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We systematically study pairwise counter-monotonicity, an extremal notion of negative dependence. 
A stochastic representation and an invariance property are established for this dependence structure. 
We show that pairwise counter-monotonicity implies negative association, and it is equivalent to 
joint mix dependence if both are possible for the same marginal distributions. We find an intimate 
connection between pairwise counter-monotonicity and risk sharing problems for quantile agents. This 
result highlights the importance of this extremal negative dependence structure in optimal allocations 
for agents who are not risk averse in the classic sense.
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1. Introduction

Dependence modeling is a crucial part of modern quantita-
tive studies in economics, finance, and insurance (McNeil et al. 
(2015)). Comonotonicity and counter-monotonicity are known as 
the strongest forms of positive and negative dependence, re-
spectively. In quantitative risk management, assuming knowl-
edge of the marginal distributions, comonotonicity corresponds 
to the most dangerous dependence structure (Denneberg (1994)
and Dhaene et al. (2002, 2006)) for the aggregate risk, whereas 
counter-monotonicity corresponds to the safest. In dimensions 
higher than 2, by counter-monotonicity we mean pairwise counter-
monotonicity (Dall’Aglio (1972)), which has been studied under 
the name of mutual exclusivity in the actuarial literature (Dhaene 
and Denuit (1999) and Cheung and Lo (2014)).1

Despite the obvious similarity in their definitions, comono-
tonicity and counter-monotonicity are asymmetric in several major 
senses. For instance, comonotonicity admits a stochastic repre-
sentation (see Lemma 1 below), but such a representation is not 
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The two definitions are shown to be equivalent first by Dall’Aglio (1972, Lemma 2)
and in a more precise form by Cheung and Lo (2014, Theorem 4.1).
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known for pairwise counter-monotonicity. Moreover, for any given 
tuple of marginal distributions, a comonotonic random vector with 
these marginal distributions always exists, but a pairwise counter-
monotonic one may not exist unless quite restrictive conditions 
on the marginal distributions are satisfied, as first studied by Dal-
l’Aglio (1972). In particular, a pairwise counter-monotonic random 
vector cannot have continuous marginal distributions. Comono-
tonicity has many important roles in economics, finance and ac-
tuarial science, and as such it has received great attention in 
the literature, as in axiomatization of preferences (Yaari (1987); 
Schmeidler (1989)), risk measures (Kusuoka (2001)) and premium 
principles (Wang et al. (1997)), risk sharing (Landsberger and Meil-
ijson (1994); Jouini et al. (2008)), insurance design (Huberman et 
al. (1983); Carlier and Dana (2003)), risk aggregation (Embrechts 
et al. (2015)), and optimal transport (Rüschendorf (2013)).

In sharp contrast to the rich literature on comonotonicity, re-
search on pairwise counter-monotonicity is quite limited. As a de-
pendence concept, pairwise counter-monotonicity has been stud-
ied by Dall’Aglio (1972), Hu and Wu (1999), Dhaene and Denuit 
(1999) and Cheung and Lo (2014), but the list of relevant studies 
do not grow much longer. In contrast to the relatively limited stud-
ies on pairwise counter-monotonicity, this dependence structure 
appears naturally in many economic contexts, such as lottery tick-
ets, Bitcoin mining, gambling, and mutual aid platforms, whenever 
payment events are mutually exclusive. In particular, the inter-
est in studying pairwise counter-monotonicity has grown in the 
recent risk sharing literature. A pairwise counter-monotonic struc-
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ture is the essential building block of any optimal allocation for 
agents using Value-at-Risk (VaR, which are quantiles) and quantile-
related risk measures; such problems are studied by Embrechts 
et al. (2018) and generalized by Weber (2018), Embrechts et al. 
(2020), Liu et al. (2022) and Xia et al. (2023). Moreover, counter-
monotonicity, when possible, serves as the best-case dependence 
structure in risk aggregation for some common risk measures, and, 
in some contexts, it also serves as the worst-case dependence 
structure for VaR (see Example 1 in Section 2).

This paper is dedicated to a systematic study of pairwise 
counter-monotonicity. As comonotonicity and counter-monotonicity 
are classic and prominent concepts in mathematics and its ap-
plications with a long history, at least since the seminal work 
of Hardy et al. (1934), one may guess that there is not much 
more to discover about them. To our pleasant surprise, we of-
fer, through the development of this paper, many new results on 
counter-monotonicity, some of which are motivated by recent de-
velopments in risk management.

We obtain a new stochastic representation for pairwise counter-
monotonic random vectors using their component-wise sum in 
Theorem 1, which will be useful for many other results in the 
paper. The second result, Theorem 2, establishes that counter-
monotonicity is preserved under increasing transforms on disjoint 
sets of components of a random vector, which is an invariance 
property proposed by Joag-Dev and Proschan (1983) satisfied by 
negative association (Alam and Saxena (1981)). Using this invari-
ance property, we obtain in Theorem 3 that counter-monotonicity 
implies negative association. The notion of negative association is 
stronger than many other forms of negative dependence, such as 
negative orthant dependence (Block et al. (1982)) and negative 
supermodular dependence (Hu (2000)). In particular, Theorem 3
surpasses a result of Dhaene and Denuit (1999) showing that 
counter-monotonicity implies negative supermodular dependence.

Another negative dependence concept is joint mix dependence 
(Wang and Wang (2011, 2016)), which can be used to optimize 
many quantities in risk aggregation; see Wang et al. (2013) and 
Rüschendorf (2013). To connect counter-monotonicity and joint 
mix dependence, we fully characterize all Fréchet classes (Joe 
(1997)) which are compatible with both dependence concepts in 
Theorem 4; it turns out that the two notions, when both exist in 
the same Fréchet class, are equivalent. Finally, we show in The-
orem 5 that in the context of risk sharing for quantile agents 
(Embrechts et al. (2018)), under some mild conditions on the to-
tal loss, there always exists a pairwise counter-monotonic Pareto-
optimal allocation, and any pairwise counter-monotonic allocation 
is Pareto optimal for some agents. As a consequence, pairwise 
counter-monotonic random vectors are natural for agents that are 
not risk averse. This is in stark contrast to comonotonic allocations, 
which appear prominently for risk-averse agents (in the sense of 
Rothschild and Stiglitz (1970)) as a consequence of comonotonic 
improvements introduced by Landsberger and Meilijson (1994).

2. Preliminaries

We first define comonotonicity and counter-monotonicity for 
bivariate random variables. Fix a probability space (�, A, P ). The 
probability space does not need to be atomless in Sections 2–4. We 
treat almost surely (a.s.) equal random variables as identical; this 
means that all equalities and inequality for random variables hold 
in the a.s. sense, and we omit “a.s.” in all our statements. Terms 
like “increasing” are in the non-strict sense. Let n be a positive in-
teger and [n] = {1, . . . , n}. Throughout, we consider n � 2.

A bivariate random vector (X, Y ) is comonotonic if there ex-
ist increasing functions f , g and a random variable Z such that 
(X, Y ) = ( f (Z), g(Z)). A bivariate random vector (X, Y ) is counter-
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monotonic if (X, −Y ) is comonotonic. An equivalent formulation of 
comonotonicity is

(X(ω) − X(ω′))(Y (ω) − Y (ω′)) � 0

for (P × P )-almost every (ω,ω′) ∈ �2.

An equivalent formulation of counter-monotonicity is

(X(ω) − X(ω′))(Y (ω) − Y (ω′)) � 0

for (P × P )-almost every (ω,ω′) ∈ �2.

Next, we define these concepts in dimensions higher than 2. For 
n � 3, a random vector X taking values in Rn is (pairwise) comono-
tonic if each pair of its components is comonotonic, and it is (pair-
wise) counter-monotonic if each pair of its components is counter-
monotonic.2 We will say “pairwise counter-monotonicity” to em-
phasize the case n � 3 and simply say “counter-monotonicity” 
when we also include dimension 2. We always omit “pairwise” 
for comonotonicity, for which the distinction between dimensions 
n = 2 and n � 3 is unnecessary.

There are many equivalent ways of formulating comonotonic-
ity and counter-monotonicity; see Puccetti and Wang (2015, Sec-
tion 3.2) for a review. For instance, they can be formulated 
using joint distributions. A comonotonic random vector and a 
counter-monotonic random vector have, respectively, the largest 
and the smallest joint distribution functions among all random 
vectors with the same marginals. With given marginals, the largest 
(resp. smallest) joint distribution function is known as the Fréchet-
Hoeffding upper (resp. lower) bound.

A stochastic representation of comonotonicity, which follows 
from Denneberg (1994, Proposition 4.5), is presented in the next 
lemma.

Lemma 1 (Denneberg (1994)). Let (X1, . . . , Xn) be a random vector and 
denote by S = ∑n

i=1 Xi . The following are equivalent.

(i) (X1, . . . , Xn) is comonotonic.
(ii) There exist increasing functions f1, . . . , fn and a random variable 

Z such that Xi = f i(Z) for all i ∈ [n].
(iii) There exist continuously increasing functions f1, . . . , fn such that 

Xi = f i(S) for all i ∈ [n].

Lemma 1 implies that a comonotonic vector can be represented 
by increasing functions of the sum S . Such a representation result 
does not exist for pairwise counter-monotonicity, since the sum S
cannot determine the components (X1, . . . , Xn) in the presence of 
negative dependence.

Although quite different from comonotonicity, pairwise counter-
monotonicity also has a special structure, presented below in 
Lemma 2, which is a restatement of Lemma 2 and Theorem 3 
of Dall’Aglio (1972). This result will be useful in a few places in 
the paper. The current form of this lemma can be found in Theo-
rem 4.1 of Cheung and Lo (2014) and Proposition 3.2 of Puccetti 
and Wang (2015). Denote by ess-infX and ess-supX the essential 
infimum and essential supremum of a random variable X , respec-
tively.

Lemma 2 (Dall’Aglio (1972)). If at least three of X1, . . . , Xn are non-
degenerate, pairwise counter-monotonicity of (X1, . . . , Xn) means that 
one of the following two cases holds true:

2 We also say that random variables X1, . . . , Xn are comonotonic (counter-
monotonic), which means that the random vector (X1, . . . , Xn) is comonotonic 
(counter-monotonic).
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P (Xi > ess-infXi, X j > ess-infX j) = 0 for all i �= j; (1)

P (Xi < ess-supXi, X j < ess-supX j) = 0 for all i �= j. (2)

A necessary condition for (1) is 
∑n

i=1 P (Xi > ess-infXi) � 1, and a nec-
essary condition for (2) is 

∑n
i=1 P (Xi < ess-supXi) � 1.

In the actuarial literature, mutual exclusivity of (X1, . . . , Xn) is 
defined as either (1) or (2); see Cheung and Lo (2014).

Pairwise counter-monotonicity imposes strong constraints on 
the marginal distributions. For instance, the necessary condition 
in case of (1) is equivalent to 

∑n
i=1 P (Xi = ess-infXi) � n − 1, 

and it implies, in particular, that X1, . . . , Xn are bounded from be-
low. Moreover, given n � 3 non-degenerate marginal distributions, 
a pairwise counter-monotonic random vector exists if and only if 
one of the two necessary conditions on the marginal distributions 
holds (Theorem 3 of Dall’Aglio (1972)).

Example 1. We illustrate the special role of counter-monotonicity 
in risk aggregation with a simple model. Let F1, . . . , Fn be Bernoulli 
distributions with mean ε ∈ (0, 1/n). These distributions may rep-
resent losses from credit default events in a pre-specified period, 
which usually occur with a small probability. In risk aggregation 
problems (e.g., Embrechts et al. (2013, 2015)), we are interested in 
the minimum (best-case) value or maximum (worst-case) value of

ρ

(
n∑

i=1

Xi

)
with the marginal condition Xi ∼ Fi, i ∈ [n], (3)

where ρ is a risk measure, and 
∑n

i=1 Xi represents the total loss 
from a portfolio of defaultable bonds, with the probability of de-
fault ε estimated from the credit rating of these bonds, assumed to 
be equal for simplicity. We consider two choices of ρ , which lead 
to opposite conclusions.

(a) Let ρ be a risk measure that is consistent with convex or-
der. Such risk measures are characterized by Mao and Wang 
(2020), and they include all law-invariant coherent, as well as 
convex, risk measures, such as the Expected Shortfall (Föllmer 
and Schied (2016)). The minimum value of (3) is obtained by 
a counter-monotonic random vector (X1, . . . , Xn). This result 
holds for other marginal distributions as long as a counter-
monotonic random vector with these marginal distributions 
exists; see e.g., Lemma 3.6 of Cheung and Lo (2014).

(b) Let ρ : X �→ inf{x ∈ R : P (X � x) � 1 − α}, which is the 
risk measure VaRα in Section 6. Further, assume that α/ε ∈
(n/2, n). The maximum value of (3) is obtained by a counter-
monotonic random vector (X1, . . . , Xn), as explained below. 
First, since 

∑n
i=1 Xi only takes integer values, so does

ρ(
∑n

i=1 Xi). If (X1, . . . , Xn) is counter-monotonic, then 
∑n

i=1 Xi
follows a Bernoulli distribution with mean nε > α, and hence 
ρ(

∑n
i=1 Xi) = 1. Moreover, for any X1, . . . , Xn with the speci-

fied marginal distributions, if ρ(
∑n

i=1 Xi) � 2 then
E[∑n

i=1 Xi] � 2α > nε, a contradiction, thus showing
ρ(

∑n
i=1 Xi) � 1.

The interpretation of the above two cases is that, for credit de-
fault losses, using a coherent risk measure and using VaR may lead 
to opposite conclusions on which dependence structure is safe or 
dangerous, and both cases highlight the important role of counter-
monotonicity.

3. Stochastic representation of pairwise counter-monotonicity

We provide in this section a stochastic representation of pair-
wise counter-monotonicity. To explain the result, let �n be the set 
of all n-compositions of �, that is,
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�n =
{
(A1, . . . , An) ∈ An :

⋃
i∈[n]

Ai = �

and A1, . . . , An are disjoint

}
.

In other words, a composition of � is a partition of � with or-
der. Denote by X± the set of all nonnegative random variables and 
nonpositive random variables.

Theorem 1. Let (X1, . . . , Xn) be a random vector and denote by S =∑n
i=1 Xi . Suppose that at least three of X1, . . . , Xn are non-degenerate. 

The following are equivalent.

(i) (X1, . . . , Xn) is pairwise counter-monotonic.
(ii) There exist m1, . . . , mn ∈R, (A1, . . . , An) ∈ �n and Z ∈ X± such 

that

Xi = Z1Ai + mi for all i ∈ [n]. (4)

(iii) There exists (A1, . . . , An) ∈ �n such that

Xi = (S − m)1Ai + mi for all i ∈ [n], (5)

where either mi = ess-infXi for i ∈ [n] or mi = ess-supXi for i ∈
[n], and m = ∑n

i=1 mi .

Proof. The implication (iii)⇒(ii) is straightforward. To see (ii)⇒(i), 
take i, j ∈ [n] with i �= j, and we check a few cases of ω, ω′ ∈ �. If 
ω, ω′ /∈ Ai , then Xi(ω) = Xi(ω

′) = mi , and hence

(Xi(ω) − Xi(ω
′))(X j(ω) − X j(ω

′)) = 0. (6)

Similarly, (6) holds if ω, ω′ /∈ A j . If (ω, ω′) ∈ Ai × A j or (ω, ω′) ∈
A j × Ai , then

(Xi(ω) − Xi(ω
′))(X j(ω) − X j(ω

′)) = −Z(ω)Z(ω′) � 0.

This shows that (Xi, X j) is counter-monotonic, and hence,
(X1, . . . , Xn) is pairwise counter-monotonic.

Next, we show the implication (i)⇒(iii). By Lemma 2, it suf-
fices to consider (1) and (2). Suppose that (1) holds. Let Bi =
{Xi > ess-infXi} and mi = ess-infXi for i ∈ [n]. Clearly B1, . . . , Bn

are (a.s.) disjoint events, and S �
∑n

i=1 mi = m. Using (1), if event 
Bi occurs, then X j = m j for j �= i, and S = Xi + ∑n

j=1 m j − mi . 
Moreover, if Bi does not occur, then Xi = mi . Therefore, we have

Xi = (S −m+mi)1Bi +mi1Bc
i
= (S −m)1Bi +mi, for i ∈ [n]. (7)

Let B = {S = m} and it is clear that (B, B1, . . . , Bn) is a composition 
of �. Let A1 = B1 ∪ B , and A2 = B2, . . . , An = Bn . Since S − m = 0
on B , (7) yields (5). If (2) holds instead of (1), then we can analo-
gously show (5) with mi = ess-supXi for i ∈ [n]. �

Theorem 1 shows that pairwise counter-monotonicity can be 
represented by the sum S and a composition (A1, . . . , An). In con-
trast, comonotonicity can be represented by the sum S and in-
creasing continuous functions f1, . . . , fn , as in Lemma 1. This rep-
resentation result will be instrumental in proving the other results 
of this paper. Another direct consequence of Theorem 1 is that if 
at least three components of a pairwise counter-monotonic ran-
dom vector are non-degenerate, then either the components are 
all bounded from below or they are all bounded from above; this 
can also be seen from Lemma 2.

Example 2. A simple pairwise counter-monotonic random vector 
in the form of (4) and (5), which will be referred to repeatedly in 
the following sections, is given by
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Xi = 1Ai for i ∈ [n] where (A1, . . . , An) ∈ �n. (8)

Such (X1, . . . , Xn) may represent the outcome of n lottery tick-
ets, exactly one of which randomly wins a reward of 1, or the 
reward to Bitcoin miners computing the next block in the Bitcoin 
blockchain; see Leshno and Strack (2020).

Remark 1. In parts (ii) and (iii) of Theorem 1, we can replace 
(A1, . . . , An) ∈ �n by A1, . . . , An being disjoint events, and the 
equivalence relations in the theorem remain true.

In the case at most two components of (X1, . . . , Xn) are non-
degenerate, the stochastic representation of counter-monotonicity 
is quite different from Theorem 1. When n = 2, (X1, X2) is counter-
monotonic if and only if there exist increasing functions f1, f2

such that

X1 = f1(X1 − X2) and X2 = f2(X2 − X1);
this statement follows by applying Lemma 1 to the comonotonic 
random vector (X1, −X2). Note that the difference X1 − X2 re-
places the summation S = X1 + X2 in Lemma 1. The sum of two 
counter-monotonic random variables represents the loss from a 
hedged portfolio and it has been studied by Cheung et al. (2014)
and Chaoubi et al. (2020).

4. Invariance property and negative association

Negative association appears in various natural probabilistic and 
statistical contexts, such as permutation distributions, sampling 
without replacement, negatively correlated Gaussian distributions 
and tournament scores; see Joag-Dev and Proschan (1983) and the 
more recent paper Chi et al. (2022) for many examples.

A random vector X = (X1, . . . , Xn) is said to be negatively as-
sociated if for any disjoint subsets I, J ⊆ [n], and any real-valued, 
coordinate-wise increasing functions f , g , we have

Cov( f (XI ), g(X J )) � 0, (9)

where XI = (Xk)k∈I and X J = (Xk)k∈ J , provided that f (XI ) and 
g(X J ) have finite second moments. Negative association is stronger 
than many other notions of negative dependence, such as negative 
supermodular dependence (shown by Christofides and Vaggelatou 
(2004)) and negative orthant dependence (shown by Joag-Dev and 
Proschan (1983)).

Remark 2. Negative association is invariant under increasing mar-
ginal transforms. Therefore, if f (XI ) and g(X J ) are continuously 
distributed, then NA implies that (9) holds with the covariance 
operator replaced by Spearman’s rank correlation coefficient or an-
other similar concordance measure; see McNeil et al. (2015, Chap-
ter 7).

We first present a self-consistency property of both comono-
tonicity and counter-monotonicity in the spirit of Property P6 of 
Joag-Dev and Proschan (1983) for negative association. To the best 
of our knowledge, this self-consistency property is not found in the 
literature even for the case of comonotonicity, although its proof is 
straightforward.

Theorem 2. The following statements hold.

(i) Increasing functions of subsets of a set of comonotonic random 
variables are comonotonic.

(ii) Increasing functions of disjoint subsets of a set of counter-monotonic
random variables are counter-monotonic.
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Proof. (i) Let X = (X1, . . . , Xn) be a comonotonic random vec-
tor. By Lemma 1, there exist increasing functions f1, . . . , fn and 
a random variable Z such that Xi = f i(Z) for all i ∈ [n]. For 
I1, . . . , Im ⊆ [n] and increasing functions g j : R|I j | → R, j ∈ [m], 
let Y j = g j(XI j ), j ∈ [m], where | · | is the cardinality of a set. That 
is, Y j = g j ◦ f I j (Z) where f I j = ( f i)i∈I j . As the composition of in-
creasing functions, gi ◦ f I j is increasing on R. Thus, (Y1, . . . , Ym)

is a comonotonic vector.
(ii) Let X = (X1, . . . , Xn) be a pairwise counter-monotonic ran-

dom vector. If at most two of X1, . . . , Xn are non-degenerate, 
the desired statement holds trivially. Next, we assume that at 
least three of X1, . . . , Xn are non-degenerate. For disjoint sub-
sets I1, . . . , Im of [n] and increasing functions g j : R|I j | → R, 
j ∈ [m], let Y j = g j(XI j ), j ∈ [m]. By Theorem 1, there exist m =
(m1, . . . , mn) ∈ Rn , (A1, . . . , An) ∈ �n and Z ∈ X± such that Xi =
Z1Ai + mi for all i ∈ [n]. Without loss of generality, assume Z � 0. 
For i ∈ [n] and j ∈ [m], if Ai occurs, then Xi = Z + mi and Xk = mk

for k �= i, which means Y j = g j(XI j ) � g j(mI j ). If Ai does not oc-
cur, then Y j = g j(mI j ). Let Z j = ∑

i∈I j

(
g j(XI j ) − g j(mI j )

)
1Ai � 0. 

It follows that

Y j =
∑
i∈I j

g j(XI j )1Ai + g j(mI j )

⎛
⎝1 −

∑
i∈I j

1Ai

⎞
⎠

= Z j1
⋃

i∈I j
Ai

+ g j(mI j ) =
(

m∑
k=1

Zk

)
1⋃

i∈I j
Ai

+ g j(mI j ).

By using Theorem 1 and the fact that 
∑m

k=1 Zk � 0, we conclude 
that (Y1, . . . , Ym) is pairwise counter-monotonic. �
Remark 3. For Theorem 2 (i), an equivalent statement is that in-
creasing functions of comonotonic random variables are comono-
tonic. This is because one can choose the subsets as [n] and take 
functions on Rn which are constant in some dimensions. We use 
the current presentation of statement (i) to show a contrast to 
statement (ii).

What we will use from Theorem 2 is the second statement, 
which leads to the next result in this section; that is, counter-
monotonicity implies negative association. Since negative associ-
ation is stronger than negative supermodular dependence, this re-
sult surpasses Theorem 12 of Dhaene and Denuit (1999), which 
states that counter-monotonicity is stronger than negative super-
modular dependence.

Theorem 3. Counter-monotonicity implies negative association.

Proof. Let X be an n-dimensional counter-monotonic random vec-
tor. Take disjoint subsets I, J ⊆ [n] and coordinate-wise increas-
ing functions f : R|I| → R and g : R| J | → R, where | · | is 
the cardinality of a set. By Theorem 2 (ii), f (XI ) and g(X J )

are counter-monotonic. The Fréchet-Hoeffding inequality (see e.g., 
Corollary 3.28 of Rüschendorf (2013)) yields E[ f (XI )g(X J )] �
E[ f (XI )]E[g(X J )] provided that the expectations exist. Hence, X
is negatively associated. �

Joag-Dev and Proschan (1983, Theorem 2.11) already noted that 
the lottery-type random vector (8) in Example 2 is negatively as-
sociated.

The result in Theorem 3 has a straightforward interpretation, as 
counter-monotonicity is the extreme form of negative dependence, 
which intuitively should imply other notions of negative depen-
dence, among which negative association is considered a strong 
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notion; see Amini et al. (2013) for a comparison of several notions 
of negative dependence.

Counter-monotonicity is also stronger than several other no-
tions of negative dependence which are not implied by negative 
association. These notions include conditional decreasing in se-
quence and negative dependence in sequence (see Joag-Dev and 
Proschan (1983, Remark 2.16)) and negative dependence through 
stochastic ordering (see Block et al. (1985)). These implications can 
be checked directly with Theorem 2, thus highlighting its useful-
ness.

Remark 4. A random vector X is positively associated if
Cov( f (X), g(X)) � 0 for all real-valued, coordinate-wise increas-
ing functions f , g (Esary et al. (1967)). Comonotonicity implies 
positive association because ( f (X), g(X)) is comonotonic by The-
orem 2, and the covariance of a comonotonic pair of random 
variables is non-negative due to the Fréchet-Hoeffding inequality.

5. Joint mix dependence and Fréchet classes

Another type of extremal negative dependence structure is the 
notion of joint mixes. In this section, we study the connection be-
tween counter-monotonicity and joint mix dependence.

From now on, assume that the probability space (�, A, P ) is 
atomless. A random vector (X1, . . . , Xn) is a joint mix if 

∑n
i=1 Xi

is a constant c, and in this case we say that joint mix depen-
dence holds for (X1, . . . , Xn). The constant c is called the center 
of (X1, . . . , Xn), and it is obvious that c = ∑n

i=1 E[Xi] if the expec-
tations of X1, . . . , Xn are finite. Joint mix dependence is regarded 
as a concept of extremal negative dependence due to its opposite 
role to comonotonicity in risk aggregation problems; see Puccetti 
and Wang (2015) and Wang and Wang (2016).

The lottery-type random vector in Example 2 satisfies both 
counter-monotonicity and joint mix dependence. In the case 
n = 2, joint mix dependence is strictly stronger than counter-
monotonicity. This result cannot be extended to n � 3. For ex-
ample, (X, X, −2X) is a joint mix that is not counter-monotonic. A 
weaker notion than joint mix dependence is proposed by Lee and 
Ahn (2014), which does not imply, and is not implied by, counter-
monotonicity in dimension n � 3.

Joint mix dependence and counter-monotonicity share some 
similarities. First, for a random vector (X1, . . . , Xn) with its sum 
S = X1 + · · · + Xn , if either pairwise counter-monotonicity or joint 
mix dependence holds, then Xi and S − Xi are counter-monotonic 
for each i ∈ [n]. The case of pairwise counter-monotonicity is ver-
ified by Theorem 2, and the case of joint mix dependence is veri-
fied by definition. Second, both dependence notions impose strong 
conditions on the marginal distributions. The condition for pair-
wise counter-monotonicity is given in Lemma 2, and that for joint 
mix dependence is much more sophisticated; see Wang and Wang 
(2016) for some sufficient conditions as well as necessary ones. 
This is in contrast to concepts such as comonotonicity, indepen-
dence, and negative association, for which the existence of the 
corresponding random vectors is always guaranteed for any given 
marginal distribution. Both joint mix dependence and counter-
monotonicity are used in the tail region to obtain lower bounds 
for risk aggregation with given marginal distributions, as studied 
by Bernard et al. (2014) and Cheung et al. (2017), respectively.

The next result characterizes marginal distributions that are 
compatible with both counter-monotonicity and joint mix depen-
dence. For this, we need some notation and terminology. In what 
follows, we will use distribution functions to represent distribu-
tions. For an n-tuple (F1, . . . , Fn) of distributions on R, a Fréchet 
class (see Joe (1997, Chapter 3)) is defined as

Fn(F1, . . . , Fn) = {distribution of (X1, . . . , Xn) : Xi ∼ Fi, i ∈ [n]}.
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We say that a Fréchet class Fn(F1, . . . , Fn) supports counter-
monotonicity (resp. joint mix dependence) if there exists a counter-
monotonic random vector (resp. a joint mix) whose distribution 
is in this class. Let δx be the distribution function of a point-
mass at x ∈ R, and denote by 	n the standard n-simplex, that 
is, 	n = {(p1, . . . , pn) ∈ [0, 1]n : ∑n

i=1 pi = 1}. Two distributions F
and G are symmetric if F (x) = 1 − G(c − x), x ∈R for some c ∈R. 
In other words, if X has distribution F , then c − X has distribu-
tion G .

It turns out that all Fréchet classes Fn(F1, . . . , Fn) which sup-
port both counter-monotonicity and joint mix dependence can be 
characterized explicitly. If at least three of F1, . . . , Fn are non-
degenerate, then F1, . . . , Fn are two-point distributions given by

Fi = piδa+mi + (1 − pi)δmi for i ∈ [n],
where a,m1, . . . ,mn ∈R and (p1, . . . , pn) ∈ 	n. (10)

If at most two of F1, . . . , Fn are non-degenerate, then

Fi and F j are symmetric for some i, j ∈ [n],
and Fk is degenerate for all k ∈ [n] \ {i, j}. (11)

Theorem 4. A Fréchet class supports both counter-monotonicity and 
joint mix dependence if and only if one of (10) and (11) holds. In case 
both are supported, counter-monotonicity and joint mix dependence are 
equivalent for this Fréchet class.

Proof. We first prove the equivalence statement in the last part 
of the theorem. Suppose that the Fréchet class Fn(F1, . . . , Fn) sup-
ports both counter-monotonicity and joint mix dependence. Puc-
cetti and Wang (2015, Theorem 3.8) shows that if a Fréchet class 
supports a counter-monotonic random vector, then a random vec-
tor is counter-monotonic if and only if it is 
-counter-monotonic, 
and moreover, a joint mix is always 
-counter-monotonic. Using 
these two facts, a joint mix is counter-monotonic for this Fréchet 
class. For the converse statement, note that in Fn(F1, . . . , Fn) there 
exists a unique distribution function

F (x1, . . . , xn) =
(

n∑
i=1

Fi(xi) − d + 1

)
+

, (x1, . . . , xn) ∈Rn

of a counter-monotonic random vector (Theorem 3.3 of Puccetti 
and Wang (2015)). Since a joint mix with marginal distributions 
F1, . . . , Fn is counter-monotonic, its distribution must coincide 
with F . This shows that F is the distribution of a joint mix.

Next, we prove the first part of the theorem. For the “if” state-
ment, assume that a Fréchet class Fn(F1, . . . , Fn) supports both 
counter-monotonicity and joint mix dependence. By the above 
argument, Fn(F1, . . . , Fn) supports a pairwise counter-monotonic 
joint mix (X1, . . . , Xn). First, consider the case that at least three 
of F1, . . . , Fn are non-degenerate. Using (5),

Xi = (c − m)1Ai + mi, for i ∈ [n],
where (A1, . . . , An) ∈ �n , c is the center of (X1, . . . , Xn), either 
mi = ess-inf(Xi) for all i ∈ [n] or mi = ess-sup(Xi) for all i ∈ [n], 
and m = ∑n

i=1 mi . It is clear that Fi has the form (10) by set-
ting a = c − m. If at most two of F1, . . . , Fn are degenerate, say 
Fi and F j , then a joint mix (X1, . . . , Xn) with marginal distribu-
tions F1, . . . , Fn satisfies Xi = c − X j for some c ∈ R, and Xk is a 
constant for each k ∈ [n] \ {i, j}. This implies (11).

Finally, we verify the converse statement. If (F1, . . . , Fn) has 
the form (10), then take Xi = a1Ai + mi with (A1, . . . , An) ∈ �n

satisfying P (Ai) = pi for i ∈ [n], and we have (X1, . . . , Xn) is 



J.G. Lauzier, L. Lin and R. Wang Insurance: Mathematics and Economics 111 (2023) 279–287
counter-monotonic by Theorem 1 and 
∑n

i=1 Xi = a + ∑n
i=1 mi . If 

(F1, . . . , Fn) has the form (11), then by taking Xi with distribu-
tion Fi , X j = c − Xi with distribution F j and c ∈ R, and Xk with 
distribution Fk for each k ∈ [n] \ {i, j}, we can directly verify that 
(X1, . . . , Xn) is a counter-monotonic joint mix. �

From the proof of Theorem 4 (ii), if at least three components 
of a pairwise counter-monotonic joint mix X = (X1, . . . , Xn) are 
non-degenerate, then it has the form

Xi = a1Ai + mi, for i ∈ [n]
where (A1, . . . , An) ∈ �n , a ∈R and m = (m1, . . . , mn) ∈Rn . If a �=
0, then the random vector (X − m)/a has a categorical distribution 
with n categories and probability vector (P (A1), . . . , P (An)).

Remark 5. Theorem 4 characterizes a Fréchet class that supports 
both counter-monotonicity and joint mix dependence. Fréchet 
classes that support (non-degenerate) pairwise counter-monotoni-
city are fully described by the conditions in Lemma 2. Whether 
a given Fréchet class supports joint mix dependence is a very 
challenging problem, with existing result summarized in Puccetti 
and Wang (2015) and Wang and Wang (2016). In risk aggrega-
tion problems, the notion of joint mix dependence is more rele-
vant, because a joint mix usually “approximately exists” for large 
dimensions, which leads to the main idea behind the Rearrange-
ment Algorithm; see Embrechts et al. (2013, 2014), Bernard and 
Vanduffel (2015) and Bernard et al. (2017). In contrast, counter-
monotonicity is more relevant for risk sharing problems, which we 
discuss in the next section.

6. Optimal allocations in risk sharing for quantile agents

We now formally establish the link between counter-monoto-
nicity and Pareto-optimal allocations in risk sharing problems for 
quantile agents.

We first describe the basic setting. A quantile agent assesses 
risk by its quantile, also known as the risk measure Value-at-Risk 
(VaR) in risk management. Following the convention of Embrechts 
et al. (2018), the VaR at level α ∈ (0, 1) is defined as

VaRα(X) = inf{x ∈R : P (X � x) � 1 − α}, X ∈ X ,

where X is the set of all random variables in the probability space. 
Moreover, write VaRα = −∞ on X for α � 1, although our agents 
use VaRα for α ∈ (0, 1). It is important to highlight that quan-
tile agents with level α ∈ (0, 1) are not risk averse (Rothschild and 
Stiglitz (1970)).

We consider the risk sharing problem for n � 3 quantile agents 
with levels α1, . . . , α ∈ (0, 1). For a given S ∈ X , the set of alloca-
tions of S is

An(S) =
{

(X1, . . . , Xn) ∈ X n :
n∑

i=1

Xi = S

}
.

An allocation (X1, . . . , Xn) ∈ An(S) is Pareto optimal if for any 
(Y1, . . . , Yn) ∈ An(S) satisfying VaRαi (Yi) � VaRαi (Xi) for all i ∈
[n], we have VaRαi (Yi) = VaRαi (Xi) for all i ∈ [n]. Pareto optimality 
of (X1, . . . , Xn) ∈An(S) is equivalent to

n∑
i=1

VaRαi (Xi) = inf

{
n∑

i=1

VaRαi (Yi) : (Y1, . . . , Yn) ∈An(S)

}

= VaR∑n
i=1 αi

(S), (12)

where the first equality is Embrechts et al. (2018, Proposition 1)
and the second equality is Embrechts et al. (2018, Corollary 2). 
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Using (12), we obtain that the existence of a Pareto-optimal alloca-
tion is equivalent to 

∑n
i=1 αi < 1; this is also given by Theorem 3.6 

of Wang and Wei (2020). For this reason, we say that the n quan-
tile agents are compatible if 

∑n
i=1 αi < 1 holds, meaning that a 

Pareto-optimal allocation exists for some S , and equivalently, for 
every S .

The following theorem shows that, under some conditions of 
the total risk S to share, the risk sharing problem for any quantile 
agents admits a pairwise counter-monotonic Pareto-optimal allo-
cation, and every pairwise counter-monotonic allocation is Pareto 
optimal for some agents. Moreover, comonotonic allocations are 
never Pareto optimal. Recall that by Lemma 2, a pairwise counter-
monotonic random vector (X1, . . . , Xn) satisfies either (1) or (2).

Theorem 5. For S ∈X , the following hold.

(i) If S is bounded from below, then for any compatible quantile agents 
there exists a pairwise counter-monotonic allocation of S which is 
Pareto optimal.

(ii) If P (S = ess-infS) > 0, then every type-(1) pairwise counter-
monotonic allocation of S is Pareto optimal for some quantile 
agents.

(iii) If S is continuously distributed, then a comonotonic allocation of S
is never Pareto optimal for any quantile agents.

Proof. (i) Let α1, . . . , αn ∈ (0, 1) be the VaR levels of the quan-
tile agents. Compatibility of the agents means 

∑n
i=1 αi < 1. In this 

case, a Pareto-optimal allocation (X1, . . . , Xn) of S is given by The-
orem 2 of Embrechts et al. (2018), with the form

Xi = (X − m)1Ai , i ∈ [n − 1] and Xn = (X − m)1An + m

for some (A1, . . . , An) ∈ �n . By setting m = ess-infS , (X1, . . . , Xn)

is pairwise counter-monotonic by Theorem 1.
(ii) Note that shifting X1, . . . , Xn by arbitrary constants, and ad-

justing S correspondingly, does not affect its Pareto optimality due 
to (12). Moreover, (1) guarantees that at most one of X1, . . . , Xn is 
not bounded from below, and further P (S = ess-infS) > 0 guar-
antees that this can only happen if all X1, . . . , Xn are bounded 
from below. Therefore, we can, without loss of generality, assume 
ess-infXi = 0 for each i ∈ [n].

Let B = {S = ess-infS} and A = ⋃n
i=1{Xi > 0}. First, if P (B ∩

A) = 0, then we let αi = P (Xi > 0) + P (B)/(2n) > 0 for i ∈ [n]. 
Note that

n∑
i=1

αi =
n∑

i=1

P (Xi > 0) + 1

2
P (B)

= P (A) + 1

2
P (B) < P (A) + P (B) = P (A ∪ B) � 1.

It is clear that VaRαi (Xi) = 0 for each i ∈ [n], leading to∑n
i=1 VaRαi (Xi) = 0 � ess-infS � VaR∑n

i=1 αi
(S). Note that

n∑
i=1

VaRαi (Xi) � VaR∑n
i=1 αi

(S)

=⇒ (X1, . . . , Xn) is Pareto optimal. (13)

This is because Corollary 1 of Embrechts et al. (2018) gives ∑n
i=1 VaRαi (Xi) � VaR∑n

i=1 αi
(S), and this leads to 

∑n
i=1 VaRαi (Xi) =

VaR∑n
i=1 αi

(S) in (12), which gives Pareto optimality of (X1, . . . , Xn)

as we see in part (i).
Next, assume P (B ∩ A) > 0. Then there exists j ∈ [n] such 

that P (B ∩ {X j > 0}) > 0. Let ε = P (B ∩ {X j > 0})/(2n). Take 
αi =P (Xi > 0) +ε > 0 for i ∈ [n] \{ j} and α j =P ({X j > 0} \ B) +ε. 
By Lemma 2,
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1 �
n∑

i=1

P (Xi > 0) =
n∑

i=1

(αi −ε)+P (B ∩{X j > 0}) =
n∑

i=1

αi +nε,

and hence 
∑n

i=1 αi < 1. By definition of α1, . . . , αn , we have 
VaRαi (Xi) = 0 for i ∈ [n] \ { j}. Moreover, note that X j = S on 
{X j > 0} and

P ({X j = ess-infS} ∩ {X j > 0}) = P (B ∩ {X j > 0}) = 2nε,

which implies P (X j > ess-infS) = P (X j > 0) − 2nε < α j . There-
fore, VaRα j (X j) � ess-infS , leading to 

∑n
i=1 VaRαi (Xi) � ess-infS �

VaR∑n
i=1 αi

(S). Hence, we obtain Pareto optimality of (X1, . . . , Xn)

via (13).
(iii) For a comonotonic allocation (X1, . . . , Xn) of S , using de-

creasing monotonicity of α �→ VaRα and comonotonic additivity of 
VaRα , we have

n∑
i=1

VaRαi (Xi) �
n∑

i=1

VaRβ(Xi) = VaRβ(S),

where we write β = max{α1, . . . , αn}. As S is continuously dis-
tributed, VaRα(S) is strictly decreasing in α. Noting that β <∑n

i=1 αi , we have VaRβ(S) > VaR∑n
i=1 αi

(S). Therefore, the comono-
tonic allocation (X1, . . . , Xn) is not Pareto optimal by (12). �

Theorem 5 states that allocations with a pairwise counter-
monotonic structure solve the problem of sharing risk among 
quantile agents. For instance, the lottery-type allocation in Exam-
ple 2 is Pareto optimal for some quantile agents. Further, Theo-
rem 5 (iii) states that comonotonic allocations can never be Pareto 
optimal for quantile agents if the total risk is continuously dis-
tributed. As mentioned, this is in stark contrast with the risk shar-
ing problem with risk-averse agents, for which comonotonic allo-
cations are always optimal. The latter result, due to the comono-
tonic improvements of Landsberger and Meilijson (1994), is well-
known; see also Jouini et al. (2008) and Rüschendorf (2013). More-
over, when all agents are strictly risk averse, only comonotonic 
allocations are Pareto optimal (see Lauzier et al. (2023, Proposition 
4) for the case when preferences are modeled by strictly concave 
distortion functions).

As a symmetric statement to Theorem 5, if a random vector 
(X1, . . . , Xn) is pairwise counter-monotonic of type (2), then it is 
the maximizer of a risk sharing problem for some quantile agents.

Theorem 5 (i) assumes that S is bounded from below. This 
is needed because any type-(1) pairwise counter-monotonic al-
location is bounded from below. Theorem 5 (ii) assumes P (S =
ess-infS) > 0. In case P (S > ess-infS) = 0, a pairwise counter-
monotonic allocation of type (1) may not be Pareto optimal for any 
quantile agents with levels in (0, 1). A counter-example is provided 
in Example 3 below. Theorem 5 (iii) assumes that S is continuously 
distributed. This condition is also needed for the result to hold. For 
instance, if S = 1, then the allocation (1/n, . . . , 1/n) is Pareto opti-
mal for any compatible quantile agents, violating the impossibility 
statement on Pareto optimality.

Example 3. Suppose that S is uniformly distributed on [0, 1], and 
Xi = S1Ai for (A1, . . . , An) ∈ �n independent of S with P (Ai) > 0
for each i ∈ [n]. We will see that the pairwise counter-monotonic 
allocation (X1, . . . , Xn) is not Pareto optimal for any quantile 
agents with levels α1, . . . , αn ∈ (0, 1). If 

∑n
i=1 αi � 1, there does 

not exist any Pareto-optimal allocation. If 
∑n

i=1 αi < 1, then

n∑
VaRαi (Xi) =

n∑(
1 − αi

P (Ai)

)
+

=
n∑(

P (Ai) − αi

P (Ai)

)
+
i=1 i=1 i=1
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and

VaR∑n
i=1 αi

(S) = 1 −
n∑

i=1

αi =
n∑

i=1

(P (Ai) − αi)

�
n∑

i=1

(
P (Ai) − αi

P (Ai)

)
+

=
n∑

i=1

VaRαi (Xi).

Using the condition (12), if (X1, . . . , Xn) is Pareto optimal, then the 
inequality above is an equality; this implies αi = P (Ai) for each 
i ∈ [n]. However, this further implies 

∑n
i=1 αi = ∑n

i=1 P (Ai) = 1
conflicting 

∑n
i=1 αi < 1.

The next example illustrates that for the same S in Example 3
and compatible quantile agents, a pairwise counter-monotonic 
Pareto-optimal allocation exists as implied by Theorem 5 (i).

Example 4. Let S be uniformly distributed on [0, 1] and α1, . . . , αn

∈ (0, 1) with 
∑n

i=1 αi < 1. Take (A1, . . . , An) ∈ �n such that ⋃n−1
i=1 Ai = {S � 1 − ∑n−1

i=1 αi} and P (Ai) = αi for i ∈ [n − 1]. 
Let Xi = S1Ai for i ∈ [n]. We can verify that VaRαi (Xi) = 0 for 
i ∈ [n − 1] and

VaRαn(Xn) = VaRαn

(
S1{S<1−∑n−1

i=1 αi}
)

= 1 −
n∑

i=1

αi = VaR∑n
i=1 αi

(S).

This shows that (X1, . . . , Xn) is Pareto optimal. It is also pairwise 
counter-monotonic by Theorem 1. Note that although the alloca-
tion (X1, . . . , Xn) here has the same form (S1A1 , . . . , S1An ) as the 
one in Example 3, the specification of (A1, . . . , An) is different in 
the two examples, leading to opposite conclusions on optimality.

Remark 6. One may notice that the condition on S in Theorem 5
part (ii) and that in part (iii), although both quite weak, are actu-
ally conflicting. This is not a coincidence, because comonotonicity 
and counter-monotonicity have a non-empty intersection: A ran-
dom vector is both comonotonic and counter-monotonic if and 
only if it has at most one non-degenerate component. Therefore, 
we cannot have both conclusions in parts (ii) and (iii) for the 
same S .

Remark 7. As shown by Embrechts et al. (2018), the same pairwise 
counter-monotonic allocation which is Pareto optimal for quantile 
agents is also optimal for the more general Range Value-at-Risk 
(RVaR) agents. Therefore, the conclusion in Theorem 5 also ap-
plies to the RVaR agents. Another appearance of pairwise counter-
monotonicity in optimal allocations is obtained by Lauzier et al. 
(2023), where it is shown that for agents using inter-quantile dif-
ferences, a Pareto-optimal allocation is the sum of two pairwise 
counter-monotonic random vectors. All discussions above assume 
homogeneous beliefs; that is, all agents use the same probabil-
ity measure P . In the setting of heterogeneous beliefs, Embrechts 
et al. (2020) showed that for Expected Shortfall agents, a Pareto-
optimal allocation above certain constant level also has a pairwise 
counter-monotonic structure; see their Proposition 3. Generally, 
agents using the dual utility model of Yaari (1987), including the 
quantile-based models above, have quite different features in risk 
sharing and other optimization problems compared to those with 
expected utility agents. For the optimal payoff of Yaari agents in 
portfolio choice, see Boudt et al. (2022).

Example 5. We illustrate that counter-monotonicity may also be 
the structure of an optimal allocation outside the dual utility of 
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Yaari (1987). Let (�, A, P ) be an atomless probability space, S = 1
and α > 0. Consider the problem

to maximize
n∑

i=1

E
[
α1{Xi�1}

]
subject to (X1, . . . , Xn) ∈An(S) and Xi � 0, for i ∈ [n].
It is straightforward to verify that the set of maximizers is

A∗ = {
(1A1 , . . . ,1An ) ∈ An(S) : (A1, . . . , An) ∈ �n

}
,

which contains only counter-monotonic allocations. This problem 
can be interpreted as the problem of sharing S = 1 among n ex-
pected utility maximizers with common utility function u(x) =
α1{x�1} for α > 0. The optimization problem is thus a social plan-
ner’s problem, and the set A∗ contains all Pareto-optimal alloca-
tions for this problem. The allocations satisfying P (Ai) =P (A j) for 
every i �= j are of particular interest, as they are common in auc-
tion theory as the random tie-breaking rule. The variable S can be 
understood as an indivisible good that was auctioned, and the pa-
rameter α as the net utility of a series of n agents with quasi-linear 
utilities v(X, t) = θ X − t having bid the same amount 0 � t < θ . It 
is straightforward to see that these allocations are the only fair
allocations, in the sense that all agents have the same expected 
utility. In other words, a fair lottery (which is counter-monotonic) 
is the only fair way to distribute the indivisible good among people 
who value it equally.

7. Conclusion

We provide a series of technical results on the representa-
tion (Theorem 1) and invariance property (Theorem 2) of pairwise 
counter-monotonicity, as well as their connection to negative asso-
ciation (Theorem 3), joint mix dependence (Theorem 4), and opti-
mal allocations for quantile agents (Theorem 5). Our paper is moti-
vated by the recently increasing attention in counter-monotonicity 
and negative dependence, and it fills the gap between the rela-
tively scarce studies on pairwise counter-monotonicity in the lit-
erature and the wide appearance of this dependence structure in 
modern applications, in particular, in risk sharing problems with 
agents that are not using expected utilities.

In general, studies of negative dependence and positive depen-
dence are highly asymmetric in nature, with negative dependence 
being more challenging to study in various applications of risk 
management and statistics. In addition to the negative dependence 
concepts we considered in this paper, some other notions have 
been studied in the recent literature, and the interested reader 
is referred to Amini et al. (2013), Lee and Ahn (2014), Lee et al. 
(2017) and Chi et al. (2022), as well as the monographs of Joe 
(1997, 2014).
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