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This paper considers the optimal investment and consumption problem for the pooled annuity funds, in 
which both the financial market and the mortality hazard rate of participants in the pool are partially 
observable. We manage to achieve the explicit expressions for optimal consumption and investment 
strategies employing filtering techniques and Hamilton-Jacobi-Bellman (HJB) equation. What is more, we 
also discuss the models where both the instantaneous rate of return of financial market and mortality 
of plan members are observable and obtain the optimal investment strategies accordingly. In addition, 
we look into this optimization problem under different exit mechanism including infinite exit time for 
the plan members. Last, but not the least, we carry out numerical analysis demonstrating the impact of 
observability of information.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

As a natural channel to hedge against longevity risk, pooled annuity funds have drawn a lot of attention from people in academia and 
practice. Compared with conventional life annuities, pooled annuities have some unique potential including better financial outcomes to 
alive plan members and it is likely that it would become a popular retirement plan that healthy people are thinking to utilize. The concept 
of Group Self-Annuity (GSA) is introduced by Martineau (2001). In the plan of GSA, a group is formed to pool idiosyncratic risk and this 
plan allows participants to pool together certain amount of money, following specific rights and obligations, to protect themselves from 
longevity risk.

There have been quite a little research work studying GSA from different perspectives. Some scholars study the pooled annuity fund or 
tontine with the purpose of obtaining actuarial fairness among plan members; some scholars focus on the payout design while different 
welfare criteria are under consideration, and some researchers focus on the study of this field from the route of information availability. 
We first recap the research work according to whether plan member is allowed to exit the plan before death and then comments on the 
articles based on if the market information is fully observable to plan members. The first work of GSA in which there is not specified time 
period for plan member to opt out can be traced back to Piggott et al. (2005). In this work, Piggott et al. (2005) give the fundamental 
analysis of the theoretical foundation of GSA and determine payout adjustments from a longevity-risk-pooling fund. Valdez et al. (2006)
examine the anti-selection problem involved in GSA and conclude that a pooled annuity fund is a more cost-effective alternative to the 
conventional private annuity funds. Stamos (2008) studies the optimal continuous time dynamic consumption and investment problem for 
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pooled annuity funds. Qiao and Sherris (2013) present a procedure to evaluate GSA payout assuming Makeham’s law of mortality. Donnelly 
et al. (2014) propose a different approach to calculate the longevity credits and also prove that the fund is actuarially fair, under this 
assumption that the expected instantaneous actuarial gains of any individual is zero at all times. However, Donnelly (2015) investigates 
the pooled annuity funds using different methods of pooling mortality risk and claims that the group self-annuitization scheme is not 
actuarially fair. Sabin (2010) proposes a fair tontine annuity, which provides a lifetime payment stream whose expected present value 
matches that of a fair annuity. Milevsky and Salisbury (2015) derive the tontine structure by maximizing lifetime utility and discuss 
the properties of an optimized tontine payout structure. Milevsky and Salisbury (2016) generalize the natural tontine by introducing 
heterogeneous cohorts into one pool. Bernhardt and Donnelly (2019) consider a tontine product with bequest in the framework of power 
utility function and obtain the optimal proportion of total pension savings invested in the tontine account by maximizing consumption 
and their bequest under a power utility function.

As far as whether there is an exit mechanism is concerned, the common assumption in the literature above is that retirees stay in the 
plan till death. Donnelly and Young (2017) propose finite exit time to reduce selection risks and consider a kind of product for enhanced 
retirement income. For the tontine, the assumption that alive participants are eligible to distribute remaining amount of funds in the plan 
after a fixed period of time is also implemented by scholars. For instance, Sabin and Forman (2016) give the analysis of a single-period 
tontine. A single-period tontine is an arrangement in which a group of members contribute to an investment pool, and after a fixed period 
of time, the pool is distributed to those members who are still alive. Forman and Sabin (2017) study survivor funds, which is similar to 
a single-period tontine. Denuit and Vernic (2018) consider bivariate Bernoulli weighted sums and distribution of single-period tontine 
benefits.

Note that the above-mentioned papers assume that the asset price processes are completely observable while an individual makes the 
investment decisions. However, the appreciation rate of the risky asset and the underlying Brownian motion cannot be actually observed 
directly in reality. In terms of access to the market information, there have been a series of research work discussing the optimization 
problem with partial information in the financial market accordingly. For example, Lakner (1995) studies the optimization problem under 
partial information and gives explicit solutions to the maximization problem with terminal wealth. Lakner (1998) studies the optimization 
problem under partial information and applies the similar method to the case in which the drift process is modelled by a multi-
dimensional mean-reverting Ornstein-Uhlenbeck process. Besides, Sass and Haussmann (2004) utilize Malliavin calculus to investigate 
an optimal investment problem in which the terminal wealth is maximized and they derive an explicit expression for the optimal strat-
egy. Rieder and Bäuerle (2005) consider the portfolio selection problem where the drift of the stock is Markov-modulated but unknown 
for an investor. Callegaro et al. (2006) obtain the optimal investment strategy assuming that risky assets prices follow partially observable 
pure-jump processes. Bäuerle and Rieder (2007) study a similar portfolio optimization problem but under a Markov-modulated compound 
Poisson process and obtain the optimal investment strategy to maximize the expected utility of the terminal wealth. Liang and Bayraktar 
(2014) extend Bäuerle and Rieder (2007)’s models to the optimal reinsurance and investment problem. Liang and Song (2015) also con-
sider an optimal investment and reinsurance problem for an insurer with partial information but from the perspective of mean-variance 
criterion. They derive the equilibrium strategy within a game theory approach using the filtering theory. For more literature, see Rieder 
and Bäuerle (2005), Zhang et al. (2012), Bäuerle and Leimcke (2020) and reference therein. On the other hand, researchers also have stud-
ied the case that health risk is incorporated into the model. Partially observable force of intensity is also under the consideration in Ceci et 
al. (2015), Ceci et al. (2017) and Ceci et al. (2020). Ceci et al. (2015) investigate hedging of unit-linked life insurance contracts with local 
risk-minimization method. Ceci et al. (2017) consider a similar problem in which an exogenous unobservable stochastic factor drives stock 
price process dynamics and the mortality rate. Ceci et al. (2020) employ BSDEs to study the pricing problem of a pure endowment contract.

Inspired by Stamos (2008), the unique contributions in our work are multiple-folds, we not only consider pool annuities with different 
exit mechanisms, but also incorporate partial information as well as full information into our work. To be more specific, we investigate 
the model in which neither the drift rate of the stock market nor the mortality rate of the pool members is completely observable 
in the pooled annuity funds and we assume they both are driven by an unobservable Markov chain. Secondly, for the pooled annuity 
fund with exit mechanism, we consider optimization problems by maximizing the logarithmic utility of cumulative consumption and 
terminal wealth under partial information and full information, respectively. What is more, we also study optimization problems for the 
pooled annuity funds without exit mechanism, in other words, we also consider the case when there is no predetermined end of time 
window, and this is considered as a special case of finite exit time. By the filtering theory and martingale method, we transform partial 
information to one with complete information, establish the Hamilton-Jacobi-Bellman (HJB) equation, and get optimal portfolio strategies 
and the corresponding value function under all different cases of our study. Last but not least, we carry out numerical analysis, analyze 
the influence of different parameters on optimal investment and consumption strategies, and compare the impact of partial information 
and full information on the corresponding optimal portfolio strategies.

The paper is organized as follows. In Section 2, we introduce the setting and formulate the optimization problem with partial infor-
mation. In Section 3, we focus on the case that the driven Markov chain is not observable and employ the filtering theory to transform 
optimization problem with partial observations into the one with complete observations. In Section 4, we solve the HJB equations and 
achieve the optimal consumption and investment strategies together with the corresponding value function. Furthermore, we study observ-
able Markov chain and derive the optimal consumption and investment strategies accordingly. Numerical examples are given in Section 5
and Section 6 concludes the paper.

2. Model formulation

Throughout this paper, we assume that all processes and random variables are defined on a filtered probability space (�, F , P ), where 
P is a real-world probability and F := {F(t)|t ≥ 0} denotes the full information filtration.

Let X := {X(t)|t ∈ [0, T ]} be a continuous-time, finite-state, hidden Markov chain on (�, F , P ) taking values in a finite state space
� := {e1, e2, · · ·, en} ⊂ Rn , where the jth component of ei is the Kronecker delta δi j , for each i = 1, 2, · · ·, n. Let A := [aij]i, j=1,2,···,n be a 
rate matrix of the chain X under P , where aij is the constant intensity of transition of the chain X from state ei to state e j . Assume that 
FX := {FX(t)|t ∈ [0, T ]} is the right-continuous, P -completed, natural filtration generated by the chain X. Clearly, FX ⊆ F . The following 
semi-martingale dynamics for the chain X under P holds:
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X(t) = X(0) +
t∫

0

AX(u)du + M(t), t ∈ [0, T ], (2.1)

where M(t), t ∈ [0, T ] is an Rn-valued, (F X , P )-martingale. Here, note that the state of Markov chain X is unobservable over time.
Let L(0) ∈ {1, 2, · · ·} be the initial number of members in the pool. Each pool member’s time of death τi , i ∈ {1, · · ·, L(0)} is determined 

by the first jump time of a point process Ni = {Ni(t)|t ≥ 0} with time-dependent intensity λi(t) := 〈λi, X(t)〉 = ∑n
k=1〈X(t), ek〉λi

k , where 
λi = (λi

1, λ
i
2, · · ·, λi

n)	 ∈ Rn , λi
k > 0 for each k = 1, 2, · · · , n, and 〈·, ·〉 denotes the standard inner product in Rn . In other words,

τi = min{t : Ni(t) = 1}.
To model homogeneous, it is assumed that the members of all groups in the pool are homogeneous, that is, all people are of the same 
gender and age, then the jump intensity does not depend on i, i.e., λi(t) ≡ λ(t) := 〈λ, X(t)〉 = ∑n

k=1〈X(t), ek〉λk , where λ = (λ1, λ2, · · ·, λn)
	

and λk > 0 for each k = 1, 2, · · · , n. Furthermore, each individual’s death time τi has the same distribution. Besides, as in Frey and Schmidt 
(2012) and Ceci et al. (2015), we introduce conditionally independent doubly stochastic random times. Note that the unobservable finite 
state Markov chain usually describes bull and bear markets in finance. For an individual, the unobservable finite state Markov chain can 
represent the level of mortality, i.e., high and low. Due to interdependencies between the financial market and the mortality intensity, for 
instance, the severe acute respiratory syndrome (SARS) and the COVID-19 pandemic are events with effects on the both financial market 
and mortality intensity, the unobservable finite state Markov chain could affect them at the same time, that is, the risky asset’s price and 
mortality intensity are modulated by a continuous-time, finite-state, hidden Markov chain.

Assumption 2.1. Assume that death times are conditionally independent doubly stochastic random times, that is

P
(
τ1 > t1, . . . , τL(0) > tL(0) | F X (T )

)
=

L(0)∏
i=1

e− ∫ ti
0 λ(u)du.

Note that under Assumption 2.1, it indicates that τi �= τ j P -a.s. for all i �= j, i, j ∈ {1, · · ·, L(0)}.

At time t , the number of living members is thus L(t) = L(0) − ∑L(0)
i=1 Ni(t ∧ τi). The dynamic equation of the number of surviving 

investors in the pool is

dL(t) = −
L(0)∑
i=1

dNi(t ∧ τi).

Let

N1(t) :=
L(0)∑
i=1

Ni(t ∧ τi) =
L(0)∑
i=1

I{τi≤t},

where I{·} is the indicator function. Therefore,

dL(t) = −dN1(t).

Due to Assumption 2.1, the process N1(t) = ∑L(0)
i=1 I{τi≤t} has F -predictable intensity (L(0) − N1(t−))λ(t−) = L(t−)λ(t−), that is, for any 

F -predictable process H the following equality holds

E

⎡
⎣ t∫

0

H(u)dN1(u)

⎤
⎦ = E

⎡
⎣ t∫

0

H(u)L(u−)λ(u−)du

⎤
⎦ = E

⎡
⎣ t∫

0

H(u)L(u)λ(u)du

⎤
⎦

or equivalently

N1(t) −
t∫

0

L(u)λ(u)du

is a F -martingale (for details see Brémaud (1981)). Here, E is the expectation under P . In fact, it is known that I{τi≤t} − ∫ t∧τi
0 λ(u)du is a 

F -martingale and summing over i, N1(t) = ∑L(0)
i=1 I{τi≤t} − ∫ t

0

(
L(0) − N1(u−)

)
λ(u)du is a F -martingale.

In this paper, we consider two kinds of assets in the financial market, namely, a risky asset with price process R = {R(t)|t ∈ [0, T ]} and 
a risk-free asset described by B = {B(t)|t ∈ [0, T ]}. The price process of the risky asset is given by the P -dynamic

dR(t)

R(t−)
= μ(t)dt + σdZ(t),

and the price process of the risk-free asset is given by the P -dynamic

dB(t) = rB(t)dt,
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where μ(t) > 0 denotes the instantaneous rate of return of the risky asset with μ(t) := 〈μ, X(t)〉 = ∑n
k=1〈X(t), ek〉μk and μ = (μ1, μ2,

· · ·, μn)	 , σ > 0 is the volatility of the risky asset, and {Z(t)|t ∈ [0, T ]} is a standard P -Brownian motion and is independent of {Ni(t)|t ≥
0}. Note that the volatility is assumed to be an observable constant in our model, and this is in line with the work of Capponi et al. 
(2015) and Nagai and Runggaldier (2008) due to the fact that the quadratic variation of Brownian motion converges almost surely to the 
integrated volatility, and observable stock prices lead to accessible volatility.

For the convenience of calculation, let Y (t) := ln(R(t)/R(0)). By applying Itô’s lemma, we can obtain

dY (t) = (μ(t) − 1

2
σ 2)dt + σdZ(t).

Suppose that F Y := {F Y (t)|t ∈ [0, T ]} is the right-continuous, P -completed, natural filtration generated by the history of Y up to and 
including time t . Note that F Y (t) can be observable up to time t .

At the initial time t = 0, each investor m ∈ {1, · · ·, L(0)} contributes Wm(0) amount of wealth to the annuity fund, the total initial value 
of the annuity fund is thus given by

W v f (0) =
L(0)∑
i=1

W i(0).

Denote the proportion of the fund invested in the risky asset by π(t), and the remaining part is invested in the risk-free asset. When 
π(t) < 0, it means that the stock is sold short; while π(t) > 1 corresponds to a credit. The dynamic equation of pool annuity is

dW v f (t)

W v f (t)
=

[
r + π(t)(μ(t) − r) − c(t)

]
dt + π(t)σdZ(t),

where c(t) is the rate withdrawn from the fund at time t .
Let wm(t) = Wm(t)/W v f (t), which is the fraction of fund wealth for investor m. When a pool member j, j �= m dies at time t , 

remaining survivors will reallocate member j’s wealth W j(t−) = w j(t−)W v f (t−). For the sake of simplicity and to diminish the curse 
of dimensionality we assume that all individuals have the same initial wealth W (0) so that each investor has the same fraction of the 
wealth, i.e., wm(t) = 1/L(t). Therefore, the wealth Wm(t) of a representative member m follows

Wm(t) = Wm(t−) + Wm(t−)

W v f (t−) − W j(t−)
W j(t−)

= Wm(t−)

(
1 + w j(t−)

1 − w j(t−)

)

= Wm(t−)

(
1 + 1

L(t−) − 1

)
.

Correspondingly, when τm > t and L(t−) > 1, the wealth dynamic Wm(t) for any member m in the pool is

dWm(t)

Wm(t−)
=

[
r + π(t)(μ(t) − r) − c(t)

]
dt + π(t)σdZ(t) +

L(0)∑
i=1,i �=m

wi(t−)

1 − wi(t−)
dNi(t ∧ τi)

=
[

r + π(t)(μ(t) − r) − c(t)

]
dt + π(t)σdZ(t) + 1

L(t−) − 1
dN(t), (2.2)

where N(t) := ∑L(0)
i=1,i �=m Ni(t ∧ τi) = ∑L(0)

i=1,i �=m I{τi≤t} has F -predictable intensity (L(t−) − 1)λ(t−). Note that n refers to the assumption 
that there are n states in the Markov chain and λ(t) is unobservable.

Remark 2.1. For any t ∈ [0, T ], there exists a unique solution to equation (2.2) under the assumption (π(.), c(.)) is G-progressively mea-
surable such that E(

∫ T
0 π2(t)dt) < ∞, E(

∫ T
0 c2(t)dt) < ∞. The explicit expression of Wm by applying Doléans-Dade formula is as follows:

Wm(s)

Wm(t)
= exp

{ s∫
t

(
r + π(u)(μ(u) − r) − c(u) − 1

2
π2(u)σ 2

)
du +

s∫
t

π(u)σdZ(u)

}

×
∏

s≤u≤t

(
1 + 1

L(u−) − 1

)
	N(u).

When there is only one member living in the pool at time t , i.e., L(t) = 1, the dynamics of the total fund is described by

dWm(t)

Wm(t−)
=

[
r + π(t)(μ(t) − r) − c(t)

]
dt + π(t)σdZ(t), t < τm. (2.3)

When we consider an infinitely large pool at time t , i.e., L(t) = ∞, we can rewrite (2.2) as follows

dWm(t)

Wm(t−)
=

[
r + π(t)(μ(t) − r) + λ(t) − c(t)

]
dt + π(t)σdZ(t), t < τm. (2.4)

For the specific details of the derivation of equation (2.4), please refer to equation (17) of Stamos (2008).
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Remark 2.2. Note that both μ(t) and λ(t) are deterministic functions of time in Stamos (2008). However, μ(t) and λ(t) in equations 
(2.2)-(2.4) above depend on the unobservable Markov chain, and thus are unobservable.

Let yi(0) := P (X(0) = ei), i = 1, · · · , n, y(0) := (y1(0), · · · , yn(0))	 . The optimization problem we consider is to find such optimal 
strategies that the welfare of accumulative consumptions and terminal wealth can be maximized, i.e.,

J̄ (w, 
,y) : = E

[ τm∧T∫
0

e− ∫ s
0 ρ(u)du U (C(s))ds + αe− ∫ T

0 ρ(u)du U (Wm(T ))I{τm>T }

∣∣∣∣Wm(0) = w, L(0) = 
,y(0) = y
]

= E

[ T∫
0

e− ∫ s
0 (ρ(u)+λ(u))duU (C(s))ds + αe− ∫ T

0 (ρ(u)+λ(u))duU (Wm(T ))

∣∣∣∣Wm(0) = w, L(0) = 
,y(0) = y
]
, (2.5)

where τm is the stochastic time of death, ρ(t) is the time preference and C(t) = c(t)Wm(t) denotes the consumption at time t . The degree 
of the preference for the terminal wealth relative to the desire for consumption is denoted by the constant α ≥ 0. Similar to Bernhardt 
and Donnelly (2019), the larger the value of α, the stronger the motivation to retain more terminal wealth. For the derivation of equation 
(2.5), see Appendix Lemma A.3.

Suppose that FN := {FN(t)|t ∈ [0, T ]} is the right-continuous, P -completed, natural filtration generated by the history of N up to and 
including time t . Note that we can observe stock prices and the total number of deaths in the pool under partial information. Therefore, 
the events of F Y and FN are observable and the admissible strategy adapts to F Y and FN . Observation filtration G := {G(t)|t ∈ [0, T ]}
denotes the minimal filtration generated by both F Y (t) and FN (t), where G(t) := F Y (t) ∨ FN(t) for each t ∈ [0, T ]. With that clarified, 
we proceed with the definition of admissible strategy as below.

Definition 2.1. An investment-consumption strategy (π(·), c(·)) for 0 ≤ t ≤ T is said to be admissible, if it satisfies the following conditions.

• (π(·), c(·)) is G-progressively measurable such that

E

( T∫
0

π2(t)dt

)
< ∞, E

( T∫
0

c2(t)dt

)
< ∞;

• Under the investment strategy (π(·), c(·)), equation (2.2) has a unique strong solution satisfying Wm(t) ≥ 0;

• E

[∫ T
0 e− ∫ s

0 (ρ(u)+λ(u))du |U (C(s))|ds + e− ∫ T
0 (ρ(u)+λ(u))du |U (Wm(T ))|

]
< ∞,

where U (·) is the utility function.

We denote the set of all admissible strategies by M.

Therefore, the objective function of the pool member m is as follows

V̄ (w, 
,y) : = sup
(π,c)∈M

J̄ (w, 
,y).

As Callegaro et al. (2020) point out that in current formulation, the optimal problem with unobservable information is not Markovian and 
the dynamic programming approach via the HJB equation is not applicable. Therefore, in the next section, we apply filtering theory to 
introduce an equivalent problem with full information, the so-called separated problem, which is a Markovian structure.

3. Equivalent observable problem with full information

In this section, we obtain the separated problem by applying the ‘certainty equivalence’ approach or the ‘separation principle’ approach. 
First, we use the filtering theory to introduce the best estimate of the hidden Markov chain given the observations. Furthermore, we get 
equivalent observable control problem with full information.

3.1. The filtering problem

For the filtering problem, we mainly find the best mean-squared estimate of the hidden Markov chain based on current information. 
Let H(t) := G(t) ∨ FX(t) for each t ∈ [0, T ], which is the minimal filtration generated by both G(t) and FX(t), H := {H(t)|t ∈ [0, T ]}. 
Clearly, G ⊆ H ⊆ F . Then for any H-adapted, real-valued process ϕ := {ϕ(t)|t ∈ [0, T ]}, let ϕ̂ be the G-optional projection of ϕ under the 
probability measure P , i.e.,
133



L. Xie, L. Chen, L. Qian et al. Insurance: Mathematics and Economics 108 (2023) 129–155
ϕ̂(t) = E(ϕ(t)|G(t)), t ∈ [0, T ], P − as,

where E is the expectation under P . It indicates that based on G(t), we can estimate ϕ(t) by its least-square estimate E(ϕ(t)|G(t)).
As Elliott et al. (2009) point out that to facilitate the derivation of the Zakai forms of the filtering equation governing the evolution of 

the filtered estimates of the hidden state of the chain over time, we need to introduce the reference probability measure P̂ . This method 
based on the reference probability measure in some literature is discussed, such as Zhu et al. (2016), Shen and Siu (2017) and so on.

Firstly, we consider the following H-adapted, real-valued process �1 := {�1(t)|t ∈ [0, T ]} and �2 := {�2(t)|t ∈ [0, T ]} on (�, F , P ),

�1(t) : = exp

{ t∫
0

〈h(u),X(u)〉
σ 2

dY (u) − 1

2

t∫
0

〈h(u),X(u)〉2

σ 2
du

}
, (3.1)

and

�2(t) : = exp

{ t∫
0

n∑
i=1

〈X(u−),ei〉[1 − (L(u−) − 1)λi]du

+
t∫

0

n∑
i=1

〈X(u−),ei〉 ln((L(u−) − 1)λi)dN(u)

}
. (3.2)

Furthermore, we define the H-adapted, real-valued process � := {�(t)|t ∈ [0, T ]} and the equivalent probability measure P̂ ∼ P on 
(�, F , P ),

�(t) : = �1(t)�2(t),
dP

dP̂
:= �(T ).

We can prove that � is a (H, P̂ )-martingale. For any H-adapted, real-valued process ϕ := {ϕ(t)|t ∈ [0, T ]}, let σ̄ (ϕ) be the G-optional 
projection of �ϕ under the probability measure P̂ , i.e.,

σ̄ (ϕ(t)) = Ê(�(t)ϕ(t)|G(t)), t ∈ [0, T ], P̂ − as,

where Ê is the expectation under P̂ . Due to the Bayes’ rule, we have

E(ϕ(t)|G(t)) = Ê(�(t)ϕ(t)|G(t))

Ê(�(t)|G(t))
, (3.3)

which indicates we can get the estimate of ϕ under P by estimating �ϕ under P̂ . For t ∈ [0, T ], we define Gi(t) := (L(t) − 1)λi , G(t) :=
(G1(t), G2(t), · · · , Gn(t))	 and 1 := (1, 1, · · · , 1)	 . Let h(t) := μ(t) − 1

2 σ 2, then

dY (t) = h(t)dt + σdZ(t).

When X(t) = ei at time t , μ(t) = μi . Therefore, hi(t) := h(X(t) = ei) = μ(t) − 1
2 σ 2 = μi − 1

2 σ 2 for i = 1, 2, · · · , n, t ∈ [0, T ], and h(t) :=
(h1(t), h2(t), · · · , hn(t))	 . Let B(t) := diag(h(t)), a diagonal matrix in which the entries outside the main diagonal are all zero and elements 
of the main diagonal are h(t) = (h1(t), h2(t), · · · , hn(t))	 .

Proposition 3.1. Let q(t) := σ̄ (X(t)) and X̂(t) := E(X(t)|G(t)), then q(t) satisfies the following stochastic differential equation

q(t) = q(0) +
t∫

0

Aq(u)du −
t∫

0

diag(G(u) − 1)q(u)du

+
t∫

0

diag(G(u−) − 1)q(u−)dN(u) +
t∫

0

σ−2B(u)q(u)dY (u) (3.4)

and

X̂(t) = q(t)

〈q(t),1〉 ,

where q(0) := E(X(0)) is the initial distribution of the chain X, which is assumed to be known.

Proof. The proof is given in Appendix A.1. �
Remark 3.1. For any t ∈ [0, T ], X̂(t) is the filtered estimate of hidden Markov chain X(t) given G(t). Because all the elements of all matrices 
A, diag(G(t) − 1) and B(t) are bounded, by using Theorem 2.1 of Xi and Zhu (2017), equation (3.4) admits a unique strong solution.
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3.2. The separated problem

In the section, based on filtered estimate of hidden Markov chain and innovations process, we find the best estimate for the risky asset 
price and wealth process. Then we can transfer the partially observable system to a completely observable system. Define the compensated 
random measure

dN̂(t) = dN(t) −
n∑

i=1

〈X̂(t),ei〉[(L(t−) − 1)λi]dt.

Define the G-adapted process Ẑ := { Ẑ(t)|t ∈ [0, T ]} as follows

Ẑ(t) : = Y (t)

σ
−

t∫
0

ĥ(u)

σ
du

= Z(t) +
t∫

0

h(u) − ĥ(u)

σ
du. (3.5)

Because { Ẑ(t), t ∈ [0, T ]} on (G, P ) is innovations process, we can prove that Ẑ is a (G, P )-Brownian motion by filtering theory. For more 
detailed discussions, we refer readers to, for example, Karatzas and Zhao (2001) and Liptser and Shiryaev (1977). Due to (3.5), we can 
obtain

σdẐ(t) + ĥ(t)dt = σdZ(t) + h(t)dt,

where ĥ(t) = μ̂(t) − 1
2 σ 2. Therefore, for the unobservable model (2.2), the equivalent completely observable model of the total funds is

dWm(t)

Wm(t−)
=

[
r + π(t)(μ̂(t) − r) − c(t) +

n∑
i=1

〈X̂(t),ei〉λi

]
dt + π(t)σdẐ(t)

+ 1

L(t−) − 1
dN̂(t), t < τm,1 < L(t−), (3.6)

and

dq(t) = K(t)q(t)dt +
n∑

i=1

〈X̂(t),ei〉diag(G(t) − 1)(L(t−) − 1)λidt + σ−1B(t)q(t)dẐ(t)

+diag(G(t−) − 1)q(t−)dN̂(t), (3.7)

where X̂(t) = E(X(t)|G(t)) = q(t)
〈q(t),1〉 , μ̂(t) = 〈μ,q(t)〉

〈q(t),1〉 , K(t) = A − diag(G(t) − 1) + σ−2B(t)ĥ(t).

Remark 3.2. For any t ∈ [0, T ], there exists a unique solution to equation (3.6). According to Itô’s lemma for jump diffusions, the growth 
rate of wealth between t and s (t < s) is

Wm(s)

Wm(t)
= exp

{ s∫
t

(
r + π(u)(μ̂(u) − r) − c(u) − 1

2
π2(u)σ 2

)
du +

s∫
t

π(u)σdẐ(u)

}

×
∏

s≤u≤t

(
1 + 1

L(u−) − 1

)
	N(u).

Moreover, similar to equation (3.4), (3.7) admits a unique strong solution.

Furthermore, considering only one investor, i.e., L(t) = 1 in the pooled annuity funds and the perfect pool, i.e., L(t) = ∞, we reduce 
the partially observable model of the total funds to an equivalent model with complete observations. When L(t) = 1, for the unobservable 
model (2.3), the equivalent completely observable model of the total fund asset is

dWm(t)

Wm(t−)
=

[
r + π(t)(μ̂(t) − r) − c(t)

]
dt + π(t)σdẐ(t), t < τm, (3.8)

and

dq(t) = K(t)q(t)dt + σ−1B(t)q(t)dẐ(t), (3.9)

where

K(t) = A + σ−2B(t)ĥ(t), μ̂(t) = 〈μ,q(t)〉
.
〈q(t),1〉
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When L(t) = ∞, for the partially observable model (2.4), the equivalent completely observable model of the total funds is as follows

dWm(t)

Wm(t−)
=

[
r + π(t)(μ̂(t) − r) − c(t) +

n∑
i=1

〈X̂(t),ei〉λi

]
dt + π(t)σdẐ(t), t < τm, (3.10)

and

dq(t) = K(t)q(t)dt + σ−1B(t)q(t)dẐ(t), (3.11)

where

K(t) = A + σ−2B(t)ĥ(t), X̂(t) = E(X(t)|G(t)) = q(t)

〈q(t),1〉 ,

μ̂(t) = 〈μ,q(t)〉
〈q(t),1〉 .

Remark 3.3. For the proof of the equations (3.8)-(3.11), they are similar to the derivation of (3.6) and (3.7), we omit it here.

Now, we apply the filtering theory to transform the model into one with complete observations. Besides, we can prove that the 
following equation holds:

E

[ T∫
0

e− ∫ s
0 (ρ(u)+λ(u))duU (C(s))ds + αe− ∫ T

0 (ρ(u)+λ(u))du U (Wm(T ))

∣∣∣∣Wm(0) = w, L(0) = 
,y(0) = y
]

= E

[ T∫
0

e− ∫ s
0 (ρ(u)+λ̂(u))du U (C(s))ds + αe− ∫ T

0 (ρ(u)+λ̂(u))du U (Wm(T ))

∣∣∣∣Wm(0) = w, L(0) = 
,q(0) = q
]
,

see Appendix Lemma A.4. Hence, equation (2.5) can be rewritten in terms of observable quantities as

J (w, 
,q) : = E

[ T∫
0

e− ∫ s
0 (ρ(u)+λ̂(u))du U (C(s))ds + αe− ∫ T

0 (ρ(u)+λ̂(u))du U (Wm(T ))

∣∣∣∣Wm(0) = w, L(0) = 
,q(0) = q
]

= J̄ (w, 
,y).

Furthermore, we give the definition of admissible strategy and value function under full information, respectively.

Definition 3.1. An investment-consumption strategy (π(·), c(·)) for 0 ≤ t ≤ T is said to be admissible, if it satisfies the following conditions.

• (π(·), c(·)) is G-progressively measurable such that

E

( T∫
0

π2(t)dt

)
< ∞, E

( T∫
0

c2(t)dt

)
< ∞;

• Under the investment strategy (π(·), c(·)), equation (3.6) has a unique strong solution satisfying Wm(t) ≥ 0;

E

[∫ T
0 e− ∫ s

0 (ρ(u)+λ̂(u))du |U (C(s))|ds + e− ∫ T
0 (ρ(u)+λ̂(u))du |U (Wm(T ))|

]
< ∞,

where U (·) is the utility function, and λ̂(u) = ∑n
i=1〈X̂(u), ei〉λi for each u ∈ [0, T ].

We denote the set of all admissible strategies by A.

Given (π, c) ∈ A and for t ∈ [0, T ], Wm(t), q(t) solve (3.6) and (3.7), respectively, and L(t) is measurable with respect to {G(t)|t ∈
[0, T ]}. Because the triple {(Wm(t), L(t), q(t))|t ∈ [0, T ]} is Markov with respect to the information flow {G(t)|t ∈ [0, T ]}, the problem 
under full information has a Markovian structure. Therefore, the objective function of the pool member becomes

V (w, 
,q) : = sup J (w, 
,q). (3.12)

(π,c)∈A
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Note that because all the processes are G-adapted, this is now a stochastic problem under full information so that we can use traditional 
method to deal with it. Furthermore, to proceed with specific derivations, we utilize the logarithmic utility function to describe the welfare 
of a typical plan member, i.e., U (x) = ln(x).

Due to the strong uniqueness of the solutions to (3.6) and (3.7), and the construction of the separated problem, we can obtain the 
following proposition.

Proposition 3.2. Let (w, 
, y) ∈ R × R × [0, 1]n be the initial values of the process {(Wm(t), L(t), y(t))|t ∈ [0, T ]} in the problem (2.5) under partial 
information. Then

V̄ (w, 
,y) = V (w, 
,q)

Furthermore, M = A and (π∗, c∗) is an optimal control for the separated problem (3.12) if and only if it is optimal for the original problem (2.5)
under partial information.

3.3. Verification theorem

In this subsection, we provide the verification theorem to the optimization problem with full information. Define the value function of 
the pool member m as follows

�(t, w, 
,q) : = sup
(π,c)∈A

E

[ T∫
t

e− ∫ s
t (ρ(u)+λ̂(u))du U (C(s))ds

+αe− ∫ T
t (ρ(u)+λ̂(u))du U (Wm(T ))

∣∣∣∣Wm(t) = w, L(t) = 
,q(t) = q
]
.

Let O := C1([0, T ]) × C2(R) ×B(R) × C2(Rn) be the space of real-valued functions on a set [0, T ] × R × R × Rn and Ō is the closure of 
O. A function φ(t, w, 
, q) : [0, T ] × R × R × Rn → R satisfies φ(t, w, 
, q) ∈O. Then we denote the partial derivatives of φ with respect to 
t, w and the second order partial derivatives of φ with respect to w by φt, φw and φw w , respectively. The infinitesimal generator Lπ,c is 
given by

Lπ,c[φ(t, w, 
,q)] = φt + φw w

[
r + π(μ̂(t) − r) − c

]
+ 1

2
φw w w2π2σ 2

+〈K(t)q,Dqφ〉 + 1

2
σ−2〈B(t)q, (D2

qφ)B(t)q〉 + 〈B(t)q,Dqφw〉π w

+
n∑

i=1

〈X̂(t),ei〉λi(
 − 1)

[
φ

(
t, w(1 + 1


 − 1
), 
 − 1,diag(G(t))q

)

−φ(t, w, 
,q)

]
,

where

Dqφ :=
(

∂φ

∂q1
,

∂φ

∂q2
, · · · ,

∂φ

∂qn

)	
, D2

qφ :=
[

∂2φ

∂qi∂q j

]
i, j=1,2,··· ,n

,

Dqφw :=
(

∂2φ

∂ w∂q1
,

∂2φ

∂ w∂q2
, · · · ,

∂2φ

∂ w∂qn

)	
,

Dqφ and D2
qφ are then the gradient vector and Hessian matrix of φ with respect to q, respectively. Dqφw is the gradient vector of the 

derivative φw with respect to q.

Theorem 3.1 (Verification theorem). Let φ be a function in O ∩ Ō and an admissible control (π∗, c∗) ∈A such that

(1) Lπ,cφ(t, w, 
, q) −
(
ρ(t) +∑n

i=1〈X̂(t), ei〉λi

)
φ + U (cw) ≤ 0, P−a.s., f or all (π, c) ∈A and (t, w, 
, q) ∈ [0, T ] × R × R × Rn;

(2) Lπ∗,c∗
φ(t, w, 
, q) −

(
ρ(t) +∑n

i=1〈X̂(t), ei〉λi

)
φ + U (c∗w) = 0, P−a.s., f or all (t, w, 
, q) ∈ [0, T ] × R × R × Rn;

(3) f or all(π, c) ∈A,

lim
t→T − φ(t, w, 
,q) = U (w),P−a.s.;

(4) let K denote the set of stopping times κ ≤ T . T he f amily{φ(κ, W (κ), L(κ), q(κ))|κ ∈K} is uniformly integrable. Then,

φ(t, w, 
,q) = �(t, w, 
,q),

and (π∗, c∗) is an optimal control.

Proof. The proof is deferred to Appendix A.2. �
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4. The optimal strategy of investment and consumption

4.1. The optimal strategy with partial information

In this section, we give the results to the unobservable model. We consider three cases, the first is that the number of person in the 
pool is more than one but finite (1 < 
 < ∞), the second is that there is only one person in the pool (
 = 1), and the last is the perfect 
pool (
 = ∞).

Theorem 4.1. Let

θ(t) = α exp

⎛
⎝−

T∫
t

(
ρ(u) + 〈λ,q(u)〉

〈q(u),1〉
)

du

⎞
⎠+

T∫
t

exp

⎛
⎝−

s∫
t

(
ρ(u) + 〈λ,q(u)〉

〈q(u),1〉
)

du

⎞
⎠ds,

and

f (t, 
,q) = A0(t, 
) +
n∑

i=1

Ai(t, 
)qi +
n−1∑
i=1

n∑
j=i+1

Bij(t, 
)qiq j +
n∑

i=1

Ci(t, 
)q
2
i

with terminal conditions lim
t→T

f (t, 
, q) = 0 and f (t, 0, q) = 0. When 1 < 
 < ∞, the optimal investment and consumption strategies for problem 

(3.12) are given by

π∗(t) =
〈μ,q(t)〉
〈q(t),1〉 − r

σ 2
, c∗(t) = (θ(t))−1, (4.1)

and the value function is

�(t, w, 
,q) = θ(t) ln(w) + f (t, 
,q), (4.2)

where q(t) satisfies (3.7), coefficients Ai(t, 
) = Bij(t, 
) = Ci(t, 
) = 0, A0(t, 
) satisfies (A.18) with boundary conditions lim
t→T

A0(t, 
) = 0.

When 
 = 1 or 
 = ∞, the optimal investment and consumption strategies, and the value function satisfy (4.1) and (4.2), respectively. Note that 
for 
 = 1, q(t) satisfies (3.9), coefficients Ai(t, 1) = Bij(t, 1) = Ci(t, 1) = 0, A0(t, 1) satisfies (A.19) with boundary conditions lim

t→T
A0(t, 1) = 0. For 


 = ∞, q(t) satisfies (3.11), coefficients Ai(t, ∞) = Bij(t, ∞) = Ci(t, ∞) = 0, A0(t, ∞) satisfies (A.20) with boundary conditions lim
t→T

A0(t, ∞) = 0.

Proof. The proof is given in Appendix A.3. �
When considering the pooled annuity funds without exit mechanism, i.e., T → ∞, we can easily obtain the following corollary from 

Theorem 4.1.

Corollary 4.1. When T → ∞, let

θ(t) =
∞∫

t

exp

(
−

s∫
t

(
ρ(u) + 〈λ,q(u)〉

〈q(u),1〉
)

du

)
ds,

and

f (t, 
,q) = A0(t, 
) +
n∑

i=1

Ai(t, 
)qi +
n−1∑
i=1

n∑
j=i+1

Bij(t, 
)qiq j +
n∑

i=1

Ci(t, 
)q
2
i

with terminal conditions lim
t→∞ f (t, 
, q) = 0 and f (t, 0, q) = 0. When 1 < 
 < ∞, the optimal investment and consumption strategies, the value 

function and q(t) satisfy (4.1), (4.2) and (3.7), respectively. Coefficients Ai(t, 
) = Bij(t, 
) = Ci(t, 
) = 0, A0(t, 
) satisfies (A.18) with boundary 
conditions lim

t→∞ A0(t, 
) = 0.

When 
 = 1 or 
 = ∞, the optimal investment and consumption strategies, and the value function satisfy (4.1) and (4.2), respectively. Note that 
for 
 = 1, q(t) satisfies (3.9), coefficients Ai(t, 1) = Bij(t, 1) = Ci(t, 1) = 0, A0(t, 1) satisfies (A.19) with boundary conditions lim

t→∞ A0(t, 1) = 0. For 

 = ∞, q(t) satisfies (3.11), coefficients Ai(t, 1) = Bij(t, 1) = Ci(t, 1) = 0, A0(t, 1) satisfies (A.20) with boundary conditions lim

t→∞ A0(t, ∞) = 0.

4.2. The optimal strategy with full information

In the section, we consider the state of Markov chain X is observable over time, which means that all parameters of equations (2.2), 
(2.3) and (2.4) are known. Stamos (2008) discusses the pooled annuity funds without exit mechanism, i.e., T → ∞ assuming the instan-
taneous rate of return, μ(t) and intensity, λ(t) of Poisson process are both given functions. However, μ(t) and λ(t) are dependent on the 
Markov chain in our model and we are dedicated to finding the optimal strategies under this setting. The utility function is chosen by 
U (x) = ln(x) as well, and for each k = 1, 2, · · ·, n, the objective function of the pool member is given by
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V (w, 
,ek) : = sup
(π,c)∈M1

E

[ τm∧T∫
0

e− ∫ s
0 ρ(u)du U (C(s))ds + αe− ∫ T

0 ρ(u)du U (Wm(T ))I{τm>T }

∣∣∣∣Wm(0) = w, L(0) = 
,X(0) = ek

]

= sup
(π,c)∈M1

E

[ T∫
0

e− ∫ s
0 (ρ(u)+λ(u))duU (C(s))ds + αe− ∫ T

0 (ρ(u)+λ(u))du U (Wm(T ))

∣∣∣∣Wm(0) = w, L(0) = 
,X(0) = ek

]
, (4.3)

where λ(u) = ∑n
i=1〈X(u), ei〉λi , M1 is the set of admissible strategies that satisfies the assumption (π(.), c(.)) is F -progressively mea-

surable such that E(
∫ T

0 π2(t)dt) < ∞, E(
∫ T

0 c2(t)dt) < ∞, and conditions 2 and 3 of Definition 2.1.

Theorem 4.2. The optimal investment and consumption strategies under the observable model are

π∗(t) = μ(t) − r

σ 2
, c∗(t) = (θ(t))−1, (4.4)

where

θ(t) = α exp

⎛
⎝−

T∫
t

(
ρ(u) +

n∑
i=1

〈X(u),ei〉λi

)
du

⎞
⎠

+
T∫

t

exp

⎛
⎝−

s∫
t

(
ρ(u) +

n∑
i=1

〈X(u),ei〉λi

)
du

⎞
⎠ds.

The value function is

�(t, w, 
,ek) =

⎧⎪⎨
⎪⎩

θ(t) ln(w) + f (t, 
,ek),

θ(t) ln(w) + f (t,1,ek),

θ(t) ln(w) + f (t,∞,ek),

where f (t, 
, ek), f (t, 1, ek) and f (t, ∞, ek) satisfy

∂ f (t, 
,ek)

∂t
= ln(θ(t)) +

(
ρ(t) +

n∑
i=1

〈X(t),ei〉λi

)
f (t, 
,ek) − θ(t)r − 1

2

(μ(t) − r)2θ(t)

σ 2
+ 1

−
n∑

j=1

akj f (t, 
,e j) −
n∑

i=1

〈X(t),ei〉λi(
 − 1)

[
θ(t) ln(





 − 1
)

+ f (t, 
 − 1,ek) − f (t, 
,ek)

]
, lim

t→T
f (t, 
,ek) = 0, f (t,0,ek) = 0,

∂ f (t,1,ek)

∂t
= ln(θ(t)) +

(
ρ(t) +

n∑
i=1

〈X(t),ei〉λi

)
f (t,1,ek) − θ(t)r − 1

2

(μ(t) − r)2θ(t)

σ 2
+ 1

−
n∑

j=1

akj f (t,1,e j), lim
t→T

f (t,1,ek) = 0, f (t,0,ek) = 0,

∂ f (t,∞,ek)

∂t
= ln(θ(t)) +

(
ρ(t) +

n∑
i=1

〈X(t),ei〉λi

)
f (t,∞,ek) − θ(t)r − 1

2

(μ(t) − r)2θ(t)

σ 2
+ 1

−
n∑

i=1

〈X(t),ei〉λi −
n∑

j=1

akj f (t,∞,e j), lim
t→T

f (t,∞,ek) = 0, f (t,0,ek) = 0.

The proof of Theorem 4.2 is similar to that of Theorem 4.1, so we omit it here.

Corollary 4.2. When considering the infinite time horizon, i.e., T → ∞, the optimal investment and consumption strategies under the observable 
model are

π∗(t) = μ(t) − r
2

, c∗(t) = (θ(t))−1,

σ
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Table 1
Model parameters.

ρ r σ L0

0.03 0.03 0.2 100

T α μ1 μ2

15 1 0.1 0.05

λ1 λ2 q1(0) q2(0)

0.03 0.3 0.9 0.1

a11 a12 a21 a22

-5 5 10 -10

Fig. 1. The influence of time t on consumption fraction under different ρ . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

where

θ(t) =
∞∫

t

exp

⎛
⎝−

s∫
t

(
ρ(u) +

n∑
i=1

〈X(u),ei〉λi

)
du

⎞
⎠ds.

The corresponding value function under the case of T → ∞ is similar to that under the case of finite time horizon. The main difference is the terminal 
conditions lim

t→∞ f (t, 
, ek) = 0 and f (t, 0, ek) = 0, for 1 ≤ 
 < ∞ and 
 = ∞, respectively.

Remark 4.1. From Theorem 4.2 and Corollary 4.2, we find that the optimal strategies are the same under three cases 1 < 
 < ∞, 
 = 1 and 

 = ∞. The main reason may be the logarithmic utility that we choose.

5. Numerical analysis

We illustrate our results numerically in this section. Our results are demonstrated with graphs organized into the following way: we 
first introduce some baseline parameters below for the sake of convenience. The parameters take the values assumed in Table 1 through 
the whole section unless otherwise specified. Then we study the impact of key parameters on the optimal investment and consumption 
strategies. We conclude this section by comparing the optimal strategies with complete information with that in partially observable 
setting.

Note that we demonstrate our results with a two-state (n = 2) Markov chain in this section and thus in the table above the subscripts 
i, j of transition intensities aij take values 1 or 2 only. Also we assume that the discount rate function ρ(t) is a constant ρ for convenience 
of analysis. Last, but not least, recall that α, L0, and q(0) = (q1(0), q2(0)) = E[X(0)] denote the relative importance of terminal wealth, the 
size of the pooled annuity and the expectation of the Markov chain at the initial moment t = 0, respectively.

Fig. 1 shows the trend of consumption fraction, in other words, the proportion of wealth on consumption over time. As we can see 
from the graph, the consumption fraction increases steadily over the time window of our interest. Given that one either consumes or 
invests in our model, an ordinary person tends to spend more, for example, on medical bills and invest less, in particular, in risky asset 
like equities, while aging. It is therefore reasonable to see the increasing pattern. The upward trend is slow due to the fact that the market 
is not fully observable. Consequently, the participant chooses to increase the percentage on consumption little by little and we thus do not 
witness distinct increment of consumption over any time frame even when market might be very prospectus at a certain period of time. 
Another observation is that one has higher percentage of consumption as discount rate goes up. The reason behind is that the discount 
rate reveals the time preference of a retiree. Higher value of discount rate demonstrates more emphasis present, and thus implies that 
more consumption is expected while other things being equal.

Fig. 2 delineates the initial behavior of consumption with respect to terminal time and it shows that the corresponding consumption 
is a decreasing function of time T . It fits our intuition as a retiree spends more now while his/her objective is to maximum the welfare 
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Fig. 2. The influence of terminal time T on consumption fraction under different α.

Fig. 3. The influence of time t on investment strategy under different σ .

over shorter time horizon and consumes less now while planning for longer time period. What is more, the three lines in this figure also 
demonstrate the impact of α on the consumption. Recall that α measures how a plan participant weighs in the terminal wealth, one thus 
consumes the least initially if he/she cares the terminal wealth most. It is also worth to point out that we spot that this impact of α can 
be dismissed if the terminal time is long enough with our choice of parameters.

We switch our gears and study of investment strategies instead in Figs. 3 and 4. Both Figs. 3 and 4 describe the trajectory of investment 
strategies over the course of time and we notice the fluctuations of π(t) in both Figures due to the jumps of hidden Markov chains. We 
will comment Fig. 3 before going to the discussion of Fig. 4 in below. Considering the fact that our model is based on a natural log 
utility function and the risk aversion level is γ = 1 in the framework of power utility function, our assumed plan member is thus not a 
risk preferred investor. We are not too surprised to see that, in Fig. 3, it is optimal for a retiree to invest less in a more volatile market 
environment. That being said, we want to claim that it is not too trivial to study the relation between π(t) and σ . As we can see from 
the optimal investment strategy expression in Equation (4.1), σ appears in q(t), the top of the expression for optimal π(t) (see equation 
(3.7) for details) and bottom of that at the same time.

Different from Fig. 3 in which the investment strategy with partial information is considered, we make a comparison of investment 
strategies under different models in Fig. 4. For the case of observable Markov chain, with specified values of parameters, the optimal 
investment behavior should be a constant regardless of time according to its expression in equation (4.4). It is clear from the optimal 
investment expression that higher return results in more risky asset investments. The investment strategy with partial information is 
between the two strategies with full information. When the market is not fully observable, investor uses the average return (between bull 
market and bear market) as the criterion to make investment decision and thus the resulting strategies are capped by the best scenario 
case and worse scenario case of the contrasting model in which full access to information is assumed, respectively.
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Fig. 4. The comparison of partially observable and fully observable instantaneous rate of return.

Fig. 5. The comparison of consumption strategies with partially observable and fully observable information.

Similar to Fig. 4, Fig. 5 also examines the impact of information availability. That said, we focus on dynamics of consumption according 
to the force of mortality in Fig. 5. We make the following observations. First of all, c(t) is an slow-increasing function of time and this is in 
line with our comments in Fig. 1. Second, most optimal consumption is obtained while force of mortality is the largest. The driving force 
behind this observation is the idea of pooled annuity in which plan members essentially pool longevity risk and alive people are taking 
advantage of the money left the pool. Higher mortality probability leads to more consumption for a living retiree is thus a natural end of 
product to expect and observe. Along the line of what we commented in Fig. 4, when the market is not fully observable, plan members 
take the approach of averaging out the different scenario and it is optimal to maintain a middle level of consumption.

6. Conclusion and future remark

In this paper, we study the optimal consumption and investment problem under partial information for pooled annuity with differ-
ent exit mechanisms. By using martingale method and the classical filtering theory, we reduce partial information to one with complete 
information. Furthermore, applying stochastic control theory and the HJB equation, we obtain the explicit expressions for the optimal in-
vestment and consumption strategies accordingly. Simultaneously, we also investigate this optimization problem in the setting of complete 
information and present the closed form expressions for consumption and investment respectively. Finally, we use numerical simulations 
to illustrate the conclusions and compare the results. One direction of our future work is to extend our methods to different utility func-
tions while risk aversion levels among participants can be modelled in an appropriate way. It is likely that explicit solutions may not be 
available for the case power utility function or exponential utility function, just for example. Therefore, approximation method is expected 
to be implemented and more careful thoughts will be deserved.
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Appendix A

A.1. Proof of Proposition 3.1

Proof. Following the proof of Theorem 4.1 of Elliott and Siu (2012), we give the proof of Proposition 3.1. Due to (3.1) and (3.2), we can 
obtain

d�1(t) = �1(t)
〈h(t),X(t)〉

σ 2 dY (t), (A.1)

and

d�2(t) = �2(t)
n∑

i=1

〈X(t−),ei〉[1 − (L(t−) − 1)λi]dt

+�2(t−)

n∑
i=1

〈X(t−),ei〉[(L(t−) − 1)λi − 1]dN(t). (A.2)

Combining (A.1) and (A.2) yields

d�(t) = �1(t−)d�2(t) + �2(t−)d�1(t) + d[�1,�2](t)

= �(t)
n∑

i=1

〈X(t−),ei〉[1 − (L(t−) − 1)λi]dt

+�(t−)

n∑
i=1

〈X(t−),ei〉[(L(t−) − 1)λi − 1]dN(t)

+�(t)
〈h(t),X(t)〉

σ 2
dY (t). (A.3)

Because of (2.1) and (A.3), we have

d�(t)X(t) = �(t−)dX(t) + X(t−)d�(t) + d[�,X](t)

= �(t−)AX(t)dt + �(t−)dM(t) + �(t)X(t−)

n∑
i=1

〈X(t−),ei〉[1 − (L(t−) − 1)λi]dt

+�(t−)X(t−)

n∑
i=1

〈X(t−),ei〉[(L(t−) − 1)λi − 1]dN(t)

+�(t)X(t−)
〈h(t),X(t)〉

σ 2
dY (t). (A.4)

Integrating both sides of (A.4) implies

�(t)X(t) = �(0)X(0) +
t∫

0

�(u−)AX(u)du +
t∫

0

�(u−)dM(u)

+
t∫
�(u)X(u−)

n∑
i=1

〈X(u−),ei〉[1 − (L(u−) − 1)λi]du
0
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+
t∫

0

�(u−)X(u−)

n∑
i=1

〈X(u−),ei〉[(L(u−) − 1)λi − 1]dN(u)

+
t∫

0

�(u)X(u−)
〈h(u),X(u)〉

σ 2
dY (u). (A.5)

On the one hand,

Ê

[
�(u−)X(u−)

n∑
i=1

〈X(u−),ei〉[1 − (L(u−) − 1)λi]
∣∣∣∣G(u)

]

=
n∑

i=1

〈σ̄ (X(u−)),ei〉[1 − (L(u−) − 1)λi]ei .

On the other hand, due to 
∑n

i=1〈X(u), ei〉 = 1, we obtain

Ê

[
�(u)X(u)

〈h(u),X(u)〉
σ 2

∣∣∣∣G(u)

]

= Ê

[
�(u)X(u)

〈h(u),X(u)〉
σ 2

n∑
i=1

〈X(u),ei〉
∣∣∣∣G(u)

]

=
n∑

i=1

〈σ̄ (X(u)),ei〉〈h(u),ei〉ei

= diag(h(u))σ̄ (X(u))

= B(u)σ̄ (X(u)).

Taking expectation for both sides of (A.5) on G(t) under measure P̂ , we have

σ̄ (X(t)) = σ̄ (X(0)) +
t∫

0

Aσ̄ (X(u))du −
t∫

0

diag(G(u) − 1)σ̄ (X(u))du

+
t∫

0

diag(G(u−) − 1)σ̄ (X(u−))dN(u) +
t∫

0

B(u)σ̄ (X(u))

σ 2
dY (u). (A.6)

Because of (A.6), we have

q(t) = q(0) +
t∫

0

Aq(u)du −
t∫

0

diag(G(u) − 1)q(u)du

+
t∫

0

diag(G(u−) − 1)q(u−)dN(u) +
t∫

0

σ−2B(u)q(u)dY (u).

Due to 〈X(t), 1〉 = 1, then

〈Ê(�(t)X(t)|G(t)),1〉 = Ê(�(t)〈X(t),1〉|G(t))

= Ê(�(t)|G(t)).

By using (3.3), we obtain

X̂(t) = q(t)

〈q(t),1〉 . �
Due to a form of the Bayes’ rule, we know

E(e− ∫ t
0 λ(u)du|G(t)) = Ê(e− ∫ t

0 λ(u)du�(T )|G(t))

Ê(�(T )|G(t))

= Ê(e− ∫ t
0 λ(u)du�(t)|G(t)

ˆ .

E(�(t)|G(t))
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Let pi(t) := P (X(t) = ei |G(t)), i = 1, · · · , n, p(t) := (p1(t), · · · , pn(t))	 , λ̂(t) = E(λ(t)|G(t)), Ĝ(p(t−)) := (L(t−) − 1)λ̂(t), G(p(t−)) :=
(L(t−) − 1)λ(t), and ĥ(t) = E(h(t)|G(t)), then

dpi(t) =
n∑

l=1

ali pl(t)dt + pi(t−)σ−2(hi(t) − ĥ(t))(dY (t) − ĥ(t))dt

+pi(t−)
Gi(t−) − Ĝ(p(t−))

Ĝ(p(t−))
(dN(t) − Ĝ(p(t−))dt).

Let M(t) := �(t)e− ∫ t
0 λ(u)du , then

dM(t) = M(t−)

(
h(t)

σ 2
dY (t) + (G(p(t−)) − 1)dN(t) − (G(p(t−)) − 1)dt − λ(t)dt

)
.

Define

d�̂(t) = �̂(t)(Ĝ(p(t−)) − 1)dt + �̂(t−)(Ĝ(p(t−)) − 1)dN(t) + �̂(t)
ĥ(t)

σ 2
dY (t),

and

M̂(t) := �̂(t)e− ∫ t
0 λ̂(u)du,

we have

dM̂(t) = M̂(t−)

(
ĥ(t)

σ 2
dY (t) + (Ĝ(p(t−)) − 1)dN(t) − (Ĝ(p(t−)) − 1)dt − λ̂(t)dt

)
,

furthermore,

M̂(t) = M̂(0)exp

{ t∫
0

ĥ(s)

σ 2
dY (s) −

t∫
0

(Ĝ(p(s−)) − 1)ds −
t∫

0

(λ̂(s) + ĥ(s)

2
)ds

+
t∫

0

ln(Ĝ(p(s−)))dN(s)

}
.

Lemma A.1. Let

qi(t) = Ê(M(t)I{X(t)=ei}|G(t)). (A.7)

Then the following propositions are sustained.

(1) dqi(t) = ∑n
l=1 ali(t)ql(t)dt + qi(t−)

hi(t)
σ 2 dY (t) − qi(t−)λidt + qi(t−)(Gi(t−) − 1)dÑ(t), where dÑ(t) = dN(t) − dt;

(2) qi(t) = M̂(t)pi(t);
(3) pi(t) = qi(t)∑n

j=1 q j(t)
.

Proof. Following the proof of Lemma A.1 and Lemma A.2 of Capponi et al. (2015), we can easily prove Lemma A.1, so we omit it here. �
Lemma A.2. The following result is established.

E(e− ∫ t
0 λ(u)du|G(t)) = Ê(e− ∫ t

0 λ(u)du�(t)|G(t))

Ê(�(t)|G(t))

= exp

{
−

t∫
0

λ̂(u)du

}
.

Proof. Because of Lemma A.1, we know that

Ê(e− ∫ t
0 λ(u)du�(t)|G(t)) = Ê(M(t)|G(t))

= Ê(

n∑
i=1

M(t)I{X(t)=ei}|G(t))

=
n∑

Ê(M(t)I{X(t)=ei}|G(t))

i=1
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=
n∑

i=1

qi(t) =
n∑

i=1

M̂(t)pi(t) = M̂(t)

= M̂(0)exp

{ t∫
0

ĥ(s)

σ 2
dY (s) −

t∫
0

(Ĝ(p(s−)) − 1)ds −
t∫

0

(λ̂(s) + ĥ(s)

2
)ds

+
t∫

0

ln(Ĝ(p(s−)))dN(s)

}

= �̂(t)e− ∫ t
0 λ̂(u)du .

For ∀t ∈ [0, T ], let λ(t) = 0, we have

Ê(�(t)|G(t)) = M̂(0)exp

{ t∫
0

ĥ(s)

σ 2
dY (s) −

t∫
0

(Ĝ(p(s−)) − 1)ds +
t∫

0

ĥ(s)

2
ds

+
t∫

0

ln(Ĝ(p(s−)))dN(s)

}

= �̂(t).

Therefore, we obtain

E(e− ∫ t
0 λ(u)du|G(t)) = Ê(e− ∫ t

0 λ(u)du�(t)|G(t))

Ê(�(t)|G(t))

= �̂(t)e− ∫ t
0 λ̂(u)du

�̂(t)

= exp

{
−

t∫
0

λ̂(u)du

}
. �

Lemma A.3. For the objective function with partially observable problem, the following equation holds:

E

[ τm∧T∫
0

e− ∫ s
0 ρ(u)du U (C(s))ds + αe− ∫ T

0 ρ(u)du U (Wm(T ))I{τm>T }

∣∣∣∣Wm(0) = w, L(0) = 
,y(0) = y
]

= E

[ T∫
0

e− ∫ s
0 (ρ(u)+λ(u))duU (C(s))ds + αe− ∫ T

0 (ρ(u)+λ(u))du U (Wm(T ))

∣∣∣∣Wm(0) = w, L(0) = 
,y(0) = y
]
.

Proof. The welfare of accumulative consumptions and terminal wealth of the pool member m is as follows:

J̄ (w, 
,y) : = E

[ τm∧T∫
0

e− ∫ s
0 ρ(u)du U (C(s))ds + αe− ∫ T

0 ρ(u)du U (Wm(T ))

×I{τm>T }
∣∣∣∣Wm(0) = w, L(0) = 
,y(0) = y

]
.

For E(I{τm>s}|F(s)), we have

E(I{τm>s}|F(s)) = exp

{
−

s∫
0

λ(u)du

}
.

Therefore,
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J̄ (w, 
,y) = E

[ τm∧T∫
0

e− ∫ s
0 ρ(u)du U (C(s))ds + αe− ∫ T

0 ρ(u)du U (Wm(T ))

×I{τm>T }
∣∣∣∣Wm(0) = w, L(0) = 
,y(0) = y

]

= E

[ T∫
0

e− ∫ s
0 ρ(u)du U (C(s))E(I{τm>s}|F(s))ds + αe− ∫ T

0 ρ(u)du

×U (Wm(T ))E(I{τm>T }|F(T ))

∣∣∣∣Wm(0) = w, L(0) = 
,y(0) = y
]

= E

[ T∫
0

e− ∫ s
0 ρ(u)du U (C(s))e− ∫ s

0 λ(u)duds + αe− ∫ T
0 ρ(u)du

×U (Wm(T ))e− ∫ T
0 λ(u)du

∣∣∣∣Wm(0) = w, L(0) = 
,y(0) = y
]
. �

Lemma A.4. When the objective function be rewritten in terms of observable quantities, the following equation is established:

E

[ T∫
0

e− ∫ s
0 (ρ(u)+λ(u))duU (C(s))ds + αe− ∫ T

0 (ρ(u)+λ(u))du U (Wm(T ))

∣∣∣∣Wm(0) = w, L(0) = 
,y(0) = y
]

= E

[ T∫
0

e− ∫ s
0 (ρ(u)+λ̂(u))du U (C(s))ds + αe− ∫ T

0 (ρ(u)+λ̂(u))du U (Wm(T ))

∣∣∣∣Wm(0) = w, L(0) = 
,q(0) = q
]
.

Proof. The welfare of accumulative consumptions and terminal wealth of the pool member m in terms of observable quantities is as 
follows:

J (w, 
,q) : = E

[ T∫
0

e− ∫ s
0 (ρ(u)+λ̂(u))du U (C(s))ds + αe− ∫ T

0 (ρ(u)+λ̂(u))du U (Wm(T ))

∣∣∣∣Wm(0) = w, L(0) = 
,q(0) = q
]
.

Due to

y(0) = E[X(0)] = q(0),

we have

J̄ (w, 
,y) = E

[ τm∧T∫
0

e− ∫ s
0 ρ(u)du U (C(s))ds + αe− ∫ T

0 ρ(u)du U (Wm(T ))I{τm>T }

∣∣∣∣Wm(0) = w, L(0) = 
,q(0) = q
]
.

By applying Lemma A.3, we know

J̄ (w, 
,y) = E

[ T∫
0

e− ∫ s
0 ρ(u)du U (C(s))e− ∫ s

0 λ(u)duds + αe− ∫ T
0 ρ(u)du

×U (Wm(T ))e− ∫ T
0 λ(u)du

∣∣∣∣Wm(0) = w, L(0) = 
,q(0) = q
]
,

= E

[ T∫
e− ∫ s

0 ρ(u)du U (C(s))E(e− ∫ s
0 λ(u)du|G(s))ds
0
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+αe− ∫ T
0 ρ(u)du U (Wm(T ))E(e− ∫ T

0 λ(u)du|G(T ))

∣∣∣∣Wm(0) = w, L(0) = 
,q(0) = q
]
.

By using Lemma A.2, we can get

E(e− ∫ s
0 λ(u)du|G(s)) = exp

{
−

s∫
0

λ̂(u)du

}

and

E(e− ∫ T
0 λ(u)du|G(T )) = exp

{
−

T∫
0

λ̂(u)du

}
.

Therefore, we obtain

J̄ (w, 
,y) = E

[ T∫
0

e− ∫ s
0 (ρ(u)+λ̂(u))du U (C(s))ds + αe− ∫ T

0 (ρ(u)+λ̂(u))du

×U (Wm(T ))

∣∣∣∣Wm(0) = w, L(0) = 
,q(0) = q
]
,

where λ̂(u) = ∑n
i=1〈X̂(u), ei〉λi . Hence, we have

J̄ (w, 
,y) = J (w, 
,q). �
A.2. Proof of Theorem 3.1

Proof. Since φ ∈O ∩ Ō, choosing

τ̄n = inf

{
s ≥ t :

s∫
t

|e− ∫ u
t (ρ(v)+λ̂(v))dv(φw Wm(u)π(u)σ + 〈σ−1B(u)q,Dqφ〉)|2du ≥ n

}
,

we have that ∀(t, w, 
, q) ∈ [0, T ] × R × R × Rn, (π, c) ∈ A, s ∈ [t, T ] and τ̄n ∈ [t, ∞), the stopped process 
{∫ s∧τ̄n

t (φw Wm(u)π(u)σ +

〈σ−1B(u)q, Dqφ〉)dẐ(u)|s ∈ [t, T ]
}

is a martingale. By using Itô’s formula, we have

e− ∫ s∧τ̄n
t (ρ(v)+λ̂(v))dvφ(s ∧ τ̄n, Wm(s ∧ τ̄n), L(s ∧ τ̄n),q(s ∧ τ̄n))

= φ(t, w, 
,q) +
s∧τ̄n∫
t

e− ∫ u
t (ρ(v)+λ̂(v))dvLπ,cφ(u, Wm(u), L(u),q(u))du

−
s∧τ̄n∫
t

e− ∫ u
t (ρ(v)+λ̂(v))dv(ρ(u) + λ̂(u))φ(u, Wm(u), L(u),q(u))du

+
s∧τ̄n∫
t

e− ∫ u
t (ρ(v)+λ̂(v))dv(φw Wm(u)π(u)σ + 〈σ−1B(u)q,Dqφ〉)dẐ(u).

Furthermore, by taking the expectation yields

E
[

e− ∫ s∧τ̄n
t (ρ(v)+λ̂(v))dvφ(s ∧ τ̄n, Wm(s ∧ τ̄n), L(s ∧ τ̄n),q(s ∧ τ̄n))

]

= φ(t, w, 
,q) + E

⎡
⎣ s∧τ̄n∫

t

e− ∫ u
t (ρ(v)+λ̂(v))dvLπ,cφ(u, Wm(u), L(u),q(u))du

⎤
⎦

−E

⎡
⎣ s∧τ̄n∫

t

e− ∫ u
t (ρ(v)+λ̂(v))dv(ρ(u) + λ̂(u))φ(u, Wm(u), L(u),q(u))du

⎤
⎦ .

According to condition 1, we derive ∀(π, c) ∈ A,
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E
[

e− ∫ s∧τ̄n
t (ρ(v)+λ̂(v))dvφ(s ∧ τ̄n, Wm(s ∧ τ̄n), L(s ∧ τ̄n),q(s ∧ τ̄n))

]

≤ φ(t, w, 
,q) − E

⎡
⎣ s∧τ̄n∫

t

e− ∫ u
t (ρ(v)+λ̂(v))dv U (c(u)Wm(u))du

⎤
⎦ . (A.8)

By using conditions 3-4, the Dominated Theorem and (A.8), we have for ∀(π, c) ∈ A,

E
[

e− ∫ s
t (ρ(v)+λ̂(v))dvφ(s, Wm(s), L(s),q(s))

]

≤ φ(t, w, 
,q) − E

⎡
⎣ s∫

t

e− ∫ u
t (ρ(v)+λ̂(v))dv U (c(u)Wm(u))du

⎤
⎦ . (A.9)

Similarly, by using conditions 2-4, we obtain

E
[

e− ∫ s
t (ρ(v)+λ̂(v))dvφ(s, W ∗

m(s), L(s),q(s))
]

= φ(t, w, 
,q) − E

⎡
⎣ s∫

t

e− ∫ u
t (ρ(v)+λ̂(v))dv U (c∗(u)W ∗

m(u))du

⎤
⎦ .

Replacing s by T , we get

φ(t, w, 
,q) = E

[ T∫
t

e− ∫ u
t (ρ(v)+λ̂(v))dv U (c∗(u)W ∗

m(u))du

+αe− ∫ T
t (ρ(v)+λ̂(v))dv U (W ∗

m(T ))

]
. (A.10)

Combining (A.9) and (A.10), we have φ(t, w, 
, q) = �(t, w, 
, q) and (π∗, c∗) is an optimal control. �
A.3. Proof of Theorem 4.1

Proof. When 1 < 
 < ∞, combining (3.6) and (3.7) yields(
ρ(t) +

n∑
i=1

〈X̂(t),ei〉λi

)
� = sup

(π,c)∈A

{
U (C) + �t + �w w

[
r + π(μ̂(t) − r) − c

]
+ 1

2
�w w w2π2σ 2

+〈K(t)q,Dq�〉 + 1

2
σ−2〈B(t)q, (D2

q�)B(t)q〉 + 〈B(t)q,Dq�w〉π w

+
n∑

i=1

〈X̂(t),ei〉λi(
 − 1)

[
�

(
t, w(1 + 1


 − 1
), 
 − 1,diag(G(t))q

)

−�(t, w, 
,q)

]}
, (A.11)

where

�t := ∂�

∂t
, �w := ∂�

∂ w
, �w w := ∂2�

∂ w2
, Dq� :=

(
∂�

∂q1
,

∂�

∂q2
, · · · ,

∂�

∂qn

)	
,

D2
q� :=

[
∂2�

∂qi∂q j

]
i, j=1,2,··· ,n

, Dq�w :=
(

∂2�

∂ w∂q1
,

∂2�

∂ w∂q2
, · · · ,

∂2�

∂ w∂qn

)	
.

According to (A.11) and the utility function U (x) = ln(x), we have

0 = ln(c∗w) + �t −
(
ρ(t) +

n∑
i=1

〈X̂(t),ei〉λi

)
� + �w w

[
r + π∗(μ̂(t) − r) − c∗

]

+1

2
�w w w2(π∗)2σ 2 + 〈K(t)q,Dq�〉 + 1

2
σ−2〈B(t)q, (D2

q�)B(t)q〉 + 〈B(t)q,Dq�w〉π∗w

+
n∑

i=1

〈X̂(t),ei〉λi(
 − 1)

[
�

(
t, w(1 + 1


 − 1
), 
 − 1,diag(G(t))q

)
− �(t, w, 
,q)

]
. (A.12)

Due to the first-order conditions and (A.12), we know
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π∗(t) = −〈B(t)q,Dq�w〉 + (μ̂(t) − r)�w

�w w wσ 2
, (A.13)

and

c∗(t) = (�w w)−1. (A.14)

Let

θ(t) = α exp

(
−

T∫
t

(
ρ(u) +

n∑
i=1

〈X̂(u),ei〉λi

)
du

)

+
T∫

t

exp

(
−

s∫
t

(
ρ(u) +

n∑
i=1

〈X̂(u),ei〉λi

)
du

)
ds.

Suppose that the form of the value function is

�(t, w, 
,q) = θ(t) ln(w) + f (t, 
,q). (A.15)

Substituting (A.13) and (A.14) into (A.12) yields

0 = − ln(�w) + �t −
(
ρ(t) +

n∑
i=1

〈X̂(t),ei〉λi

)
� + �w wr − �w(μ̂(t) − r)〈B(t)q,Dq�w〉

�w wσ 2

−1

2

(μ̂(t) − r)2�2
w

�w wσ 2
− 1 + 〈K(t)q,Dq�〉 + 1

2
σ−2〈B(t)q, (D2

q�)B(t)q〉

−1

2

〈B(t)q,Dq�w〉2

�w wσ 2
+

n∑
i=1

〈X̂(t),ei〉λi(
 − 1)

×
[
�

(
t, w(1 + 1


 − 1
), 
 − 1,diag(G(t))q

)
− �(t, w, 
,q)

]
. (A.16)

Due to (A.15), we have

�t := θ ′(t) ln(w) + ∂ f

∂t
, �w := θ(t)

w
, �w w := −θ(t)

w2
, Dq� :=

(
∂ f

∂q1
, · · · ,

∂ f

∂qn

)	
,

D2
q� :=

[
∂2 f

∂qi∂q j

]
i, j=1,2,··· ,n

, Dq�w := (0, · · · ,0)	. (A.17)

Let f (t, 
, q) = A0(t, 
) +∑n
i=1 Ai(t, 
)qi +∑n−1

i=1

∑n
j=i+1 Bij(t, 
)qiq j +∑n

i=1 Ci(t, 
)q2
i . Then

∂ f

∂t
= A′

0(t, 
) +
n∑

i=1

A′
i(t, 
)qi +

n−1∑
i=1

n∑
j=i+1

B ′
i j(t, 
)qiq j +

n∑
i=1

C ′
i(t, 
)q

2
i ,

∂ f

∂qi
= Ai(t, 
) +

i−1∑
j=1

B ji(t, 
)q j +
n∑

j=i+1

Bij(t, 
)q j + 2Ci(t, 
)qi,
∂2 f

∂q2
i

= 2Ci(t, 
),

∂2 f

∂qi∂q j
= ∂2 f

∂q j∂qi
=

{
Bij, i < j,
B ji, i > j.

Therefore, we have

π∗(t) = μ̂(t) − r

σ 2
,

and

c∗(t) = (θ(t))−1.

When 1 < 
 < ∞, let

A =
⎛
⎜⎝

a11 · · · a1n
... · · · ...

an1 · · · ann

⎞
⎟⎠ , K(t) =

⎛
⎜⎝

k11 · · · k1n
... · · · ...

kn1 · · · knn

⎞
⎟⎠ , q(t) = (q1(t), · · · ,qn(t))

	,

where
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−aii =
∑
j �=i

ai j > 0,kij(t) = aij(i �= j),

kii(t) = aii + 1 − (L(t) − 1)λi + σ−2hi(t)ĥ(t).

Then

K(t)q(t) =
( n∑

j=1

k1 j(t)q j(t), · · · ,

n∑
j=1

knj(t)q j(t)

)	
,

B(t)q(t) = (h1(t)q1(t), · · · ,hn(t)qn(t))
	, Dq� =

(
∂ f

∂q1
, · · · ,

∂ f

∂qn

)	
,

Dq�w := (0, · · · ,0)	, D2
q� =

⎛
⎜⎜⎜⎝

∂2 f
∂q2

1
· · · ∂2 f

∂q1∂qn

... · · · ...
∂2 f

∂qn∂q1
· · · ∂2 f

∂q2
n

⎞
⎟⎟⎟⎠ ,

〈K(t)q(t),Dq�〉 =
n∑

i=1

n∑
j=1

kij(t)q j(t)
∂ f

∂qi
, 〈B(t)q(t),Dq�w〉 = 0.

Let

D(t, 
) = D2
q� =

⎛
⎜⎝

2C1(t, 
) · · · B1n(t, 
)
... · · · ...

B1n(t, 
) · · · 2Cn(t, 
)

⎞
⎟⎠ .

Due to
n∑

i=1

n∑
j=1

n∑
m=1

kij(t)Dim(t, 
)q j(t)qm =
n∑

m=1

n∑
j=1

n∑
i=1

kmj(t)Dmi(t, 
)q j(t)qi,

n∑
i=1

n∑
j=1

kij(t)Ai(t, 
)q j(t) =
n∑

j=1

n∑
i=1

k ji(t)A j(t, 
)qi(t),

and

n∑
i=1

n∑
j=1

( n∑
m=1

kmj(t)Dmi(t, 
)

)
q jqi

=
n∑

i=1

( n∑
m=1

kmi(t)Dmi(t, 
)

)
q2

i

+
n−1∑
i=1

n∑
j=i

( n∑
m=1

kmj(t)Dmi(t, 
) +
n∑

m=1

kmi(t)Dmj(t, 
)

)
q jqi,

we have

n∑
i=1

( n∑
m=1

kmi(t)Dmi(t, 
)

)
q2

i

=
n∑

i=1

( i−1∑
m=1

kmi(t)Bmi(t, 
) + 2kii(t)Ci(t, 
) +
n∑

m=i+1

kmi(t)Bim(t, 
)

)
q2

i ,

n−1∑
i=1

n∑
j=i

( n∑
m=1

kmj(t)Dmi(t, 
) +
n∑

m=1

kmi(t)Dmj(t, 
)

)
q jqi

=
n−1∑
i=1

n∑
j=i

( n∑
m=1

(
kmj(t)Dmi(t, 
) + kmi(t)Dmj(t, 
)

))
q jqi

=
n−1∑ n∑( i−1∑

m=1

(
kmi(t)Bmj(t, 
) + kmj(t)Bmi(t, 
)

)
+ kii(t)Bij(t, 
) + 2kij(t)Ci(t, 
)
i=1 j=i
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+
j−1∑

m=i+1

(
kmi(t)Bmj(t, 
) + kmj(t)Bim(t, 
)

)
+ 2k ji(t)C j(t, 
) + k jj(t)Bij(t, 
)

+
j−1∑

m=i+1

(
kmi(t)B jm(t, 
) + kmj(t)Bim(t, 
)

))
q jqi,

〈K(t)q(t),Dq�〉

=
n∑

i=1

n∑
j=1

kij(t)q j
∂ f

∂qi

=
n∑

i=1

n∑
j=1

kij(t)q j

(
Ai(t, 
) +

i−1∑
m=1

Bmi(t, 
)qm +
n∑

m=i+1

Bim(t, 
)qm + 2Ci(t, 
)qi

)

=
n∑

i=1

( n∑
j=1

k ji(t)A j(t, 
)

)
qi +

n∑
i=1

( i−1∑
m=1

kmi(t)Bmi(t, 
) + 2kii(t)Ci(t, 
)

+
n∑

m=i+1

kmi(t)Bim(t, 
)

)
q2

i +
n−1∑
i=1

n∑
j=i+1

( i−1∑
m=1

(
kmi(t)Bmj(t, 
) + kmj(t)Bmi(t, 
)

)

+kii(t)Bij(t, 
) + 2kij(t)Ci(t, 
) +
j−1∑

m=i+1

(
kmi(t)Bmj(t, 
) + kmj(t)Bim(t, 
)

)

+2k ji(t)C j(t, 
) + k jj(t)Bij(t, 
) +
j−1∑

m=i+1

(
kmi(t)B jm(t, 
) + kmj(t)Bim(t, 
)

))
q jqi,

D2
q�B(t)q(t) =

( n∑
j=1

h j(t)q j(t)
∂2 f

∂q1∂q j
, · · · ,

n∑
j=1

h j(t)q j(t)
∂2 f

∂qn∂q j

)	
,

and

〈B(t)q(t),D2
q�B(t)q(t)〉 =

n∑
i=1

n∑
j=1

hi(t)h j(t)qi(t)q j(t)
∂2 f

∂qi∂q j

=
n∑

i=1

n∑
j=1

hi(t)h j(t)Dij(t, 
)qi(t)q j(t)

=
n∑

i=1

h2
i (t)Dii(t, 
)q

2
i (t) +

n−1∑
i=1

n∑
j=i+1

2hi(t)h j(t)Dij(t, 
)qi(t)q j(t)

=
n∑

i=1

2h2
i (t)Ci(t, 
)q

2
i (t) +

n−1∑
i=1

n∑
j=i+1

2hi(t)h j(t)Bij(t, 
)qi(t)q j(t).

Due to
�w(μ̂(t) − r)〈B(t)q,Dq�w〉

�w wσ 2
= 0,

〈B(t)q,Dq�w〉2

�w wσ 2
= 0,

then

0 = − ln(θ(t)) + A′
0(t, 
) +

n∑
i=1

A′
i(t, 
)qi +

n−1∑
i=1

n∑
j=i+1

B ′
i j(t, 
)qiq j +

n∑
i=1

C ′
i(t, 
)q

2
i

−
(
ρ(t) +

n∑
i=1

〈X̂(t),ei〉λi

)(
A0(t, 
) +

n∑
i=1

Ai(t, 
)qi +
n−1∑
i=1

n∑
j=i+1

Bij(t, 
)qiq j

+
n∑

Ci(t, 
)q
2
i

)
+ θ(t)r + 1

2σ 2
(μ̂(t) − r)2θ(t) − 1
i=1
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+
n∑

i=1

( n∑
j=1

k ji(t)A j(t, 
)

)
qi +

n∑
i=1

( i−1∑
m=1

kmi(t)Bmi(t, 
) + 2kii(t)Ci(t, 
)

+
n∑

m=i+1

kmi(t)Bim(t, 
)

)
q2

i +
n−1∑
i=1

n∑
j=i

( i−1∑
m=1

(
kmi(t)Bmj(t, 
) + kmj(t)Bmi(t, 
)

)

+kii(t)Bij(t, 
) + 2kij(t)Ci(t, 
) +
j−1∑

m=i+1

(
kmi(t)Bmj(t, 
) + kmj(t)Bim(t, 
)

)

+2k ji(t)C j(t, 
) + k jj(t)Bij(t, 
) +
j−1∑

m=i+1

(
kmi(t)B jm(t, 
) + kmj(t)Bim(t, 
)

))
q jqi

+
n∑

i=1

σ−2h2
i (t)Ci(t, 
)q

2
i (t) +

n−1∑
i=1

n∑
j=i+1

σ−2hi(t)h j(t)Bij(t, 
)qi(t)q j(t)

+
( n∑

i=1

〈X̂(t),ei〉λi(
 − 1)

)(
θ(t) ln

(




 − 1

)
+ A0(t, 
 − 1) − A0(t, 
)

+
n∑

i=1

(
Ai(t, 
 − 1)(
 − 1)λi − Ai(t, 
)

)
qi

+
n−1∑
i=1

n∑
j=i+1

(
Bij(t, 
 − 1)(
 − 1)2λiλ j − Bij(t, 
)

)
qiq j

+
n∑

i=1

(
Ci(t, 
 − 1)(
 − 1)2λ2

i − Ci(t, 
)

)
q2

i

)
.

Therefore, we can obtain

A′
0(t, 
) = ln(θ(t)) +

(
ρ(t) +

n∑
i=1

〈X̂(t),ei〉λi

)
A0(t, 
) − θ(t)r + 1 − 1

2σ 2
(μ̂(t) − r)2θ(t)

−
( n∑

i=1

〈X̂(t),ei〉λi(
 − 1)

)(
θ(t) ln

(




 − 1

)
+ A0(t, 
 − 1) − A0(t, 
)

)
,

A′
i(t, 
) =

(
ρ(t) +

n∑
i=1

〈X̂(t),ei〉λi

)
Ai(t, 
) −

n∑
j=1

k ji(t)A j(t, 
)

−
( n∑

i=1

〈X̂(t),ei〉λi(
 − 1)

)(
Ai(t, 
 − 1)(
 − 1)λi − Ai(t, 
)

)
,

C ′
i(t, 
) =

(
ρ(t) +

n∑
i=1

〈X̂(t),ei〉λi

)
Ci(t, 
) −

( i−1∑
m=1

kmi(t)Bmi(t, 
) + 2kii(t)Ci(t, 
)

+
n∑

m=i+1

kmi(t)Bim(t, 
)

)
− σ−2h2

i (t)Ci(t, 
)

−
( n∑

i=1

〈X̂(t),ei〉λi(
 − 1)

)(
Ci(t, 
 − 1)(
 − 1)2λ2

i − Ci(t, 
)

)
,

B ′
i j(t, 
) =

(
ρ(t) +

n∑
i=1

〈X̂(t),ei〉λi

)
Bij(t, 
) −

( i−1∑
m=1

(
kmi(t)Bmj(t, 
) + kmj(t)Bmi(t, 
)

)

+kii(t)Bij(t, 
) + 2kij(t)Ci(t, 
) +
j−1∑

m=i+1

(
kmi(t)Bmj(t, 
) + kmj(t)Bim(t, 
)

)

+2k ji(t)C j(t, 
) + k jj(t)Bij(t, 
) +
j−1∑ (

kmi(t)B jm(t, 
) + kmj(t)Bim(t, 
)

))

m=i+1
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−σ−2hi(t)h j(t)Bij(t, 
) −
( n∑

i=1

〈X̂(t),ei〉λi(
 − 1)

)

×
(

Bij(t, 
 − 1)(
 − 1)2λiλ j − Bij(t, 
)

)
.

For ∀t ∈ [0, T ], 1 ≤ i < j ≤ n and 1 < 
 < ∞, due to terminal conditions lim
t→T

f (t, 
, q) = 0, we know that lim
t→T

A0(t, 
) = 0, lim
t→T

Ai(t, 
) = 0, 
lim
t→T

Ci(t, 
) = 0 and lim
t→T

Bij(t, 
) = 0. Therefore, Ai(t, 
) = Ci(t, 
) = Bij(t, 
) = 0, A0(t, 
) satisfies the corresponding equation

A′
0(t, 
) = ln(θ(t)) +

(
ρ(t) +

n∑
i=1

〈X̂(t),ei〉λi

)
A0(t, 
) − θ(t)r + 1

− 1

2σ 2
(μ̂(t) − r)2θ(t) −

( n∑
i=1

〈X̂(t),ei〉λi(
 − 1)

)(
θ(t) ln

(




 − 1

)

+A0(t, 
 − 1) − A0(t, 
)

)
. (A.18)

The proofs under the cases of 
 = 1 and 
 = ∞ are similar to that under the case of 1 < 
 < ∞, so we omit them here. When 
considering only one individual (
 = 1) and an infinitely large pool of annuity funds (
 = ∞), we have the following conclusions.

(1) ∀t ∈ [0, T ] and 
 = 1,

f (t,1,q) = A0(t,1) +
n∑

i=1

Ai(t,1)qi +
n−1∑
i=1

n∑
j=i+1

Bij(t,1)qiq j +
n∑

i=1

Ci(t,1)q2
i ,

where for 1 ≤ i < j ≤ n, coefficients Ai(t, 1) = Bij(t, 1) = Ci(t, 1) = 0, A0(t, 1) satisfies the corresponding equation

A0(t,1) = A0(T ,1)exp

{
−

T∫
t

(ρ(s) +
n∑

i=1

〈X̂(s),ei〉λi)ds

}

−
T∫

t

exp

{
−

s∫
t

(ρ(u) +
n∑

i=1

〈X̂(u),ei〉λi)du

}(
ln(θ(s)) − θ(s)r + 1

− 1

2σ 2
(μ̂(s) − r)2θ(s)

)
ds, (A.19)

where lim
t→T

A0(t, 1) = 0.

(2) ∀t ∈ [0, T ] and 
 = ∞,

f (t,∞,q) = A0(t,∞) +
n∑

i=1

Ai(t,∞)qi +
n−1∑
i=1

n∑
j=i+1

Bij(t,∞)qiq j +
n∑

i=1

Ci(t,∞)q2
i ,

where for 1 ≤ i < j ≤ n, coefficients Ai(t, ∞) = Bij(t, ∞) = Ci(t, ∞) = 0, A0(t, ∞) satisfies the corresponding equation

A0(t,∞) = A0(T ,∞)exp

{
−

T∫
t

(ρ(s) +
n∑

i=1

〈X̂(s),ei〉λi)ds

}
−

T∫
t

exp

{
−

s∫
t

(ρ(u)

+
n∑

i=1

〈X̂(u),ei〉λi)du

}(
ln(θ(s)) − θ(s)r + 1 − 1

2σ 2
(μ̂(s) − r)2θ(s) − θ(s)

×
n∑

i=1

〈X̂(s),ei〉λi

)
ds, (A.20)

where lim
t→T

A0(t, ∞) = 0.

The calculations are similar to that under the case of 1 < 
 < ∞, we omit them here. �
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