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We consider an interesting natural extension to the Parisian ruin problem under the assumption that 
the risk reserve dynamics are given by a spectrally negative Lévy process. The distinctive feature of this 
extension is that the distribution of the random implementation delay windows’ lengths can depend 
on the deficit at the epochs when the risk reserve process turns negative, starting a new negative 
excursion. This includes the possibility of an immediate ruin when the deficit hits a certain subset. In 
this general setting, we derive a closed-form expression for the Parisian ruin probability and the joint 
Laplace transform of the Parisian ruin time and the deficit at ruin.
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1. Introduction and main results

The concept of Parisian ruin was first introduced in actuarial 
risk theory by Dassios and Wu (2008) in 2008: “Parisian type ruin 
will occur if the surplus falls below zero and stays below zero 
for a continuous time interval of length d. In some respects, this 
might be a more appropriate measure of risk than classical ruin 
as it gives the office some time to put its finances in order.” The 
time period during which the surplus is allowed to remain nega-
tive is called implementation delay (or grace) period, often referred 
to just as the delay period.

It is often noted that the idea (and the name as well) of such a 
concept goes back to the so-called Parisian options whose payoffs 
depend on the lengths of the excursions of the underlying asset 
prices above or below a flat barrier. For example, the owner of a 
Parisian down-and-out option will lose the option if the under-
lying asset price drops below a given level and stays constantly 
below that level for a time interval longer than a given quantity d. 
Stopping times of this kind were first considered by Chesney et al. 
(1997).
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However, discussions of a delayed Parisian-type ruin appeared 
in the actuarial literature even earlier. In particular, it was pointed 
out in Dos Reis (1993) that when an insurance company has many 
portfolios and only one of them has got negative, the company can 
have enough funds (either from another line of business or as a 
loan from a bank) to support the affected portfolio for some time 
in the hope that it would recover in the near future thus allowing 
the company to keep its business alive (see also Cheung, 2012).

More recently, it was stated in several papers that the Parisian 
ruin could be viewed as a theoretical description of reorganiza-
tion under Chapter 11 of the US Bankruptcy Code of a company 
in distress rather than its immediate liquidation under Chapter 7 
of the code. Chapter 11 allows the company to remain in control 
of its operations with a bankruptcy court providing oversight. The 
court grants the company an observation period during which the 
company manager can restructure the debt. If the reorganization 
plan fails, the company may be forced to be liquidated (see e.g. Li 
et al., 2014). Modeling this situation, we must take into account 
the fact that the length of the observation period can depend on 
the debt size, so that we are dealing here with deficit-dependent 
delay periods. This and other aspects of better modeling the com-
plex Chapter 11 reorganization were also discussed, for instance, 
in Galai et al. (2007), Makarov (2016), Corbae and D’Erasmo (2021)
and Zhang et al. (2022).

Over the last decade, analysis of Parisian ruin probabilities and 
times in different settings has become a popular topic in the litera-
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ture. First we will mention papers where the delay period length d
was assumed to be deterministic and fixed (i.e., depending neither 
of the deficit at the beginning of a negative excursion nor on any 
other quantity, and remaining the same for all negative excursions 
of the risk reserve process).

Dassios and Wu (2008) derived the Laplace transform of the 
time until the Parisian ruin and the probability thereof for the clas-
sical Cramér–Lundberg (CL) model. Loeffen et al. (2013) derived an 
elegant compact formula for the Parisian ruin probability in the 
case where the surplus process is modeled by a spectrally nega-
tive Lévy process (SNLP) X = {Xt}t≥0 (whose trajectories may be 
of unbounded variation), the answer involving only the scale func-
tion of X and the distribution of Xd . Czarna (2016) studied, also in 
the SNLP framework, Parisian ruin probabilities with an “ultimate 
bankruptcy level”, meaning that ruin will also occur whenever the 
deficit reaches a given deterministic negative level. Simpler proofs 
and further results for that setting were obtained in Czarna and 
Renaud (2016).

Li et al. (2018) and Lkabous (2019) studied the concept of 
Parisian ruin under the “hybrid observation scheme” for SNLPs, 
where the surplus process is monitored discretely at arrival epochs 
of an independent Poisson process (that can be interpreted as the 
observation times of the regulatory body), but is continuously ob-
served once the process value drops below zero.

Lkabous et al. (2017) studied Parisian ruin for a refracted SNLP 
model assuming that the premium payment rate is higher when 
the process is below zero. In Czarna et al. (2017), the joint law of 
the Parisian ruin time and the number of claims until that time 
was derived for the CL model. A compact formula for the Parisian 
ruin probability for a spectrally negative Markov additive risk pro-
cess was obtained by Zhao and Dong (2018). The probability was 
expressed in terms of the scale matrix and transition rate matrix 
of the process.

A more flexible (and more realistic) model with random delays
was first considered in Landriault et al. (2014). In their setup, along 
with the risk reserve SNLP with trajectories of locally bounded 
variation, there is an independent of it sequence of i.i.d. random 
variables that serve as implementation delay times (so that for 
each new negative excursion of the process, there is a new inde-
pendent delay time). The authors studied the Laplace transform of 
the Parisian ruin time when delays were exponentially distributed 
or followed Erlang mixture distributions (noting that switching 
from deterministic delays to stochastic ones with such distribu-
tions improves the tractability of the resulting expressions). They 
also studied a version of the two-sided exit problem “when the 
first passage time below level zero is substituted by the Parisian 
ruin time”. Frostig and Keren-Pinhasik (2020) studied Parisian ruin 
with an ultimate bankruptcy barrier (as in Czarna (2016) in the 
case of deterministic delay) and i.i.d. exponentially (and then Er-
lang) distributed random delays. Baurdoux et al. (2016) studied the 
Gerber–Shiu distribution at Parisian ruin with exponential imple-
mentation delays in the SNLP setup. We will further comment on 
this paper below. Lkabous and Renaud (2019) considered Parisian 
time of ruin where each delay is the minimum of the determinis-
tic and random exponential ones, and computed the joint Laplace 
transform of that Parisian ruin time and the deficit at ruin for a 
general spectrally negative Lévy process (independent of path vari-
ations).

In the present paper, we consider a natural interesting exten-
sion to the Parisian ruin problem with a risk reserve SNLP. The 
distinctive feature of this extension is that the distribution of the 
random delay windows’ lengths can depend on the deficit at the 
epochs when the risk reserve process turns negative, starting a 
new negative excursion. This includes the possibility of an imme-
diate ruin when the deficit hits a certain subset. The presented 
extension was motivated, in particular, by the above-mentioned 
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practical considerations related to Chapter 11 of the US Bankruptcy 
Code.

In this general setting, we derive closed-form expressions for 
the Parisian ruin probability and the joint Laplace transform of the 
Parisian ruin time and the deficit at ruin. Our results are illustrated 
by examples where the risk reserve follows the classical CL dynam-
ics with claim distributions being exponential or hyperexponential, 
whereas the delay period distributions are finite mixtures of Erlang 
distributions with parameters depending on the deficit value at the 
beginning of the respective negative excursion.

More formally, we assume in this paper that X := {Xt}t≥0 is an 
SNLP with càdlàg trajectories starting at X0 = u ∈ R. To indicate 
this for different values of u, the respective probability and expec-
tation symbols will be endowed with subscript u, as in Eu . The cu-
mulant generating function ψ(θ) := ln E0eθ X1 of such a process X
is clearly finite for all θ ≥ 0 and, for some constants a, σ ∈R, has 
the form

ψ(θ) = aθ + 1

2
σ 2θ2 +

∫
(−∞,0)

(eθx −1−θx1(x > −1))�(dx), θ ≥ 0,

(1)

where the jump measure � is such that 
∫
(−∞,0)

(1 ∧x2)�(dx) < ∞. 
We also assume satisfied the standard safety loading condition

E0 X1 > 0 (2)

(clearly, E0|X1| < ∞ under the above condition as X is spectrally 
negative).

To formally describe the Parisian ruin mechanism with deficit-
dependent random delay windows, we will first assume that the 
trajectories of X are of locally bounded variation. It is well-known 
that, in this case, σ = 0 and 

∫
(−1,0)

|x|�(dx) < ∞ and so (1) sim-
plifies to

ψ(θ) = a1θ +
∫

(−∞,0)

(eθx − 1)�(dx), θ ≥ 0. (3)

This means that our process is just a linear drift minus a pure 
jump subordinator (see, e.g., Section 8.1 in Kyprianou, 2014).

Denote by F := {Ft}t≥0 the natural filtration for X . For x, y ∈R, 
introduce the first hitting times

τ−
x := inf{t > 0 : Xt < x} and τ+

y := inf{t > 0 : Xt > y}.
In view of (2), τ−

x is an improper random variable when x ≤ X0.
Setting τ+

0,0 := 0, we further define recursively for k = 1, 2, . . .
the following (improper, due to (2)) F -stopping times:

τ−
0,k := inf{t > τ+

0,k−1 : Xt < 0} and τ+
0,k := inf{t > τ−

0,k : Xt > 0}.
Note that, due to (2), the time τ+

0,k is always finite on the event 
{τ−

0,k < ∞}.

In words, τ−
0,k is the time when the kth negative excursion of 

the process X starts and τ+
0,k is the time when that excursion ends. 

If τ−
0,k−1 < ∞ but τ−

0,k = ∞ for some k ≥ 1, then there are only 
k − 1 negative excursions of the risk reserve process.

To formally construct random delay times, suppose that P x(B)

is a stochastic kernel on (−∞, 0) ×B([0, ∞)). That is, for any fixed 
B ∈ B([0, ∞)), P x(B) is a measurable function of x and, for any 
fixed x < 0, P x(B) is a probability measure in B ∈ B([0, ∞)). Fur-
ther, let Fx(s) := P x((−∞, s]), s ≥ 0, be the distribution function of 
P x , F x(s) := 1 − Fx(s) its right tail. Denote by

F ←
x (y) := inf{s ≥ 0 : Fx(s) ≥ y}, y ∈ (0,1),
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the generalized inverse of Fx . Note that F ←
x (y), (x, y) ∈ D :=

(−∞, 0) × (0, 1), is a measurable function. Indeed, since Fx(y) is 
right-continuous and non-decreasing in y, for any z ≥ 0 one has 
{(x, y) ∈ D : F ←

x (y) ≤ z} = {(x, y) ∈ D : Fx(z) − y ≥ 0}, which is a 
measurable set on the plane as both Fx(z) and y are measurable 
functions of (x, y).

Further, let {Un}n≥1 be a sequence of i.i.d. random variables uni-
formly distributed on (0, 1) that is independent of the process X . 
The length ηk of the k-th delay window, k = 1, 2, . . ., is then de-
fined on the event {τ−

0,k < ∞} as

ηk := F ←
χk

(Uk), where χk := Xτ−
0,k

(4)

(on {τ−
0,k = ∞} we can leave both χk and ηk undefined). Note that 

this allows one to model situations where ηk = 0 for some val-
ues of χk . This happens, for instance, in cases where delay is only 
granted when the deficit χk is above a certain negative threshold.

We say that Parisian ruin occurs in our model if

N := inf{k ≥ 1 : τ−
0,k < ∞, τ−

0,k + ηk < τ+
0,k} < ∞,

and define on the event {N < ∞} the Parisian ruin time as

T := τ−
0,N + ηN . (5)

To state our results, we have to recall the definition of the scale 
functions. For q ≥ 0, the q-scale function W (q) for the process X is 
defined as a function on R such that (i) W (q)(x) = 0 for x < 0 and 
(ii) W (q)(x) is continuous on [0, ∞) and∫
[0,∞)

e−βxW (q)(x)dx = 1

ψ(β) − q
, β > 
(q), (6)

where 
(q) := sup{θ ≥ 0 : ψ(θ) = q}, q ≥ 0 (see, e.g., Section 8.2 
in Kyprianou, 2014). One refers to W := W (0) as just the scale 
function for X . Note that the q-scale functions can be obtained as 
the scale functions for SNLPs with “tilted distributions”: for q ≥ 0,

W (q)(x) = e
(q)xW
(q)(x), x ∈R, (7)

where Wν(x) is the scale function for the Lévy process with 
the cumulant function ψν(θ) := ψ(θ + ν) − ψ(ν) (Proposition 2 
in Surya, 2008).

Several important characteristics of and fluctuation identities 
for SNLPs can be expressed in terms of their scale functions. In 
particular, the distribution Pu(χ1 ∈ · , τ−

0 < ∞) of the first negative 
value χ1 of the process given X0 = u > 0 has (defective) density 
hu(x) that can be written as

hu(x) =
∫

(0−,u]
�(x + z − u)dW (z), x < 0,

where �(y) := �((−∞, y]), y < 0, (8)

see, e.g., p. 277 in Kyprianou (2014) (note that the formula for that 
distribution on that page in Kyprianou (2014) contains a typo: 
instead of � there must be the Lévy measure for the spectrally 
positive process −X). Another formula we will use below provides 
an expression for the “incomplete Laplace transform” for τ+

y : for 
q ≥ 0 and t, y > 0,

E0(e−qτ+
y ;τ+

y ≤ t) = e−qt�(q)(−y, t), (9)

where

�(q)(x, t) :=
∞∫

W (q)(x + z)
z

t
P0(Xt ∈ dz), x ∈R, t > 0
0
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(see, e.g., Lemma 4.2 in Loeffen et al., 2018); one could also com-
pute the left-hand side of (9) using the expression for the distri-
bution function of τ+

y provided in (10).
One must note here that closed-form expressions for the scale 

function are only available for processes from several special 
classes of SNLPs (in particular, in the cases considered in Section 3
below). Hubalek and Kyprianou (2010) presented several examples 
where closed-form expressions for the scale function are available 
and described a methodology for finding such expressions. In the 
general case, one can compute approximations to the scale func-
tions. A “robust” numerical method for computing W (q) based 
on (6) and numerical inversion of (7) for W
(q) was described 
in Surya (2008), whereas Egami and Yamazaki (2014) presented a 
possible “phase-type-fitting approach” to approximating the scale 
functions.

Finally, we set

G y(t) := P0(τ
+
y ≤ t) = −y

∂

∂ y

t∫
0

P0(Xs > y)
ds

s
, y, t > 0, (10)

where the expression on the right-hand side comes from the cel-
ebrated Kendall’s formula (see, e.g., Borovkov and Burq, 2001 or 
p. 725 in Bingham, 1975, Zolotarev, 1964) and let

K (x) := E0 F x(τ
+
|x|) =

∞∫
0

F x(t)dG |x|(t), x < 0, (11)

H(v) :=
0∫

−∞
K (x)hv(x)dx, v ≥ 0. (12)

Our first result is stated in the following assertion.

Theorem 1. Assume that the reserve process X is an SNLP that has tra-
jectories of bounded variation and satisfies condition (2). In the Parisian 
ruin scheme with random deficit-dependent delays specified by (4), the 
probability of no Parisian ruin when the initial reserve is X0 = u ≥ 0 is 
equal to

Pu(N = ∞) = E0 X1

(
W (u) + W (0)

1 − H(0)
H(u)

)
. (13)

One can also compute the joint Laplace transform for the 
Parisian ruin time and the deficit at the time of that ruin. To state 
our result, we need to introduce further notations. For v, w ≥ 0
and x < 0, set

M1(v, w, x)

:=
1∫

0

[
e(ψ(w)−v)F ←

x (s)+wx − e−v F ←
x (s)�(ψ(w))(x, F ←

x (s))
]
ds,

(14)
M2(v, x)

:= E0e−vτ+
|x| 1(τ+

|x| ≤ F ←
x (U1)) =

1∫
0

e−v F ←
x (s)�(v)(x, F ←

x (s))ds,

(15)

where the last equality holds true since E0e−vτ+
|x| 1(τ+

|x| ≤ r) =
e−vr�(v)(x, r) by Lemma 4.2 in Loeffen et al. (2018) and U1 is in-
dependent of τ+ .
|x|
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Finally, assuming in addition that u ∈ [0, b], b > 0, we set

Q 1,b(u, v, w)

:= Eue−vτ−
0 1(τ−

0 < τ+
b )M1(v, w,χ1)

=
b∫

0

∫
(−∞,−y)

M1(v, w, y + θ)
( W (v)(u)W (v)(b − y)

W (v)(b)

− W (v)(u − y)
)
�(dθ)dy,

Q 2,b(u, v)

:= Eue−vτ−
0 1(τ−

0 < τ+
b )M2(v,χ1)

=
b∫

0

∫
(−∞,−y)

M2(v, y + θ)
( W (v)(u)W (v)(b − y)

W (v)(b)

− W (v)(u − y)
)
�(dθ)dy

(the second equalities in both formulae follow from the result of 
Exercise 10.6 on p. 303 in Kyprianou, 2014).

Theorem 2. Under the assumptions of Theorem 1, for b, v, w ≥ 0 and 
u ∈ [0, b], the joint Laplace transform of the Parisian ruin time and the 
deficit at the time of that ruin on the event {T < τ+

b } is equal to

Eu(e−vT +w XT ; T < τ+
b ) = Q 1,b(u, v, w)

+ Q 1,b(0, v, w)Q 2,b(u, v)

1 − Q 2,b(0, v)
. (16)

Corollary 1. Under the assumptions of Theorem 1, the joint Laplace 
transform of the Parisian ruin time and the deficit at the time of that 
ruin is given by

Eu(e−vT +w XT ; T < ∞) = Q 1,∞(u, v, w)

+ Q 1,∞(0, v, w)Q 2,∞(u, v)

1 − Q 2,∞(0, v)
, (17)

where

Q 1,∞(u, v, w)

=
∞∫

0

∫
(−∞,−y)

M1(v, w, y + θ)
(
W (v)(u)e−
(v)y

− W (v)(u − y)
)
�(dθ)dy,

Q 2,∞(u, v)

=
∞∫

0

∫
(−∞,−y)

M2(v, y + θ)
(
W (v)(u)e−
(v)y

− W (v)(u − y)
)
�(dθ)dy.

Now we will turn to the case of SNLP X with trajectories of 
unbounded variation. For such processes, the recursive procedure 
we used above to introduce Parisian ruin does not work. Instead, in 
the case of non-random delays of a fixed length d > 0, the Parisian 
ruin time was defined in Dassios and Wu (2008); Loeffen et al. 
(2013) as

Td := inf{t > 0 : t − gt > d}, where gt := sup{s ∈ [0, t] : Xs ≥ 0},
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using the convention that inf∅ = ∞, sup∅ = 0. In the case of 
bounded variation trajectories and a common degenerate distribu-
tion Fx(t) = 1(d ≤ t), x < 0, for delay windows, the thus defined Td
clearly coincides with our T defined in (5).

Extending this definition to the case of random delay windows 
is a non-trivial task. An approach to doing this in the simple sit-
uation where all the delay windows are independent and follow 
a common exponential distribution was suggested in Baurdoux et 
al. (2016). In that paper, the authors denoted by G the set of all 
left-end points of the negative excursions of the process X and 
then, “for each g ∈ G ,” considered “an independent, exponentially 
distributed random variable eg

q , also independent of X” (q repre-
sents here the rate of the exponential distribution). The time of 
the Parisian ruin with i.i.d. exponentially distributed delay win-
dows was defined as

inf{t > 0 : Xt < 0 and t − gt > egt
q }.

This description seems to be lacking detail and requires more clar-
ification with regard to exactly how these random times eg

q are to 
be constructed. For instance, if one just starts with an “exponen-
tial white noise” {eq(t)}t>0 and then takes egt

q := eq(t), one will 
encounter measurability issues.

Moreover, from the practical viewpoint, this problem setup is 
hardly meaningful as the suggested mechanism is not feasible. For 
instance, if, say, Xt = X0 + ct +σ Bt , t ≥ 0, where B is the standard 
Brownian motion process then, immediately after the start of the 
first negative excursion at time τ−

0 , one would have to generate 
infinitely many independent exponential random times as the pro-
cess X will have infinitely many negative excursions in any right 
neighborhood of that time τ−

0 .
To avoid the above-mentioned complications and end up with 

an implementable Parisian-type ruin scheme, one can consider “ε-
Parisian ruin times” T ε constructed for ε > 0 by “activating the 
clock” for random delay windows at the times when the value of 
Xt drops below the level −ε (such ruin times were considered 
in Loeffen et al. (2013); Baurdoux et al. (2016) as well). This makes 
it possible to use the recursive procedure we employed in the case 
of processes with trajectories of bounded variation. More precisely, 
for a fixed ε > 0, starting with τ+,ε

0,0 := 0, we introduce recursively 
for k = 1, 2, . . . the following (improper) F -stopping times:

τ−
−ε,k := inf{t > τ+,ε

0,k−1 : Xt < −ε} and

τ+,ε
0,k := inf{t > τ−

−ε,k : Xt > 0}.
Note that, due to (2), the time τ+,ε

0,k is always finite on the event 
{τ−

−ε,k < ∞}. Then, similarly to (4), we set χε
k := Xτ−

−ε,k
and ηε

k :=
F ←
χε

k
(Uk). We say that ε-Parisian ruin occurs if

Nε := inf{k ≥ 1 : τ−
−ε,k < ∞, τ−

−ε,k + ηε
k < τ+,ε

0,k } < ∞
and define on the event {Nε < ∞} the ε-Parisian ruin time as 
T ε := τ−

−ε,Nε + ηε
Nε .

Theorem 3. Assume that the reserve process X is a general SNLP that 
satisfies condition (2). Then, for any ε > 0, the probability of no ε-
Parisian ruin with random deficit-dependent delays when the initial re-
serve is X0 = u ≥ 0 is equal to

Pu(Nε = ∞)

= E0 X1

[
W (u + ε) + W (ε)Eu+ε(K (χ1 − ε);τ−

0 < ∞)

1 − E (K (χ − ε);τ− < ∞)

]
. (18)
ε 1 0
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2. Proofs

We will start with the following simple auxiliary assertions that 
may be well-known.

Lemma 1. Let ξ and ζ be random variables on a common probability 
space, G be a sub-σ -algebra on that space.

(i) If E(|ξ | + |ζ |) < ∞ and ξ is independent of the pair (ζ, G) then

E(ξζ |G) = Eξ · E(ζ |G).

(ii) If ζ is G-measurable, ξ is independent of G and has distribution 
function G, then

E(1(ξ > ζ)|G) = 1 − G(ζ ).

Proof. Both statements can be verified by straightforward com-
putations. First observe that the right-hand sides in the above 
relations are clearly G-measurable. Second, for an arbitrary A ∈
G , in case (i) by independence one has Eξζ1A = EξEζ1A =
EξE(E(ζ |G)1A), yielding the desired relation, whereas in case (ii) 
one has

E1(ξ > ζ)1A =
∫

E(1(ξ > ζ)1A |ζ = y)P(ζ ∈ dy)

=
∫

E1(ξ > y)E(1A |ζ = y)P(ζ ∈ dy)

=
∫

(1 − G(y))E(1A |ζ = y)P(ζ ∈ dy)

= E(1 − G(ζ ))1A,

which establishes the second desired relation. �
Proof of Theorem 1. Our initial step is similar to the one from Lo-
effen et al. (2013). The probability of no Parisian ruin when the 
initial reserve is u > 0 equals

Pu(N = ∞)

= Pu(τ−
0 = ∞) + Pu(τ−

0 < ∞, N = ∞)

= Pu(τ−
0 = ∞) + EuEu

(
1(τ−

0 < ∞)1(N = ∞)|Fτ−
0

)
= Pu(τ−

0 = ∞) + Eu
[
1(τ−

0 < ∞)Eu
(
1(N = ∞)|Fτ−

0

)]
. (19)

Observe that, by the strong Markov property and the absence of 
positive jumps, on the event {τ−

0 < ∞} the process

X̃ := { X̃t := Xτ+
0,1+t}t≥0 (20)

is an independent of Fτ+
0,1

Lévy process with cumulant (3) and 

initial value X̃0 = 0 (see, e.g., Theorem 3.1 in Kyprianou, 2014). We 
will keep all the notations we introduced for the functionals of 
the process X for the respective functionals of X̃ , endowing them 
with a tilde, so that, say, Ñ denotes the total number of negative 
excursions in X̃ needed for the Parisian ruin when the risk reserve 
dynamics are represented by that process (Ñ = ∞ if there is no 
such ruin).

Now we can write that, on the event {τ−
0 < ∞}, one has

Eu
(
1(N = ∞)|Fτ−

0

)
= Eu

(
1(τ−

0 + η1 ≥ τ+
0,1)1(Ñ = ∞)|Fτ−

0

)
= Eu

[
Eu

(
1(τ−

0 + η1 ≥ τ+
0,1)1(Ñ = ∞)|Fτ+

0,1

)∣∣Fτ−
0

]
= P0(N = ∞)Eu

[
Eu

(
1(η1 ≥ τ+

0,1 − τ−
0 )|Fτ+

0,1

)∣∣Fτ−
0

]
, (21)
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where, to get the third equality, we used Lemma 1(i) with ξ =
1(Ñ = ∞) to re-express the inner conditional expectation in the 
second line. As

{η1 ≥ τ+
0,1 −τ−

0 }={F ←
χ1

(U1) ≥ τ+
0,1 −τ−

0 }={U1 ≥ Fχ1(τ
+
0,1 −τ−

0 )}
and Fχ1 (τ

+
0,1 − τ−

0 ) is Fτ+
0,1

-measurable, we conclude from Lemma 
1(ii) that

Eu
(
1(η1 ≥ τ+

0,1 − τ−
0 )|Fτ+

0,1

) = Eu
[
1(U1 ≥ Fχ1(τ

+
0,1 − τ−

0 ))|Fτ+
0,1

]
= F χ1(τ

+
0,1 − τ−

0 ).

Now setting, for a > 0,

X̂ := { X̂t := Xτ−
0 +t − χ1}t≥0, τ̂+

a := inf{t > 0 : X̂t > a}, (22)

we obtain that, on the event {τ−
0 < ∞}, the second factor in the 

last line of (21) equals

Eu
(

F χ1(τ
+
0,1 − τ−

0 )
∣∣Fτ−

0

) = Eu
(

F χ1(τ̂
+
|χ1|)

∣∣Fτ−
0

)
= Eu

(
F χ1(τ̂

+
|χ1|)

∣∣χ1
) = K (χ1),

where, to get the last two equalities, we used the observation that, 
on that event, by the strong Markov property, the process X̂ is an 
independent of Fτ−

0
(and hence of χ1) Lévy process with cumu-

lant (3) and initial value X̂0 = 0 (recall that the function K was 
defined in (11)). From this and (19), (21) we derive that

Pu(N = ∞) = Pu(τ−
0 = ∞) + P0(N = ∞)Eu(K (χ1);τ−

0 < ∞).

Setting now u = 0 yields

P0(N = ∞) = P0(τ
−
0 = ∞)

1 − E0(K (χ1);τ−
0 < ∞)

.

Recalling that, in the case of an SNLP with positive drift, one has

Pu(τ−
0 = ∞) = E0 X1W (u) (23)

(see, e.g., Theorem 8.1(ii) in Kyprianou, 2014), we obtain that

Pu(N = ∞) = E0 X1

[
W (u) + W (0)

Eu(K (χ1);τ−
0 < ∞)

1 − E0(K (χ1);τ−
0 < ∞)

]
.

Expressing the expectations inside the square brackets in terms 
of the function H defined in (12) yields representation (13). This 
completes the proof of Theorem 1. �

In the proof of Theorem 2 we will use the following observa-
tion that may be well-known, but for which we could not find a 
suitable reference.

Lemma 2. Assume that τ and σ are stopping times relative to a filtration 
{Ht}t≥0 . Then {τ < σ } ∈Hτ .

Proof. For t ≥ 0, we have

{τ < σ } ∩ {τ ≤ t} = {τ < σ ,τ ≤ t,σ > t} ∪ {τ < σ ,τ ≤ t,σ ≤ t}
= {τ ≤ t,σ > t} ∪ {τ < σ ,σ ≤ t}.

The first event in the union in the second line is clearly in Ht , 
whereas for the second one we have

{τ < σ ,σ ≤ t} =
⋃

r∈Q, r<t

({τ ≤ r} ∩ {r < σ ≤ t}),

where obviously {τ ≤ r} ∈ Hr ⊆ Ht and {r < σ ≤ t} ∈ Ht when 
r < t . Lemma 2 is proved. �
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Proof of Theorem 2. Our starting point is to observe that, for 
u, v, w ≥ 0, one has

Eu(e−vT +w XT ; T < τ+
b )

= EuEu(e−vT +w XT 1(T < τ+
b )1(τ−

0 < τ+
b )|Fτ−

0
)

= Eu
[
e−vτ−

0 1(τ−
0 < τ+

b )Eu(e−v(T −τ−
0 )+w XT 1(T < τ+

b )|Fτ−
0

)
]
,

(24)

where the second equality follows from Lemma 2. The conditional 
expectation in the second line is equal to E1 + E2, where

E1 := Eu(e−v(T −τ−
0 )+w XT 1(T < τ+

b )1(N = 1)|Fτ−
0

),

E2 := Eu(e−v(T −τ−
0 )+w XT 1(T < τ+

b )1(N > 1)|Fτ−
0

).

First we will evaluate E1. On the event {τ−
0 < τ+

b , N = 1} = {τ−
0 <

τ+
b , η1 < τ̂+

|χ1|} (see (22)), one has T = τ−
0 + η1, XT = Xτ−

0 +η1
=

χ1 + X̂η1 and automatically T < τ+
b (as the Parisian ruin occurs 

during the first negative excursion and that excursion started prior 
to time τ+

b ). Therefore, on the event {τ−
0 < τ+

b } ∈Fτ−
0

, one has

E1 = Eu(e−vη1+w( X̂η1 +χ1)1(τ−
0 < τ+

b )1(N = 1)|Fτ−
0

)

= ewχ1 Eu(e−vη1+w X̂η1 1(η1 < τ̂+
|χ1|)|Fτ−

0
).

On the event {τ−
0 < τ+

b } the process X̂ is an independent of Fτ−
0

distributional copy of X (cf. our comment after (22)), so that the 
only random component inside the conditional expectation in the 
second line that is not independent of Fτ−

0
is χ1 (it participates in 

both η1 and τ̂+
|χ1|). We conclude that, on the event {τ−

0 < τ+
b }, that 

conditional expectation equals

Eu(e−vη1+w X̂η1 1(η1 < τ̂+
|χ1|)|χ1)

= Eu
[
e−vη1 Eu(ew X̂η1 1(η1 < τ̂+

|χ1|)|χ1, η1)
∣∣χ1

]
.

Given that χ1 = x < 0, η1 = t > 0, the inner conditional expec-
tation on the right-hand side of the above formula is equal to 
E0ew Xt 1(t < τ+

|x|). This expression can be computed similarly to the 
argument used in the proof of Lemma 4.3 in Loeffen et al. (2018):

E0ew Xt 1(τ+
|x| > t)

= E0ew Xt − E0ew Xt 1(τ+
|x| ≤ t)

= etψ(w) −
∫

(0,t]
E0(ew Xt |τ+

|x| = s)P0(τ
+
|x| ∈ ds)

= etψ(w) − ew|x|
∫

(0,t]
E0(ew(Xt−Xs)|τ+

|x| = s)P0(τ
+
|x| ∈ ds)

= etψ(w) − e−wx+tψ(w)

∫
(0,t]

e−sψ(w)P0(τ
+
|x| ∈ ds),

= etψ(w) − e−wx�(ψ(w))(x, t),

where we used the spectral negativity of X and the strong Markov 
property to get the third and fourth equalities and representa-
tion (9) to get the fifth one. Combining these computations, we 
obtain that, on the event {τ−

0 < τ+
b }, one has

E1 = ewχ1 Eu[e−vη1(eψ(w)η1 − e−wχ1�(ψ(w))(χ1, η1))|χ1]
= Eu(e(ψ(w)−v)η1+wχ1 − e−vη1�(ψ(w))(χ1, η1)|χ1)

= M1(v, w,χ1),

w
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here M1(v, w, x) was introduced in (14).
Now we will turn to the term E2. On the event {T < τ+

b }, re-
tion N > 1 is equivalent to τ−

0 + η1 ≥ τ+
0,1, so that on the event 

−
0 < τ+

b } one has

2 = Eu(e−v(T −τ−
0 )+w XT 1(T < τ+

b )1(τ−
0 + η1 ≥ τ+

0,1)|Fτ−
0

)

= Eu
[
e−v(τ+

0,1−τ−
0 )1(τ−

0 + η1 ≥ τ+
0,1)

× Eu(e−v(T −τ+
0,1)+w XT 1(T < τ+

b )|Fτ+
0,1

, η1)
∣∣Fτ−

0

]
= Eu

[
e−v(τ+

0,1−τ−
0 )1(τ−

0 + η1 ≥ τ+
0,1)

× Eu(e−v T̃ +w X̃T̃ 1(T̃ < τ̃+
b )|Fτ+

0,1
, η1)

∣∣Fτ−
0

]
,

here we used the process X̃ from (20) (and the relevant to it 
ndom times T̃ , ̃τ+

b ) and the observation that the relation T < τ+
b

 equivalent to T̃ < τ̃+
b provided that τ−

0 < τ+
b . Using the strong 

arkov property and the fact that X̃0 = 0, we conclude that

2 = Eu
(
e−v(τ+

0,1−τ−
0 )1(τ−

0 + η1 ≥ τ+
0,1)

∣∣Fτ−
0

)
× E0(e−vT +w XT ; T < τ+

b )

= Eu
(
e
−vτ̂+

|χ1 |1(F ←
χ1

(U1) ≥ τ̂+
|χ1|)

∣∣χ1
)
E0(e−vT +w XT ; T < τ+

b )

= M2(v,χ1)E0(e−vT +w XT ; T < τ+
b ),

here M2(v, x) was introduced in (15).
Substituting the computed values for E1 and E2 into (24) yields

u(e−vT +w XT ; T < τ+
b )

= Eu
[
e−vτ−

0 1(τ−
0 < τ+

b )(M1(v, w,χ1)

+ M2(v,χ1)E0(e−vT +w XT ; T < τ+
b ))

]
= Q 1,b(u, v, w) + Q 2,b(u, v)E0(e−vT +w XT ; T < τ+

b ).

tting u = 0 we recover E0(e−vT +w XT ; T < τ+
b ) as Q 1,b(0, v, w)/

 − Q 2,b(0, v)). Substituting this back into the above formula com-
etes the proof of (16). �

roof of Corollary 1. As b → ∞, by the monotone convergence 
eorem, the left-hand side of (16) converges to that of (17), 
hereas

1,∞(u, v, w) := lim
b→∞

Q 1,b(u, v, w)

= Eue−vτ−
0 1(τ−

0 < ∞)M1(v, w,χ1). (25)

om Corollary 10.2 in Kyprianou (2014), one gets, for x < 0,

u
(
e−vτ−

0 ;τ−
0 < ∞,χ1 ∈ dx

)
=

∞∫
0

(
e−
(v)y W (v)(u) − W (v)(u − y)

)
�(dx − y)dy.

sing this and then Fubini’s theorem on the right-hand side of (25)
elds

( 0∫
−∞

M1(v, w, x)�(dx−y)

)(
e−
(v)y W (v)(u)−W (v)(u−y)

)
dy.

anging variables by letting θ := x − y completes the derivation 
 the representation for Q 1,∞(u, v, w). The argument for deriving 
e stated expression for Q 2,∞(u, v) is basically the same. Corol-
ry 1 is proved. �
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Proof of Theorem 3. Arguing as in the proof of Theorem 1, we find 
that

Pu(Nε = ∞)

= Pu(τ−−ε = ∞) + Eu
[
1(τ−−ε < ∞)Eu

(
1(Nε = ∞)|Fτ−−ε

)]
and, on the event {τ−−ε < ∞},

Eu
(
1(Nε = ∞)|Fτ−−ε

)
= P0(Nε = ∞)Eu

[
Eu

(
1(ηε

1 ≥ τ+,ε
0,1 − τ−−ε)|Fτ+,ε

0,1

)∣∣Fτ−−ε

]
, (26)

where Eu
(
1(ηε

1 ≥ τ+,ε
0,1 − τ−−ε)|Fτ+,ε

0,1

) = F χε
1
(τ+,ε

0,1 − τ−−ε). Therefore, 
the second factor on the right-hand side of (26) is equal to

Eu
(

F χε
1
(τ+,ε

0,1 − τ−−ε)
∣∣Fτ−−ε

) = Eu
(

F χε
1
(τ̂+

|χε
1 |)

∣∣Fτ−−ε

)
= Eu

(
F χε

1
(τ̂+

|χε
1 |)

∣∣χε
1

) = K (χε
1 ).

We conclude that

Pu(Nε = ∞)

= Pu(τ−−ε = ∞) + P0(Nε = ∞)Eu(K (χε
1 );τ−−ε < ∞)

= Pu+ε(τ
−
0 = ∞) + P0(Nε = ∞)Eu+ε(K (χ1 − ε);τ−

0 < ∞).

Setting u := 0 to find P0(Nε = ∞) and using (23), we finally ob-
tain (18). �
3. Examples

Example 1. Consider the classical CL model:

Xt = X0 + ct −
At∑

j=1

ξ j, t ≥ 0, (27)

where c > 0 is a constant premium payment rate and the Poisson 
claims arrival process {At}t≥0 with rate λ > 0 is independent of 
the sequence of i.i.d. exponentially distributed claim sizes {ξn}n≥1
with rate α > 0.

Clearly, in this case one has ψ(θ) = cθ + λ( α
α+θ

− 1), θ > −α, 
so that condition (2) turns into

E0 X1 = c − λ/α > 0.

Elementary computation yields


(q) = 1

2c

(√
(αc − λ − q)2 + 4qαc − (αc − λ − q)

)
, q ≥ 0,

and

W (x) = α

αc − λ

(
1 − λ

αc
e−(α−λ/c)x

)
1(x ≥ 0), with W (0) = 1

c

(see p. 251 in Kyprianou, 2014). To find the q-scale function, we 
note that ψ ′(θ) = c −λα/(α + θ)2 and that, for q > 0, the equation 
ψ(θ) = q has two solutions: 
(q) > 0 and ζ(q) := (λ + q)/c − α −

(q) ∈ (−α, 0). Hence, after some elementary algebra, we obtain

ψ ′(
(q)) = c − λα

(α + 
(q))2
= c(
(q) − ζ(q))

α + 
(q)
,

ψ ′(ζ(q)) = − c(
(q) − ζ(q))

α + ζ(q)
.

Therefore, by Lemma 9.1 in Kyprianou (2013),

W (q)(x) = (α + 
(q))e
(q)x − (α + ζ(q))eζ(q)x

1(x ≥ 0)
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ee also Example 5.3 in Behme and Oechsler (2020) for an alter-
tive representation).
It is well-known that, for this model, one has

(τ−
0 < ∞) = λ

αc
e−(α−λ/c)u, u ≥ 0 (28)

ee, e.g., p. 78 in Asmussen and Albrecher, 2010). Due to the mem-
yless property of the exponential distribution, the conditional 
stribution of −χ1 (given that X ever turns negative) will coin-
de with the distribution of ξ1, so that

(χ1 ≤ x, τ−
0 < ∞) = Pu(χ1 ≤ x |τ−

0 < ∞)Pu(τ−
0 < ∞)

= λ

αc
eαx−(α−λ/c)u, x ≤ 0.

erefore

(x) = λ

c
eαx−(α−λ/c)u, x < 0,

d hence

(v) =
0∫

−∞
K (x)hv(x)dx = H(0)e−(α−λ/c)v ,

(0) = λ

c

0∫
−∞

eαx K (x)dx. (29)

bstituting the obtained expressions into (13) yields

(N < ∞) = λ

αc

[
1 − (αc − λ)H(0)

λ(1 − H(0))

]
e−(α−λ/c)u, u ≥ 0. (30)

mparing this with (28), we see that, for the CL risk reserve pro-
ss model, the Parisian ruin probability differs from the “usual” 
e (28) by the “square bracket factor” that does not exceed one 
d does not depend on the initial reserve u.
To compute the value of H(0) in (30), we need to specify the 

stribution of the delay window length. We will consider two spe-
al cases.

se 1. Assume that the conditional distribution of the window 
ngth is exponential with parameter depending on the deficit: 
ere is a Borel function r : (−∞, 0) → (0, ∞] such that F x(t) =
r(x)t , t > 0 (where the value r(x) = ∞ means immediate ruin 

hen χ1 is equal to that x). Then, by Theorem 3.12 in Kyprianou 
014),

(x) =
∞∫

0

F x(t)dG |x|(t) = E0e−r(x)τ+
|x| = e
(r(x))x, x < 0, (31)

d hence

(0) = λ

c

0∫
−∞

e[α+
(r(x))]xdx. (32)

is quantity can be explicitly evaluated, for instance, in the spe-
al case when r(x) is piece-wise constant:

x) :=
n∑

k=1

rk1(x ∈ (ak−1,ak]) (33)

r some n ≥ 1, rk ∈ (0, ∞], k = 1, . . . , n, and −∞ =: a0 < a1 <

· < an−1 < an := 0. Then (32) turns into
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Fig. 1. The square brackets factor in the Parisian ruin probability (30) as a function of the claim size rate α for the model from Example 1, Case 1 with c = 1, λ = 0.1, n = 2, 
r2 = 10.
H(0) = λ

c

n∑
k=1

ak∫
ak−1

e(α+
(rk))xdx

= λ

c

n∑
k=1

e(α+
(rk))ak − e(α+
(rk))ak−1

α + 
(rk)
,

the terms in the sum with rk = ∞ being equal to 0.
To illustrate how the introduction of the “Parisian ruin mech-

anism” can affect the ruin probabilities, we will consider the case 
where r is a step function of the form (33) with n = 2 and show 
how the square bracket factor in (30) can “modify” the “usual ruin 
probability” (28) depending on the choice of the delay windows’ 
parameters. We set c = 1, λ = 0.1, r2 = 10. The curves in Fig. 1a 
show the behavior of that factor as a function of the claim size 
rate α when r1 = 0.1 is fixed, while the threshold a1 (at which 
the rate of the random exponential delay switches from r1 to r2) 
changes from −0.75 (the bottom curve) to −8 (the top curve). 
As the Parisian ruin is always less likely than the “usual” one, 
the value of the factor is never greater than one. The interesting 
phenomenon we observe here is that as the severity of claims in-
creases (i.e., α decreases), in the case of relatively small threshold 
a1 values, that factor can actually decrease (before eventually in-
creasing to one for very large claims).

This can be explained as follows: as the deficit at “ordinary ru-
in” has the same exponential distribution as the claim size, when 
α decreases the deficit is more likely to hit the lower region, where 
the random delay window rate is r1 = 0.1 and hence the delay 
window is typically long giving more time for the company to 
recover. For very large claims, the presence of the Parisian ruin 
mechanism does not make much difference and hence the factor 
tends to 1. In addition, the lower the threshold a1 is located, the 
smaller the above-described effect.

Fig. 1b depicts the behavior of the square bracket factor in (30)
as a function of α when the threshold location a1 = −1 is fixed, 
whereas the rate r1 of the exponential delay time given the deficit 
is below a1 varies from 0.1 (the bottom curve) to 0.8 (the top 
curve). We observe here a similar phenomenon: in the presence 
of longer delay windows in the lower region, the increasing sever-
ity of claims can somewhat counter-intuitively make smaller the 
value of the “correction factor” for the Parisian ruin probability.

In all the cases, the factor vanishes as α → ∞, which is due 
to the fact when the claim sizes are very small, even short delay 
windows are likely to be enough for the company to recover.
79
Case 2. Assume now that the conditional distribution of the win-
dow length is a finite mixture of Erlang distributions with param-
eters depending on the deficit: for an m ≥ 1, there are Borel func-
tions p j : (−∞, 0) → [0, 1], ∑m

j=1 p j(x) ≡ 1, r j : (−∞, 0) → (0, ∞], 
and ν j(x) : (−∞, 0) →N , j = 1, . . . , m, such that, for x < 0,

F x(t) =
m∑

j=1

p j(x)

ν j(x)−1∑
�=0

(r j(x)t)�

�! e−r j(x)t, t > 0,

is the right distribution tail of a mixture of (up to) m components 
that are Erlang distributions with the respective shape and rate 
parameters ν j(x), r j(x), j = 1, . . . , m. Such mixtures form a rather 
large class: it is well-known to be everywhere dense in the weak 
convergence topology in the class of all probability distributions on 
(0, ∞) (see, e.g., p. 153 in Tijms, 1994).

In this case,

K (x) =
m∑

j=1

p j(x)

ν j(x)−1∑
�=0

r�
j (x)

�!
∞∫

0

t�e−r j(x)tdG |x|(t)

=
m∑

j=1

p j(x)

ν j(x)−1∑
�=0

r�
j (x)φ�(r j(x), x), (34)

where we used the fact that, by (31) and the well-known property 
of Laplace transforms,

∞∫
0

t�e−rtdG |x|(t) = �!φ�(r, x), φ�(r, x) := (−1)�

�!
∂�

∂r�
e
(r)x. (35)

As in Case 1, we now assume that the functions participating in 
the definition of F x are piece-wise constant. Namely, there ex-
ist −∞ =: a0 < a1 < · · · < an−1 < an := 0 such that whenever the 
deficit at the beginning of a negative excursion of the risk reserve 
process hits the interval (ak−1, ak], the applicable delay window 
length will have one and the same distribution given by a finite 
mixture of Erlang distributions. More formally, for some p j,k ∈
[0, 1] (

∑m
j=1 p j,k = 1), r j,k ∈ (0, ∞], and ν j,k ∈N , one has r j(x) :=∑n

k=1 r j,k1(x ∈ (ak−1, ak]), p j(x) := ∑n
k=1 p j,k1(x ∈ (ak−1, ak]) and 

ν j(x) := ∑n
k=1 ν j,k1(x ∈ (ak−1, ak]). Then from (29) and (35) we get 

the following expression that can be evaluated for any set of the 
model parameters:
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H(0) = λ

c

n∑
k=1

m∑
j=1

p j,k

ν j,k−1∑
�=0

r�
j,k

ak∫
ak−1

eαxφ�(r j,k, x)dx.

Example 2. Here we consider the classical CL model (27), where 
the claim distribution is now hyperexponential: for some πi > 0, 
i = 1, . . . , n, such that 

∑n
i=1 πi = 1, and αn > αn−1 > · · · > α1 > 0, 

one has

P(ξ1 > x) =
n∑

i=1

πie
−αi x, x > 0,

so that the jump measure of the process X is of the form

�(dx) = λ

n∑
i=1

πiαie
αi x1(x < 0)dx.

In this case, the Laplace exponent of X is clearly equal to ψ(θ) =
θ
(
c − λ 

∑n
i=1

πi
αi+θ

)
, θ > −α1. Denote by ψ0 the analytic exten-

sion of ψ to C \ {α1, . . . , αn}. It is known (see p. 80 in Kyprianou 
(2013)) that, for any q > 0, the equation ψ0(θ) = q has exactly 
n + 1 distinct solutions in the domain of ψ0, all of them being 
real. One of these roots is positive (our 
(q)) and the other n are 
negative; denote the latter by ζi(q), i = 1, . . . , n, in the descending 
order. One can easily see that

−αn <ζn(q)<· · ·<−α2<ζ2(q)<−α1<ζ1(q)<0<ζ0(q):=
(q).

By Lemma 9.1 from Kyprianou (2013), for any q > 0, the q-scale 
function is given by

W (q)(x) =
n∑

j=0

eζ j(q)x

ψ ′
0(ζ j(q))

1(x ≥ 0).

For q = 0, one has W (x) = 1
E0 X1

+ ∑n
j=1

eζ j x

ψ ′
0(ζ j)

1(x ≥ 0) where ζ j

:= ζ j(0+), j = 1, . . . , n. Therefore we obtain from (8) that

hu(x) = λ

n∑
i=1

πi

u∫
0

eαi(x+z−u)W ′(z)dz + λW (0)

n∑
i=1

πie
αi(x−u)

= λ

n∑
i=1

πie
αi x

( n∑
j=1

ζ j(eζ j u − e−αi u)

ψ ′
0(ζ j)(αi + ζ j)

+ W (0)e−αi u
)

.

Now turning to (12), we get H(u) = λ 
∑n

i=1 gi(u) 
∫ 0
−∞ eαi x K (x)dx, 

where

gi(u) := πi

( n∑
j=1

ζ j(eζ j u − e−αi u)

ψ ′
0(ζ j)(αi + ζ j)

+ W (0)e−αi u
)

.

In particular, H(0) = λW (0) 
∑n

i=1 πi
∫ 0
−∞ eαi x K (x)dx. The above 

calculations provide, together with (10) and (11), all the compo-
nents for computing the Parisian ruin probability (13) in both cases 
of the delay window distribution structure considered in Example 
1 (cf. (31), (34)).
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