particular, we have

�ε,2(X) =
(

2α2

(α − 1)(2α − 1)

)α

for ε ∈
(

0,

(
(α − 1)(2α − 1)

2α2

)α]
, (4.2)

and if ε ∈
((

(α−1)(2α−1)

2α2

)α
, 1
)

, then �ε,2(X) = ∞. Note that

lim
x→∞

(
(x − 1)(2x − 1)

2x2

)x

= lim
x→∞

(
1 − 1

x

)x
[(

1 − 1

2x

)2x
] 1

2

= e−1e− 1
2 = e− 3

2 ,

and the function (1, ∞) � x �→
(

2x2

(x−1)(2x−1)

)x
is monotone decreasing. Indeed,

(
2x2

(x − 1)(2x − 1)

)x

=
(

x

x − 1

)x
((

2x

2x − 1

)2x
) 1

2

, x ∈ (1,∞),

and the logarithm of the function (1, ∞) � x �→ (x/(x − 1))x , i.e., the function (1, ∞) � x �→ x ln(x/(x − 1)), is monotone decreasing. Hence, 
by (4.2), for each ε ∈

(
0,
(

(α−1)(2α−1)

2α2

)α]
, we have

�ε,2(X) � lim
x→∞

(
2x2

(x − 1)(2x − 1)

)x

= e
3
2 ≈ 4,482, (4.3)

where, by Example 4.2, the limit e
3
2 is nothing else but the PELVE2-value (at the given level ε) of an exponentially distributed random 

variable. The inequality (4.3) for PELVE2 can be considered as the counterpart of the corresponding inequality for PELVE of X due to Li 
and Wang (2022, inequality (8)). For the parameters α ∈ {2, 10, 30}, we calculate �ε,2(X), see Table 2. �

Table 2
PELVE2-values of Pareto distribution Pareto(k, α) (k > 0, α ∈ {2, 10, 30}), rounded up to 3 decimal places.

PELVE2 ε ∈ (0, 9
64

]
ε ∈

(
9

64 ,
( 171

200

)10
]

ε ∈
(( 171

200

)10
,
( 1711

1800

)30
]

ε ∈
(( 1711

1800

)30
,1
)

Pareto(k,2) 7.112 ∞ ∞ ∞
Pareto(k,10) 4.791 4.791 ∞ ∞
Pareto(k,30) 4.578 4.578 4.578 ∞

5. Generalized Pareto distributions and PELVE2

In this section, we calculate the PELVE2-values of random variables with some generalized Pareto distribution and random variables 
of which the excess distribution function over a threshold is given by the distribution function of a generalized Pareto distribution with 
tail index less than 1. It will turn out that the PELVE2-value at a level ε of such random variables depends on the tail index but not 
on ε (below some threshold). Such a result was already established for the PELVE-values and conditional PELVE-values of the random 
variables in question by Fiori and Rosazza Gianin (2022, Proposition 15). Both results might be useful for estimating the tail index of the 
random variables in question.

First, we recall the notion of a generalized Pareto distribution.
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Definition 5.1. Let κ ∈ R and β > 0. We say that a random variable X has a generalized Pareto distribution with parameters κ and β if 
its distribution function F X takes the form:

• in case of κ > 0,

F X (x) :=
⎧⎨⎩1 −

(
1 + κ

β
x
)− 1

κ
if x � 0,

0 if x < 0,

• in case of κ = 0,

F X (x) :=
{

1 − e− x
β if x � 0,

0 if x < 0,

• in case of κ < 0,

F X (x) :=

⎧⎪⎪⎨⎪⎪⎩
1 if x > −β

κ ,

1 −
(

1 + κ
β

x
)− 1

κ
if x ∈ [0,−β

κ ],
0 if x < 0.

The parameter κ is sometimes called the tail index of X . The distribution function of a random variable having generalized Pareto distri-
bution with parameters κ ∈R and β > 0 is denoted by Gκ,β .

Remark 5.2. If X is a random variable having a generalized Pareto distribution with parameters κ > 0 and β > 0, then X + β
κ has a (usual) 

Pareto distribution with parameters β
κ and 1

κ (recalled in Example 4.4). Further, if X is a random variable having a generalized Pareto 
distribution with parameters κ = 0 and β > 0, then X is in fact exponentially distributed with parameter 1

β
. �

Next, to give an application of Theorem 2.4, we calculate the PELVE2-value of a generalized Pareto distribution with parameters 
κ ∈ (0, 1) and β := 1.

Example 5.3. Let κ ∈ (0, 1) and let X be a random variable with distribution function F X :R → [0, 1],

F X (x) :=
{

1 − (1 + κx)− 1
κ if x � 0,

0 if x < 0.

Then X has a generalized Pareto distribution with parameters κ and β := 1, and X has the unbounded support [0, ∞). Consequently, 
X + 1

κ has a (usual) Pareto distribution with parameters 1
κ and 1

κ . This yields that the calculations of VaR, 2nd-order ES and PELVE2 of 
X can be traced back to those of X + 1

κ , for which we can use Example 4.4.
Using Example 4.4 and the translation invariance of VaR, we have

VaRX (p) = VaRX+ 1
κ
(p) − 1

κ
= 1

κ
(1 − p)−κ − 1

κ
= −1 + (1 − p)−κ

κ
, p ∈ (0,1).

Since κ ∈ (0, 1), we have X + 1
κ ∈ L1, and hence X ∈ L1. Consequently, using again Example 4.4 and the translation invariance of the 

2nd-order ES (being a coherent risk measure on L1, see part (ii) of Remark 1.3), we have

ESX,2(p) = ESX+ 1
κ ,2(p) − 1

κ
= − 1

κ
+ 2(1 − p)−κ

κ(1 − κ)(2 − κ)
, p ∈ [0,1).

Consequently, for each ε ∈ (0, 1), the inequality ESX,2(0) � VaRX (1 − ε) is equivalent to

− 1

κ
+ 2

κ(1 − κ)(2 − κ)
� −1 + ε−κ

κ
, i.e., ε ∈

(
0,

(
(1 − κ)(2 − κ)

2

) 1
κ

]
.

Using part (i) of Theorem 2.4 and (4.2) yield that

�ε,2(X) = �ε,2

(
X + 1

κ

)
=
(

2

(1 − κ)(2 − κ)

) 1
κ

for ε ∈
(

0,

(
(1 − κ)(2 − κ)

2

) 1
κ

]
.

If ε ∈
((

(1−κ)(2−κ)
2

) 1
κ
, 1
)

, then, by Definition 1.6, �ε,2(X) = ∞.

Finally, note that, by L’Hospital’s rule, we get

lim
κ↓0

(
− 1

κ
+ 2(1 − p)−κ

κ(1 − κ)(2 − κ)

)
= − ln(1 − p) + 3

2
, p ∈ [0,1),
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where − ln(1 − p) + 3
2 is nothing else but the 2nd-order Expected Shortfall of an exponentially distributed random variable at a level p, 

see Example 4.2. This is in accordance with in accordance with Lemma A.6, since a generalized Pareto distribution having parameters 
κ > 0 and 1 converges in distribution to the exponential distribution with parameter 1 as κ ↓ 0. �

For a random variable X with distribution function F X , let xF X denote the right endpoint of F X , i.e., xF X := sup{x ∈R : F X (x) < 1}. If X
has a generalized Pareto distribution with parameters κ ∈R and β > 0, then

xF X =
{

∞ if κ � 0,

−β
κ if κ < 0.

Definition 5.4. Let X be a non-negative random variable with distribution function F X . The excess distribution function corresponding to 
F X over a threshold u ∈ [0, xF X ) is given by F X,u : [0, ∞) →R,

F X,u(x) := P (X − u � x | X > u) = F X (x + u) − F X (u)

1 − F X (u)
, x � 0.

Note that if xF X < ∞, then F X,u(x) = 1 for x � xF X − u.

For the forthcoming Propositions 5.5, 5.6 and 5.7, one can refer to Example 5.19, Lemma 5.22, formulae (5.18), (5.19) and (5.20) in 
McNeil et al. (2015).

Proposition 5.5. Let X be a random variable having a generalized Pareto distribution with parameters κ ∈ R and β > 0. For the excess distribution 
function F X,u corresponding to F X over a threshold u, we have F X,u(x) = Gκ,β+κu(x) for x � 0 and u � 0 in case of κ � 0; and for x � 0 and u < − β

κ
in case of κ < 0.

Proposition 5.6. Let X be a non-negative random variable, and assume that there exist u ∈ [0, xF X ), κ ∈R and β > 0 such that F X,u(x) = Gκ,β(x)

for x ∈ [0, xF X − u). Then F X,v(x) = Gκ,β+κ(v−u)(x) for x � 0 and v � u in case of κ � 0; and for x ∈ [0, − β
κ − (v − u)) and v ∈ [u, u − β

κ ) in case 
of κ < 0.

Proposition 5.7. Let X be a non-negative random variable, and assume that there exist u ∈ [0, xF X ), κ ∈ R and β > 0 such that F X,u(x) = Gκ,β(x)
for x ∈ [0, xF X − u). Then for each p ∈ (F X (u), 1), we have

VaRX (p) =

⎧⎪⎨⎪⎩u + β
κ

((
1−p

1−F X (u)

)−κ − 1

)
in case of κ �= 0,

u − β ln
(

1−p
1−F X (u)

)
in case of κ = 0.

(5.1)

If, in addition κ < 1, then we have

ESX (p) = 1

1 − κ
VaRX (p) + β − κu

1 − κ
, p ∈ (F X (u),1),

and

lim
p↑1

ESX (p)

VaRX (p)
=
{

1
1−κ in case of κ ∈ [0,1),

1 in case of κ < 0.
(5.2)

In the next proposition, we calculate the PELVE2 of a non-negative random variable having a generalized Pareto excess distribution 
function. This result can be considered as a counterpart of the corresponding results for PELVE and conditional PELVE (see Definition 1.5) 
in Proposition 15 in Fiori and Rosazza Gianin (2022).

Proposition 5.8. Let X be a non-negative random variable, and assume that there exist u ∈ [0, xF X ), κ < 1 and β > 0 such that F X,u(x) = Gκ,β(x)
for x ∈ [0, xF X − u). In case of κ < 1 with κ �= 0, we have

�ε,2(X) =
(

2

(1 − κ)(2 − κ)

) 1
κ

for 0 < ε < (1 − F X (u))

(
(1 − κ)(2 − κ)

2

) 1
κ

,

and in case of κ = 0, we have

�ε,2(X) = e
3
2 for 0 < ε < (1 − F X (u))e− 3

2 .

Further,

lim
p↑1

ESX,2(p)

VaRX (p)
=
{

2
(1−κ)(2−κ)

if κ ∈ [0,1),

1 if κ < 0.
(5.3)
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Proof. Recall that VaRX (p), p ∈ (F X (u), 1), is given in (5.1). Next, we calculate ESX,2(p) for p ∈ (F X (u), 1).
First, we consider the case of κ = 0. For p ∈ (F X (u), 1) we have

ESX,2(p) = 2

(1 − p)2

1∫
p

(s − p)

(
u − β ln

(
1 − s

1 − F X (u)

))
ds

= 2

(1 − p)2

(
u + β ln(1 − F X (u))

) 1∫
p

(s − p)ds − 2β

(1 − p)2

1∫
p

s ln(1 − s)ds + 2βp

(1 − p)2

1∫
p

ln(1 − s)ds.

By partial integration, one can check that for p ∈ (F X (u), 1), we get

ESX,2(p) = u + β ln(1 − F X (u)) − β ln(1 − p) + 3

2
β = 3

2
β + VaRX (p),

for the omitted details, see our ArXiv version Barczy et al. (2022, proof of Proposition 5.8).
Note that if u = 0, κ = 0 and β = 1, then ESX,2(p) = − ln(1 − p) + 3

2 , which is nothing else but the 2nd-order Expected Shortfall at 
the level p of an exponentially distributed random variable (see Example 4.2). This is expected, since if u = 0, κ = 0 and β = 1, then 
F X (x) = F X,u(x) = G0,1(x), 0 � x < xF X with xF X = ∞, yielding that F X (x) = G0,1(x), x � 0, where G0,1 is the distribution function of an 
exponentially distributed random variable with parameter 1.

Let ε ∈ (0, 1 − F X (u)). Then the inequality

ESX,2(1 − cε) � VaRX (1 − ε), c ∈
[

1,
1 − F X (u)

ε

)
takes the form

u + β ln(1 − F X (u)) − β ln(cε) + 3

2
β � u − β ln

(
ε

1 − F X (u)

)
, c ∈

[
1,

1 − F X (u)

ε

)
.

This inequality holds if and only if c � e
3
2 and c ∈

[
1, 1−F X (u)

ε

)
. Consequently, using that the function [1, 1ε ] � c �→ ESX,2(1 − cε) is 

monotone decreasing (see Lemma A.2), for 0 < ε < (1 − F X (u))e− 3
2 we have

�ε,2(X) = inf
{

c ∈
[

1,
1

ε

]
: ESX,2(1 − cε) � VaRX (1 − ε)

}
= inf

{
c ∈

[
1,

1 − F X (u)

ε

)
: c � e

3
2

}
= e

3
2 ,

as desired.
Next, we consider the case of κ < 1 with κ �= 0. For p ∈ (F X (u), 1), we have

ESX,2(p) = 2

(1 − p)2

1∫
p

(s − p)

(
u + β

κ

((
1 − s

1 − F X (u)

)−κ

− 1

))
ds

= 2

(1 − p)2

(
u − β

κ

) 1∫
p

(s − p)ds + 2β(1 − F X (u))κ

(1 − p)2κ

1∫
p

s(1 − s)−κ ds − 2βp(1 − F X (u))κ

(1 − p)2κ

1∫
p

(1 − s)−κ ds.

By partial integration, one can check that for p ∈ (F X (u), 1), we get that

ESX,2(p) = u − β

κ
+ 2β(1 − F X (u))κ

κ(1 − κ)(2 − κ)
(1 − p)−κ = VaRX (p) + β(3 − κ)

(1 − κ)(2 − κ)

(
1 − p

1 − F X (u)

)−κ

,

for the omitted details, see our ArXiv version Barczy et al. (2022, proof of Proposition 5.8). Let ε ∈ (0, 1 − F X (u)). Then the inequality

ESX,2(1 − cε) � VaRX (1 − ε), c ∈
[

1,
1 − F X (u)

ε

)
takes the form

u − β

κ
+ 2β(1 − F X (u))κ

κ(1 − κ)(2 − κ)
(cε)−κ � u + β

κ

((
ε

1 − F X (u)

)−κ

− 1

)
, c ∈

[
1,

1 − F X (u)

ε

)
.

This inequality holds if and only if

c �
(

2

(1 − κ)(2 − κ)

) 1
κ

and c ∈
[

1,
1 − F X (u)

ε

)
.

Consequently, using that the function [1, 1ε ] � c �→ ESX,2(1 − cε) is monotone decreasing (see Lemma A.2), for 0 < ε < (1 − F X (u))
(
(1 −

κ)(2 − κ)/2
) 1

κ we have
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�ε,2(X) = inf
{

c ∈
[

1,
1

ε

]
: ESX,2(1 − cε) � VaRX (1 − ε)

}
= inf

{
c ∈

[
1,

1 − F X (u)

ε

)
: c �

(
2

(1 − κ)(2 − κ)

) 1
κ

}
=
(

2

(1 − κ)(2 − κ)

) 1
κ

,

as desired.
Now, we turn to prove (5.3). In case of κ = 0, we have limp↑1 VaRX (p) = ∞ and

lim
p↑1

ESX,2(p)

VaRX (p)
= lim

p↑1

VaRX (p) + 3
2 β

VaRX (p)
= 1.

In case of κ ∈ (0, 1), we have limp↑1 VaRX (p) = ∞ and

lim
p↑1

ESX,2(p)

VaRX (p)
= 1 + lim

p↑1

β(3−κ)
(1−κ)(2−κ)

(
1−p

1−F X (u)

)−κ

u + β
κ

((
1−p

1−F X (u)

)−κ − 1

) = 2

(1 − κ)(2 − κ)
.

In case of κ < 0, we have limp↑1 VaRX (p) = u − β
κ and

lim
p↑1

ESX,2(p)

VaRX (p)
= 1 + lim

p↑1

β(3−κ)
(1−κ)(2−κ)

(
1−p

1−F X (u)

)−κ

VaRX (p)
= 1,

as desired. �
6. PELVE2 of regularly varying distributions

First, we recall the notion of regularly varying functions.

Definition 6.1. A measurable function U : (x0, ∞) → (0, ∞) (where x0 � 0) is called regularly varying at infinity with index ρ ∈ R if for 
all q > 0, we have

lim
x→∞

U (qx)

U (x)
= qρ.

In case of ρ = 0, we call U slowly varying at infinity. A measurable function V : (0, x0) → (0, ∞) (where x0 > 0) is called regularly varying 
at 0 with index κ ∈R if for all q > 0, we have

lim
x↓0

V (qx)

V (x)
= qκ .

Next, we recall the notion of regularly varying non-negative random variables.

Definition 6.2. A non-negative random variable X is called regularly varying with index α � 0 if F X (x) := P (X > x) > 0 for all x > 0, and 
F X is regularly varying at infinity with index −α.

Next, we study the asymptotic behaviour of the PELVE2 of X at a level ε tending to 0. Recall that if X is a regularly varying non-
negative random variable with index α > 1, then E(X) < ∞, i.e., X ∈ L1, and hence in this case PELVE2 of X at any level ε ∈ (0, 1) is 
well-defined.

Theorem 6.3. Let X be a regularly varying non-negative random variable with index α > 1 such that (0, 1) � p �→ VaRX (p) is continuous. Then

lim
ε↓0

�ε,2(X) =
(

2α2

(α − 1)(2α − 1)

)α

.

Proof. Recall that

lim
ε↓0

VaRX (1 − tε)

VaRX (1 − ε)
= t− 1

α , t > 0, (6.1)

i.e., the function (0, 1) � p �→ VaRX (p) is regularly varying at 0 with index − 1
α , see, e.g., Li and Wang (2022, formula (A.9)) or our ArXiv 

version Barczy et al. (2022, formula (6.1)). Recall also that

lim
ε↓0

ESX (1 − ε)

VaRX (1 − ε)
= α

α − 1
, t > 0, (6.2)

see, e.g., Li and Wang (2022, formula (A.10)) or our ArXiv version Barczy et al. (2022, formula (6.2)).
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Next, we prove that

lim
ε↓0

ESX,2(1 − ε)

VaRX (1 − ε)
= 2α2

(α − 1)(2α − 1)
.

For each ε ∈ (0, 1), we have

ESX,2(1 − ε)

VaRX (1 − ε)
=

2
ε2

∫ 1
1−ε(u − (1 − ε))VaRX (u)du

VaRX (1 − ε)
= 2

∫ ε
0 (ε − v)VaRX (1 − v)dv

ε2 VaRX (1 − ε)

= 2

∫ ε
0 VaRX (1 − v)dv

εVaRX (1 − ε)
− 2

∫ ε
0 v VaRX (1 − v)dv

ε · εVaRX (1 − ε)

= 2
ESX (1 − ε)

VaRX (1 − ε)
− 2

∫ ε
0 v VaRX (1 − v)dv

ε · εVaRX (1 − ε)
.

Here the function (0, 1) � v �→ v VaRX (1 − v) is regularly varying at 0 with index α−1
α > −1, since, using (6.1), we have

lim
v↓0

tv VaRX (1 − tv)

v VaRX (1 − v)
= t · t− 1

α = t
α−1
α , t > 0.

So, by Karamata theorem for regularly varying functions at zero (see Lemma C.1), we have

lim
ε↓0

∫ ε
0 v VaRX (1 − v)dv

ε · εVaRX (1 − ε)
= 1

α−1
α + 1

= α

2α − 1
.

Hence, using (6.2), we get

lim
ε↓0

ESX,2(1 − ε)

VaRX (1 − ε)
= 2α

α − 1
− 2α

2α − 1
= 2α2

(α − 1)(2α − 1)
.

Consequently, using (6.1), we have

lim
ε↓0

ESX,2(1 − tε)

VaRX (1 − ε)
= lim

ε↓0

ESX,2(1 − tε)

VaRX (1 − tε)
· VaRX (1 − tε)

VaRX (1 − ε)
= 2α2

(α − 1)(2α − 1)
t− 1

α , t > 0. (6.3)

Note that for each α > 1, the function (0, ∞) � t �→ 2α2

(α−1)(2α−1)
t− 1

α is strictly monotone decreasing, and it takes value 1 if and only if

t =
(

2α2

(α − 1)(2α − 1)

)α

.

Let t1 and t2 be such that

0 < t1 <

(
2α2

(α − 1)(2α − 1)

)α

< t2,

yielding

2α2

(α − 1)(2α − 1)
t
− 1

α
2 < 1 <

2α2

(α − 1)(2α − 1)
t
− 1

α
1 .

Hence, using (6.3), for sufficiently small ε > 0 (which may depend on t1 and t2), we have

ESX,2(1 − t2ε)

VaRX (1 − ε)
< 1 and

ESX,2(1 − t1ε)

VaRX (1 − ε)
> 1.

Since X is non-negative and regularly varying, we have VaRX (1 − v) → ∞ as v ↓ 0, and hence for sufficiently small ε > 0, we get 
VaRX (1 − ε) > 0 and

ESX,2(1 − t2ε) < VaRX (1 − ε) < ESX,2(1 − t1ε). (6.4)

Using (again) VaRX (1 − v) → ∞ as v ↓ 0, and ESX,2(0) < ∞, we have ESX,2(0) < VaRX (1 −ε) for sufficiently small ε > 0. Hence, using 
Proposition 2.1, for sufficiently small ε > 0, we have �ε,2(X) ∈ [1, 1ε ] is a solution of the equation ESX,2(1 − cε) = VaRX (1 − ε), c ∈ [1, 1ε ]. 
Consequently, using (6.4), the definition of PELVE2 , and the continuity and monotone increasing property of ESX,2 (see Lemma A.2), 
we get �ε,2(X) ∈ (t1, t2] for sufficiently small ε > 0. Since (t1, t2] can be chosen as a neighbourhood of 

(
2α2/((α − 1)(2α − 1))

)α
with 

arbitrarily small length, the statement follows. �
Remark 6.4. In Theorem 6.3, the limit is nothing else but the PELVE2 of a Pareto distributed random variable with parameters k > 0 and 
α > 1 at any level less then or equal to 

(
(α−1)(2α−1)

2α2

)α
, see Example 4.4. So Theorem 6.3 is in accordance with Theorem 3 in Li and 

Wang (2022). Note that a Pareto distributed random variable with parameters k > 0 and α > 0 is regularly varying with index −α, and 
a random variable with generalized Pareto distribution having parameters κ > 0 and β > 0 (see, Definition 5.1) is regularly varying with 
index − 1 . �
κ
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7. Simulations and real data analysis for PELVE2

First, we present an empirical estimator of PELVE2 of a random variable. Let X ∈ L1, m ∈N , and let X1, . . . , Xm be independent and 
identically distributed random variables such that their common distribution coincides with that of X , i.e., X1, . . . , Xm is a sample of 
length m for X . Let X∗

1 � X∗
2 � . . . � X∗

m be the corresponding ordered sample. Given p ∈ (0, 1), an empirical estimator of VaRX (p) based 
on X1, . . . , Xm is given by

V̂aRX (p) := X∗
i if p ∈

(
i − 1

m
,

i

m

]
, i = 1, . . . ,m.

Following Acerbi (2007, Section 7) (where one can find a construction of empirical estimators of spectral risk measures), given p ∈ [0, 1), 
an empirical estimator of the 2nd-order Expected Shortfall ESX,2(p) based on X1, . . . , Xm is given by a weighted sum of X∗

1 , . . . , X∗
m:

ÊSX,2(p) :=
m∑

i=1

wi X∗
i ,

where

wi :=
i/m∫

(i−1)/m

2(s − p)

(1 − p)2
1[p,1)(s)ds, i = 1, . . . ,m.

We check that if p ∈ [0, m−1
m ), then

wi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if i � �mp�,

1
(1−p)2

(
i

m − p
)2

if i = �mp� + 1,

1
(1−p)2

((
i

m − p
)2 −

(
i−1
m − p

)2
)

if �mp� + 2 � i � m,

(7.1)

and if p ∈ [m−1
m , 1), then

wi =
{

0 if i = 1, . . . ,m − 1,

1 if i = m.
(7.2)

If p ∈ [0, 1
m ), then �mp� = 0 and

w1 =
1/m∫
p

2(s − p)

(1 − p)2
ds = 1

(1 − p)2

(
1

m
− p

)2

,

and

wi =
i/m∫

(i−1)/m

2(s − p)

(1 − p)2
ds = 1

(1 − p)2

((
i

m
− p

)2

−
(

i − 1

m
− p

)2
)

, i = 2, . . . ,m,

yielding (7.1) in case of p ∈ [0, 1
m ). If p ∈ [ 1

m , 2
m ), then �mp� = 1, w1 = ∫ 1/m

0 0 ds = 0, and

w2 =
2/m∫
p

2(s − p)

(1 − p)2
ds = 1

(1 − p)2

(
2

m
− p

)2

,

and

wi =
i/m∫

(i−1)/m

2(s − p)

(1 − p)2
ds = 1

(1 − p)2

((
i

m
− p

)2

−
(

i − 1

m
− p

)2
)

, i = 3, . . . ,m,

yielding (7.1) in case of p ∈ [ 1
m , 2

m ). The case p ∈ [ 2
m , m−1

m ) can be handled similarly. If p ∈ [m−1
m , 1), then �mp� = m − 1, wi = 0, i =

1, . . . , m − 1, and

wm =
1∫

p

2(s − p)

(1 − p)2
ds = 1,

yielding (7.1) in case of p ∈ [m−1 , 1), as desired.
m
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Fig. 1. Density histogram of empirical PELVE2 values of a standard normal distribution at level ε = 0.05 based on 10000 samples of length m = 5000. The curve is the 
density function of the fitted normal distribution.

Consequently, if p ∈ [0, m−1
m ), then

ÊSX,2(p) = 1

(1 − p)2

⎡⎣(�mp� + 1

m
− p

)2

X∗�mp�+1 +
m∑

i=�mp�+2

((
i

m
− p

)2

−
(

i − 1

m
− p

)2
)

X∗
i

⎤⎦ ,

and if p ∈ [m−1
m , 1), then

ÊSX,2(p) = X∗
m.

Given ε ∈ (0, 1), an empirical estimator of the PELVE2 value �ε,2(X) based on X1, . . . , Xm can be defined as

̂�ε,2(X) := inf
{

c ∈
[

1,
1

ε

]
: ÊSX,2(1 − cε) � V̂aRX (1 − ε)

}
, (7.3)

where inf∅ = ∞.
In principle, the empirical estimator (7.3) of the PELVE2 value �ε,2(X) can be used even if the random variables X1, . . . , Xm are not 

independent or identically distributed. We will do so in analyzing real data.
For illustrative purposes, we present a simulation result for calculating the PELVE2 value of a standard normally distributed random 

variable at the level ε = 0.05. We generated 10000 samples of length m = 5000 for a standard normally distributed random variable X . 
For each generated sample, we calculated the empirical estimator ̂�ε,2(X) (given in (7.3)) of the PELVE2 value of X at the given level ε. 
Then we made a density histogram based on the 10000 estimated PELVE2 values, see Fig. 1. On this figure, we also plotted the density 
function of the fitted normally distribution in red. The theoretical PELVE2 value of a standard normally distributed random variable at 
the level ε = 0.05 is approximately 4.040815. The sample mean of the 10000 estimated PELVE2 values is 4.046066, which is quite close 
to the theoretical value. Based on Fig. 1, one could conjecture that a kind of central limit theorem might hold for PELVE2 in case of a 
standard normal distribution. We do not study this question here. We only note that in case of PELVE, such a result is available due to Li 
and Wang (2022, Theorem 4).

As real data applications, we calculate the empirical estimator of PELVE2 for S&P 500 daily returns based on two data sets: (i) ranging 
from 4th January 2020 to 4th January 2022, and (ii) ranging from 6th April 2020 to 4th January 2022. The S&P 500 historical data sets 
were downloaded from Investing.com. Note that in case (i) the data set contains approximately four months before the COVID-19 crisis 
started in Europe (i.e., before April 2020), and in case (ii) the data set just starts when the COVID-19 crisis started in Europe. Recall that, 
given some asset prices St , t = 0, 1, . . . , N , where N ∈N , the one-period (linear) return at time t = 1, . . . , N is defined by St/St−1 − 1. In 
the used data sets, the daily returns are rounded off to two decimal places. For both data sets in question, we calculated the empirical 
PELVE2 estimator (7.3) and the empirical PELVE estimator at levels ranging from 0.001 to 0.56, see Fig. 2. The empirical PELVE estimator 
is not presented in the present paper, we used the same empirical estimators as Li and Wang (2022, Section 5) and Fiori and Rosazza 
Gianin (2022, Section 5).

On Fig. 2, the red horizontal lines correspond to the PELVE2 value of an exponential distribution, i.e., e3/2 ≈ 4.482 (see Example 4.2); 
and the green horizontal lines correspond to the PELVE value of an exponential distribution, i.e., e ≈ 2.718 (see Li and Wang (2022, 
Example 5, part (ii))). On Fig. 2, one can see that there are levels for which no empirical PELVE2 or PELVE values are plotted. It just 
means that the corresponding empirical PELVE2 or PELVE values are infinity. For example, on the right subfigure of Fig. 2, no PELVE2
values are plotted at levels greater than (approximately) 0.27. As shown in the left subfigure of Fig. 2, most of the empirical PELVE2
values are above e3/2, but it is not the case for the right subfigure of Fig. 2. A possible explanation for this phenomenon is that the data 
set used for the left subfigure of Fig. 2 contains four months daily returns of S&P 500 before the start of the COVID-19 crisis in Europe 
(i.e., before April 2020), while the data set used for the right subfigure of Fig. 2 does not include these four months, it just starts at April 
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Fig. 2. Empirical PELVE and PELVE2 values for daily returns of S&P 500. (In both subfigures, the green curve is the lower one and the red one is the upper one.)

Fig. 3. PELVE (black) and PELVE2 (red) values.’ (The black is the lower and the red is the upper one. For the coloured figure, the reader is referred to the web version of 
this article.)

2020. Our real data applications may suggest that PELVE2 might be an indicator for structural changes in stock prices. Note also that the 
empirical PELVE2 values on the left subfigure of Fig. 2 are greater than the corresponding empirical PELVE2 values on the right subfigure 
of Fig. 2.

Finally, we present another approach to illustrate the changes in the PELVE and PELVE2 values caused by COVID-19 based on a S&P 
500 historical data set. Fixing the level ε = 0.05, for each day starting from May 27, 2003 and ending at July 28, 2022, we calculate a 
corresponding PELVE and PELVE2 value based on the previous 99 days and the day in question itself (altogether 100 days). The graphs 
are shown in Fig. 3, where it is visible that both risk measures had a high peak at around March 2020 (the approximate starting date of 
COVID-19 crisis in Europe) as the effect of the pandemic. Note also that the PELVE2 shows this effect more significantly.

We used the open software R for making the simulations and real data analysis.
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M. Barczy, F. K. Nedényi and L. Sütő Insurance: Mathematics and Economics 108 (2023) 107–128
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

We used some S&P 500 historical data sets that were downloaded from Investing.com.

Acknowledgements

We would like to thank the referees for their comments that helped us improve the paper.

Appendix A. Some properties of higher-order Expected Shortfalls

This appendix is devoted to study some properties of higher-order Expected Shortfalls given in Definition 1.2 such as finiteness, con-
tinuity, monotonicity, additivity for comonotonic random variables and connection with weak convergence. These results generalize the 
corresponding known properties for (the usual, i.e., first order) Expected Shortfall.

Our first result states the finiteness of higher-order Expected Shortfalls of random variables in L1.

Lemma A.1. For each X ∈ L1 , n ∈N , and p ∈ [0, 1), we have ESX,n(p) ∈R.

Lemma A.1 is an immediate consequence of Proposition 1 in Wang et al. (2020), for more details and an independent proof, see our 
ArXiv version Barczy et al. (2022, Lemma A.1 and Remark A.2).

Lemma A.2. Let X be a random variable such that X ∈ L1 , and let n ∈ N . Then the function [0, 1) � p �→ ESX,n(p) is continuous and monotone 
increasing.

For a proof of Lemma A.2, see our ArXiv version Barczy et al. (2022, the proof of Lemma A.3).
Next, we provide some sufficient conditions under which [0, 1 − ε) � p �→ ESX,n(p) is strictly monotone increasing, where ε ∈ (0, 1)

and n ∈N . Such a result is known in case of n = 1, see, e.g., the proof of Proposition 2 in Li and Wang (2022).

Lemma A.3. Let X be a random variable such that X ∈ L1 , let ε ∈ (0, 1), n ∈ N , and let us suppose that the function (0, 1) � p �→ VaRX (p) is not 
constant on the interval [1 − ε, 1). Then the function [0, 1 − ε] � p �→ ESX,n(p) is strictly monotone increasing.

For a proof of Lemma A.3, see our ArXiv version Barczy et al. (2022, the proof of Lemma A.4).

Definition A.4. The random variables X and Y are called comonotonic if there exist a random variable Z and monotone increasing func-
tions f , g :R →R such that X = f (Z) and Y = g(Z).

Proposition A.5. Let X and Y be comonotonic random variables such that X, Y ∈ L1 , and let n ∈N . Then

ESX+Y ,n(p) = ESX,n(p) + ESY ,n(p), p ∈ [0,1),

that is, the nth-order Expected Shortfall is additive for comonotonic random variables belonging to L1.

Proposition A.5 is the direct consequence of the additivity of VaR for comonotonic random variables (see, e.g., McNeil et al., 2015, 
Proposition 7.20) and the additivity of Lebesgue integral.

Next, we investigate the connection between weak convergence of random variables and the convergence of their higher-order Expected 
Shortfalls.

Lemma A.6. Let n ∈N , Xm, m ∈N , and X be random variables such that Xm ∈ L1 , m ∈N , and X ∈ L1 . If Xm
D−→ X as m → ∞, and {Xm : m ∈N}

is uniformly integrable, then ESXm,n(p) → ESX,n(p) as m → ∞ for each p ∈ [0, 1).

Lemma A.6 is a consequence of Theorem 6 in Wang et al. (2020), for more details and an independent proof, see our ArXiv version 
Barczy et al. (2022, Lemma A.7 and Remark A.8).

Appendix B. Second-order Expected Shortfall and Gini Shortfall

Let X be a random variable such that X ∈ L1, and let p ∈ [0, 1). Let U p be a random variable uniformly distributed on the interval 
(p, 1), and let F X,p be the distribution function of the random variable VaRX (U p). The tail-Gini functional of X at a level p ∈ [0, 1) is 
defined by

TGiniX (p) := E(|X∗
p − X∗∗

p |),
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where X∗
p and X∗∗

p are two independent, identically distributed random variables with a distribution function F X,p , see Furman et al. 
(2017, formula (3.6)). Note that if p = 0, then VaRX (U0) has the same distribution as X (see, e.g., Embrechts and Hofert, 2013, Proposition 
2), and hence TGiniX (0) is nothing else but the Gini variability measure of X given by E(|X∗ − X∗∗|), where X∗ and X∗∗ are two 
independent copies of X . By Furman et al. (2017, (3.3) and Proposition 3.2), we have

TGiniX (p) = 2

(1 − p)2

1∫
p

(2s − 1 − p)VaRX (s)ds, p ∈ [0,1).

For λ � 0, the Gini Shortfall of X at a level p ∈ [0, 1) corresponding to the (loading) parameter λ is defined by

GSX (p, λ) := ESX (p) + λTGiniX (p),

see Furman et al. (2017, formula (4.1)). By Theorem 4.1 in Furman et al. (2017),

GSX (p, λ) = 1

(1 − p)2

1∫
p

(
1 − p + 4λ

(
s − 1 + p

2

))
VaRX (s)ds, p ∈ [0,1), λ � 0, (B.1)

and, using also Lemma 4.2 in Furman et al. (2017), the Gini Shortfall at a level p corresponding to the parameter λ is a coherent risk 
measure on L1 if and only if λ ∈ [0, 12 ].

By (B.1), we have

GSX

(
p,

1

2

)
= 1

(1 − p)2

1∫
p

(
1 − p + 2

(
s − 1 + p

2

))
VaRX (s)ds

= 2

(1 − p)2

1∫
p

(s − p)VaRX (s)ds = ESX,2(p), p ∈ [0,1),

so for p ∈ [0, 1), the 2nd-order Expected Shortfall of X at a level p is nothing else but the Gini Shortfall of X at a level p corresponding 
to the parameter 1

2 . In particular, we have that the 2nd-order Expected Shortfall (at any level p ∈ [0, 1)) is a coherent risk measure on L1

(which is in accordance with part (ii) of Remark 1.3).
Further, using again (B.1), for each p ∈ [0, 1) and λ � 0, we have

GSX (p, λ) = 1

(1 − p)2

1∫
p

(
1 − p + 4λ

(
s − p + p − 1

2

))
VaRX (s)ds

= (1 − 2λ)
1

1 − p

1∫
p

VaRX (s)ds + 2λ
2

(1 − p)2

1∫
p

(s − p)VaRX (s)ds

= (1 − 2λ)ESX (p) + 2λESX,2(p),

yielding that the Gini Shortfall at a level p ∈ [0, 1) corresponding to a parameter λ � 0 is the linear combination of the Expected Shortfall 
at level p and the 2nd-order Expected Shortfall at level p with coefficients 1 − 2λ and 2λ, respectively.

Appendix C. Karamata theorem for regularly varying functions at zero

For the notions of a regularly varying function at infinity and at 0, resp., see Definition 6.1.
We formulate a Karamata theorem for regularly varying functions at 0 with index κ > −1, which is used in the proof of Theorem 6.3. 

We could not address any reference for it, and hence, for completeness, we provide a proof as well.

Lemma C.1. Let x0 > 0 and f : (0, x0) → (0, ∞) be a regularly varying function at 0 with index κ > −1. Then

lim
ε↓0

∫ ε
0 f (v)dv

ε f (ε)
= 1

κ + 1
.

Proof. For each ε ∈ (0, x0), by the substitution v = 1
u , we have

ε∫
0

f (v)dv =
∞∫

1
ε

u−2 f

(
1

u

)
du. (C.1)

Here the function ( 1
x0

, ∞) � u �→ u−2 f
( 1

u

)
is regularly varying at infinity with index −κ − 2 < −1 (see Definition 6.1), since it is measur-

able and
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lim
u→∞

(qu)−2 f
(

1
qu

)
u−2 f

( 1
u

) = q−2 lim
ε↓0

f
(

1
q ε
)

f (ε)
= q−2

(
1

q

)κ

= q−κ−2 for each q > 0.

Consequently, by Karamata theorem for regularly varying functions at infinity with index strictly less than −1 (see, e.g., Resnick, 1987, 
Theorem 0.6), we get

lim
ε↓0

∫∞
1
ε

u−2 f
( 1

u

)
du

1
ε · ( 1

ε

)−2
f (ε)

= 1

κ + 2 − 1
= 1

κ + 1
.

Hence, by (C.1), the assertion follows. �
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