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Premium calculation has been a popular topic in actuarial sciences over the decades. Generally, a two-
stage model is used to develop the premium calculation process. It can be decomposed into estimating 
the probability of having at least one claim by the logistic regression in the first stage and calibrating the 
severity in the second stage. Existing methods for the second stage include generalized linear models 
(GLMs) and quantile regression. However, the GLMs fail to provide information associated with the 
extreme claim amount and the quantile is not sensitive to the size of the extreme losses. Given that 
the magnitude of the extreme claim amount may lead to a huge loss for the insurer, we introduce the 
expectile risk measure into premium calibration and propose an expectile-based risk premium, which 
outperforms other methods for heavy-tailed distributions. Naively adopting the conventional expectile 
regression in the second stage is not preferred because it would be over-parameterized and time-
consuming if the portfolio contains a large number of risk classes. Thus, we put forward a two-stage 
parametric expectile regression (TSPER) with parametric expectile regression (PER) method used in the 
second stage. The consistency and asymptotic normality of the proposed PER estimator are established 
under mild conditions. We also propose a novel Expectile Premium Principle to allocate the total 
premium for each policy. In the analysis of the automobile insurance data set, the proposed TSPER 
method outperforms other two-stage methods in terms of the ordered Lorenz curve and the Gini index.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Calibrating the risk premiums to cover the costs of policyholders is a crucial task in the assessment of underwriting risk. One of 
the popularly adopted methods is the Two-Part Model (Frees, 2010; Frees et al., 2013). It decomposes the cost of the policy into a binary 
variable indicating whether the policyholder has claimed and a continuous variable representing the aggregate claim amount. Traditionally, 
GLMs are used to model both parts. Although GLMs can identify risk factors that affect the expectations of the aggregate claim amount, 
they fail to provide information associated with the extreme claim amount. The ignorance of such information may lead to an inaccurate 
assessment of the solvency, inflicting losses or even financial distress on the insurance company. In addition, GLMs are also limited by the 
strong assumptions of the underlying distribution and risk homogeneity (Kudryavtsev, 2009), which often deviates from the real-world 
situations.

Recently, quantile regression (QR) developed by Koenker and Bassett (1978) has gained a lot of attention. Kudryavtsev (2009) is the first 
to apply the QR method in insurance ratemaking. The method provides some knowledge of the characteristics of policyholders who are 
prone to make large claims. As an extension of Kudryavtsev’s approach, Heras et al. (2018) present a Two-Stage Quantile Regression (TSQR) 
model to estimate the aggregate claim amount. However, applying the TSQR method necessitates conducting a number of QRs at different 
quantile levels. The number of these QRs equals the number of risk classes, which results in heavy computation when there are plenty 
of risk classes. To alleviate the problem of over-parameterization, Baione and Biancalana (2019) fix the quantile level for the severity and 
introduce a premium principle based on a quantile risk measure to calculate the risk margin. As an alternative method for parsimony 
and efficiency, Baione and Biancalana (2021) introduce parametric quantile regression (PQR) (Frumento and Bottai, 2016) into premium 
calculations. However, quantile is not a coherent risk measure (Artzner et al., 1999) and is not sensitive to the size of the extreme losses 
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(Kuan et al., 2009) that generally exist in large portfolios either. Thus, it cannot reveal the riskiness of the policies sufficiently and may 
lead to great losses for the insurers.

In this paper, we introduce an expectile risk measure into premium calculation. Expectile (Newey and Powell, 1987) is elicitable, law-
invariant, and coherent (Ziegel, 2014). Unlike the quantile risk measure, the expectile risk measure depends on the tail expectation rather 
than the tail probability (Daouia et al., 2021). Thus, it cares about not only the probabilities of the extreme events but also their magnitude 
(Kim and Lee, 2016; Bellini and Di Bernardino, 2017), offering crucial information on the riskiness of the policies for the insurer. As far 
as we know, expectile regression (ER), which is a distribution-free methodology and allows for heteroscedasticity (Gu and Zou, 2016; 
Zhao et al., 2018), has not been applied to premium calculation, though related work does exist in fields like actuarial and financial risk 
management (Cai and Weng, 2016; Kim and Lee, 2016; Girard et al., 2020; Barigou et al., 2022; Pitera and Schmidt, 2022). Additionally, the 
asymmetric squared error loss for the positive and negative deviations used by the expectile regression provides a good way to describe 
gain-loss asymmetry characterized by the insurer with loss aversion (preferring avoiding great losses to making an equivalent profit). In 
this paper, we adopt and extend the expectile regression for the calculation of the risk premium.

The main contributions of this paper are as follows. First, we propose a parametric expectile regression (PER) method to conduct multi-
ple expectile regressions in a single run, which is more parsimonious and efficient than the ER method. We introduce a PER estimator that 
generalizes that of the ordinary ER method and establish its consistency and asymptotic normality under mild conditions. By parametri-
cally modeling the regression coefficient functions, the PER method provides more stable results on the extreme tail compared with the 
ER method and can alleviate or even limit the crossing problem. Second, given that the extreme claim amount is crucial for the evaluation 
of the riskiness of the policies, we propose an expectile-based individual risk premium and develop the Two-Stage Expectile Regression 
(TSER) and Two-Stage Parametric Expectile Regression (TSPER) methods for its calculation. The actuarial meaning of the expectile-based 
risk premium is discussed in detail. In the analysis of a popular automobile insurance data set, we show that in terms of the ordered 
Lorenz curve and the Gini index, the TSPER method outperforms other two-stage methods, which include the Expected Value Premium 
Principle (EVPP) (Szynal and Teugels, 1993; de Lourdes Centeno, 2002; Asmussen and Møller, 2003; Young, 2004), the Standard Deviation 
Premium Principle (SDPP) (Szynal and Teugels, 1993; Kaluszka, 2001; Asmussen and Møller, 2003; Young, 2004), the TSQR, the two-stage 
parametric quantile regression (TSPQR), and the TSER. Third, we put forward an Expectile Premium Principle (EPP) to allocate the total 
risk premium calculated by the bootstrap method to each policy using a single quantile level for the aggregate claim amount. We choose 
the unique quantile level such that the sum of the individual risk premiums for all the policies covers the total risk premium. Unlike the 
existing methods, the unique quantile level used in the EPP is not subjectively assigned but chosen to ensure all the policies have the 
same probability that the actual loss exceeds the risk premium.

The rest of the article is organized as follows. After reviewing the basics of the ER method in Section 2, we propose the PER method 
and establish its asymptotic properties in Section 3. Section 4 proposes the TSPER method and the EPP for premium calculation, provides 
the actuarial meaning of the expectile-based risk premium, and discusses the relationship between the proposed EPP and the expected 
value premium principle. Section 5 applies the proposed TSPER method to an Australian automobile insurance data set and compares it 
with other two-stage methods. We conclude this paper in Section 6.

2. Expectile regression

Compared with the QR, the ER method is a more effective tool to take into account the magnitude of the extreme losses in the actuarial 
context (Newey and Powell, 1987). Let ERτ (Yi |xi) be the conditional τ -th expectile of the response variable Yi given covariates xi ∈Rm+1

for i = 1, . . . , n, where n is the sample size. For any expectile level τ ∈ (0, 1), the ER method is given by

ERτ (Yi |xi) = x�
i ϕ(τ ), i = 1, . . . ,n, (1)

where ϕ(τ ) = (ϕ0 (τ ) ,ϕ1 (τ ) , . . . ,ϕm (τ ))� is an unknown (m + 1)-dimensional expectile-specific coefficient vector. The estimator ϕ̂(τ )

can be obtained by minimizing the asymmetric least squares (ALS) loss function

Ln(ϕ(τ )) = 1

n

n∑
i=1

∣∣τ − ωτ,i
∣∣ (yi − x�

i ϕ(τ )
)2

, (2)

where ωτ,i = I
(

yi ≤ x�
i ϕ(τ )

)
and I(·) denotes the indicator function. The ER method can be easily implemented using the R package 

expectreg. When τ = 0.5, the expectile estimator reduces to the least squares estimator, which assigns equal weights to all observations in 
the data set. The asymmetric loss function in (2) assigns weights τ and 1 − τ to positive and negative deviations, respectively.

Kuan et al. (2009) propose expectile-based Value at Risk (EVaR) as a risk measure related to the expectiles. Ziegel (2014) and Bellini et 
al. (2014) analyze its theoretical properties: (a) EVaRτ (Yi) is strictly monotonic in τ for τ ∈ (0, 1); (b) EVaRτ (Yi) is strictly monotonic in 
Yi , that is, if Y ∗

i ≥ Yi a.s. and P
(
Y ∗

i > Yi
)
> 0, then EVaRτ

(
Y ∗

i

)
> EVaRτ (Yi); (c) EVaRτ (−Yi) = − EVaRτ (Yi); (d) if Yi is symmetric with 

respect to y, then EVaRτ (Yi) + EVaR1−τ (−Yi) = 2y; (e) EVaRτ (Yi) is the only risk measure that is coherent and elicitable.
However, the ER method has some drawbacks. Note that the unknown parameter ϕ(τ ) is expectile-specific. When we are interested in 

the covariate effects on the response at a number of expectile levels, we have to fit the ERs for these expectile levels one by one, which 
is onerous in terms of model specification and validation and computationally demanding. In addition, the ER method also suffers from 
the well-known crossing problem, making it hard for interpretation. As a solution to the aforementioned problems, we suggest adopting a 
parametric model for the expectile regression coefficient functions.

3. Parametric expectile regression

Following the idea of the parametric modeling in Frumento and Bottai (2016), we propose the PER method for parsimony and derive 
its asymptotic properties under some mild conditions in this section. This theoretically sound estimator will be adopted for individual 
premium calculation in Section 4.
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We model the coefficients in (1) hierarchically as parametric functions of τ :

ϕ(τ ,γ ) = γ b(τ ) =

⎛
⎜⎜⎜⎝

γ00 γ01 . . . γ0h
γ10 γ11 . . . γ1h
...

...
. . .

...

γm0 γm1 . . . γmh

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

b0(τ )

b1(τ )
...

bh(τ )

⎞
⎟⎟⎟⎠ , (3)

where the unknown γ = (γ 0, . . . , γ m)� is a (m + 1) × (h + 1) matrix, b(τ ) = [b0(τ ),b1(τ ), . . . ,bh(τ )]� is a set of h + 1 known functions 
of τ ∈ (0, 1), and b0(τ ) is generally set as 1. Given an expectile level τ ∈ (0, 1), we define the PER method for a predefined b(τ ) by

PERτ (Yi |xi,γ ) = ϕ0(τ ,γ 0) + ϕ1(τ ,γ 1)xi1 + . . . + ϕm(τ ,γ m)xim = x�
i γ b(τ ). (4)

A specific b(τ ) can be used if the corresponding model is believed to be true, or we can define it as a collection of flexible functions 
of τ , such as trigonometric functions, logarithmic functions, and polynomials, as long as it induces a well-defined expectile function of 
the response for some γ .

The advantage of parametric modeling is that after obtaining the estimates of the parameter γ in a single run, we are able to get 
the estimated expectile-specific coefficients ϕ(τ , γ ) in (4) and the estimated expectile of the response P̂ERτ (Yi |xi, γ ), i = 1, . . . , n at an 
arbitrary expectile level τ ∈ (0, 1) simply by taking τ as an input of (4).

Remark 1. In expectile regression (1), for varying τ , ϕ(τ ) can be viewed as an infinite-dimensional parameter. Generally, the estimated 
coefficients are non-smooth functions of τ . As for the PER, we further model the expectile regression coefficient functions, ϕ(τ ), as 
parametric functions of the order of the expectile. Then, the ER can be viewed as the special case of the PER where ϕ(τ , γ ) is described by 
a “huge” number of parameters. A similar relationship between the QR and the PQR can also be found in the existing literature (Frumento 
and Bottai, 2016; Frumento and Bottai, 2017; Bottai and Orsini, 2019; Sottile et al., 2020; Sottile and Frumento, 2021; Frumento and 
Salvati, 2021).

3.1. The estimator

This section proposes a PER estimator that generalizes the ordinary ER estimator.
Note that modeling of the expectile coefficients ϕ(τ ) in (3) across different expectile levels shares the same parameter γ . To combine 

the information across the entire expectile process, we adopt the integrated loss minimization method (Frumento and Bottai, 2016) to 
estimate γ with the integrated ALS loss function, i.e.,

L̄n(γ ) =
1∫

0

Ln(ϕ(τ ,γ ))dτ . (5)

A more general form of (5) is L̄n(γ ) = ∫ 1
0 w(τ )Ln(ϕ(τ , γ ))dτ , where w(τ ) is a nonconstant weight. When w(τ ) = I (τ1 ≤ τ ≤ τ2) and 

τ1 = τ2 = τ , the PER method degenerates to the ordinary τ -th ER method. By applying the chain rule, the gradient of (5) with respect to 
γ can be written as

Sn(γ ) =
1∫

0

Sn(ϕ(τ ,γ ))b(τ )�dτ , (6)

where Sn(ϕ(τ , γ )) = −2n−1∑n
i=1

∣∣τ − ωτ,i
∣∣xi
(

yi − x�
i ϕ(τ ,γ )

)
is the (m + 1)-dimensional gradient vector of the loss function (2) with 

respect to ϕ .
Denote that b′

k(τ ) = dbk(τ )
dτ , Bk(τ ) = ∫ τ

0 bk(u)du, B̄k(τ ) = ∫ τ
0 Bk(u)du, Bk1k2 (τ ) = ∫ τ

0 bk1 (u)bk2 (u)du, B̄k1k2 (τ ) = ∫ τ
0 Bk1k2 (u)du, and 

a(i)
k1k2

= (∑m
j=0 xijγ jk1

)(∑m
j=0 xijγ jk2

)
for k, k1, k2 = 0, 1, . . . , h. Let A(τ ) be a (h + 1) × (h + 1) matrix whose k1, k2-th element is Bk1k2 (τ ), 

A(τ ) = ∫ τ
0 A(u)du, and B(τ ), B(τ ), b′

k(τ ) be the h-dimensional vectors composed of Bk(τ ), Bk(τ ), b′
k(τ ), respectively.

A direct decomposition and computation of the integrated loss (5) and the integrated gradient (6) (a (m + 1) × (h + 1) matrix) yield

L̄n(γ ) = n−1
n∑

i=1

y2
i (1.5 − 3τi + τ 2

i ) + 2n−1
n∑

i=1

yix
�
i γ
[−B(1) + (1 − 2τi)B(τi) + 2B(τi)

]

+ n−1
n∑

i=1

h∑
k1

h∑
k2

a(i)
k1k2

[−Bk1k2 (τi) + Bk1k2(1) − 2Bk1k2 (τi)
] (7)

and

Sn(γ ) = 2n−1
n∑

i=1

yixi
[
B(1) + (2τi − 1)B(τi) − 2B(τi)

]

+ 2n−1
n∑

xix
�
i γ
[
(1 − 2τi)A(τi) − A(1) + 2A(τi)

]
,

(8)
i=1
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where τi(γ ) (we use τi for abbreviation) denotes the order of the expectile that satisfies x�
i ϕ(τi, γ ) = yi for i = 1, . . . , n. When τi equals 

to the expectile level of yi for all i, Sn(γ ) approaches zero. Sn(γ ) is a smooth function of γ when τi ’s are near the true values.
The unknown parameters γ can be estimated by the Newton-Raphson method or the quasi-Newton method (Li and Fukushima, 1999; 

Bottai et al., 2015). As will be illustrated in Algorithm 1 for expectile-based premium calculation, the loss function (7) and the gradient 
(8) are crucial for the iterative updates of the quasi-Newton method.

3.2. Asymptotic properties

In the following, we establish, under mild conditions, the consistency and asymptotic normality of the proposed estimator by using the 
theory of extremum estimators (Amemiya, 1985; Newey and Mcfadden, 1994).

Let γ̂ n be the estimator of the true parameter γ 0 ∈ � obtained by minimizing the integrated loss function L̄n(γ ). As E
[
Sn(γ 0)

] = 0, 
unbiasedness follows.

Theorem 3.1. (Consistency) Assume that � is a compact set. If there exists a function L̄0(γ ) such that (i) L̄0(γ ) is continuous; (ii) L̄0(γ ) is uniquely 
minimized at γ 0; (iii) the integrated ALS loss function L̄n(γ ) converges uniformly in probability to L̄0(γ ), then γ̂ n

p→ γ 0 .

The validity of the conditions in Theorem 3.1 relies on the structure of b(τ ), which should (i) induce a well-defined expectile regression 
such that � is not empty; and (ii) ensure that τi is a continuous function of γ . Although b(τ ) may not be bounded at τ = 0 or 1, B(τ ), 
B(τ ), A and A(τ ) must be finite. The possible choices of the predefined b(τ ) could be trigonometric functions, logarithmic functions, 
polynomials, splines, piecewise linear functions, and combinations of the above. Additionally, b′(τ ) should be defined in the interior of 
[0, 1], but it could be infinite in the extremes. For the proof of Theorem 3.1, we refer to Theorem 2.1 in Newey and Mcfadden (1994).

For simplification in the analysis of the asymptotic normality, we convert the (m + 1) × (h + 1) parameter matrices γ 0 and γ̂ n to 
vectors of length (m + 1) × (h + 1) of the form γ = (γ00, . . . , γ jk, . . . , γmh), and redefine L̄n(γ ) and S̄n(γ ) accordingly.

Theorem 3.2. (Asymptotic normality) Suppose that the conditions of Theorem 3.1 are satisfied. If (i) γ 0 lies in the interior of �; (ii) L̄n(γ ) is twice 

continuously differentiable in a neighborhood N of γ 0; (iii) 
√

n∇γ L̄n
(
γ 0

) d→ N(0, �); (iv) there exists a H(γ ) that is continuous at γ 0 and satisfies 

supγ ∈N
∥∥∇γ γ L̄n(γ ) − H(γ )

∥∥ p→ 0, and (v) H = H 
(
γ 0

)
is nonsingular, then 

√
n
(
γ̂ n − γ 0

) d→ N
(
0,H−1�H−1

)
.

For more details of the proof of Theorem 3.2, we refer readers to Theorem 3.1 in Newey and Mcfadden (1994). When Sn(γ ) is con-
tinuous and continuously differentiable, condition (ii) is satisfied. By applying a central limit theorem to Sn(γ ), we have condition (iii). 
Let Si(γ ) be the i-th summand of Sn(γ ), � = E

[
Si
(
γ 0

)
Si
(
γ 0

)�], and H = E
[∇γ Si(γ )

] |γ=γ 0
. �’s and H’s rows and columns are indexed 

according to γ , i.e., (00, . . . , jk, . . . , mh). Then, the st, s′t′ element of � and H (s, s′ = 0, 1, . . . , m; t, t′ = 0, 1, . . . , h) is expressed by

Hst,s′t′ = ∂ S̄n (γst)

∂γs′t′
= 2n−1

n∑
i=1

(
x�

i γ b′(τi)
)−1

xisbt′ (τi) {Yi xis [(1 − 2τi)bt (τi)]

−
⎡
⎣ m∑

j=0

h∑
k=0

xisxi jγ jk (1 − 2τi)bk(τi)bt(τi)

⎤
⎦
⎫⎬
⎭

(9)

and

�st,s′t′ = n−1
n∑

i=1

S̄ i(γst) S̄ i(γs′t′)

= 4n−1
n∑

i=1

⎧⎨
⎩Yi xis

[
B̄t(1) + (2τi − 1)Bt(τi) − 2B̄t(τi)

]+ m∑
j=0

h∑
k=0

xisxi jγ jk
[
(1 − 2τi)Akt − Ākt(1) + 2 Ākt(τi)

]⎫⎬⎭⎧⎨
⎩Yi xis′

[
B̄t′(1) + (2τi − 1)Bt′(τi) − 2B̄t′(τi)

]+ m∑
j=0

h∑
k=0

xis′ xijγ jk
[
(1 − 2τi)Ak′ − Ākt′(1) + 2 Ākt′(τi)

]⎫⎬⎭ ,

(10)

where x�γ b′(τ ) is the derivative of the conditional expectile function with respect to τ . The problem of expectile crossing can be limited 
by choosing specific forms of b′(τ ) such that x�γ b′(τ ) is positive.

By estimating the asymptotic covariance matrix in Theorem 3.2, we can obtain the asymptotic standard errors and asymptotic confi-
dence intervals (CIs) for the unknown parameters, as shown in our empirical analysis in Section 5.

4. Premium estimation

This section introduces the expectile risk measure into the premium calculation. Section 4.1 proposes an expectile-based individual 
risk premium and then uses the PER method as the second stage of the two-stage approach (TSPER) for expectile-based risk premium 
calculation. Section 4.2 introduces the bootstrap method to obtain a total risk premium and then proposes the EPP as a top-down allocation 
rule to distribute the total risk premium to each policy. We discuss the meaning of the expectile-based risk premium in the actuarial 
context in Section 4.3 and describe in Section 4.4 the relationship between the EPP and the EVPP for a better understanding of the 
proposed method.
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4.1. Two-stage parametric expectile regression for premium estimation

We first define some essential notations. Suppose that an insurance portfolio contains n independent policyholders with the i-th 
(i = 1, . . . , n) insured belonging to one of the L risk classes. Let nl (l = 1, . . . , L) denote the number of policies belonging to the l-th 
risk class, n′

l of whom have positive aggregate claim amount. Denote the aggregate claim amount for the i-th policy by Yi and the 
corresponding number of claims by Ni for i = 1, . . . , n. Then, we have n =∑L

l=1 nl and the total aggregate claim amount of the portfolio 
given by

Y =
L∑

l=1

nl∑
i=1

INi Yi =
L∑

l=1

n′
l∑

i=1

Ỹ i, (11)

where the indicator random variable INi denotes the event of whether the i-th policyholder makes at least one claim and Ỹ i � Yi |(Ni > 0)

represents the positive truncated aggregate claim amount (severity) of the i-th policy. Generally, INi is assumed Bernoulli distributed with 
the probability of submitting no claim over a one-year policy period being pi and independent from the severity Ỹ i .

Given that the size of the extreme claim amount is crucial for the evaluation of the riskiness of the policies, we now propose an 
expectile-based individual risk premium which can be calibrated with the help of the PER method in Section 3. Recall that the expectation 
of the aggregate claim amount over a one-year policy period for the i-th policyholder can be factorized into the product of the probability 
of having claims and the expected severity by using the double expectation formula, i.e.,

E(Yi) = (1 − pi)E(Ỹ i), i = 1, . . . ,n. (12)

Following the idea of Baione and Biancalana (2019) who propose a quantile-based method for premium calculation, we extend (12) to 
the framework of the expectile risk measure and propose an expectile-based risk premium for the i-th policy for a given expectile level τ ,

P(Yi) = (1 − pi)PERτ (Ỹ i), i = 1, . . . ,n, (13)

where PERτ (Ỹ i) represents the τ -th expectile of the i-th severity Ỹ i .
As shown in (13), the individual risk premium is a product of the probability of having at least one claim and the expectiles of the 

severity for a given expectile level. In the following, we propose a TSPER method for its calculation, in which we can estimate 1 − pi by 
the logistic regression in the first stage and obtain PERτ (Ỹ i) for any τ ∈ (0, 1) via a single PER in the second stage. We will discuss the 
actuarial meaning of the expectile-based risk premium (13) in Section 4.3.

4.1.1. Logistic regression for the probability of having at least one claim
Given that the significance of claims varies among policies with different exposures, the exposure difference should be adjusted in 

statistical modeling. As the probability of having at least one claim is proportional to the exposure (De Jong and Heller, 2008), it is widely 
assumed that the probability of having at least one claim over the exposure ei is given by 1 − p∗

i = ei × (1 − pi) (Heras et al., 2018; Baione 
and Biancalana, 2019; Kang et al., 2020; Kang et al., 2021; Baione and Biancalana, 2021; Hou, 2022), where 1 − pi is the probability of 
having at least one claim over one year. This assumption will be further explained in Appendix A. In the first stage of the TSPER method, 
an exposure-adjusted logistic regression is used to model the probabilities of having claims given a set of covariates xi , which is expressed 
by

logit
(
(1 − p∗

i )/ei
)= x�

i β, i = 1, . . . ,n, (14)

where logit (x) = ln x
1−x is the logit function and β = (β0, β1, . . . , βm)� is an unknown (m + 1)-dimensional coefficient vector. By fitting 

(14), we can obtain the estimated coefficients β̂ and the probabilities of submitting at least one claim over a one-year policy period, i.e., 
1 − p̂i = (1 − p̂∗

i )/ei for i = 1, . . . , n. Policyholders belonging to the same risk class share the same p̂i .

4.1.2. Parametric expectile regression for risk premium
In the second stage of the TSPER, we apply the PER method in Section 3 to regress the expectile of the severities on the covariates and 

model the regression coefficients hierarchically as parametric functions of the expectile level τ ∈ (0, 1), i.e.,

PERτ (Ỹ i |xi,γ ) = exp{x�
i ϕ(τ ,γ )} = exp{x�

i γ b(τ )}, i = 1, . . . ,n, (15)

where the unknown parameters γ can be estimated by the quasi-Newton method as shown in Algorithm 1. The response variable Ỹ i is 
transformed by logarithm in our paper. The choices of the “basis” b(τ ) must be defined in advance. As stated in Section 3, b(τ ) can be 
specified if a particular model is believed to be true; otherwise, it can be defined as a collection of known functions (such as polynomials 
and splines) such that b(τ ) induces a well-defined expectile function of the response for some γ .

After obtaining the estimated parameters γ̂ in a single run, we are able to get the estimated expectile of the severity at an arbitrary 
expectile level τ ∈ (0, 1) simply by taking τ as an input of (4).

As shown in the following Section 4.2, the individual premium calculation requires estimating several conditional expectiles of the 
response, and the number of expectiles equals the number of risk classes. Though we can also use multiple times of ERs for estimating 
these expectiles in the second stage, it is more efficient to adopt a single PER for an estimated γ̂ and obtain the expectiles for the obtained 
expectile levels τ̃i ’s. The PER reduces the crossing problem and also yields a parsimonious and efficient estimation for the coefficients, 
making it easier to interpret compared with standard expectile regression (Eilers, 2013; Schnabel and Eilers, 2013; Waltrup et al., 2015; 
Frumento and Bottai, 2016; Frumento and Salvati, 2021; Frumento et al., 2021; Fusco et al., 2022). The TSQR, TSER, and TSPQR can be 
derived by substituting the PER in the second stage of the TSPER with QR, ER, and PQR, respectively. The premium principle of the EVPP 
and SDPP can be found in Appendix A (Kaluszka, 2001; Young, 2004).
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Fig. 1. The process to derive the expectile levels τ̃1, . . . , ̃τn for the severities Ỹ1, . . . , ̃Yn in (16) from the overall quantile level θ̄ for all Yi and the probabilities of having no 
claims p1, . . . , pn .

4.2. Expectile premium principle

This section introduces the method for obtaining the total risk premium and the premium principle to allocate the total to each policy.
To ensure collected risk premiums will be sufficient, to a specific probability, to cover the claim amount made by the insured, we first 

obtain a total risk premium π(Y ) for the portfolio by using the quantile of the bootstrap distribution of the total aggregate claim amount. 
Its quantile level κ is generally chosen to be 99.5% according to Solvency II (EIOPA, 2009). Such a way of premium calculation has been 
widely applied in existing actuarial studies (see England and Verrall, 1999; England, 2002; Björkwall et al., 2009; Björkwall et al., 2010; 
Peremans et al., 2017).

To allocate a given total premium to each policy, we propose the EPP for a chosen quantile level θ̄ of all Yi by using the expectile-based 
individual risk premiums, which is expressed by

π(Y ) =
L∑

l=1

nl∑
i=1

ei P(Yi) =
L∑

l=1

nl∑
i=1

ei(1 − pi)PERτ̃i
(Ỹ i), (16)

where π(Y ) is the total risk premium for the portfolio obtained by the bootstrap method, P(Y1), . . . , P(Yn) are the TSPER-based individual 
risk premiums, and e1, . . . , en are the exposures of the policies. In (16), all of the τ̃i -th expectile of the severity Ỹ i for i = 1, . . . , n are 
determined by the given θ̄ -th quantile of the individual aggregate claim amounts Yi after adjusting the probability of having no claim for 
each risk class. This single quantile level θ̄ is chosen to balance (16).

Fig. 1 illustrates how to derive the expectile levels τ̃i ’s of Ỹ i in (16) from the quantile level θ̄ of all Yi and the probabilities of having 
no claims, p1, . . . , pn , (which can be obtained by the first stage of the TSPER method) with the help of the intermediate parameters θ̃i ’s, 
i.e., the quantile level of Ỹ i . Let Q θ̄ [Yi |xi] be the θ̄ -th conditional quantile of Yi given xi and F (·) be the cumulative distribution function 
of the corresponding random variable. By applying the double expectation formula, the relationship between the quantile levels of Yi and 
Ỹ i can be derived by (Heras et al., 2018; Baione and Biancalana, 2019; Baione and Biancalana, 2021)

FYi (Q θ̄ [Yi|xi]) = pi + (1 − pi) F Ỹi
(Q θ̄ [Yi |xi]), i = 1, . . . ,n. (17)

Let θ̃i � F Ỹi

(
Q θ̄ [Yi |xi]

)
for i = 1, . . . , n. Then, for a given quantile level θ̄ of Yi ’s (i.e., FYi

(
Q θ̄ [Yi |xi]

)= θ̄ for all i), the quantile level of Ỹ i

can be obtained by

θ̃i = θ̄ − pi

1 − pi
, i = 1, . . . ,n. (18)

From (17) and (18), it is easy to see that

Q θ̃i
(Ỹ i |xi) = F −1

Ỹ i

(
θ̄ − pi

1 − pi

∣∣∣xi

)
= Q θ̄ (Yi |xi), i = 1, . . . ,n. (19)

Since the quantile levels and the expectile levels are one-to-one corresponding to each other (Efron, 1991; Jones, 1994; Yao and Tong, 
1996; Kuan et al., 2009), we can then derive the expectile level τ̃i of Ỹ i that corresponds to the θ̃i -th quantile of Ỹ i for i = 1, . . . , n (i.e., 
PERτ̃i

(Ỹ i) = Q θ̃i
(Ỹ i |xi) for all i). In sum, for a given quantile level θ̄ for all Ỹ i , we can find the corresponding expectile level τ̃i of Ỹ i for 

i = 1, . . . , n in (16).
An important difference between the proposed EPP and the other existing principles (Heras et al., 2018; Baione and Biancalana, 2021) 

is that the EPP offers a way to select the quantile level θ̄ based on the balance equation in (16) instead of using an arbitrary quantile 
level for all the policies. It can be easily seen from (18) and the one-to-one correspondence between τ̃i and θ̃i that τ̃i ’s are positively 
proportional to θ̄ given pi ’s. Then, as θ̄ increases, all the expectile levels τ̃i ’s raise and so do the individual risk premiums. Thus, we can 
find a unique quantile level θ̄ for all the policies by gradually increasing the candidate quantile level until the weighted sum of the TSPER-
based individual risk premiums evaluated at the corresponding τ̃i ’s in (16) covers the total risk premium for the portfolio. By assigning 
this single quantile level θ̄ for all Yi , it guarantees that all the policies have the same probability (1 − θ̄ ) that the claim amount exceeds 
the risk premium.

Algorithm 1 summarizes the main steps for premium calculation via the EPP: After obtaining a total risk premium for the portfolio by 
the bootstrap method, we obtain the building blocks ( p̂1, . . . , p̂n , and γ̂ ) for individual premium calculation in (13) via the TSPER method 
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and then choose the quantile level θ̄ that balances (16), from which we can derive the expectile levels τ̃i ’s and use them as inputs of the 
fitted PER model for individual risk premium calculation.

Algorithm 1 Premium calculation via the Expectile Premium Principle.
Step 1 – Total risk premium calculation via the bootstrap method

1: Generate B bootstrap samples of size n for the aggregate claim amounts {Y b
1 , . . . , Y b

n }B
b=1 and compute the sum of aggregate claim amounts for each bootstrap sample 

by πb(Y ) =∑n
i=1 Y b

i for b = 1, . . . , B .
2: Let the total risk premium π(Y ) be the κ-th empirical quantile of π1(Y ), . . . , π B (Y ).

Step 2 – Individual risk premium allocation via the TSPER method

3: Fit exposure-adjusted logistic model (14) to obtain the estimated probability of having claims 1 − p̂i for i = 1, . . . , n.
4: Let j = 0. Initialize the starting point γ 0, the step length α0, convergence tolerance ε = 10−6, and the inverse of the approximate Hessian matrix �0 = I , where I is an 

m × h identity matrix.
5: while

∥∥S̄n(γ j)
∥∥> ε do

� PER estimation via the quasi-Newton method
6: Update γ j+1 ← γ j − α j� j S̄n(γ j) and let γ̂ = γ j+1;

7: Update s j ← γ j+1 − γ j and �S̄ j
n ← S̄n(γ j+1) − S̄n(γ j);

8: Update � j+1 by using the Davidon-Fletcher-Powell formula

� j+1 ← � j − � j�S̄ j
n�S̄ j

n
T
� j

�S̄ j
n

T
� j�S̄ j

n

+ s j s j T

s j T
�S̄ j

n
;

9: α j+1 ← arg min
α≥0

L̄n(γ j+1 − α� j+1S̄n(γ j+1));

10: Set j ← j + 1.
11: end while
12: Choose the overall quantile level θ̄ for all the policies such that (16) holds and find the corresponding expectile levels τ̃1, . . . , ̃τn for severities Ỹ1, . . . , ̃Yn based on (18).
13: Calculate individual risk premiums P(Yi) = (1 − p̂i)P̂ERτ̃i

(Ỹ i |xi) = (1 − p̂i)exp{x�
i γ̂ b(τ̃i)} for all i by taking τ̃1, . . . , ̃τn as inputs of (15).

Remark 2. Although two-stage models are extensively adopted to calculate risk premiums (Kudryavtsev, 2009; Heras et al., 2018; Baione 
and Biancalana, 2019; Baione and Biancalana, 2021; Hou, 2022), all the existing methods, to the best of our knowledge, are based on 
the quantile risk measure, which does not account for the magnitude of severe losses. Additionally, the proposed EPP also differs from 
the existing premium calculation principles in the way of selecting the quantile level θ̄ . In the existing literature, there are primarily two 
approaches for setting the quantile levels for premium calculation. One approach is to choose a single quantile level for each severity 
such that the sum of the individual risk premiums matches the total risk premium (see, e.g., Baione and Biancalana (2019)). However, 
since pi varies among risk classes, it is impossible to ensure that policies belonging to different risk classes have the same probability 
that the aggregate claim amount exceeds the risk premium. The other approach is to fix a single quantile level θ̄ of Yi for each policy. In 
the same fashion of (18), after adjusting for the probabilities of having at least one claim, a set of θ̃i ’s for severities can be obtained (see, 
e.g., Heras et al. (2018); Baione and Biancalana (2021)) and then according to the Quantile Premium Principle, individual risk premiums 
are calculated by a weighted sum of the pure premium E(Yi) and the quantile of the total claim amount Q θ̄ (Yi) (or the claim’s variance 
Var(Yi)) with weights being called loading factors. However, unlike Baione and Biancalana (2019), the unique quantile level θ̄ in both 
Heras et al. (2018) and Baione and Biancalana (2021) are set with no basis. In this paper, the proposed EPP combines the advantages of 
these two approaches and chooses θ̄ for all Yi by using the balance equation in the premium principle, which not only simplifies the 
allocation procedure but also avoids the possible subjectivity in the quantitative analysis.

Remark 3. By using the proposed EPP framework, we calibrate the total risk premium and the individual risk premiums for a portfolio 
based on the existing claims in the portfolio. Similar to the existing premium calculation methods in the literature (Kudryavtsev, 2009; 
Heras et al., 2018; Baione and Biancalana, 2019; Kang et al., 2020; Baione and Biancalana, 2021; Kang et al., 2021; Hou, 2022; Hou et al., 
2022), we do not consider new customers in this framework.

Remark 4. When the expectile-based methods are applied to insurance data, claims that incurred greater losses are given larger weights 
as shown in (2) and their characteristics are better modeled than smaller losses. Intuitively, the expectile-based methods outperform other 
methods with equal weights given to all observations (like the conventional mean regression) when data are generated from heavy-tailed 
distributions. The quantile regression (QR) method that is less affected by the outliers cannot achieve the same goal.

4.3. The actuarial meaning of the expectile-based premium

To provide a better understanding of the expectile-based premium defined in (13), this section explains its actuarial meaning and 
shows the advantage of adopting the proposed expectile-based risk premium over the quantile-based counterparts.

Recall that under the EPP framework, we estimate the τ̃i -th expectile of the severity Ỹ i , i.e., EVaRτ̃i
(Ỹ i), as a building block of the 

expectile-based individual risk premium via the PER method in (15) for i = 1, . . . , n. By the definition of expectile (Newey and Powell, 
1987), the expectile risk measure EVaRτ̃i

(Ỹ i) for a given expectile level τ̃i satisfies

∫ EVaRτ̃i
(Ỹ i)

−∞
∣∣Ỹ i − EVaRτ̃i

(Ỹ i)
∣∣dF (Ỹ i)∫∞

−∞
∣∣Ỹ i − EVaRτ̃i

(Ỹ i)
∣∣dF (Ỹ i)

= τ̃i, i = 1, . . . ,n. (20)

Let Ỹ i+ = max{Ỹ i − EVaRτ̃i
(Ỹ i), 0} and Ỹ i− = max{EVaRτ̃i

(Ỹ i) − Ỹ i, 0} for the i-th severity. Denote Ỹ ′
i = (1 − pi)Ỹ i − P (Yi), where the first 

term can be viewed as the claim amount of the i-th policy after adjusting for the probability of having claims of the i-th policyholder 
and P (Yi) is the expectile-based risk premium defined in (13). Then, P (Yi)− = max{Ỹ ′, 0} represents how much the risk premium P (Yi)
i
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is lower than the pi -adjusted aggregate claim amount, suggesting the loss of the insurer for the i-th policy, and P (Yi)+ = max{−Ỹ ′
i , 0}

denotes the amount of the i-th risk premium that is greater than the pi -adjusted aggregate claim amount, representing the “redundant” 
premium the i-th policyholder pays or the profit of the insurer for the i-th policy. If the expectile-based risk premium (13) is collected 
for the i-th policy, then the “gain-loss” ratio for the insurer can be calculated as

E[P (Yi)+]
E[P (Yi)−] = E[max{−Ỹ ′

i ,0}]
E[max{Ỹ ′

i ,0}] = E[max{(1 − pi)(EVaRτ̃i
(Ỹ i) − Ỹ i),0}]

E[max{(1 − pi)(Ỹ i − EVaRτ̃i
(Ỹ i)),0}] = E[Ỹ i−]

E[Ỹ i+] = τ̃i

1 − τ̃i
, i = 1, . . . ,n, (21)

where the last equality follows from (20). It is easy to see from (21) that as the expectile level τ̃i increases, the “gain-loss” ratio raises and 
the loss caused by high-risk policyholders is relatively lower. Unfortunately, in practice, τ̃i cannot be set too high because a relatively high 
“redundant” premium E[Yi−] may lead to customer churn. Thus, there is a trade-off between the customer churn risk and the insurer’s 
shortfall risk. By collecting the expectile-based risk premium for a higher expectile level τ̃i , the insurer chooses to face a relatively lower 
loss with increased potential for customer churn.

This paper adopts the expectile-based risk premium for the premium principle and thus differs from the quantile-based risk premium 
applied in the Quantile Premium Principle (QPP, Heras et al., 2018; Baione and Biancalana, 2019; Baione and Biancalana, 2021). For 
the quantile-based risk measure Value at Risk (VaR) (Khorshidi and Ghezavati, 2019) with level θ̃i ∈ (0, 1), i.e., the possible maximum 
aggregate claim amount over the exposure with probability θ̃i (Kuan et al., 2009), we can derive from its definition that

∫ VaR
θ̃i

(Ỹ i)

−∞ dF (Ỹ i)∫∞
−∞ dF (Ỹ i)

= θ̃i, i = 1, . . . ,n. (22)

If the insurer collects the quantile-based risk premium P (Yi) = (1 − pi) VaRθ̃i
(Ỹ i) (Baione and Biancalana, 2019) for the i-th policy obtained 

via the Quantile Premium Principle (Heras et al., 2018), then we can obtain that

P (Ỹ ′
i ≤ 0)

P (Ỹ ′
i > 0)

= P ((1 − pi)Ỹ i ≤ P (Yi))

P ((1 − pi)Ỹ i > P (Yi))
= P (Ỹ i ≤ VaRθ̃i

(Ỹ i))

P (Ỹ i > VaRθ̃i
(Ỹ i))

= θ̃i

1 − θ̃i
, i = 1, . . . ,n, (23)

where the notations remain the same as those in (21) except for the quantile-based risk premium P (Yi) and the second equality of (23)
is derived from (22). P (Ỹ ′

i > 0) can be viewed as the probability of the risk premium being lower than the pi -adjusted aggregate claim 
amount, representing the shortfall risk; and P (Ỹ ′

i ≤ 0) denotes the probability of the risk premium being greater, which relates to the 
customer churn risk. Then, (23) suggests that there also exists a trade-off between the shortfall risk and the customer churn risk for the 
quantile-based risk premium. However, unlike the expectile-based risk premium, the quantile-based risk premium at a particular quantile 
level can only reflect a balance between the probabilities of loss and gain but not their magnitude. This suggests that the quantile-based 
risk premium cannot sufficiently reveal the riskiness of the policies and may lead to great losses for the insurers. Compared with the above 
quantile-based risk premium, the expectile-based one used in the EPP takes a step further by taking account of both the probability of the 
extreme events and their magnitudes (Kuan et al., 2009) simultaneously. The EPP may be favored by insurers who are more apprehensive 
about catastrophic events that could cause great losses.

4.4. The relationship between EPP and EVPP

For a better understanding of the proposed EPP, we introduce the loading factor in this subsection to show that the proposed EPP is 
actually equivalent to the EVPP applied for each risk class with a set of chosen risk class-specific loading factors. It is worth pointing out 
that the loading factors are determined after balancing (16) and are not involved in the process of calculating the expectile-based risk 
premium.

Recall that the application of the expected value premium principle generally involves choosing a loading factor to balance π(Y ) =∑L
l=1
∑nl

i=1 ei PEVPP(Yi) =∑L
l=1
∑nl

i=1 ei(1 + α) E(Yi), where the loading factor α quantifies the level of the risk premium PEVPP(Yi) higher 
than the pure premium E(Yi) = (1 − pi) E(Ỹ i) for all i. α = (P(Yi) − E(Yi))/ E(Yi) is usually used for evaluation of the profit made by the 
insurer for risk bearing and regulatory purposes (IAA, 2009; EIOPA, 2009; IFRS, 2017). Then, for given expectile-based risk premiums, the 
loading factor for all policies (indexed by i) belonging to the l-th risk class, αl , l = 1, . . . , L, can be obtained by

1 + αl = P(Yi)

E(Yi)
= (1 − pi)PERτ̃i

(Ỹ i)

(1 − pi)E(Ỹ i)
= PERτ̃i

(Ỹ i)

E(Ỹ i)
= ex�

i ϕ(τ ,γ )

ex�
i β

= ex�
i (ϕ(τ ,γ )−β). (24)

This implies that the expectile-based loading factors vary for different risk classes and are determined by the riskiness of the corresponding 
risk classes. Then, the expectile-based risk premiums calculated by the EPP can be viewed as applying the EVPP method for each risk class 
with the loading factor being αl for the l-th risk class in (24). Rather than fixing a unique loading factor for all risk classes as the EVPP 
does, the EPP allows for a more precise description of the distribution of loss for each risk class by varying the loading factor across risk 
classes.

In addition, as αl is unit-free, we also interpret the EPP-based loading factor for each risk class as a measure of relative “risk” with 
respect to the pure premium for policies belonging to the risk class (Risk Margin Working Group, 2009). It enables us to compare across 
different risk classes, offering some knowledge of the volatility of loss across the risk class and reflecting the market price an insurer 
would offer for bearing the risk (Olivieri and Pitacco, 2011). The higher the loading factor is, the higher the risk an insurer will bear for 
the extreme loss incurred by the policies belonging to the corresponding risk class.

As in (24), the loading factors for the TSER, TSPQR, and TSQR methods can also be calculated with the corresponding risk premiums 
estimated via the ER, PQR, and QR methods, respectively, and interpreted in the same fashion. However, the loading factors for EVPP and 
SDPP methods are constant across different risk classes and thus cannot contribute to the comparison of the riskiness across risk classes.
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Table 1
The notations in the automobile insurance dataset.

Notations Type Description

Yi Continuous The claim amount of the i-th policy ($)
ei Continuous The exposure of the i-th policy
A Categorical The levels of drivers’ age: 1 (youngest), 2, 3, 4, 5, 6
V Categorical The levels of the age of the vehicle: 1 (youngest), 2, 3, 4

Table 2
The parameter estimates of logistic regression in the first stage of the TSQR, TSPQR, TSER, 
and TSPER methods.

Probability model Parameter Estimation S.E. z value p value

logistic regression

Intercept -1.406 0.062 -22.619 0.000 ***
V = 2 0.031 0.051 0.620 0.535
V = 3 -0.095 0.050 -1.927 0.054 ·
V = 4 -0.190 0.051 -3.734 0.000 ***
A = 2 -0.199 0.064 -3.111 0.002 **
A = 3 -0.260 0.062 -4.193 0.000 ***
A = 4 -0.303 0.062 -4.880 0.000 ***
A = 5 -0.533 0.068 -7.800 0.000 ***
A = 6 -0.536 0.077 -6.925 0.000 ***

Notes: Signif. codes: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1, ‘ ’ 1.

Table 3
MSE, Bias, and the Gini index for different choices of b(τ ) of the 
TSPER method. The standard errors of the Gini indices are given 
in parentheses. The boldface denotes the best performance.

Choice of b(τ ) b1(τ ) b2(τ ) b3(τ ) b4(τ ) b5(τ )

MSE 0.30 0.21 0.27 0.43 0.30
Bias 0.40 0.28 0.38 0.50 0.41

Gini index
2.16 2.36 2.21 2.25 2.26

(1.79) (1.75) (1.71) (1.76) (1.74)

5. Real data analysis

This section applies the proposed premium calculation method to a real-world dataset and compares the TSPER with the TSQR (Heras 
et al., 2018; Baione and Biancalana, 2019), TSPQR (Baione and Biancalana, 2021), and TSER methods based on the Gini index (Frees et al., 
2011).

5.1. Dataset

We apply the proposed method for the analysis of the ‘dataCar’ dataset in R package insuranceData. The dataset provides 67856 vehicle 
insurance policies from 2004 to 2005 from an Australian automobile insurance company. Table 1 presents the notations used for this 
dataset. For simplification, we only consider the effects of the two most significant categorical rating factors, i.e., the driver’s age (A) and 
the age of the vehicle (V ), on the log of the aggregate claim amount submitted by each policyholder. There are 6 levels for the driver’s 
age (A = 1, . . . , 6) and 4 levels for the age of the vehicle (V = 1, . . . , 4), resulting in L = 6 × 4 = 24 risk classes.

5.2. Model estimation

In the following, we aim to calibrate the total risk premium and the risk premiums for all the policies.
We first calculate the total risk premium π(Y ) for the portfolio to ensure that the probability of the total loss being less than the total 

risk premium is sufficiently large. To obtain such a total risk premium, we draw B = 10, 000 bootstrap samples for the aggregate claim 
amounts from the original dataset. Based on the Solvency II (EIOPA, 2009), we set the 99.5% quantile of the bootstrap samples as the total 
risk premium, i.e., π(Y ) = VaR99.5%(Y ) = 10, 031, 705. Such a total premium ensures the probability of the total loss being greater than 
the total risk premium for the portfolio to be less than 0.5%.

To allocate the total risk premium to policies such that the same quantile level is used for all the policies, we apply the TSPER method 
to obtain the building blocks ( p̂1, . . . , p̂n , and γ̂ ) for individual premium calculation in (16). Table 2 reports the coefficient estimates of 
the logistic regression in the first stage of the TSPER method. These estimates are the same for all six two-stage methods mentioned 
above, as they share the same logistic regression in the first stage. The regression parameters for the risk classes V = 2 and V = 3 in 
logistic regression are not significant (similar results are also derived for Gamma regression in Table 5), i.e., their p-values are higher than 
0.05, suggesting that these levels could be aggregated to the base level (V = 1, A = 1). However, we leave these levels separated for our 
analysis.

We apply the PER method with the form of b(τ ) selected from a list of commonly used candidates for parametric modeling of 
the coefficient function (Frumento and Bottai, 2016; Baione and Biancalana, 2021), which includes b1(τ ) = (1, τ )� , b2(τ ) = (1, τ , τ 2)� , 
b3(τ ) = (1, τ , τ 2, τ 3)� , and the shifted Legendre polynomials (Abramowitz and Stegun, 1965) of degree 2 and 3, i.e., b4(τ ) = (1, 2τ −
1, 6τ 2 − 6τ + 1)� and b5(τ ) = (1, 2τ − 1, 6τ 2 − 6τ + 1, 20τ 3 − 30τ 2 + 12τ − 1)� . Table 3 reports MSE, Bias, and the Gini index with 
the benchmark model chosen as the TSER (the bigger the Gini index is, the better the competing model performs compared with the 
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Table 4
The parameter estimates of the PER method for the automobile insurance dataset.

γ̂ =
⎛
⎝ γ00 . . . γ80

γ01 . . . γ81

γ02 . . . γ82

⎞
⎠

�

=
⎛
⎝ 5.692 0.036 0.090 0.124 −0.034 −0.044 −0.060 −0.073 −0.047

1.978 0.089 0.141 0.245 −0.378 −0.372 −0.407 −0.459 −0.318
0.530 −0.026 −0.061 −0.110 0.132 −0.066 0.124 0.077 −0.064

⎞
⎠

�

Fig. 2. ER parameter estimates (black dots) of ϕ j(τ ), j = 0, . . . , 8 for each of the expectile level τ = 0.01, 0.02, . . . , 0.99, PER parameter estimates (black line) of ϕ j(τ |γ ), 
j = 0, . . . , 8, and the latter’s 95% CIs (gray band) for τ ∈ (0, 1). The blue horizontal line represents ϕ̂(τ ) = 0. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

benchmark; we will discuss the Gini index in detail in Section 5.3) for different choices of b(τ ). It is not surprising to find that the 
Gini indices for different choices of b(τ ) in Table 3 are nearly indistinguishable. In fact, this could happen even for very different model 
specifications (we refer the reader to Section 3.5 of Frumento et al. (2021) for a detailed discussion). As pointed out by Frumento et al. 
(2021), this suggests parsimony and interpretability should be taken into account when selecting models. For simplicity reasons and by 
noticing that the TSPER with b2(τ ) also outperforms other models in terms of MSE and Bias, we adopt b2(τ ) for the TSPER as well as for 
the TSPQR method in the following analysis.

Table 4 reports the estimated γ̂ of the PER method and results for the QR, PQR, and ER methods are relegated to Appendix A. Based 
on the estimated γ̂ , we find that the signs of the covariate effects ϕ̂(τ |γ ) estimated by the PER and ER methods are the same except for 
a few very high expectiles. The parameters for all the levels of V and A are positive and negative, respectively.

Fig. 2 shows how the covariate effects ϕ̂(τ |γ ) estimated by the PER method (black lines) vary across the expectile level τ ∈ (0, 1) with 
a comparison of the ER estimates (dots) obtained at multiple expectile levels τ = 0.01, 0.02, . . . , 0.99. The blue line represents ϕ̂(τ ) = 0. 
We also obtain the asymptotic standard errors of PER estimates by using the asymptotic covariance matrix in Theorem 3.2 and plot their 
asymptotic CIs with gray bands in Fig. 2. It shows that the estimates obtained by the two methods are very close to each other and 
the CIs of the PER estimates cover most of the ER estimates. Although ER estimates exhibit a steady increase (decrease) for moderate 
expectile levels, they suffer from high volatility in the tails. Whereas, the PER method yields a more smooth trend across all expectile 
levels, especially in the extremes, which facilitates the interpretation of the covariate effects. In addition, the PER estimates are computed 
with more computational efficiency. From Fig. 2(a), we observe an increasing trend of the estimated intercept, i.e., the PER estimate for 
the base risk class V = 1, A = 1 increases as the expectile level raises. Fig. 2(b) shows the difference between the PER estimates for risk 
class V = 2, A = 1 and those for the base class across the expectile levels, and the subsequent subplots can be explained in the same 
fashion. We also find that the regression coefficients of all levels of A are bigger than those of V , suggesting that the drivers’ age has a 
stronger effect on the risk premiums than the age of the vehicle.

Fitting the QR and PQR methods can be easily realized using the R package quantreg and qrcm, respectively. Coefficient estimates via 
the QR are also similar to those via the PQR methods.
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Table 5
The parameter estimates of Gamma regression for the calculation of the loading factor.

Amount model Parameter Estimation S.E. t value p value

Gamma regression

Intercept 7.808 0.095 81.851 0.000 ***
V = 2 0.051 0.079 0.646 0.518
V = 3 0.078 0.078 1.005 0.315
V = 4 0.169 0.080 2.106 0.035 *
A = 2 -0.224 0.098 -2.288 0.022 *
A = 3 -0.335 0.095 -3.517 0.000 ***
A = 4 -0.320 0.095 -3.353 0.001 ***
A = 5 -0.439 0.106 -4.124 0.000 ***
A = 6 -0.355 0.122 -2.918 0.004 **

Notes: Signif. codes: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1, ‘ ’ 1.

To apply the premium principles, we obtain the loading factors, i.e., αEVPP = 8.32% for the EVPP and αSDPP = 1.61% for the SDPP (see 
Heras et al. (2018) and Appendix A for details), and the unique quantile levels θ̄ that balance π(Y ) and the sum of the risk premiums for 
each policyholder, i.e., 96.32% for the TSQR, 96.12% for the TSPQR, 99.52% for the TSER, and 99.71% for the TSPER.

Individual premium calculation via the TSER or TSQR method requires fitting the 24 times of the ERs or QRs at different quantile levels 
in the second stage with 4 + 6 − 1 = 9 unknown parameters for a single run and a total of 24 × 9 = 216 parameters to be estimated. 
However, this onerous and computationally demanding task can be greatly simplified by applying the TSPER or the TSPQR method, for 
which we only need to fit a single PER or PQR given b2(τ ) in the second stage with 3 × 9 = 27 parameters. The parametric approaches 
will be more parsimonious and efficient as the number of risk classes increases.

Table 6 summarizes the probabilities of having at least one claim and the risk premiums for each risk class calculated by the six 
two-stage methods, respectively. The probabilities of having claims for the risk classes V = 2 are higher than those of other classes and 
their risk premiums are the highest among all the classes. We estimate the pure premium E(Yi), i = 1, . . . , n via Gamma regression with 
logarithmic link function and the corresponding parameter estimates are reported in Table 5. The six approaches utilize different features 
of the data and yield different premium calculations. The TSPER-based risk premiums are significantly higher for the risk classes A = 1
and lower for A = 5 and A = 6 than other classes, which indicates again that these drivers’ age groups have a stronger influence on the 
risk premiums than other rating factors. The lowest risk premiums calculated by the six methods are different. EVPP and SDPP select 
V = 3, A = 5 as the least risky class, TSQR and TSPQR select V = 4, A = 5, and TSER and TSPER select V = 1, A = 5. TSPQR-based risk 
premiums have the biggest range (145.22, 845.05), SDPP-based risk premiums have the smallest range (217.23, 559.75), and the ranges of 
expectile-related risk premiums are in the middle.

To assess the relative risk across different risk classes, Table 6 reports the pure premiums and the risk class-specific loading factors 
calculated for the four two-stage methods (the loading factors of the EVPP and SDPP methods are fixed for all risk classes). The risk classes 
A = 1 or A = 3 have higher positive loading factors than other classes for the four methods, indicating higher volatility in the aggregate 
claim amount for policyholders belonging to these classes. Most loading factors calculated by TSPER are positive, except for V = 1, A = 6. 
The negative values also exist for other methods. The expectations of the aggregate claim amounts for these risk classes are higher than 
the extreme quantiles/expectiles, suggesting that the policyholders belonging to these risk classes are much more right-skewed than the 
others.

We find that the pure premium for class V = 1, A = 1 is similar to that for class V = 3, A = 1 (484.58 versus 484.98), but the latter has 
a larger TSPER-based risk premium and a larger loading factor (517.62 versus 560.21, 6.94% versus 15.64%, respectively). This implies that 
there is higher volatility in the aggregate claim amount, i.e., higher uncertainty involved in the claim process, arising from policyholders 
belonging to class V = 3, A = 1 compared with class V = 1, A = 1. We also observe that though policyholders belonging to the classes 
V = 3, A = 2 and V = 3, A = 4 have similar risk margins (i.e., 26.88 and 29.70, respectively), the pure premium for the former class 
is higher (328.44 versus 273.17) and thus a higher TSPER-based risk premium is collected (355.32 versus 302.87). This indicates that 
policyholders belonging to class V = 3, A = 2 have larger average aggregate claim amounts with relatively lower uncertainty involved in 
the claim process compared with class V = 3, A = 4, which results in a lower loading factor for class V = 3, A = 2. Compared with the 
loading factor (8.30%) for class V = 3, A = 2, the higher loading factor (10.99%) for V = 3, A = 4 suggests that these policyholders have to 
pay a larger percentage of the average aggregate claim amount for the higher underlying risk exhibited in their claim process.

5.3. Model comparison using the Gini index

We compare the performance of the proposed TSPER with those of EVPP, SDPP, TSQR, TSER, and TSPQR using the ordered Lorenz curve 
and the Gini index in the empirical study (Frees et al., 2011), which are commonly used criteria for the comparison of premium pricing 
strategies (Frees et al., 2014; Shi and Yang, 2018; Verschuren, 2021). The calculation of the Gini index requires choosing a model as the 
benchmark model and setting other models as the competing models. We calibrate the risk premiums using the six methods and set 
each of these six methods as the benchmark model in turn. By calculating the ratio of the risk premium of each competing model to the 
benchmark model, we yield the ‘relativity’ whose order provides information about the vulnerability of the benchmark model relative to 
the competing model and is used to generate the ordered Lorenz curve (Frees et al., 2011).

Fig. 3 displays four ordered Lorenz curves with TSQR, TSPQR, TSER, and TSPER being the benchmark model, respectively. When the 
estimated ordered Lorenz curve is below (above) the line of equality (the 45-degree line in black), the corresponding competing model is 
better (worse) than the benchmark. In the first subplot of Fig. 3, we set the TSQR method as the benchmark, in which case we observe 
that it is not as competitive as the other three methods for the premium calculation. The TSPQR method is shown to have a similar 
performance to the TSQR method and is no better than the TSER and TSPER methods. From Fig. 3, we find the proposed TSPER method is 
the best premium calculation method among these four methods.

We then calculate two times the area between the line of equality and the Lorenz curves, which is known as the Gini index, and 
provide the results in Table 7. The positive Gini index in Table 7 suggests that the competing model performs better than the benchmark 
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, TSPER, and their corresponding loading factors for 24 risk 

Loading factor

TSPER
TSQR TSPQR TSER TSPER

99.71%

16.92 34.57% 41.21% 9.65% 6.94%
85.60 63.19% 61.61% 15.99% 12.12%
60.21 66.13% 55.90% 18.67% 15.64%
58.80 53.46% 44.80% 15.93% 13.89%
29.49 -3.34% 3.56% 0.23% 0.23%
73.05 14.03% 17.46% 6.16% 5.07%
55.32 15.63% 12.06% 8.61% 8.30%
53.27 12.88% 2.92% 6.06% 6.58%
93.69 -1.27% 5.44% 5.10% 5.07%
32.54 14.62% 19.21% 11.33% 10.12%
16.47 16.08% 13.33% 14.03% 13.52%
14.46 14.69% 3.69% 11.44% 11.73%
81.38 -13.82% -3.22% 1.55% 2.79%
18.70 1.26% 9.23% 7.65% 7.74%
02.87 -1.56% 3.33% 10.06% 10.99%
00.62 -6.56% -5.89% 7.43% 9.18%
03.92 -23.13% -20.67% -0.34% 2.24%

231.10 -12.90% -11.48% 5.71% 7.14%
18.69 -16.86% -18.30% 8.23% 10.28%
16.36 -24.89% -27.34% 5.72% 8.37%
12.24 -28.28% -22.66% -5.01% -1.92%
40.50 -18.29% -13.99% 0.74% 2.77%
27.72 -20.72% -19.60% 3.19% 5.85%
25.41 -25.86% -27.85% 0.85% 4.07%

253
Table 6
The probabilities of submitting at least one claim, the probability/expectile levels, the pure premiums, and the risk premiums calculated by EVPP, SDPP, TSQR, TSPQR, TSER
classes.

Risk 
class

Probability 
of claims 
1 − p̂i

Probability/expectile level Pure 
premium 
E(Yi)

Risk premium

QR PQR ER PER EVPP SDPP TSQR TSPQR TSER
ˆ̃
θi

ˆ̃
θi

ˆ̃τi
ˆ̃τi α = 8.32% α = 1.61% θ̄ = 96.32% θ̄ = 96.12% θ̄ = 99.52% θ̄ =

V = 1, A = 1 19.69% 0.813 0.803 0.864 0.891 484.58 524.92 519.20 652.09 684.29 531.36 5
V = 2, A = 1 20.19% 0.818 0.808 0.865 0.892 522.88 566.41 559.75 853.30 845.05 606.50 5
V = 3, A = 1 18.23% 0.798 0.787 0.859 0.887 484.98 525.35 521.07 805.71 756.06 575.53 5
V = 4, A = 1 16.86% 0.782 0.770 0.854 0.883 491.20 532.09 529.26 753.78 711.24 569.46 5
V = 1, A = 2 16.73% 0.780 0.768 0.853 0.883 329.07 356.47 354.68 318.07 340.80 329.82 3
V = 2, A = 2 17.17% 0.786 0.774 0.855 0.884 355.42 385.00 382.70 405.28 417.48 377.31 3
V = 3, A = 2 15.45% 0.762 0.749 0.848 0.878 328.44 355.78 355.09 379.77 368.06 356.71 3
V = 4, A = 2 14.25% 0.742 0.728 0.843 0.874 331.81 359.43 359.87 374.54 341.51 351.92 3
V = 1, A = 3 15.90% 0.768 0.756 0.850 0.880 279.83 303.12 302.19 276.27 295.05 294.11 2
V = 2, A = 3 16.32% 0.774 0.762 0.852 0.881 302.31 327.48 326.14 346.50 360.40 336.57 3
V = 3, A = 3 14.66% 0.749 0.735 0.845 0.876 279.08 302.31 302.34 323.96 316.28 318.23 3
V = 4, A = 3 13.52% 0.728 0.713 0.839 0.871 281.74 305.19 306.23 323.14 292.14 313.97 3
V = 1, A = 4 15.33% 0.760 0.747 0.848 0.878 274.05 296.86 296.36 236.18 265.21 278.31 2
V = 2, A = 4 15.75% 0.766 0.754 0.849 0.880 296.12 320.77 319.90 299.86 323.46 318.77 3
V = 3, A = 4 14.14% 0.740 0.726 0.842 0.874 273.17 295.91 296.37 268.92 282.27 300.66 3
V = 4, A = 4 13.03% 0.718 0.702 0.836 0.869 275.65 298.59 300.06 257.57 259.40 296.14 3
V = 1, A = 5 12.58% 0.708 0.692 0.834 0.867 199.67 216.29 217.68 153.49 158.40 198.99 2
V = 2, A = 5 12.93% 0.715 0.700 0.836 0.868 215.94 233.92 235.14 188.09 191.15 228.27
V = 3, A = 5 11.57% 0.682 0.665 0.828 0.862 198.53 215.05 217.23 165.06 162.20 214.86 2
V = 4, A = 5 10.64% 0.654 0.635 0.821 0.857 199.86 216.49 219.51 150.11 145.22 211.30 2
V = 1, A = 6 12.55% 0.707 0.691 0.834 0.867 216.63 234.66 236.19 155.37 167.55 205.76 2
V = 2, A = 6 12.90% 0.715 0.699 0.836 0.868 234.28 253.78 255.14 191.44 201.50 236.02 2
V = 3, A = 6 11.54% 0.681 0.664 0.828 0.862 215.38 233.31 235.69 170.76 173.16 222.25 2
V = 4, A = 6 10.61% 0.653 0.634 0.821 0.856 216.81 234.86 238.16 160.74 156.43 218.65 2
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Fig. 3. The ordered Lorenz curves, a graph of distributions of loss versus premium ordered by relativities, with the QR, PQR, ER, and PER methods as the benchmark, 
respectively.

Table 7
The Gini indices for comparison of premium calculation methods, including EVPP, SDPP, TSQR, 
TSPQR, TSER, and proposed TSPER. The corresponding standard errors are given in parentheses.

Benchmark model Competing model Min-max
strategyEVPP SDPP TSQR TSPQR TSER TSPER

EVPP
0.00

(0.00)
1.26

(1.79)
0.04

(1.71)
0.01

(1.73)
1.28

(1.69)
1.55

(1.74)
1.55

(1.74)

SDPP
-0.43
(1.79)

0.00
(0.00)

0.35
(1.72)

0.29
(1.73)

1.23
(1.69)

1.55
(1.70)

1.55
(1.70)

TSQR
12.12
(1.70)

12.08
(1.70)

0.00
(0.00)

4.82
(1.69)

12.36
(1.77)

12.33
(1.77)

12.36
(1.77)

TSPQR
11.15
(1.73)

11.18
(1.73)

-1.02
(1.69)

0.00
(0.00)

11.55
(1.76)

11.58
(1.76)

11.58
(1.76)

TSER
1.79

(1.69)
2.00

(1.70)
-2.08
(1.77)

-2.04
(1.76)

0.00
(0.00)

2.36
(1.75)

2.36
(1.75)

TSPER
0.98

(1.74)
1.06

(1.71)
-1.18
(1.77)

-1.18
(1.76)

-0.95
(1.74)

0.00
(0.00)

1.06
(1.71)

model, and the negative value suggests the opposite. The bigger the Gini index is, the more profitable the competing model is in the sense 
of risk discrimination compared with the benchmark model. The maximum Gini index in each row is in bold and listed in the last column, 
and the subplots in Fig. 3 correspond to expectile-based methods and quantile-based ones as the benchmark, respectively. Then, we apply 
the min-max strategy (Frees et al., 2014) and find that the TSPER method is superior to other methods. Since TSPER is more general 
than TSER and the former takes more information (information across all expectile levels rather than that on a specific expectile level) 
of the portfolio into account, it is not surprising to find that TSPER yields better results than TSER in Table 7. It can also be seen from 
Table 7 that the expectile-based methods (TSER and TSPER) outperform the quantile-related ones (TSQR and TSPQR). Additionally, TSPER 
also performs better than EVPP and SDPP. We also conduct simulation studies under different scenarios to compare the performance of 
the six methods in Appendix A and they yield similar comparison results as mentioned above.

6. Conclusion

In this paper, we proposed a parametric expectile regression method to simultaneously estimate multiple expectiles of the response in 
a single run. When applied to premium calculation, this parametric modeling approach provides more parsimony and efficiency compared 
with the expectile regression method, especially when the number of risk classes is large. The parametric functions in the PER method 
can be selected from a wide range of forms, and the PER estimator can also be viewed as an extension of the ER estimator. Besides, the 
PER method can alleviate the crossing problem by choosing a proper structure for b(τ ).

Given that the magnitude of the extreme values in the right tail of the distribution may result in a huge loss for the insurance 
company, we introduce the coherent and elicitable expectile into the premium calculation and adapt the idea of the two-stage model to 
obtain the two-stage parametric expectile regression for premium calculation, which is preferable to the existing methods for heavy-tailed 
distributions. We propose the Expectile Premium Principle, which can be viewed as applying the EVPP for each risk class with a set of 
chosen loading factors, to allocate the total risk premium to each policy efficiently. As far as we know, we are the first to apply the 
expectile regression in the actuarial literature. The actuarial meaning of the expectile-based risk premium is also discussed in this paper. 
Finally, the proposed method is applied to an automobile insurance dataset. Comparison results based on the Gini index show that the 
proposed TSPER method outperforms the EVPP, SDPP, QR, ER, and PQR counterparts.
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