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Prudent management of insurance investment portfolios requires competent asset pricing of fixed-income 
assets with time-to-event contingent cash flows, such as consumer asset-backed securities (ABS). Current 
market pricing techniques for these assets either rely on a non-random time-to-event model or may not 
utilize detailed asset-level data that is now available with most public transactions. We first establish 
a framework capable of yielding estimates of the time-to-event random variable from securitization 
data, which is discrete and often subject to left-truncation and right-censoring. We then show that the 
vector of discrete-time hazard rate estimators is asymptotically multivariate normal with independent 
components, which has not yet been done in the statistical literature in the case of both left-truncation 
and right-censoring. The time-to-event distribution estimates are then fed into our cash flow model, 
which is capable of calculating a formulaic price of a pool of time-to-event contingent cash flows vis-
á-vis calculating an expected present value with respect to the estimated time-to-event distribution. In 
an application to a subset of 29,845 36-month leases from the Mercedes-Benz Auto Lease Trust 2017-A 
(MBALT 2017-A) bond, our pricing model yields estimates closer to the actual realized future cash flows 
than the non-random time-to-event model, especially as the fitting window increases. Finally, in certain 
settings, the asymptotic properties of the hazard rate estimators allow investors to assess the potential 
uncertainty of the price point estimates, which we illustrate for a subset of 493 24-month leases from 
MBALT 2017-A.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Life insurers hold approximately $670-$770 billion in securitized assets (McMenamin et al., 2013; National Association of Insurance 
Commissioners, 2020), which is nearly 16–20% of all insurer general account assets. Of these securitized assets, over $170 billion are in 
asset-backed securities (ABS), or just over 5% of all general account holdings. Proper asset-liability management (ALM) and general asset 
management for insurers require pricing cash flows from ABS and related assets. The actuarial literature leaves ABS largely untouched, 
however, though there are numerous related contributions within general asset-liability management (ALM) (e.g., Yao et al., 2013; Chiu 
and Wong, 2014; Zhang and Chen, 2016; Wei and Wang, 2017; Zhang et al., 2017; Li et al., 2018; Nolsøe et al., 2020) and credit risk (e.g., 
Liang and Wang, 2012; Gatzert and Martin, 2012; Denuit et al., 2015; Guo et al., 2017; Kiatsupaibul et al., 2017; Jang et al., 2018).

Outside an insurance context, the literature for valuing an asset-backed security may be loosely categorized into two alternative ap-
proaches: modeling at the pool-level or a top-down approach and modeling at the individualized loan-level or a bottom-up approach. For 
a general introduction to each, see Davidson and Levin (2014, Chapters 7, 12). For a specific example of a top-down approach that connects 
portfolio level losses to interest rates, see Fermanian (2013). Alternatively, investors may rely solely on input from credit rating agencies or 
utilize credit ratings in combination with commercial cash flow models that do not incorporate the potential randomness of the individual 
consumer credits within the trust. Both of these approaches are considered to be inadequate when compared with a cash flow model that 
incorporates the stochastic nature of underlying credit risks, however (Bluhm et al., 2010, Chapter 8). Finally, investors may rely on the 
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prescribed schedule provided by an ABS prospectus, which assumes underlying cash flows occur as scheduled (Mercedes-Benz, 2017). We 
find this approach may be inadequate to capture true trust performance in our comparative analysis (Section 6), however.

Recent improvements in data availability should also be considered. For example, with the enactment of U.S. Securities and Exchange 
Commission (SEC) Regulation AB II in November 2016 (Securities and Exchange Commission, 2014), which requires issuers of publicly 
traded securities to disclose pertinent asset-level demographic and performance data, investors now have the ability to model most forms 
of ABS at the loan level via a bottom-up approach. Indeed, most prospective ABS investors download this asset-level information during 
the pricing period of a newly issued ABS bond (Neilson et al., 2022). Thus, to be consistent with industry best practices, we will utilize the 
asset-level data to estimate the probabilistic distributions underlying a stochastic loan-level present value cash flow model. Its expected 
value is then the point estimate of the price of a single asset, and the sum total of the individual expected value calculations for all active 
time-to-event contingent assets is then the price of the complete ABS.

Specifically, our model is capable of incorporating four sources of randomness: (1) the random time-until-contract-termination, (2) 
the random number of months past the last monthly payment until the residual is paid into the trust, (3) the random residual value 
realization amount when a leased automobile is sold to repay the trust, and, optionally, (4) the estimator uncertainty for the time-until-
contract-termination distribution. Of these four sources of randomness, it is critically important to achieve an accurate estimation of the 
time-to-event probability distribution.

A close examination of the estimation problem for the time-to-event random variable from ABS investment trust data reveals that one 
must account for incomplete data in the form of left-truncation and right-censoring. There is a long history of calculating point estimates 
under these circumstances (Tsai et al., 1987). Missing in the statistical literature, however, is the asymptotic properties of such estimates 
in the case of a discrete-time-to-event distribution. Because our data is financial and thus updates only monthly, the asymptotic results of 
papers such as Woodroofe (1985) and Tsai et al. (1987), which assume a continuous distribution function for the time-to-event random 
variable, do not fully address our problem. Further, inappropriately assuming continuous time is problematic because it requires assuming 
that two events cannot have an identical termination time (i.e., ties have zero probability). In a securitization pool of tens of thousands of 
leases with identical contract lengths, two leases that share the same termination age is not only possible but an almost certainty. Other 
approaches to avoid a discrete-time assumption, such as assuming interval censoring or grouped survival data, also do not adequately 
address ABS data because a payment made any time before the due date is treated the same as a payment on the due date. In other 
words, ABS data is truly discrete; it is not just a result of measurement imprecision.

This paper thus has two contributions to the actuarial literature. The first is statistical and relates to the establishment of a precise 
discrete-time framework for the underlying random variables in an ABS setting for both random left-truncation and right-censoring (Sec-
tion 2) and derivation of the point estimator in this setting including its asymptotic properties (Section 3). The second is our proposed 
formulaic pricing model that utilizes the discrete-time lease lifetime estimator of Section 3 (in conjunction with the aforementioned other 
sources of randomness) to estimate the price of an auto-lease asset-backed security (Section 4), which outperforms the standard prospec-
tus approach of Mercedes-Benz (2017) (Table 2). While our application focuses on pricing the cash flows of an auto-lease ABS loan pool, 
the model generalizes to other forms of ABS, such as agency mortgage-backed securities (MBS). To help readers understand potential 
misapplications of our model, we provide a detailed discussion of important assumptions and appropriate use cases in Section 4.3. The 
remaining sections include a simulation study focusing on the statistical results (Section 5), a numerical application to a subset of 29,845 
leases from the MBALT 2017-A bond (Section 6), and concluding remarks (Section 7). All proofs of major results and additional Section 6
details may be found in the Appendices A and B, respectively.

2. Preliminaries

We first outline the mathematical details behind attempting to make meaningful inference about the distribution of a discrete-time 
lifetime random variable of interest from left-truncated data (a well-accepted yet nontrivial claim on close examination). For those in-
terested, an expanded exposition of the discrete-time incomplete data case of left-truncation may be found in Lautier et al. (2021). For 
narrative convenience and given our intended application, we will work towards defining the mathematical details within the context of 
an automotive lease securitization. Next, we generalize the work of Lautier et al. (2021) to also handle right-censored data because our 
subsequent goal is to develop a model capable of pricing an actively paying ABS bond. (Since the bond is active, there will be leases known 
to still be paying as of the pricing time but with a yet unknown termination time.) The section concludes by detailing the assumptions 
of our sampling procedure, in which our data is assumed to be sampled from an already left-truncated population — as is the case for 
ABS investment trust data — in comparison to the unsuitable for our application “truncate after sampling” procedure used in Woodroofe 
(1985) and Tsai et al. (1987). The rigor of this section is motivated by the continuous-time analogs of Woodroofe (1985) (left-truncation) 
and Tsai et al. (1987) (left-truncation and right-censoring).

2.1. Left-truncation

We now begin with the details. Let X and Y be two independent, positive, and integer-valued discrete random variables, with dis-
tribution functions F and G , respectively. Further assume that we only observe the pairs (X, Y ) for which Y ≤ X . That is, our observed 
data is conditional. Hence, let H∗ denote the joint distribution function of X and Y given Y ≤ X , and let F∗ and G∗ denote the marginal 
distribution functions of X and Y , respectively, given Y ≤ X . Formally,

H∗(F , G, x, y) = Pr(X ≤ x, Y ≤ y | X ≥ Y ), (1)

is the joint conditional distribution with conditional marginal distributions F∗ and G∗ . We include F and G within the notation of H∗ to 
emphasize that equivalent H∗ may be constructed from different F and G , a technical point we now clarify.

Let the support of F be (aF ≤ x ≤ bF ), where 0 ≤ aF ≤ bF and aF , bF ∈Z, and let the support of G be (aG ≤ y ≤ bG ), where 0 ≤ aG ≤ bG

and aG , bG ∈Z. There will be complete left-truncation (full data loss) if aG ≥ bF . Now, H∗ may be constructed from any pairs of F and G
such that (F , G) ∈K, where
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K = {(F , G) : F (0) = 0 = G(0), Pr(Y ≤ X) > 0}.
Difficulties may arise in the recovery of (F , G) from H∗ because there might exist a different pair (F0, G0) that can generate the same H∗ . 
That is, we have a possible identifiability issue.

More specifically, consider the following subset of K:

K0 = {(F , G) ∈ K : aG ≤ aF , bG ≤ bF }.
For any (F , G) ∈ K, but (F , G) /∈ K0, let F0 = Pr(X ≤ x | X ≥ aG) and G0 = Pr(Y ≤ y | Y ≤ bF ). Then (F0, G0) ∈ K0, and Lemma 1 of 
Woodroofe (1985) demonstrates H∗(F0, G0) = H∗(F , G) for any (F , G) ∈ K. In other words, we have two potential pairs (F0, G0) and 
(F , G) that lead to the same H∗ . How, then, can we make inference on X from left-truncated data?

In most applications, we cannot. But not all is lost. Indeed, Theorem 1 of Woodroofe (1985) states that we can find a unique (F0, G0)

if we restrict our construction of H∗ to just the members of K0. More formally, for every H∗ based on some (F , G) ∈ K, there is only one 
pair (F0, G0) ∈K0 such that H∗(F0, G0) = H∗(F , G), and this pair is given by F0 and G0. Theorem 1 of Woodroofe (1985) also shows how 
to recover the cumulative hazard functions of F0 and G0 and therefore recover F0 and G0. Note that Woodroofe (1985) assumes F and 
G are right-continuous in his Lemma 1 and Theorem 1, and so we avoid any discrete-time complications in using these particular results 
directly.

Let us now turn to our application. Let T denote the random time of a new lease contract origination. We assume T is discrete 
and spans the finite range 1 ≤ T ≤ m. A realization of T , say t , is then the initial point of the time-until-lease-contract-termination 
random variable, our lifetime variable of interest, denoted by X . Lease contracts have a fixed duration, and we denote this final possible 
termination time to be ω, where ω ∈N and is finite. Since issuers of structured debt typically have a legal obligation to the trust to select 
lease contracts with a minimum history of on-time payments, the youngest least in the trust will have some minimum age, �, where 
1 ≤ � ≤ ω.

Thus, the trust begins at time m + �, where � is non-random. If we denote Y = m + � + 1 − T , then � + 1 ≤ Y ≤ m + �. Further, 
Y represents the minimum amount of time a lease must remain active to be observed in the trust. Hence, we will only observe X given 
X ≥ Y , and therefore Y is a left-truncation random variable. Additionally, if we assume the time of a new lease contract origination, T , 
is independent of the time of lease termination, X , then X and Y will be independent. The assumed independence of X and T (and 
therefore Y ) is vital to this analysis, and it may not hold in all applications. For additional details on the appropriateness of this important 
assumption within our application, please see Section 4.3. For completeness, � + 1 ≤ X ≤ ω.

In terms of recovery, therefore, we have aG = � + 1, bG = m + �, aF = � + 1, and bF = ω. Hence, if � > 0, F0 = Pr(X ≤ x | X ≥
� + 1) �= F = Pr(X ≤ x), as leases may terminate after one month (we assume Pr(X = 0) = 0, though this need not be the case in general 
applications). Thus, in the proceeding, all inference about X must be made from F0. This is the case in nearly all data subject to random 
left-truncation, a subtle and perhaps overlooked nuance of estimating distribution functions from left-truncated data. For additional details, 
see the seminal work Woodroofe (1985), or, for a discrete-case focused discussion, Lautier et al. (2021). We also illustrate the difference 
between F0 and F in the simulation study of Section 5.

2.2. Right-censoring

We now introduce right-censoring. Let m + � + 1 ≤ ε ≤ m + ω be the present time, at which there remain leases in the trust with 
ongoing payments. This present time, ε, represents the right-censoring or pricing time. Specifically, Pr(T + X > ε) > 0 and so

X + T ≤ ε ⇐⇒ X ≤ m + � + 1 − T + ε − (m + � + 1)

⇐⇒ X ≤ Y + ε − (m + � + 1).

If we define C = Y + ε − (m +� + 1), then it is clear the right-censoring time is a function of the left-truncation random variable Y . More 
precisely, C equals the left-truncation time Y plus a constant. As such, it is convenient to define

τ = ε − (m + � + 1),

and so C = Y + τ = ε − T . If ε > ω + m, then there are no right-censored observations.
Consider now the observable range of X . In the case of no left-truncation and no right-censoring, it is clear 1 ≤ X ≤ ω; that is, the 

entire distribution of X is observable. In the case of left-truncation, each lease in the trust will have a minimum survival time of � + 1, 
and so � + 1 ≤ X ≤ ω, as we demonstrated in the previous section. If we also include right-censoring, then each lease termination time 
will only be observable if X ≤ C = Y + τ = ε − T . Hence, our observable range of X becomes � + 1 ≤ X ≤ min(ω, ε − 1). It is convenient 
to write ξ = min(ω, ε − 1), and so � + 1 ≤ X ≤ ξ . That is, the complete finite right tail of X is estimable only if ε − 1 ≥ ω. On the other 
hand, if ε − 1 < ω, then there is no information on the distribution function of X for x ∈ {ε, . . . , ω}. Fig. 1 summarizes the three possible 
lease lifetime data outcomes as of time ε: left-truncated, complete, and right-censored.

2.3. Sampling

We now have a description of our lifetime variable of interest, X , the left-truncation random variable, Y , and the right-censoring 
random variable, C = Y + τ . In an applied setting, of course, we have observed data and, from this data, must attempt to infer information 
about X . Thus, how such data may be generated or sampled from some population of independent random vectors (X, Y ) such that X
is independent of Y is of interest. Since the securitized trust consists of only those pairs of (X, Y ) such that X ≥ Y , we assume our 
population has already been left-truncated. Hence, it is this left-truncated population from which we are sampling (Xi , Yi) for 1 ≤ i ≤ n. 
Given the machinations of the securitization process, this is more appropriate for our application than the assumed sampling process of 
Woodroofe (1985) or Tsai et al. (1987), which samples (Xi , Yi) for 1 ≤ i ≤ n′ , n′ ≥ n and then removes all pairs (Xi, Yi) if Yi > Xi . Phrased 
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1 T m m + � m + � + 1 ε m + ω

Y

C

Fig. 1. Three possible lease origination lifetime data outcomes at current time ε originated at time T . Left-truncated (©): A lease originated at time T does not survive until 
Y = m + � + 1 − T . Such an outcome would not be observable to an investor. Complete (�): A lease originated at time T survives longer than Y = m + � + 1 − T and 
terminates prior to time C = Y + ε − (m + � + 1) ≡ Y + τ . The complete lifetime, X , (the length of the line segment from � to •) is observable to the investor (though still 
conditional on surviving at least Y months). Right-censored (�): A lease originated at time T is still active as of time ε. The investor observes X ≥ C = Y +ε − (m +� + 1) ≡
Y + τ but does not observe the exact termination time, X .

differently, our process effectively samples from the already left-truncated lease data within the trust rather than imagines we are able to 
sit with the ABS issuer and see loans that did not meet the minimum lifetime age to be included in the trust. A theoretical divergence 
with limited practical significance in most applications, but it does indeed emerge with ABS data.

Finally, because of right-censoring, we do not observe (Xi, Yi). Instead, for each pair (Xi, Yi), we observe only the random variables 
Yi , min(Xi, Ci), where Ci = Yi + τ , and if Xi was right-censored (typically denoted by an indicator function, 1Xi≤Ci , where 1Xi≤Ci = 1 if 
Xi ≤ Ci and equals 0 otherwise). Our next goal, therefore, is to extract as much information as possible about X from these three random 
variables.

3. Estimation

As is the usual approach in survival analysis, it is convenient to work in terms of the hazard rate. Since our application requires 
discrete-time on the set of integers, we will use the following hazard rate definition

λ(x) = Pr(X = x)

Pr(X ≥ x)
. (2)

The lifetime random variable, X , is often assumed to be continuous, and so some readers may be more familiar with (2) expressed as a 
limit (e.g., Klein and Moeschberger, 2003, equation (2.3.1), pg. 27). From (2), we can recover the distribution function for X through

1 − F (x−) = Pr(X ≥ x) =
∏

�+1≤k<x

[1 − λ(k)].

It is enough, therefore, is to estimate (2). In building to the discrete-time product-limit estimator subject to random left-truncation 
and right-censoring, recall again our observable data: for each lease, 1 ≤ i ≤ n, we observe the triple (Yi, min(Xi, Ci), 1Xi≤Ci ), where 
Ci = Yi + τ . Since τ is a constant, which depends on the pricing time, ε, and the fixed times m and �, τ is independent of any specific 
lease i, 1 ≤ i ≤ n (this a convenient property of our application, see Section 4.3 for additional details). In other words, the observable triple 
derives from the pair (Xi, Yi), 1 ≤ i ≤ n, which is an independent copy of (X, Y ) given X ≥ Y and under the assumption that X and Y are 
independent, and the constant, τ .

In the following, the subscript τ will indicate an underlying data set that has been left-truncated and right-censored. Define α =
Pr(X ≥ Y ),

f∗,τ (x) = Pr(Xi = x, Xi ≤ Ci) = Pr(X = x, X ≤ C | X ≥ Y )

= Pr(X = x)Pr(Y ≤ x ≤ C)

α
, (3)

and

Uτ (x) = Pr(Yi ≤ x ≤ min(Xi, Ci)) = Pr(Y ≤ x ≤ min(X, C) | X ≥ Y )

= Pr(Y ≤ x ≤ C)Pr(x ≤ X)

α
. (4)

Therefore,

f∗,τ (x)

Uτ (x)
=

[
Pr(X = x)Pr(Y ≤ x ≤ C)

α

][
α

Pr(Y ≤ x ≤ C)Pr(x ≤ X)

]
= λτ (x).

See Section 2 of Lautier et al. (2021) for an extended discussion of why having Uτ (x) in the denominator is not a concern (i.e., it is 
nonzero).
56



J.P. Lautier, V. Pozdnyakov and J. Yan Insurance: Mathematics and Economics 110 (2023) 53–71
Remark. We have been assuming C = Y + τ , where τ = ε − (m +� + 1), a constant. However, the results hold more generally if C = f (Y ), 
where f is a Borel function and C ≥ Y almost surely.

Since (3) and (4) are directly estimable from the data via

f̂∗,τ ,n(x) = 1

n

n∑
i=1

1Xi≤Ci 1min(Xi ,Ci)=x, and Ûτ ,n(x) = 1

n

n∑
i=1

1Yi≤x≤min(Xi ,Ci),

we have the natural estimator for (2) as follows:

λ̂τ ,n(x) = f̂∗,τ ,n(x)

Ûτ ,n(x)
=

∑n
i=1 1Xi≤Ci 1min(Xi ,Ci)=x∑n

i=1 1Yi≤x≤min(Xi ,Ci)

. (5)

The discrete-time point estimator we have derived under the preliminary conditions of Section 2 in (5) coincides directly with Tsai et al. 
(1987). Notably, under “minor technical restrictions” on the support space of X and Y , Tsai et al. (1987) state that (5) is the nonparametric
conditional maximum likelihood estimator of λτ . Further, it is not difficult to show that (5) is the same point estimator as in Section 18.4.3 
of Dickson et al. (2020) and Section 12.1 of Klugman et al. (2012). We prefer the indicator representation because of its natural relationship 
to computational programming, however, which facilitates applications.

Also of interest is the asymptotic properties of (5). In Tsai et al. (1987), the authors provide the asymptotic properties of (5), but they 
assume a continuous survival function in doing so. Hence, we cannot apply the asymptotic results of Tsai et al. (1987) to the discrete 
space we carefully defined in Section 2. Our main theoretical contribution is thus the asymptotic properties of the vector of estimators 
�̂τ ,n = (λ̂τ ,n(� + 1), . . . , ̂λτ,n(ξ)) under the discrete assumptions of Section 2. Specifically, we show that �̂τ ,n is asymptotically normal 
with independent components and unbiased for the vector of true hazard rates, �τ = (λτ (� + 1), . . . , λτ (ξ)) . We state this formally in 
Theorem 3.1 and provide a complete proof in Appendix A.1.

Theorem 3.1 (�̂τ ,n Asymptotic Properties). Define �̂τ ,n = (
λ̂τ ,n(� + 1), . . . , ̂λτ,n(ξ)

)
, where λ̂τ ,n follows from (5). Then,

(i)

�̂τ ,n
P−→ �τ , as n → ∞;

(ii) √
n(�̂τ ,n − �τ )

L−→ N(0,�), as n → ∞,

where �τ = (
λτ (� + 1), . . . , λτ (ξ)

)
with λτ = f∗,τ /Uτ and

� = diag

(
f∗,τ (� + 1){Uτ (� + 1) − f∗,τ (� + 1)}

Uτ (� + 1)3
, . . . ,

f∗,τ (ξ){Uτ (ξ) − f∗,τ (ξ)}
Uτ (ξ)3

)
.

That is, the estimators λ̂τ ,n(� + 1), . . . , ̂λτ,n(ξ) are consistent, asymptotically normal, and independent.

Under suitable conditions, Theorem 3.1 allows risk managers to account for the variability of the estimators �̂τ ,n , and we provide an 
illustrative example in Section 6.2. Lastly, we again wish to emphasize that we can make meaningful inference about F from F0 only; we 
cannot recover F . We demonstrate the effects of left-truncation and right-censoring on our ability to recover the tails of X (as well as the 
asymptotic properties of Theorem 3.1) in the simulation study of Section 5. Meaningful inference on X is still possible, however, which is 
the main contribution of the related statistical literature.

4. Cash flow model

We first introduce the model within the context of a consumer auto-lease asset-backed security. Next, we provide the major financial 
result of this work in the formulaic estimators for an expected present value of a pool of time-to-event contingent contracts over a 
monthly time horizon of the investor’s choice. The section closes with a digression to emphasize the model’s important assumptions and 
considerations before generalizing it to other forms of ABS. To assess its performance in a realistic application, readers may proceed to 
Section 6.

4.1. Pricing model

Our objective is to calculate the present value or price of future cash flows from a trust of consumer automobile lease contracts. 
For generality, suppose the present time is m + � + 1 ≤ ε ≤ m + ω. This implies the trust is ongoing with payment history but not yet 
terminated. We will elucidate our model by building up from a single lease contract to the complete trust. Recall there are n total lease 
contracts at origination and define nε to be the number of active lease contracts at time ε. Naturally, nε ≤ n. We consider a lease i that is 
still active and paying at time ε, where 1 ≤ i ≤ nε .

Suppose that the age of this lease contract i at time ε is � + 1 ≤ xε(i) ≤ ξ . For lease i, denote the monthly contractual payment as 
ci , the contract residual value as vi , the random month of termination as Xi where xε(i) ≤ Xi ≤ ξ , the kth month spot rate as rk for 
1 ≤ k ≤ Xi − xε(i) + 1, the sale time multiplicative scalar random variable given Xi as Z Xi , and the random number of months past the 
point of the final monthly lease payment until the vehicle is sold and the trust is repaid given Xi as D Xi , where D Xi is an integer over 
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Table 1
MBALT 2017-A sample life cash flows.

Obs. Month Ex. Asset Num: 1 Ex. Asset Num: 2

Age Pmt Resid. Con. Resid. Age Pmt Resid. Con. Resid.

1 30 1,478 0 – 31 1,357 0 –
2 31 739 0 – 32 678 0 –
3 32 739 0 – 33 678 0 –
4 33 739 0 – 34 678 0 –
5 34 739 0 – 35 678 0 –
6 35 739 0 – 36 0 24,576 32,376
7 36 0 0 – – – – –
8 37 0 30,690 36,383 – – – –

the range {0, 1, . . . , min(dmax, Xi − xε(i) + 1)}. Here, dmax ≤ ξ is a finite positive integer. Define the present value of the monthly lease 
payments as

W i(Xi, D Xi ) =
Xi−D Xi −xε(i)+1∑

j=1

ci

(1 + r j)
j
,

and the present value of the contractual residual payment as

Ri(Xi) = vi

(1 + rXi−xε(i)+1)
Xi−xε(i)+1 .

Then, the present value (PV) at time ε of the future payments for lease i is

PVi = W i(Xi, D Xi ) + Ri(Xi)Z Xi . (6)

Remark. Let us connect (6) to the inherent lessee optionality embedded in an automobile lease contract. In the event the lessee elects to 
purchase the vehicle at contract termination, D Xi = 0, and so there is no gap between the final monthly payment and the large residual 
payment. In the event D Xi = 0, then Z Xi ≈ 1, as the purchase price is likely very close to vi . On the other hand, if the lessee declines to 
purchase the vehicle, the dealer must sell the automobile to repay the trust. In this case, we expect some delay and so D Xi > 0. Further, 
it is also likely in this case Z Xi �= 1. In this sense, given a lease contract termination time of Xi , we can interpret Pr(D Xi = 0) as the 
probability a lessee elects to purchase the automobile at contract termination.

We assume all payments are received at the end-of-the-reporting-period. The quantities ci , vi , and xε(i) are known for lease i. Within 
a lease contract, the purchase price of the automobile is set at onset. In total, the randomness of PVi follows from the randomness of 
the lease contract termination time, Xi , the random residual realization, Z Xi vi , and the random delay time between receipt of the final 
monthly payment and the residual, D Xi . In Section 6.2, we will also incorporate a fourth component of randomness in the form of the 
statistical estimation error of the distribution of X (valid in certain situations, see Section 4.3 for details).

It may be illustrative to connect the notation of (6) with two realized lease contract cash flows from the Mercedes-Benz Auto Lease 
Trust (MBALT) 2017-A consumer automobile lease asset-backed security (Mercedes-Benz, 2017), which will be introduced more completely 
in Section 6. As such, we have summarized two realized lease cash flows in Table 1 over the first eight months of the securitization. For 
example asset number 1, we have xε(i) = 30, ci = 739, vi = 36,383, Xi = 37, D Xi = 3, and Z Xi = 30,690/36,383 = 0.844. Similarly, for 
example asset number 2 we have xε(i) = 31, ci = 678, vi = 32,376, Xi = 36, D Xi = 1, and Z Xi = 24,576/32,376 = 0.759.

The present value of the complete trust at time ε then follows from (6) as

PVTrust =
nε∑

i=1

PVi . (7)

In the following, we present steps to calculate the price of such a trust vis-à-vis taking an expectation of (7), perhaps more commonly 
known to some readers as computing the actuarial present value (APV).

4.2. Expected or actuarial present value

Throughout this section assume rk is the deterministic spot rate for month 1 ≤ k ≤ ξ . It may be generated stochastically from an 
interest rate model or other economic scenario generator, but the monthly rate shall be treated as an user input discount assumption.

In taking an expectation of (7), we will need the probabilities Pr(Xi = s | X ≥ xε(i)), which we denote ps
xε(i)

, for xε(i) ≤ s ≤ ξ . The 
probabilities ps

xε(i)
may be defined in terms of the hazard rate, i.e., (2). Precisely,

Pr(Xi = s | Xi ≥ xε(i)) = Pr(X = s | X ≥ xε(i))

= λτ (s)
∏

xε(i)≤k≤s−1

[1 − λτ (k)],

where we use the convention
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∏
xε≤k≤s−1

[1 − λτ (k)] = 1,

if s = xε . It is possible that the number of months beyond age xε(i) that a lease contract terminates will be less than dmax. In this case, we 
will load all possible delay time probabilities beyond Xi − xε(i) + 1 for a given Xi onto Pr(D = Xi − xε(i) + 1 | X = Xi). Formally, we define

∗
Pr(D Xi = k) = Pr(D = k | X = Xi) + 1k=Xi−xε(i)+1

( dmax∑
k=Xi+xε(i)+2

Pr(D = k | X = Xi)

)
.

Finally, let us use the notation ϕ = min(dmax, Xi − xε(i) + 1). We are thus ready to state the major result of this section, with its proof in 
Appendix A.2.

Theorem 4.1. Assume the framework of Sections 2 and 3. Suppose the present time is ε, where m +� + 1 ≤ ε ≤ m +ω, and we have a collection of nε

time-to-event contingent cash flows streams that are still active and paying following the individual model (6) and the aggregate model (7). Call the 
collection of these random cash flow streams the Trust. Denote the lifetime random variable of interest for lease i, 1 ≤ i ≤ nε , by Xi . Then the actuarial 
present value (APV) of the Trust is

APVTrust =
nε∑

i=1

APVi, (8)

where

APVi =
ξ∑

m=xε(i)

({ ϕ∑
k=0

W i(m,k)
∗

Pr(Dm = k)

}
+ Ri(m)E(Z | X = m)

)
pm

xε(i)
.

In a practical setting, the underlying distributions of the random quantities in Theorem 4.1 will need to be estimated. If we assume 
independence between X and the left-truncation random variable Y — a non-trivial assumption that we discuss more fully in Section 4.3
— then the results of Section 3 may be used to estimate the recoverable portion of the distribution for the time-until-contract-termination, 
X . Furthermore, as we demonstrated in Theorem 3.1, the estimator (5) will be asymptotically unbiased. This suggests that the use of the 

estimators λ̂τ ,n in place of the true hazard rates in Theorem 4.1 along with asymptotically unbiased estimates for 
∗

Pr(D Xi = k), 0 ≤ ϕ
and E(Z | X = m), � + 1 ≤ m ≤ ξ (such as standard empirical estimates), will yield a close approximation for the true expected present 
value (8) of a trust of time-to-event contingent cash flows for large n (for the sake of clarity, we repeat here that n is the number of 
leases active at the origination of the trust at time m + �, whereas nε is the number of leases active at time ε). If the assumption of 
mutual independence between (Xi, Yi) and (X j, Y j) for 1 ≤ i �= j ≤ n is also satisfied — another non-trivial assumption discussed more in 
Section 4.3 — then we may also assess the inherent uncertainty of the price point estimator of Theorem 4.1 (see Section 6.2).

In many financial applications it may be desirable to calculate a present value for a fixed amount of time, such as over the next six 
months or one year. The equations of Theorem 4.1 may be easily modified to do so. Let the present value time horizon in months be 
denoted by κ . That is, if we desire to calculate the present value over the next 12 months only, we would set κ = 12. To illustrate, define

W ∗
i (Xi, D Xi ) =

min(κ,Xi−D Xi −xε(i)+1)∑
j=1

ci

(1 + r j)
j
,

let 1κ be an indicator function that equals 1 if κ ≤ Xi − xε(i) + 1 and zero otherwise, and observe the following corollary stated without 
proof.

Corollary 4.1.1. Assume the conditions of Theorem 4.1. Then the (APV) of the Trust over the next κ months only, where κ ∈N , is

APVκ
Trust =

nε∑
i=1

APVκ
i , (9)

where

APVκ
i =

ξ∑
m=xε(i)

({ ϕ∑
k=0

W ∗
i (m,k)

∗
Pr(Dm = k)

}
+ 1κ Ri(m)E(Z | X = m)

)
pm

xε(i)
.

4.3. Remarks on assumptions and generalizations

We digress to discuss the plausibility of two important assumptions of independence underlying the results of Sections 2, 3, and 4, and 
the potential to generalize the model to other securitization asset classes outside of consumer automobile-lease ABS.

We begin with the two assumptions of independence. The first important assumption was introduced in the estimation framework of 
Section 3 and corresponds to the independence between the lifetime random variable, X , and the left-truncation random variable, Y . If we 
recall our motivation, however, Y is a shifted random variable stemming from T , which is the origination time random variable of an auto 
lease contract (see Fig. 1 as needed). So, the first question is this: is it reasonable to assume X and T are independent? We believe the 
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answer is affirmative for two reasons. First, the total sample space of T is generally over a relatively short time period, (e.g., less than three 
years — see Section 6). Thus, ceteris paribus, it is unlikely that a lease originated a short time away from a second lease would have a 
materially different lifetime distribution. Second, issuers of asset-backed securities are using securitization as a financing tool for business 
needs (i.e., writing loans and leases to sell more cars). Hence, the decision of when to issue an ABS is typically driven by market factors 
that are connected to the parent company, such as financing needs and current market rates, rather than connected to the underlying 
performance of the leases. Indeed, most standard techniques of estimating a survival curve require independence between the lifetimes of 
interest, the right-censoring random variable, and the left-truncation random variable (Klein and Moeschberger, 2003, Chapter 3). In our 
specific application, however, we may use the independence between T and X to achieve independence between X and Y , and from the 
independence of X and Y follows the independence between X and C (see Section 2 as needed). This is a potentially unique advantage 
to our financial application that may not be common in widespread applications, and we emphasize again the statistical integrity of the 
estimation framework collapses if we lose independence between X and Y .

The second important assumption is independence between two given leases within the trust to estimate the lease lifetime distribution 
with (5) for the cash flow model of Section 4. More precisely, this is independence between the pairs (Xi, Yi) and (X j, Y j) for 1 ≤ i �= j ≤ n. 
In some sense, this assumption is more difficult to parse. To explain, we paraphrase the famous opening line of Tolstoy’s masterpiece Anna 
Karenina: all independent random variables are independent in the same way, but all dependent random variables are dependent in their 
own way. In other words, how does one form a sense of dependence between two lessees? This question is quite difficult to answer. 
Instead, we propose to proceed by (1) identifying when assuming independence between two lease’s lifetimes may be reasonable and (2) 
how the model will falter if we assume independence between two leases but there is in actuality dependence.

In light of the subprime mortgage crisis of the late 2000s, we would advise caution in applying our estimation procedure to a pool 
of subprime credit quality borrowers (i.e., a credit score below 620 (Consumer Financial Protection Bureau, 2019)). While consensus 
around the widespread failures within the subprime mortgage crisis is that mortgage defaults were largely driven by a deterioration 
in borrower credit quality that was masked by appreciating home values rather than from faulty assumptions within consumer credit 
models (Demyanyk and Van Hemert, 2009), it is reasonable to presume that a large scale economic event would lead to an increased level 
of default in subprime borrowers. But what of high-credit quality borrowers leasing high-end luxury cars, such as those in the MBALT 
2017-A lease pool that is our focus in Section 6? In this case, we feel it is reasonable to assume these lessees generally operate with 
mutual economic independence. To justify this claim, note that net losses as a percentage of average dollar amount of lease contracts 
outstanding for the Mercedes-Benz aggregate lease portfolio did not exceed 0.40% between 2016 and the first three months of 2021, 
which includes the economic event of the Coronavirus pandemic (Mercedes-Benz, 2021).

What if there is dependence between the pairs (Xi, Yi) and (X j, Y j) for 1 ≤ i �= j ≤ n, but we have incorrectly assumed independence? 
As long as the assumption of independence between the lifetime of interest, X , and the left-truncation random variable, Y remains valid 
for all i ∈ {1, . . . , n} and the dependence among the observations is weak enough to allow the Central Limit Theorem to work, we expect 
that the asymptotic unbiasedness of the vector of point estimators, �̂τ ,n , to remain, and, subsequently, so does the asymptotic unbiased-
ness of the point estimator in Theorem 4.1 (or Corollary 4.1.1). What changes is the uncertainty level or variance of these estimators (e.g., 
� in Theorem 3.1). In practice, when the sample size is big enough, the uncertainty in the estimation of distribution will be negligible 
compared to the uncertainty of the distribution itself, so its effect on a pricing exercise will be minimal.

We close this section with discussion of the appropriateness of applying our model to other forms of ABS. That is, our focus is 
consumer automobile-lease asset-backed securities; can the model generalize to other asset classes of ABS? We feel for certain asset 
classes, the answer is affirmative. Certainly, for other types of leased assets, such as equipment lease ABS, the model extends naturally. 
Other generalizations are possible with minimal changes to the model of Section 4. For example, a substantial portion of asset-backed 
securities are agency mortgage-backed securities (MBS), which are issued by the government-sponsored entities Fannie Mae, Freddie Mac, 
and Ginnie Mae. The total issuance of such debt is over $5 trillion, which is approximately 10% of all credit market debt in the United 
States (Tuckman and Serrat, 2012), and of which life insurers hold nearly $250 billion agency MBS (McMenamin et al., 2013). Investors do 
not bear risk of non-payment of principal or interest on the full outstanding balance. Instead, the major risk to investors is related to the 
timing of cash flows (Davidson and Levin, 2014). In other words, the major risk of agency asset-backed securities connects directly to the 
lifetime random variable, X , as defined within (6), and so we feel an application of our model to agency MBS is appropriate.

When modeling a consumer loans more generally, such as student loans, auto loans, residential mortgages, or credit cards, however, 
it may be preferable to treat prepayments and defaults separately. As currently constructed, the model of Section 4 can only handle one 
time-to-event outcome. That said, we believe it may be generalized to a competing risk environment by updating the estimator in (5) and 
editing the details of (6) for the various competing risk outcomes (i.e., receipt of outstanding balance in a prepayment or recovery given 
default), though the details of which remain an ongoing investigation.

5. Simulation study

We present a simulation study for two purposes. First, we will demonstrate that the full distribution for a lifetime random variable 
may not be recoverable if the estimation is performed using incomplete data. Formally, we will see the distinction between F and F0, 
as previously discussed in Section 2, which can have meaningful implications for cash flow analysis. In some instances, however, the 
contractual terms of the underlying financial products may be used to make assumptions to partially address the challenges of incomplete 
data. We provide an example of this within our simulation study as an illustration. The second purpose of our simulation study is to verify 
the asymptotic properties stated in Theorem 3.1 (the complete proof may be found in Appendix A.1).

Let the lease origination random variable T follow a discrete uniform random variable over the integers T = {1, . . . , 10}. Using the 
notation from Section 2, therefore, m = 10. Let � = 2 and so the left-truncation random variable Y is discrete uniform over the integers 
Y = {3, . . . , 12}. We proceed as though the current time is ε = 20, which implies τ = ε − (m + � + 1) = 7 (see Fig. 1 as needed). Consider 
now the lifetime of interest random variable, X , which follows a left-truncated geometric distribution over X = {1, . . . , 24} with probability 
mass function (pmf)
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Fig. 2. Theorem 3.1 left-truncation and right-censoring simulation study results: true quantities (solid line), empirical averages of 1,000 replicates of hazard rate estimates 
and corresponding empirical 95% log-scale confidence intervals (dashed lines), and the true 95% log-scale confidence interval using Theorem 3.1 (shaded ribbon). All three 
closely agree.

Pr(X = x) =

⎧⎪⎨
⎪⎩

p(1 − p)x−1, x = 1,2, . . . ,23;∑∞
x=24 p(1 − p)x−1, x = 24;

0, otherwise,

(10)

where 0 < p < 1. For this pmf, we set p = 0.2 and so λ(x) = 0.2 for 1 ≤ x ≤ 23 and λ(x) = 1 for X = 24. (To aid readers attempting 
to reproduce these results, we calculated α = 0.2856.) The pmf in (10) implies ω = 24, and so the complete distribution of X is not 
recoverable. In other words, because of left-truncation and right-censoring, we may only form estimates for � + 1 = 3 ≤ X ≤ 19 = ξ =
min(ω, ε − 1).

In an application to financial data, however, we may be able to reference contractual terms that provide the basis to infer a minimum 
value of ω, from which we can make a reasonable assumption. For example, in estimating the lifetime random variable for a 24-month 
lease contract, we should assume that ω ≥ 24. Thus, to continue with this example, since ξ = 19 < 24, we suggest to extend the estimated 
hazard rate for ξ forward geometrically until 24, at which point the hazard rate should then be assumed to be unity. Extending the last 
observation assuming a geometric tail is a common practice in survival analysis (see, for example, a discussion in the continuous case in 
Section 12.1 of Klugman et al., 2012). We generated n = 10,000 pairs of left-truncated random variables using (1). We then calculated λ̂τ ,n

using (5) for X ∈ {3, . . . , 19}. This process was repeated for 1,000 replicates.
Fig. 2 shows the average of the estimated hazard function from the 1,000 replicates. We can see that �̂τ ,n (dashed line) is very close to 

the true �τ = (0.2, . . . , 0.2) (solid line) for the recoverable range of X , 3 ≤ X ≤ 19. We also plot the average 95% true log-scale confidence 
interval using Theorem 3.1 by the shaded ribbon, its estimate using the estimators f̂∗,τ ,n and Ûτ ,n in place of f∗,τ and Uτ , respectively, 
in � by the dashed line, and the empirical 2.5th and 97.5th percentiles of the 1,000 replicates of estimators for each recoverable X . All 
three closely agree. We also see the hazard rate (and thus the associated probabilities) for X = 1, 2, 20, 21, 22, 23, 24 are not recoverable 
due to left-truncation and right-censoring.

We also verified Theorem 4.1 and Corollary 4.1.1 through a simulation study, but the results have been omitted in light of the proof in 
Appendix A.2. For interested readers, please contact the corresponding author for details.

6. Application

We now demonstrate the effectiveness of the cash flow modeling and pricing apparatus introduced in Section 4 in a realistic setting. 
Specifically, we will consider a large subset of lease data from the Mercedes-Benz Auto Lease Trust (MBALT) 2017-A consumer automo-
bile lease asset-backed security (Mercedes-Benz, 2017). Because of the aforementioned SEC Regulation AB II enacted in November 2016 
(Securities and Exchange Commission, 2014), investors may now obtain detailed loan-level borrower and monthly loan performance data 
through the Electronic Data Gather, Analysis, and Retrieval (EDGAR) system maintained by the SEC. For additional reference, Securities 
and Exchange Commission (2016) provides a detailed listing of available fields. MBALT 2017-A was placed in April of 2017 and closed in 
August of 2019. We thus have 28 months of loan performance and cash flow data. For convenience, we have made the downloaded and 
cleaned data file available in the online supplemental material.

The MBALT 2017-A transaction originally contained 56,402 lease contracts on Mercedes-Benz automobiles with original terms ranging 
from 24 to 60 months, the vast majority of which are 36 month leases (47,315). The credit profile of a substantial portion of underlying 
lessees is super-prime, which refers to a consumer credit score above 720 (Consumer Financial Protection Bureau, 2019). Nearly the entire 
pool of lessees would be classified as a prime credit, which refers to a consumer credit score above 660 (Consumer Financial Protection 
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Fig. 3. MBALT 2017-A credit and vehicle value distributions.

Bureau, 2019). Further, the majority of automobiles represent high-end or luxury vehicles. To see this, consider that the original vehicle 
value averages over just over $61,600. For a density plot of the lessee credit profile and vehicle values, see Fig. 3. As another indicator 
of the low credit risk of this transaction, between 2012 and 2016, net losses as a percentage of average dollar amount of lease contracts 
outstanding for the Mercedes-Benz lease portfolio have ranged between 0.19% and 0.27% (Mercedes-Benz, 2017). We thus feel the MBALT 
2017-A asset-backed security is a good candidate for the proposed model in Section 4, particularly in light of the discussion in Section 4.3.

6.1. Pricing results

For the remainder of the section, we will focus on a subset of the 47,315 36-month leases. Specifically, we removed 36-month lease 
contracts with data irregularities that could not be easily explained from a print out of cash flows or thorough review of data field 
descriptions. The first such irregularity was unclear or multiple residual payments. It is our opinion that some of the cash flows reported 
in the residual field (liquidationProceedsAmount) represent monthly payment cash flows, and they may be mislabeled as a form 
of bookkeeping convenience or error. To evaluate the potential of the cash flow model in Section 4 and avoid introducing potentially 
erroneous interpretations of the data, we have elected to remove such records. In total, this removed 16,741 contracts. In addition, there 
is a data field called terminationIndicator, and, in an additional 729 contracts, this field does not correspond to the month the 
final residual payment was received. These records were also removed. This leaves a total of 29,845 lease contracts. For an example of 
records removed in the form of Table 1, please see Appendix B. We recommend fitting a different set of hazard rate estimators (5) for each 
original lease termination length (i.e., 24-month leases should be fit separately from 36-month leases, and so on) because it is prudent to 
assume the prior information of the termination schedule will have a material impact on the underlying lifetime distribution. To price the 
complete trust, one may then add all different lease term groups together. For illustrative purposes, however, we will focus on the subset 
of 29,845 36-month lease contracts, which we will refer to as “the Trust” going forward.

The oldest lease in the Trust at initialization was 33 months old, and the youngest lease was 3 months old. Therefore, in the notation 
of Section 2, we have � = 3 and m = 30. We will denote the lifetime random variable, X , as the time-until-contract-termination (i.e., the 
time the final residual payment is made to the Trust, see Table 1 as needed). We will first use the methods of Section 3 to estimate the 
distribution for X . To mimic the realities of pricing an active security, we will assume an observation window of 6, 12, 18, and 24 months. 
By an observation window, we mean that we will only use data from the first O months of securitization payments to estimate X , where 
O ∈ {6, 12, 18, 24}. If we make the connection to Fig. 1, then an observation window of 6 months corresponds to ε = 39. Estimates for the 
hazard rates of X by observation window length may be found in Fig. 4. We can see that the hazard rate accelerates close to month 36, 
which is expected for a lease contract with a scheduled termination of 36 months. It is also interesting to see the effect of left-truncation 
and right-censoring. For example, we cannot recover the distribution of X before lease age 4 months. Given the pattern of the hazard 
rate in Fig. 4, however, it is reasonable to assume the absence of months 1-3 will have a small impact on the overall results. In addition, 
we can see that as the observation window expands and less observations are right-censored, the right tail of X gradually extends well 
beyond month 36. For the shortest observation window of 6 months, we observe terminations up to month 38, and, since 38 ≥ 36, we 
assume ξ = 38 in this case. Also of interest may be the resulting confidence intervals from Theorem 3.1, which are denoted by the blue 
ribbons in Fig. 4. As we can see, the extended right tails have fewer observations and thus more estimator uncertainty than the early 
portions of the distribution of X .

To determine the pricing results, we calculate empirical estimates for E(Z | X = m) and 
∗

Pr(Dm = k) for k ∈ {0, . . . , ϕ} and m spanning 
the recoverable sample space of X , using only the observations available within the observation window. Note that to account for the small 
portion of defaults, we consider the difference between total residual realizations (liquidationProceedsAmount) and default losses 
or charge-offs (chargedOffAmount) when estimating the final residual payment made to the trust. Our objective is to use Corollary 4.1.1
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Fig. 4. MBALT 2017-A hazard rate est. and 95% confidence intervals (36-Mo. leases).

for various values of κ and compare the calculated price against the actual realized observations from the Trust. In addition, we will 
also compare the results of Corollary 4.1.1 against a variation of the modeling approach used in the MBALT 2017-A pricing prospectus 
(Mercedes-Benz, 2017, Appendix B); that is

Modeling Assumption: The cash flow schedules appearing in the immediately following tables were generated assuming that (i) the 
lessees make their remaining lease payments starting in March 2017 and every month thereafter until all scheduled lease payments 
are made and (ii) the residual value of the Leased Vehicles is due the month following the last related lease payment. (Mercedes-Benz, 
2017, pg. B-1)

Specifically, we will compare the results of Corollary 4.1.1 against an approach that uses a non-random X (i.e., all leases terminate at 
month 36 or immediately thereafter if older) but still uses the empirical estimates for E(Z | X = m). In other words, can our formulaic 
approach that accounts for left-truncation and right-censoring improve upon the non-random X pricing assumptions of a newly issued 
auto-lease ABS? In Table 2, we refer to non-random X as the Contract approach. To produce the comparisons, we utilized three interest-
rate discount scenarios. The first is a simple zero-interest scenario, the second is a standard scenario, and the last is an inverted scenario. 
The exact spot rates used in each scenario may be found in Appendix B.

Based on the results in Table 2, we can see that Corollary 4.1.1 generally outperforms the contract approach and provides an accurate 
estimate of the value of future cash flows. More specifically, Corollary 4.1.1 is quite accurate over the short-term, even for an observation 
window of only 6 months. As the observation window increases, the results of Corollary 4.1.1 improve over a longer horizon as well, 
until they eventually are inside the Contract approach for all time horizons by an observation window of 12 months. As the observation 
window size increases, Corollary 4.1.1 begins to significantly outperform the Contract approach. The results hold generally across the three 
interest rate scenarios. Though not reported within this manuscript, we also note that the results are consistent with Table 2 for a subset 
of 24-month leases from the MBALT 2017-A transaction.

Because the results of Corollary 4.1.1 can be computed via a formula and do not require extensive simulation, we feel the ability 
to improve upon the non-random transaction prospectus approach (Mercedes-Benz, 2017, Appendix B) — especially as the observation 
window increases — at limited additional effort to be an advantage of our approach. Furthermore, the ability to estimate a fully specified 
asymptotic distribution of the hazard rate estimators using Theorem 3.1 — under the mutual independence assumption of (Xi , Yi) and 
(X j, Y j) for 1 ≤ i �= j ≤ n, which we feel is satisfied for the MBALT 2017-A pool of leases — allows for an assessment of the potential 
uncertainty of the pricing point estimates of Corollary 4.1.1. As such, we provide a demonstration in the following section.

6.2. Quantifying estimator uncertainty

In this section, we will illustrate how to use Theorem 3.1 to quantify the estimator uncertainty of price point estimates made with 
Corollary 4.1.1. Before proceeding, we first indicate that the mutual independence assumption of (Xi , Yi) and (X j, Y j) for 1 ≤ i �= j ≤ n is 
likely satisfied for the MBALT 2017-A pool of leases (see Section 4.3 as needed). As a reminder, if an investor believed such an assumption 
was not satisfied, the results of this section may not be valid.

To obtain wider confidence intervals for illustrative purposes, we will consider 24-month lease contracts, which make up a smaller 
portion of MBALT 2017-A (866 leases out of a total of 50,402). The smaller sample is for illustrative purposes only; this analysis scales 
without issue. As in Section 6.1, we filtered the 866 24-lease contracts for data irregularities, which left 493 24-month lease contracts (see 
Appendix B as needed).
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Table 2
MBALT 2017-A Corollary 4.1.1 pricing results (APV) comparison to prospectus approach (Mercedes-Benz, 2017) (Con.) and actual realized cash flows (Act.) including percentage 
differences for a pool of 29,845 36-month lease contracts. The results of Corollary 4.1.1 generally fall well within the prospectus approach, especially over short pricing 
horizons and as the observation window increases. The various discount interest rate curves may be found in Appendix B. All figures not in percentages are in millions.

Obs. Win. κ Zero Interest Rates Standard Yield Curve Inverted Yield Curve

Con. APV Act. Con. [%] APV [%] Con. APV Act. Con. [%] APV [%] Con. APV Act. Con. [%] APV [%]

6 mo. 3 75 101 102 −26.47 −0.98 74 99 101 −26.73 −1.98 70 95 97 −27.84 −2.06
6 169 210 205 −17.56 2.44 163 203 198 −17.68 2.53 153 190 186 −17.74 2.15
9 258 317 310 −16.77 2.26 242 298 292 −17.12 2.05 225 277 271 −16.97 2.21
12 359 436 420 −14.52 3.81 325 395 382 −14.92 3.40 302 367 355 −14.93 3.38
15 466 567 553 −15.73 2.53 405 493 481 −15.80 2.49 378 461 450 −16.00 2.44
18 629 716 671 −6.26 6.71 518 596 563 −7.99 5.86 489 562 530 −7.74 6.04
21 770 860 792 −2.78 8.59 606 687 639 −5.16 7.51 581 656 609 −4.60 7.72
22 804 911 837 −3.94 8.84 626 717 666 −6.01 7.66 602 688 638 −5.64 7.84

12 mo. 3 71 95 105 −32.38 −9.52 70 94 104 −32.69 −9.62 67 90 99 −32.32 −9.09
6 159 204 215 −26.05 −5.12 154 197 208 −25.96 −5.29 144 185 195 −26.15 −5.13
9 258 327 348 −25.86 −6.03 242 306 326 −25.77 −6.13 224 284 302 −25.83 −5.96
12 408 463 466 −12.45 −0.64 364 417 423 −13.95 −1.42 338 387 392 −13.78 −1.28
15 539 598 587 −8.18 1.87 462 519 513 −9.94 1.17 431 484 479 −10.02 1.04
16 571 645 632 −9.65 2.06 485 552 545 −11.01 1.28 453 516 510 −11.18 1.18

18 mo. 3 66 108 133 −50.38 −18.80 65 106 131 −50.38 −19.08 62 102 125 −50.40 −18.40
6 194 238 251 −22.71 −5.18 187 229 243 −23.05 −5.76 174 215 228 −23.68 −5.70
9 317 370 371 −14.56 −0.27 296 347 351 −15.67 −1.14 273 322 326 −16.26 −1.23
10 347 417 416 −16.59 0.24 322 386 389 −17.22 −0.77 297 358 361 −17.73 −0.83

24 mo. 3 84 118 120 −30.00 −1.67 83 116 119 −30.25 −2.52 79 111 114 −30.70 −2.63
4 110 163 166 −33.73 −1.81 108 160 162 −33.33 −1.23 103 152 154 −33.12 −1.30

Fig. 5 presents the resulting 95% confidence intervals for the hazard rate estimators using Theorem 3.1 for these 493 24-month lease 
contracts (compare with the 36-month contracts in Fig. 4). The confidence intervals suggest that the hazard rate estimate random vari-
ables may reasonably fall within such intervals, which will naturally flow through the calculations in Corollary 4.1.1. From the work in 
Theorem 4.1, we can specify the exact distribution of the vector of hazard rate estimators, �̂τ ,n , and use simulation to assess the potential 
variance of our APV estimates. That is, suppose we have a given observation window, say 6 months. Our procedure is as follows:

[1] Determine �̂τ ,n using (5);
[2] Estimate � from Theorem 3.1 using the estimators f̂∗,τ ,n and Ûτ ,n defined in (5);
[3] Use the delta-method (Mukhopadhyay, 2000, Theorem 5.3.5, pg. 261) to find the log-adjusted multivariate normal distribution (to 

ensure the confidence intervals for the hazard rates fall within 0 and 1);
[4] For each of the desired number of replicates, simulate a realization of hazard rates from the multivariate normal distribution in [3] 

and then proceed to calculate APVκ
Trust from Corollary 4.1.1 with these simulated hazard rates;

[5] Assess the potential estimation error though the distribution of stored results from [4].

We have done exactly this in Fig. 5 for an observation window of 6 months, κ = 3, 4,000 replicates, for the sample of 493 24-month 
leases from the MBALT 2017-A transaction described above. It is noteworthy the randomness of the hazard rate estimators can influence 
the pricing calculation of Corollary 4.1.1 by a range of over $1M, especially as the price was calculated to be approximately $5.4M. We 
also see the actual realization for these three months does fall within the range of simulated estimates. For this particular comparison, 
therefore, we would say that the estimation process of Section 3 in combination with the cash flow model of Section 4 was able to 
correctly predict the future cash flows.

We close this section with a remark on interpreting the results of Fig. 5. As the sample size increases, we would expect the variability 
of the estimator to decrease by Theorem 3.1, which will lead to a more precise point estimate of the price using Corollary 4.1.1. This 
should not be conflated with less risk inherent in the future cash flows, however. The variability from the cash flows within (6) is due to 
the randomness of the lifetime random variable, X , and the delay and residual random variables, D X and Z X , respectively. The volatility 
of these random variables will depend on the distributional estimates produced by the underlying data and not on the variability of the 
estimators themselves (though the latter may be of interest, too). Our process has produced an estimation and pricing process that we 
can expect to be asymptotically unbiased; it does not suggest that the cash flow risk will decline as n grows.

7. Conclusion

Despite life insurers significant holdings in securitized assets including ABS, it is difficult to find studies on this important fixed-income 
asset class within the actuarial literature. Further, current market pricing techniques for these assets either rely on a non-random time-to-
event model or may not utilize the full asset-level disclosures of SEC Regulation AB II Securities and Exchange Commission (2014), which 
took effect in 2016. Our work fills this gap by establishing an effective pricing process that makes use of discrete-time survival analysis 
estimation techniques for incomplete data.

Broadly, there are two contributions of this article. The first contribution is the rigorous exposition of a framework capable of handling 
left-truncation and right-censoring in discrete-time in Section 2. This was necessary to derive the asymptotic properties of the hazard rate 
estimators assuming a discrete X , which we have done in Theorem 3.1 (statement in Section 3 and proof in Appendix A.1) for the first 
time in the case of left-truncation and right-censoring in the statistical literature. Note that this is a generalization of the results of Lautier 
et al. (2021), which was only valid for the case of left-truncation. The second contribution is the pricing formula of Theorem 4.1 (statement 
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Fig. 5. Illustrative example of Corollary 4.1.1 used to quantify estimator uncertainty. Data represents 493 24-month leases from MBALT 2017-A with an observation window 
of 6 months. The hazard rates and 95% confidence intervals fitted using Theorem 3.1 (see also Section 6.1). The distribution of price point estimates was created with 4,000 
replications. The actual observed value and formulaic price (κ = 3) are denoted within the figure.

in Section 4 and proof in Appendix A.2), which is effectively an expected or actuarial present value that relies on the lifetime random 
variable distribution. The two contributions come together in that the distribution of the lifetime random variable may be estimated using 
the results of Section 3, and Theorem 3.1, under certain settings, may be used to assess the potential uncertainty of the pricing point 
estimator in Theorem 4.1. We also provide a discussion of when our model framework — in particular the key independence assumptions 
— is appropriate and inappropriate in Section 4.3. It is our opinion that the independence assumptions are reasonable in many realistic 
scenarios, but not all, such as with securitization pools of subprime credits.

The theoretical results of this paper are applied to a subset of 29,845 leases from the Mercedes-Benz 2017-A auto lease ABS bond in 
Section 6. Specifically in Section 6, we first provide discussion about why this particular bond meets both of the important independence 
assumptions of Section 4.3. Next, we found our formulaic pricing method, which accounts for the variability of the lease lifetime distri-
bution, was capable of outperforming the standard modeling method within an auto lease ABS prospectus (Mercedes-Benz, 2017), which 
assumes a non-random lifetime distribution (Section 6.1, Table 2). Our illustrative application closed with a demonstration of how to use 
the asymptotic results of Theorem 3.1 to assess the price point estimator uncertainty of Theorem 4.1 (Section 6.2).

We recognize that other model formulations may attempt to connect economic variables to credit modeling at the loan level (Deng et 
al., 2000). These models typically find some association between consumer behavior and rational market behavior, such as the connection 
between prepayment behavior and the implicit “in-the-money” level a borrower finds himself with respect to his loan and home value. 
While some option-based models do have explanatory power, they are often not enough to fully explain the significant heterogeneity 
exhibited by borrowers (Deng et al., 2000). We have thus elected to use a data-based approach that models when lessees decide to 
terminate their leases rather than attempt to explain why lessees terminate their leases. The “when” is of paramount importance in a 
cash flow pricing exercise, and we find success with this approach in the realistic setting of Section 6. Fundamentally, therefore, our 
model produces a random timing and amount of cash flows at the individual lease contract level based on distributional estimations from 
historical performance. The most important of these distributions, the random time-until-contract-termination, may be estimated using 
the techniques of Section 3.

That said, we acknowledge that the “why” of consumer lessee behavior also has its merits, particularly in economically driven research. 
We postulate that a future version of the estimator (5) may be generalized to incorporate covariates, which could blend the “when” and 
“why” into a single model. Of particular interest may be the connection between current market interest rates and consumer behavior, 
especially for models of consumer loans or residential mortgages. At present, we leave this problem open to future research.

The results of this paper may be suitable for other forms of ABS besides auto lease bonds. One ideal generalization is agency MBS, 
which accounts for about $250 billion of life insurer assets (McMenamin et al., 2013). We recommend a generalization of the estimation 
framework of Sections 2 and 3 to the case of competing risks for securitized assets in which an investor would prefer to treat prepayment 
and default separately. Additional details may be found in Section 4.3. It is our opinion the combined estimation and pricing framework 
of this paper may be of use for insurance products, too, though we also leave this problem open for future research.

Declaration of competing interest

Jackson P. Lautier was employed with Prudential Financial, Inc. from 2010-2019 but believes in good faith there are no conflicts of 
interest. The remaining authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.
65



J.P. Lautier, V. Pozdnyakov and J. Yan Insurance: Mathematics and Economics 110 (2023) 53–71
Data availability
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Appendix A. Proofs

We first prove Theorem 3.1 and subsequently prove Theorem 4.1.

A.1. Proof of Theorem 3.1

We first define some helpful notation:

uτ (k,k′) = Pr(Yi ≤ k ≤ min(Xi, Ci), Yi ≤ k′ ≤ min(Xi, Ci))

= Pr(Yi ≤ min(k,k′),max(k,k′) ≤ Xi,max(k,k′) ≤ Ci)

= Pr(Y ≤ min(k,k′), X ≥ max(k,k′), C ≥ max(k,k′) | X ≥ Y )

= Pr(Y ≤ min(k,k′), X ≥ max(k,k′), C ≥ max(k,k′), X ≥ Y )/Pr(X ≥ Y )

= Pr(Y ≤ min(k,k′), X ≥ max(k,k′), C ≥ max(k,k′))/α

= 1

α
Pr(X ≥ max(k,k′))Pr(Y ≤ min(k,k′),max(k,k′) ≤ C). (11)

Notice uτ (k, k′) = uτ (k′, k) and uτ (k, k) = Uτ (k). Further,

rτ (k,k′) = Pr(Xi = max(k,k′), Yi ≤ min(k,k′), Xi ≤ Ci)

= Pr(X = max(k,k′), Y ≤ min(k,k′), X ≤ C | X ≥ Y )

= Pr(X = max(k,k′), Y ≤ min(k,k′), X ≤ C, X ≥ Y )/Pr(X ≥ Y )

= Pr(X = max(k,k′), Y ≤ min(k,k′), C ≥ max(k,k′))/α

= 1

α
Pr(X = max(k,k′))Pr(Y ≤ min(k,k′),max(k,k′) ≤ C). (12)

Notice rτ (k, k′) = rτ (k′, k) and rτ (k, k) = f∗,τ (k). We first state a lemma, and the proof of Theorem 3.1 follows.

Lemma 1 (Ûτ ,n Asymptotic Properties). Define Ûτ ,n = (
Ûτ ,n(� + 1), . . . , Ûτ ,n(ξ)

)
, where Ûτ ,n follows from (5). Then,

(i)

Ûτ ,n
P−→ Uτ , as n → ∞;

(ii) √
n(Ûτ ,n − Uτ )

L−→ N(0,�u), as n → ∞,

where Uτ = (Uτ (� + 1), . . . , Uτ (ξ)) with Uτ as defined in (4) and �u is a covariance matrix ‖σk′,k‖ such that

σk′,k =
{

Uτ (k)[1 − Uτ (k)], k′ = k

uτ (k′,k) − Uτ (k′)Uτ (k), k′ �= k
,

for k′, k = � + 1, . . . , ξ .

Proof. Statement (i) follows from (ii), so it is left to show (ii). Observe

Ûτ ,n =
⎡
⎢⎣

Ûτ ,n(� + 1)
...

Ûτ ,n(ξ)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

n

n∑
i=1

1Yi≤�+1≤min(Xi ,Ci)

...

1

n

n∑
i=1

1Yi≤ξ≤min(Xi ,Ci)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 1

n

n∑
i=1

⎡
⎢⎣

Yτ ,�+1(i)
...

Yτ ,ξ(i)

⎤
⎥⎦ ,

where Yτ ,k(i) , � + 1 ≤ k ≤ ξ are independent and identically distributed Bernoulli random variables with probability of success given by

Pr(Yi ≤ k ≤ min(Xi, Ci)) = Pr(Y ≤ k ≤ min(X, C) | X ≥ Y ) = Uτ (k),

for k = � + 1, . . . , ξ . Thus, E[Yτ ,k(i)] = Uτ (k) and Var[Yτ ,k(i)] = Uτ (k)(1 − Uτ (k)). Now, since

1Y ≤k′≤min(X ,C )1Y ≤k≤min(X ,C ) = 1Y ≤min(k′,k),X ≥max(k′,k),C ≥max(k′,k),
i i i i i i i i i
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we have

E[Yτ ,k′(i)Yτ ,k(i)] = E[1Yi≤min(k′,k),Xi≥max(k′,k),Ci≥max(k′,k)] = uτ (k′,k), (13)

for k′, k = � + 1, . . . , ξ . Thus,

Cov[Yτ ,k′(i)Yτ ,k(i)] = E[Yτ ,k′(i)Yτ ,k(i)] − E[Yτ ,k′(i)]E[Yτ ,k(i)]
= uτ (k′,k) − Uτ (k′)Uτ (k).

Recall that (13) reduces to Uτ (k) when k′ = k. Use the multivariate Central Limit Theorem (Lehmann and Casella, 1998, Theorem 8.21, pg. 
61) to complete the proof. �

We now prove Theorem 3.1.

Proof. Statement (i) follows from (ii), so it is left to show (ii). Let � + 1 ≤ k ≤ ξ and observe 1Xi≤Ci 1min(Xi ,Ci)=k = 1Xi=k,Xi≤Ci and so

λ̂τ ,n(k) − λτ (k) =
1
n

∑n
i=1 1Xi=k,Xi≤Ci

Ûτ ,n(k)
− f∗,τ (k)

Uτ (k)

=
1
n

∑n
i=1 1Xi=k,Xi≤Ci Uτ (k) − f∗,τ (k)Ûτ ,n(k)

Ûτ ,n(k)Uτ (k)

=
[

1

Ûτ ,n(k)Uτ (k)

]
1

n

n∑
i=1

{1Xi=k,Xi≤Ci Uτ (k) − f∗,τ (k)1Yi≤k≤min(Xi ,Ci)}.

Further define

Zτ ,k(i) = 1Xi=k,Xi≤Ci Uτ (k) − f∗,τ (k)1Yi≤k≤min(Xi ,Ci).

Hence,

�̂τ ,n − �τ = Aτ ,n
1

n

n∑
i=1

⎡
⎢⎣

Zτ ,�+1(i)
...

Zτ ,ξ(i)

⎤
⎥⎦ ,

where Aτ ,n = diag([Ûτ ,n(� + 1)Uτ (� + 1)]−1, . . . , [Ûτ ,n(ξ)Uτ (ξ)]−1). That is,

�̂n − � = Aτ ,n
1

n

n∑
i=1

Zτ ,(i),

where Zτ ,(i) = (Zτ ,�+1(i), . . . , Zτ ,ξ(i))
 , 1 ≤ i ≤ n are independent and identically distributed random vectors. We will also subsequently 

show that the components of random vector Zτ ,(i) are uncorrelated.
First notice 1Xi=k,Xi≤Ci is a Bernoulli random variable with probability parameter f∗,τ (k). Similarly, 1Yi≤k≤min(Xi ,Ci) is a Bernoulli ran-

dom variable with probability parameter Uτ (x). Thus,

E[Zτ ,k(i)] = E[1Xi=k,Xi≤Ci ]Uτ (k) − f∗,τ (k)E[1Yi≤k≤min(Xi ,Ci)]
= f∗,τ (k)Uτ (k) − f∗,τ (k)Uτ (k)

= 0.

We now show

Cov[Zk(i), Zk′(i)] =
{

Uτ (k) f∗,τ (k)[Uτ (k) − f∗,τ (k)], k = k′

0, k �= k′.
(14)

Since E[Zτ ,k(i)] = 0, we have

Cov[Zτ ,k(i), Zτ ,k′(i)] = E[Zτ ,k(i) Zτ ,k′(i)]
= E

[(
1Xi=k,Xi≤Ci Uτ (k) − f∗,τ (k)1Yi≤k≤min(Xi ,Ci)

)(
1Xi=k′,Xi≤Ci Uτ (k′) − f∗,τ (k′)1Yi≤k′≤min(Xi ,Ci)

)]
= Uτ (k)Uτ (k′)E[1Xi=k,Xi≤Ci 1Xi=k′,Xi≤Ci ] − f∗,τ (k)Uτ (k′)E[1Yi≤k≤min(Xi ,Ci)1Xi=k′,Xi≤Ci ]

− f∗,τ (k′)Uτ (k)E[1Yi≤k′≤min(Xi ,Ci)1Xi=k,Xi≤Ci ]
+ f∗,τ (k) f∗,τ (k′)E[1Yi≤k≤min(Xi ,Ci)1Yi≤k′≤min(Xi ,Ci)]

We proceed by cases.
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Case 1: k = k′ .
Since 1Xi=k,Xi≤Ci 1Xi=k′,Xi≤Ci = 1Xi=k,Xi≤Ci , E[1Xi=k,Xi≤Ci 1Xi=k′,Xi≤Ci ] = f∗,τ (k). Additionally,

1Yi≤k≤min(Xi ,Ci)1Xi=k′,Xi≤Ci = 1Yi≤k′≤min(Xi ,Ci)1Xi=k,Xi≤Ci

= 1Yi≤k≤min(Xi ,Ci),Xi=k,Xi≤Ci

= 1Yi≤Xi≤Xi ,Xi=k,Xi≤Ci

= 1Xi=k,Xi≤Ci .

Therefore,

E[1Yi≤k≤min(Xi ,Ci)1Xi=k′,Xi≤Ci ] = E[1Yi≤k′≤min(Xi ,Ci)1Xi=k,Xi≤Ci ] = f∗,τ (k).

Finally,

1Yi≤k≤min(Xi ,Ci)1Yi≤k′≤min(Xi ,Ci) = 1Yi≤k≤min(Xi ,Ci).

Thus, E[1Yi≤k≤min(Xi ,Ci)1Yi≤k′≤min(Xi ,Ci)] = Uτ (k). Replace these expectations in E[Zk(i) Zk′(i)] to write

Cov[Zk(i), Zk′(i)] = Uτ (k) f∗,τ (k)[Uτ (k) − f∗,τ (k)].
Case 2: k �= k′ .
Since 1Xi=k,Xi≤Ci 1Xi=k′,Xi≤Ci = 0, E[1Xi=k,Xi≤Ci 1Xi=k′,Xi≤Ci ] = 0. Assume k < k′ . Then

1Yi≤k≤min(Xi ,Ci)1Xi=k′,Xi≤Ci = 1Yi≤k≤min(Xi ,Ci),Xi=k′,Xi≤Ci

= 1Yi≤k,Xi=k′,Xi≤Ci .

Therefore, E[1Yi≤k≤min(Xi ,Ci)1Xi=k′,Xi≤Ci ] = Pr(Xi = k′, Yi ≤ k, Xi ≤ Ci). Further, when k < k′

1Yi≤k′≤min(Xi ,Ci)1Xi=k,Xi≤Ci = 1Yi≤k′≤min(Xi ,Ci),Xi=k,Xi≤Ci = 0.

Thus, E[1Yi≤k′≤min(Xi ,Ci)1Xi=k,Xi≤Ci ] = 0. Now, if instead k > k′ , then by symmetry,

E[1Yi≤k′≤min(Xi ,Ci)1Xi=k,Xi≤Ci ] = Pr(Xi = k, Yi ≤ k′, Xi ≤ Ci),

and E[1Yi≤k≤min(Xi ,Ci)1Xi=k′,Xi≤Ci ] = 0. Thus, we can generalize and claim

f∗,τ (k)Uτ (k′)E[1Yi≤k≤min(Xi ,Ci)1Xi=k′,Xi≤Ci ] + f∗,τ (k′)Uτ (k)E[1Yi≤k≤min(Xi ,Ci)1Xi=k′,Xi≤Ci ]
= f∗,τ (min(k,k′))Uτ (max(k,k′))rτ (k,k′).

Lastly, notice E[1Yi≤k≤min(Xi ,Ci)1Yi≤k′≤min(Xi ,Ci)] = uτ (k, k′). Replace these expectations in E[Zk(i) Zk′(i)] to write

Cov(Zk(i), Zk′(i)) = − f∗,τ (min(k,k′))Uτ (max(k,k′))rτ (k,k′)
+ f∗,τ (min(k,k′)) f∗,τ (max(k,k′))uτ (k,k′)

= f∗,τ (min(k,k′)){ f∗,τ (max(k,k′))uτ (k,k′) − rτ (k,k′)Uτ (max(k,k′))}.
However, using (11) and (12),

f∗,τ (max(k,k′))uτ (k,k′) =
[

Pr(X = max(k,k′))Pr(Y ≤ max(k,k′) ≤ C)

α

]

×
[

Pr(X ≥ max(k,k′))Pr(Y ≤ max(k,k′),max(k,k′) ≤ C)

α

]

=
[

Pr(X = max(k,k′))Pr(Y ≤ min(k,k′),max(k,k′) ≤ C)

α

]

×
[

Pr(X ≥ max(k,k′))Pr(Y ≤ max(k,k′) ≤ C)

α

]
= rτ (k,k′)Uτ (max(k,k′)).

Thus, Cov[Zk(i), Zk′(i)] = 0 when k �= k′ . This confirms (14). Now define

Dτ = diag
(
Uτ (� + 1) f∗,τ (� + 1)[Uτ (� + 1) − f∗,τ (� + 1)], . . . , Uτ (ξ) f∗,τ (ξ)[Uτ (ξ) − f∗,τ (ξ)]),

and

Z̄τ ,n = 1

n

n∑
Zτ ,(i).
i=1
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Thus, by the multivariate Central Limit Theorem (Lehmann and Casella, 1998, Theorem 8.21, pg. 61) we may claim

√
n(Z̄τ ,n − 0)

L−→ N(0,Dτ ), as n → ∞.

Next define

Vτ = diag
(
Uτ (� + 1)−2, . . . , Uτ (ξ)−2),

and use Lemma 1 to claim Aτ ,n
P−→ Vτ , as n → ∞. Therefore, by multivariate Slutsky’s Theorem (Lehmann and Casella, 1998, Theorem 

5.1.6, pg. 283),

√
n
(
Aτ ,nZ̄τ ,n

) L−→ N(0,Vτ Dτ V
τ ) as n → ∞.

Finally, observe Vτ Dτ V
τ = � and Aτ ,nZ̄τ ,n = �̂τ ,n − �τ to complete the proof. �

A.2. Proof of Theorem 4.1

Proof. By repeated use of law of total expectation (Mukhopadhyay, 2000, Theorem 3.3.1, pg. 112) and (6),

APVi = E[PVi] = EX {ED [EZ (PVi | Xi, D Xi ) | Xi]}. (15)

Now,

EZ (PVi | Xi, D Xi ) = W i(Xi, D Xi ) + Ri(Xi)E(Z | X = Xi).

Thus,

ED [EZ (PVi | Xi, D Xi ) | Xi] = ED

[
W i(Xi, D Xi ) + Ri(Xi)E(Z | X = Xi)

∣∣∣∣Xi

]
= ED [W i(Xi, D Xi ) | Xi] + Ri(Xi)E(Z | X = Xi)

=
{ ϕ∑

k=0

W i(Xi,k)
∗

Pr(Dm = k)

}
+ Ri(Xi)E(Z | X = Xi).

Hence, returning to (15)

APVi = EX {ED [EZ (PVi | Xi, D Xi ) | Xi]}

= EX

[{ ϕ∑
k=0

W i(Xi,k)
∗

Pr(Dm = k)

}
+ Ri(Xi)E(Z | X = Xi)

]

=
ξ∑

m=xε(i)

({ ϕ∑
k=0

W i(m,k)
∗

Pr(Dm = k)

}
+ Ri(m)E(Z | X = m)

)
pm

xε(i)
.

The proof is complete by the linear property of expectations (Mukhopadhyay, 2000, Theorem 3.3.2, pg. 116). �
Appendix B. Extended application details

The following information pertains to Section 6.

B.1. Observed data irregularities

Per the opening discussion of Section 6.1, some records were removed due to difficulties interpreting the reported cash flows. In this 
section, we present examples of two such records in Table 3.

For example asset number 3, we can see that there are two positive payments in the residual column (liquidationProceeds-
Amount). While it appears the smaller payment of 3,728 at age 37 represents approximately nine monthly payments of 417, it is not 
clearly indicated in the data. Modeling such a lease contract will require making assumptions about the payment of 3,728 that we cannot 
verify. Instead, as the model of Section 4 is a new proposal, we have attempted to remove the potential confounding effects of data 
irregularities and focused on demonstrating the model is capable of pricing cash flows that follow a clear pattern, such as those in 
Table 1.

For example asset number 4, we see two large residual payments at ages 32 and 40. Further, we see that the termination indicator 
(terminationIndicator) occurs at age 35, despite the large residual payment occurring later, at age 40. This cash flow pattern is 
very difficult to translate accurately from the reported data into a lease contract outcome without more information.

B.2. Interest rate scenarios

Fig. 6 presents the two non-zero interest rate scenarios for the results of Section 6.
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Table 3
MBALT 2017-A sample lives of cash flow data irregularities.

Obs. Month Ex. Asset Num: 3 Ex. Asset Num: 4

Age Pmt Resid. Term. Ind. Age Pmt Resid. Term. Ind.

1 30 834 0 – 30 4,315 0 –
2 31 417 0 – 31 0 0 –
3 32 417 0 – 32 2,157 20,194 –
4 33 417 0 – 33 0 0 –
5 34 417 0 – 34 0 0 –
6 35 0 0 – 35 0 0 1
7 36 807 0 – 36 0 0 –
8 37 416 3,728 – 37 0 0 –
9 38 0 0 – 38 0 0 –
10 39 0 14,974 1 39 0 0 –
11 – – – – 40 0 36,934 –

Fig. 6. Spot rates for Section 6; standard (solid), inverted (dashed).

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .insmatheco .2023 .02 .003.
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