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Optimal investment, consumption and life insurance purchase with

learning about return predictability

Xingchun Peng∗, Baihui Li

School of Science, Wuhan University of Technology, Wuhan 430070, PR China

Abstract

This paper studies the optimal investment, consumption and life insurance purchase problem for a
wage earner under the condition that the return on the risky asset is predictable. We assume that
the market price of risk is an affine function consisting of an observable and an unobservable factor
that follow the O-U processes, while the evolution of the interest rate is described by the Vasicek
model. The optimal investment, consumption and life insurance strategies and the corresponding
value function are derived by adopting the filtering technique and the dynamical programming
principle approach. In addition, for comparative analysis, the suboptimal strategies and the utility
losses are presented when the wage earner ignores learning or the randomness of the interest rate.
Finally, some numerical examples are presented to illustrate the results.

Keywords: Life insurance, Return predictability, Stochastic interest rate, Learning
JEL classification: C61, G11, G52

1. Introduction

The classical optimal consumption and investment problem studies a wage earner who aims
to maximize the expected discounted utility of consumption in the continuous-time model, see
Merton (1969). In the framework of general asset allocation problem, the role of life insurance has
been investigated since Yaari (1965), who considers the fact that the lifetime of the wage earner is5

uncertain. The demand for life insurance purchase is proposed to protect the beneficiary from the
premature death. Moreover, the life insurance has also been considered as a hedge against the loss
of the present value of future income when the family is at the risk of losing the income source, for
example, see Huang et al. (2008). Therefore, it is necessary to extend the classical asset allocation
models to incorporate the life insurance purchase.10

A large number of works have extended the classical consumption and investment optimiza-
tion problem by incorporating the life insurance purchase to highlight the mortality risk faced
by the wage earner. Richard (1975) combines the optimal investment and consumption problem
with life insurance purchase for a wage earner whose lifetime is bounded and fixed. Pliska and Ye
(2007) study an optimal consumption and life insurance problem for a wage earner with random15

and unbounded lifetime. They derive the explicit solutions by converting the optimization problem
with a random horizon to a problem with a fixed horizon. Ye (2007) considers an optimal invest-
ment, consumption and life insurance purchase problem with uncertain lifetime, and combines the
dynamic programming principle approach and the martingale method to obtain the closed-form
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strategies. Kwak et al. (2011) also use the martingale method to derive the optimal investment-20

consumption-insurance strategies of a family with two generations. It is assumed that the objective
of the family is to maximize the weighted average utility of the parents and children. Pirvu and
Zhang (2012) derive the closed-form solution for the optimal investment-consumption-insurance
problem faced by a constant relative risk aversion (CRRA) wage earner who focuses on shocks to
the market price of risk. Shen and Sherris (2018) further consider the randomness of the mortality,25

the interest rate and the labor income in the asset allocation modelling framework, and express
the optimal strategies in terms of the closed-form solutions to several Riccati equations. Shen and
Wei (2016) allow for multiple risky assets in the financial market with random parameters. They
obtain the explicit expressions of the optimal strategies by combining the backward stochastic
differential equation (BSDE) and the Hamilton-Jacobi-Bellman (HJB) equation.30

There are a number of empirical evidence indicating that the returns on risky assets are pre-
dictable, see, for example, Campbell and Shiller (1986), Fama and French (1988, 1989), Campbell
and Viceira (1999). In the assumption of return predictability, many researchers study the portfolio
optimization problem with completely information in the financial market, which implies that all
the predictors are observable. Kim and Omberg (1996) assume that the stock price follows a mean35

reverting process and derive the optimal portfolio choice under the assumption of no parameter
uncertainty. Wachter (2002) and Liu (2007) extend the analysis of Kim and Omberg (1996) to the
case incorporating consumption. Xia (2001) introduces the linear relation between the observable
predictor and the expected stock returns to an optimal investment problem. He confirms that the
wage earner will suffer the utility losses when ignoring the predictability of expected returns. Ma40

et al. (2019) derive a closed-form solution to the optimal investment problem with transaction costs
and return predictability. Ma et al. (2020) incorporate consumption into the model investigated
in Ma et al. (2019).

The optimal asset allocation strategies derived in the literature mentioned above are based on
the assumption that the expected asset returns are observable with known parameters. However,45

the expected asset returns cannot be captured by the observable predictors perfectly in the real
financial market. Therefore, it is more realistic to take the unobservability of the predictors
into account. Brennan (1998) first considers the uncertainty of parameters of the probability
distribution and assumes that there is an “estimation risk” when estimating the risk premium.
Fouque et al. (2015) study the portfolio optimization problem incorporating the unobservability50

of the predictor, which is estimated based on the observations of the stock price through the
Kalman filter. Wang et al. (2021b) investigate a dynamic mean-variance investment problem for
a DC pension plan with learning about an unobservable predictor. These works assume that
the expected asset returns are completely unobservable and use the stochastic filter technique to
transform the asset allocation problems with partial observations into the problems with complete55

observations. In a more general framework, Van Binsbergen and Koijen (2010) suppose that the
expected stock returns are predicted by an observable and an unobservable factor. With a similar
model for the expected return rate, Branger et al. (2013) employ the Kalman filtering technique
to estimate the unobservable component and obtain the optimal investment strategy and the
value function by the dynamic programming principle approach. They also conclude that the60

utility losses occur when the wage earner ignores the learning about the unobservable factor. This
implies that the assumption of learning demonstrates the demand for the investor to hedge against
unfavorable changes in the predictors. Escobar et al. (2016) incorporate stochastic interest rate
into the optimal investment problem besides the assumption that the expected stock returns are
predictable with observed and unobserved factors. As far as we know, in the literature, no works on65

the optimal investment and consumption problems capture the life insurance purchase and return
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predictability with an observable and an unobservable factor. This paper aims to concentrate on
this problem.

Moreover, since the decision period for the wage earner who considers investment, consumption
and life insurance purchase lasts long, it is essential for the wage earner to consider the stochastic70

interest rate risk. Sørensen (1999) obtains the mean-variance optimal portfolio strategies in a
complete market, where the stochastic interest rate follows the Vasicek model in Vasicek (1977) and
the market price of interest risk is assumed to be a constant. Munk and Sørensen (2004) consider
the optimal consumption and investment problem with stochastic interest rate, and the wage
earner hedges against changes in the interest rate by investing in a coupon bond. Han and Hung75

(2017) analyze the impact of the stochastic interest rate and inflation on the optimal investment,
consumption and life insurance purchase policies by employing the stochastic differential utility.

This paper is an attempt to study the optimal investment, consumption and life insurance
purchase problem for a CRRA wage earner with stock returns predictability and the risk of stochas-
tic interest rate. We model the expected stock returns as an affine function, which consists of an80

observable and an unobservable factor. The dynamics of the predictors are formulated by O-U
processes and the correlations among the unobservable factor and the risky asset are allowed. It is
supposed that the wage earner tries to gather as much information about the observable processes
as possible to estimate the unobservable process by using the Kalman filter. The objective for
the wage earner is to maximize the utility of consumption, bequest and terminal wealth over an85

uncertain lifetime horizon. By using the dynamic programming principle, the closed-form solu-
tions and the corresponding value function are derived in terms of the solutions to a system of
ordinary differential equations. Particularly, under the assumption that the utility is defined over
the terminal wealth, we derive the explicit expressions of the optimal investment strategies and the
interest rate sensitivity of the human capital. Furthermore, we present the suboptimal strategies90

and measure the utility losses when the wage earner ignores the learning about the unobservable
predictor or the randomness of the interest rate. Finally, the numerical examples illustrate the im-
pacts of the predictive powers, the mortality rate and the risk aversion on the optimal investment,
consumption and life insurance purchase strategies in different patterns. Since the utility losses
are significant when making suboptimal decisions, it is necessary for the wage earner to take both95

learning and the randomness of the interest rate into account.
The rest of this paper is organized as follows. Section 2 introduces the life insurance and the

financial assets, and formulates the optimization problem. Section 3 derives the optimal strategies
by adopting the dynamic programming principle. Section 4 discusses the utility losses associated
with ignoring learning or the randomness of the interest rate. Section 5 presents the numerical100

examples and illustrates the sensitivities of some main parameters. Section 6 concludes the paper.

2. Model formulation

Let
(
Ω,F , {Ft}t∈T ,P

)
be a filtered complete probability space , where T = [0, T ] is a finite-

time horizon and {Ft}t∈T is a right continuous, P-complete filtration with Ft denoting the infor-
mation in the market up to time t. The finite time point T is supposed to be fixed and positive.105

2.1. Insurance market

Let τ be a non-negative random variable denoting the death time of a wage earner who
is alive at time t = 0. It is assumed that τ is defined on (Ω,F ,P) and independent of the
filtration {Ft}t∈T . Suppose that the mortality rate {λ(t) |t ∈ T } is an R+-valued, deterministic

3



and continuous function, which is defined by:

λ(t) = lim
∆t→0

P (t ≤ ∆t < t+ ∆t |τ ≥ t)

∆t
. (1)

Let F (s, t) be the conditional survival probability of a wage earner who survives from time t
to time s with t ≤ s. Then, from (1), we have

F (s, t) = P (τ > s |τ > t) = exp

(
−
∫ s

t

λ(u)du

)
. (2)

Let f(s, t) represent the conditional probability density for the death of a wage earner at time
s conditional upon being alive at time t with t ≤ s. Then

f(s, t) = λ(s) exp

(
−
∫ s

t

λ(u)du

)
. (3)

In our model, we suppose that the wage earner can purchase a life insurance or an annuity
continuously by paying insurance premium at rate p(t) until time T ∧ τ . When p(t) is positive,

the insurance company needs to pay an amount
p(t)

η(t)
to the beneficiary at death time t. Here

η(t) is called the premium-insurance ratio. However, the amount

∣∣∣∣p(t)η(t)

∣∣∣∣ should be paid by the110

wage earner’s family if p(t) is negative, which means that the wage earner purchases a special
term pension annuity. Note that both η(t) and p(t) are continuous and deterministic functions

with respect to t ∈ [0, τ ∧ T ), and
1

η(t)
is referred to as loading factor. In general, it holds that

η(t) ≥ λ(t) due to commission fees. In order to simplify the analysis, we assume that η(t) = λ(t)
in the frictionless market considered in this paper.115

2.2. Financial market
The financial market consists of three tradable assets: a risk-free asset, a zero-coupon bond and

a stock. The wage earner is supposed to receive a determined income continuously on [0, T ∧ τ ].
The price process of the risk-free asset {S0(t) |t ∈ [0, T ]} is described by the following ordinary
differential equation (ODE): {

dS0(t) = r(t)S0(t)dt,

S0(0) = s0 > 0.
(4)

Here, r(t) is the instantaneous nominal interest rate with the following dynamics{
dr(t) = κr(r̄ − r(t))dt− σrdWr(t),

r(0) = r0 > 0,
(5)

where κr is the mean-reversion coefficient, r̄ is the long-run mean of the interest rate, σr is the
volatility and {Wr (t)} is a standard Brownian motion.

Let B(t, T ) be the time t price of a nominal zero-coupon bond that delivers a payment of one
dollar at maturity T . The diffusion equation of B(t, T ) is

dB(t, T )

B(t, T )
= (r(t) + σB(T − t)qr)dt+ σB(T − t)dWr(t), (6)
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where σB(T − t) = σr
1

κr
(1− e−κr(T−t)) denotes the volatility of the zero-coupon bond, σB(T − t)qr120

denotes the expected excess return and qr is the market price of interest rate risk. Moreover, the
explicit expression for B(t, T ) is given by (see for example Han and Hung (2017) and Munk and
Sørensen (2010))

B(t, T ) = e−a(T−t)−b(T−t)r(t), (7)

where 
b(T − t) =

1

κr
(1− e−κr(T−t)),

a(T − t) =

(
r̄ +

σrqr
κr
− σ2

r

2κ2
r

)
[T − t− b(T − t)] +

σ2
r

4κr
b2(T − t).

(8)

Note that it is unrealistic to find all the zero-coupon bonds corresponding to the specified
maturing dates in the financial market. Therefore, we introduce a rolling bond with a constant
maturity I, whose price process is governed by

dBI(t)

BI(t)
= (r(t) + σBqr)dt+ σBdWr(t), (9)

where σB = σr
1

κr
(1− e−κrI).

In fact, the zero-coupon bond with any maturity can be appropriately replicated by the risk-
free asset and the rolling bond. The relationship between S0(t), B(t, T ) and BI(t) is as follows

dB(t, T )

B(t, T )
=

(
1− σB(T − t)

σB

)
dS0(t)

S0(t)
+
σB(T − t)

σB

dBI(t)

BI(t)
. (10)

The third asset in the financial market is a stock whose price process follows
dS(t)

S(t)
= µS(t)dt+ σSdWS(t),

S(0) = s > 0,

(11)

where µS(t) denotes the expected return rate, σS is constant volatility, {WS (t)} is another standard125

Brownian motion, correlated with {Wr (t)} and Cov (WS (t) ,Wr (t)) = ρSrt, where ρSr ∈ (−1, 1)
is the correlation coefficient.

We assume that the market price of risk µS(t)−r(t)
σS

is defined by an affine function:

µS(t)− r(t)
σS

= φ+ φyy(t) + φzz(t), (12)

where y(t) is an observable stochastic factor, z(t) is an unobservable stochastic factor, the constants
φy and φz are the predictive powers of y(t) and z(t) respectively. The dynamics of the factors are
modeled by the O-U processes:{

dy(t) = κy(ȳ − y(t))dt+ σydWr(t),

dz(t) = κz(z̄ − z(t))dt+ σzdWz(t),
(13)
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where κy and κz are the mean-reversion coefficients, ȳ and z̄ denote the long-run means of the
factors, σy and σz are the volatilities, {Wz(t)} is a standard Brownian motion correlated with
{WS(t)} and {Wr(t)}, Cov (Wz(t),WS(t)) = ρSzt and Cov (Wz(t),Wr(t)) = ρzrt.130

From (11) and (12), the dynamical equation for the stock price can be rewritten as

dS(t)

S(t)
= [r(t) + σS (φ+ φyy(t) + φzz(t))] dt+ σSdWS(t). (14)

This model for S(t) is similar to that in Van Binsbergen and Koijen (2010) and Branger et al.
(2013). They also assume that the expected return rate depends on an observable and an unob-
servable factor. The expected stock return cannot be predicted directly due to the unobservability
of the predictor z(t) when φz 6= 0. However, the wage earner tries to learn from the observable
processes S(t), r(t) and y(t) to estimate the unobservable predictor z(t) by Bayesian learning. Let{
FS,rt

}
t∈[0,T ]

be the natural filtration generated by the observable processes S(t) and r(t). By (5)

and (13), we can see that y(t) is
{
FS,rt

}
adapted process. Thus,

{
FS,rt

}
coincides with the natural

filtration generated by all the observable processes S(t), r(t) and y(t), and can be regarded as the
observable information flow. The filtered estimate of z(t) is defined as

ẑ(t) = E
[
z(t)

∣∣∣FS,rt

]
. (15)

Based on Theorem 12.7 of Liptser and Shiryaev (2001), we can derive the following result.

Proposition 1. The price processes of the risky assets can be rewritten as
dS(t)

S(t)
dBI(t)

BI(t)

 =

[
r(t) + σS[φ+ φyy(t) + φz ẑ(t)]

r(t) + σBqr

]
︸ ︷︷ ︸

µ

dt+

[
σS 0

σBρSr σBρ̂r

]
︸ ︷︷ ︸

Σ

[
dW1(t)
dW2(t)

]
︸ ︷︷ ︸

dW(t)

, (16)

and the dynamics for the factor processes r(t), y(t) and ẑ(t) are given by dr(t)
dy(t)
dẑ(t)


︸ ︷︷ ︸

dk(t)

=

 κr(r̄ − r(t))
κy(ȳ − y(t))
κz(z̄ − ẑ(t))


︸ ︷︷ ︸

µk

dt+

 −σrρSr −σrρ̂rσyρSr σyρ̂r
H1 H2


︸ ︷︷ ︸

Σk

[
dW1(t)
dW2(t)

]
︸ ︷︷ ︸

dW(t)

, (17)

where k(t) = (r(t), y(t), ẑ(t))T , W(t) = (W1(t),W2(t))T , defined by (A.7), is a
{
FS,rt

}
-adapted

two-dimensional standard Brownian motion, H1, H2 and ρ̂r are presented in Appendix A.
Proof See Appendix A.

Remark 1. From the dynamics for the price processes and the factor processes, we can find that
the financial market considered is complete. This is partially owed to the assumption that the
driven noises for the observable stochastic factor y(t) and the interest rate r(t) are the same. If
y(t) is driven by {Wr(t)} and {WS(t)}, i.e.,

dy(t) = ky (ȳ − y(t)) dt+ σy1dWr(t) + σy2dWS(t),
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with ky, ȳ, σy1 and σy2 being constants, then the financial market may also be complete. However,
this assumption for y(t) is not reasonable. In fact, by this assumption for y(t) and the dynamical
equations for the observable processes S(t) and r(t), we can deduce that

FWS
t ⊂ FS,r,yt ,

for t ∈ [0, T ], where FWS
t = σ (WS(u), u ≤ t) and FS,r,yt = σ (S(u), r(u), y(u);u ≤ t). This means

that the natural filtration generated by {WS(t)} is contained in the observable information flow.
So the noise process {WS(t)} is observable. From equation (11), we have

S(t) = s exp

{∫ t

0

µS(u)du+ σSWS(t)− σ2
St

2

}
.

So
∫ t

0
µS(u)du = lnS(t)− ln s−σSWS(t)+

σ2
St

2
is FS,r,yt measurable for any t ∈ [0, T ]. Furthermore,135

for any t ∈ (0, T ] and ε ∈ (0, t),
∫ t
t−ε µS(u)du =

∫ t
0
µS(u)du −

∫ t−ε
0

µS(u)du is FS,r,yt measurable.

Note that the process {µS(u)} is continuous in u. Then µS(t) = lim
ε↓0

1
ε

∫ t
t−ε µS(u)du is FS,r,yt mea-

surable for any t ∈ (0, T ]. This implies that {µS(t)} is observable, which contradicts with our
assumption for {µS(t)}.

It is more reasonable and interesting to introduce other driven noises into the dynamical140

equation for y(t) so that the risk of y(t) cannot be completely hedged by investing in the financial
market. For example, as considered in Branger et al. (2013) and Escobar et al. (2016), y(t) is
driven by a Brownian motion that is correlated with WS(t) with nonzero correlation coefficient.
In this case, the financial market is incomplete. Under the criterion of maximizing the expected
utility of terminal wealth, the analytical expressions for optimal investment strategies are derived145

in Branger et al. (2013) and Escobar et al. (2016). However, compared to these two works, the
optimization objective in this paper includes not only the utility of terminal wealth, but also the
utilities of consumption and life insurance (see (19) or (21)). This makes the analytical solution
for the optimization problem in this paper (see (22)) cannot be derived in general. So we do not
investigate the more general model for y(t) in this paper and leave it to our future research. See150

also the comments after Proposition 5.

2.3. Optimization problem

Let x0 be the initial wealth, c(t) and p(t) be respectively the consumption rate and insurance
premium rate, πS(t) and πB(t) denote the amounts invested in the risky asset and zero-coupon bond
respectively. Define π(t) = (πS(t), πB(t))T as the investment strategy. The triplet of the strategy
ψ(t) = (π(t), c(t), p(t))T represents the investment, consumption, and insurance purchase demand
at time t. Assume that the wage earner receives labor income continuously at a deterministic rate
i(t). Then the wealth process X(t) of the wage earner associated with ψ(t) is governed by the
following stochastic differential equation{

dX(t) =
[
X(t)r(t) + πT (t) (µ− r)− c(t)− p(t) + i(t)

]
dt+ πT (t)ΣdW(t),

X(0) = x0 > 0,
(18)

where r = (r(t), r(t))T .

Definition 1. An investment-consumption-insurance strategy ψ = (π, c, p) is said to be admissible
if the following conditions hold:155
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(1) ψ = (π, c, p) is a
{
FS,rt

}
t∈[0,T ]

progressively measurable process with values in R2 × R+ × R;

(2) ∫ T

0

|π(t)|2ds <∞,
∫ T

0

c(t)dt <∞,
∫ T

0

p(t)dt <∞, a.s.;

(3) for any given initial value (t0, x0, r0, y0, z0) ∈ [0, T ]×R4 with x0 > 0, the stochastic differential
equation (18) associated with (π, c, p) has a unique strong solution X(t) such that for t ∈ [0, T ]

X(t) +
p(t)

η(t)
≥ 0, X(t) + h(t) ≥ 0, a.s.

where

h(t) = EQ
t,k

{∫ T

t

i(s) exp

[
−
∫ s

t

(λ(u) + r(u))du

]
ds

}
can be interpreted as the human capital which is the actuarial present value of the future
income.

The set of all admissible strategies (π, c, p) is denoted by A.

The wage earner aims to maximize the expected utility from the consumption, the legacy left
to the family and the terminal wealth. Then, the performance functional is defined by

J̃ (t, x,k;ψ)=Et,x,k
[
α

∫ τ∧T

t

e−ω(s−t)U (c(s)) ds+ βe−ω(τ−t)U (Z(τ)) 1{τ≤T}

+e−ω(T−t)U (X(T )) 1{τ>T}
]
,

(19)

where

Z(τ) = X(τ) +
p(τ)

η(τ)
,

and Et,x,k [·] is the conditional expectation E [· |X(t) = x,k(t) = k ] taken under P, ω > 0 is the
subjective discount rate, α and β are positive constants, denoting the relative utility weights for
the preferences toward the consumption and the bequest motive, respectively. The utility function
U(·) is assumed to be the following power function:

U(x) =


xγ

γ
, if x > 0,

−∞, if x ≤ 0,
(20)

where 1− γ is the relative risk aversion parameter and γ ∈ (−∞, 0).160

Next, we transform the performance functional with random time horizon into the following
one with deterministic time horizon [0, T ] by the results in Pliska and Ye (2007):

J (t, x,k;ψ) =Et,x,k
[
α

∫ T

t

F (s, t)e−ω(s−t)U(c(s))ds +β

∫ T

t

f(s, t)e−ω(s−t)U(Z(s))ds

+ F (T, t)e−ω(T−t)U(X(T ))
]
.

(21)
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Now, we formulate the optimization problem in this paper as follows{
V (t, x,k) = sup

ψ∈A
J (t, x,k;ψ),

subject to X(t) and k(t) satisfy (18) and (17).
(22)

Here V (t, x,k) is called the value function which maximizes the performance functional J (t, x,k;ψ)
given by (21).

3. Solution to the optimization problem165

In this section, we derive the solution to the optimization problem (22) by employing the
dynamic programming principle approach.

3.1. HJB equation and verification theorem

We define the infinitesimal generator Lψ acting on a function ϕ(t, x,k) ∈ C1,2,2,2,2 ([0, T ]× R4)
by

Lψ[ϕ(t, x,k)] =ϕt − (λ+ ω)ϕ+ [rx+ πT (µ− r) + i− c− p]ϕx + µkTϕk

+
1

2
πTΣΣTπϕxx +

1

2
tr(ΣkΣkTϕkk) + πTΣΣkTϕxk.

(23)

Here tr(·) is the trace operator, ϕt, ϕx, ϕk denote the first-order partial derivatives of ϕ with respect
to t, x,k, ϕxx, ϕxk, ϕkk represent the second-order partial derivatives of ϕ with respect to x and k,
i.e.

ϕk =

 ϕr
ϕy
ϕẑ

 , ϕxk =

 ϕxr
ϕxy
ϕxẑ

 , ϕ
kk

=

 ϕrr ϕry ϕrẑ
ϕry ϕyy ϕyẑ
ϕrẑ ϕyẑ ϕẑẑ

 . (24)

By the dynamic programming principle (refer to Yong and Zhou (1999)), it can be derived
that the value function satisfies the following HJB equation

sup
ψ∈A

{
Lψ [V (t, x,k)] + αU(c) + βλ(t)U

(
x+

p

η(t)

)}
= 0,

V (T, x,k) =
xγ

γ
,

(25)

where Lψ [V (t, x,k)] is defined by (23). Moreover, the verification theorem for the optimization
problem (22) is presented as follows.170

Theorem 1. Suppose that there exists a function V (t, x,k) ∈ C1,2,2,2,2 ([0, T ]× R4) and an admis-
sible control ψ∗= (π∗, c∗, p∗) ∈ A such that

(1) Lψ [V (t, x,k)] + αU(c) + βλU

(
x+

p

η(t)

)
≤ 0, for all (π, c, p) ∈ A, t ∈ [0, T ];

(2) Lψ∗
[V (t, x,k)] + αU(c∗) + βλU

(
x+

p∗

η(t)

)
= 0, for all t ∈ [0, T ];

(3) V (T, x,k) = U(x);175

(4) for fixed t ∈ [0, T ],

Mψ∗
(s)=̂

∫ s

t

e−w(u−t)F (u, t)
[
Vx
(
u,Xψ∗

(u),k(u)
)
πT (u)Σ + Vk

(
u,Xψ∗

(u),k(u)
)T

Σk
]
dW(u)

9



is a martingale.

Then
V (t, x,k) = sup

ψ∈A
J (t, x,k;ψ) = J (t, x,k;ψ∗),

and ψ∗= (π∗, c∗, p∗) is an optimal strategy.
Proof See Appendix B.

3.2. The optimal strategies

In this subsection, we first derive the analytical expressions for the value function and the180

optimal strategy by solving the HJB equation (25). Then, we provide a verification result for the
admissibility and optimality of the strategy derived.

Proposition 2. The value function has the following form

V (t, x,k) =
(x+ h(t,k))γ

γ
f 1−γ(t,k), (26)

where h(t,k) and f(t,k) are continuously differentiable with respect to t and k, and satisfy the
following two partial differential equations (PDEs) respectively:

ht − (r + λ)h+
[
µk −ΣkΣ−1(µ− r)

]T
hk +

1

2
tr(ΣkΣkThkk) + i = 0, (27)

and

ft +

[
µk +

γ

1− γ
ΣkΣ−1(µ− r)

]T
fk +

1

2
tr(ΣkΣkTfkk)

+

[
γ

1− γ
r − 1

1− γ
ω − λ+

γ

2(1− γ)2 (µ− r)T
(
ΣΣT

)−1
(µ− r)

]
f

+α
1

1−γ + β
1

1−γ λ = 0,

(28)

with the terminal conditions h(T,k) = 0 and f(T,k) = 1. The optimal investment-consumption-
insurance strategy (π∗, c∗, p∗), for all t ∈ [0, T ], is given by

π∗(t) =
x+ h(t,k)

1− γ

[
(ΣΣT )

−1
(µ− r) + (1− γ)(ΣT )

−1
ΣkT fk(t,k)

f(t,k)

]
− (ΣT )−1ΣkThk(t,k), (29)

c∗(t) = α
1

1−γ
x+ h(t,k)

f(t,k)
, (30)

p∗(t) = λ(t)

[
β

1
1−γ

x+ h(t,k)

f(t,k)
− x
]
. (31)

Proof See Appendix C.

Define probability measures Q and P̃ equivalent to P on FT with the Radon-Nikodym deriva-
tives being given by

dQ
dP

∣∣∣∣
FT

= exp

{
−1

2

∫ T

0

|θ(t)|2dt−
∫ T

0

θ(t)TdW (t)

}
, (32)
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and
dP̃
dP

∣∣∣∣∣
FT

= exp

{
− γ2

2(1− γ)2

∫ T

0

|θ(t)|2dt+
γ

1− γ

∫ T

0

θ(t)TdW (t)

}
, (33)

where θ = (θ1, θ2)T = Σ−1(µ− r) is the Sharpe ratio. Let EQ
t,k[·] and Ẽt,k[·] represent the expecta-

tions under Q and P̃, respectively. By using the Feynman-Kac formulas for the solutions to PDEs
(27) and (28), the functions h(t,k) and f(t,k) admit the following two expectation representations:

h(t,k) = EQ
t,k

{∫ T

t

i(s) exp

[
−
∫ s

t

(λ(u) + r(u))du

]
ds

}
, (34)

and

f(t,k) = Ẽt,k
[
Γ(t, T ) +

∫ T

t

K(s) · Γ(t, s)ds

]
, (35)

for t ∈ [0, T ], where

K(s) = α
1

1−γ + β
1

1−γ λ(s), (36)

and

Γ(t, s) = exp

{∫ s

t

[
γ

2(1− γ)2 |θ(u)|2 +
γ

1− γ
r(u)− ω

1− γ
− λ(u)

]
du

}
. (37)

As mentioned in Zvi Bodie and Samuelson (1992), Munk and Sørensen (2010) and Pirvu and
Zhang (2012), h(t,k) in (34) can be interpreted as the human captital, which is the actuarial185

present value of the future income and incorporates the mortality risk and the interest risk. When
the wage earner receives a spanned income with no investment constraints, she can replicate it by
dynamic trading strategies of the traded assets. Therefore, we can suppose that the wage earner
does not receive the income, however, she has an initial wealth x + h(t,k) instead of just having
an initial wealth x.190

f(t,k) can be interpreted as the capital consumption ratio, which is affected by the predictors
y(t) and z(t). From (31), the optimal life insurance purchase strategy can be rewritten as

p∗(t) = λ(t)

[(
β

1
1−γ

f(t,k)
− 1

)
x+

β
1

1−γ

f(t,k)
h(t,k)

]
. (38)

When 0 < β
1

1−γ

f(t,k)
< 1, similar to the insurance principle pointed out in Pliska and Ye (2007)

and Shen and Sherris (2018), the current wealth of the wage earner has a negative effect on the life
insurance purchase strategy p∗(t), while the human capital h(t,k) has a positive effect on p∗(t).
Meanwhile, a greater capital consumption ratio f(t,k) leads to a smaller life insurance purchase
strategy. The impacts of the predictive powers φy and φz on p∗(t) cannot be observed directly195

from the expression (38). The specific numerical analysis about the impacts of φy and φz on the
life insurance purchase strategy will be presented in Section 5.

According to the particular structures of the processes for stochastic factors, we can derive
the explicit expressions for the two expectations (34) and (35) in the following two propositions.

Proposition 3. The analytical expression for h(t,k) is given by

h(t,k) =

∫ T

t

i(s)eg(t,s)+a(s−t)B(t, s)ds, t ∈ [0, T ] , (39)
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where

g(t, s) = − χ
κr

(s− t) +
χ

κr
b(s− t) +

∫ s

t

(
1

2
σ2
rb

2(s− u)− λ(u)

)
du, (40)

with the functions B(t, s), a(s− t) and b(s− t) being given by (7) and (8).200

Proof See Appendix D.

Proposition 4. The closed-form expression for f(t,k) is given by

f(t,k) = e−
∫ T
t ( 1

1−γ ω+λ(u))duf̃(t,k) +

∫ T

t

K(s)e−
∫ s
t ( 1

1−γ ω+λ(u))duf̃(s,k)ds, (41)

where

f̃(t,k) = Ẽt,k
{

exp

[∫ T

t

(
γ

2(1− γ)2 (µ− r)T
(
ΣΣT

)−1
(µ− r) +

γ

1− γ
r(u)

)
du

]}
. (42)

Furthermore, f̃(t,k) can be rewritten as the exponential affine form:

f̃(t,k) = exp

(
a(t) + bT (t)k +

1

2
kTQ(t)k

)
, (43)

with the boundary condition f̃(T,k) = 1. The real-valued function a(t), the vector-valued func-
tion b(t) = (b1(t), b2(t), b3(t))T and the matrix-valued function Q(t) = (qij(t))i,j=1,2,3 satisfy the
following system of equations

da(t)

dt
+

(
δ0 +

γ

1− γ
g0

)T
b(t) +

1

2
bT (t)l0b(t) +

1

2
tr(l0Q(t)) +

γ

2(1− γ)2h0 = 0,

db(t)

dt
+

(
−δ1 +

γ

1− γ
g1

)T
b(t) + Q(t)l0b(t) + Q(t)

(
δ0 +

γ

1− γ
g0

)
+

γ

2(1− γ)2 hT1

+
γ

1− γ
dT = 03×1,

dQ(t)

dt
+

(
−δ1

T +
γ

1− γ
g1

T

)
Q(t) + Q(t)

(
−δ1 +

γ

1− γ
g1

)
+ Q(t)l0Q(t) +

γ

2(1− γ)2 h2 = 03×3,

(44)
with terminal conditions a(T ) = 0,b(T ) = 03×1 and Q(T ) = 03×3. Here δ0, δ1,g0,g1, l0, h0,h1,h2,d
are given in Appendix E.
Proof See Appendix E.

We now at the position to verify the admissibility and optimality of ψ∗ = (π∗, c∗, p∗) given205

by (29)-(31).

Proposition 5. The strategy ψ∗ = (π∗, c∗, p∗) given by (29)-(31) is admissible and is the optimal
strategy to problem (22).
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Proof. From (35)-(37), we can deduce that

f(t,k) ≥ c0

[
e−

∫ T
t λ(u)du +

∫ T

t

(
α

1
1−γ + β

1
1−γ λ(s)

)
e−

∫ s
t λ(u)duds

]
≥ c0

[
P (τ ≥ T |τ > t) + β

1
1−γP (τ ≤ T |τ > t)

]
≥ c0 min(1, β

1
1−γ ),

where c0 is a positive constant depending only on T and w. Therefore, f is uniformly bounded
above zero. For t ∈ [0, T ], let Y (t) = Xψ∗

(t) + h(t,k(t)), with Xψ∗
being the wealth process

associated with ψ∗ = (π∗, c∗, p∗). By (18), (27) and the Itô formula, we can derive that

dY (t) = Y (t) [g1(t,k(t))dt+ g2(t,k(t))dW(t)] , (45)

where

g1(t,k(t)) = r(t) + λ(t) +
|θ(t)|2

1− γ
+ θT (t)ΣkT fk(t,k(t))

f(t,k(t))
− α

1
1−γ + β

1
1−γ λ(t)

f(t,k(t))
,

g2(t,k(t)) =
θT (t)

1− γ
+
fTk (t,k(t))

f(t,k(t))
Σk.

From (41) and (43), we can see that f(t,k) is continuously differentiable. Moreover, since the
process k(t) is continuous and f(t,k) is uniformly bounded above zero, the processes g1(t,k(t))

and g2(t,k(t)) are continuous. Then
∫ T

0
|g1(t,k(t))|dt < ∞,

∫ T
0
|g2(t,k(t))|2dt < ∞ a.s.. Notice

that Y (0) = x0 + h(0,k(0)) > x0 > 0. Therefore, the unique solution Y (t) to (45) satisfies

Y (t) = Y (0) exp

{∫ t

0

g1(s,k(s))ds+

∫ t

0

g2(s,k(s))dW(s)− 1

2

∫ t

0

|g2(s,k(s))|2ds
}
≥ 0 a.s.

Furthermore, from (30) and (31), it can be derived that both c∗(t) and Xψ∗
(t) +

p(t)

η(t)
are nonneg-

ative. So ψ∗ = (π∗, c∗, p∗) satisfies condition (3) of Definition 1.210

Due to the continuity of the processes k(t) and Y (t), the optimal strategyψ∗ is also continuous.
Consequently, ψ∗ satisfies conditions (1) and (2) of Definition 1 and it is admissible.

We turn to verify the optimality of the strategy ψ∗. By Theorem 1, it remains to verify that

Mψ∗
(s) =

∫ s

t

e−w(u−t)F (u, t)
[
Vx
(
u,Xψ∗

(u),k(u)
)
πT (u)Σ + Vk

(
u,Xψ∗

(u),k(u)
)T

Σk
]
dW(u)

is a martingale. From (B.9), (26) and (29), we obtain

dDψ∗
(s) =dMψ∗

(s) = e−w(s−t)F (s, t)
[
Vx
(
s,Xψ∗

(s),k(s)
)
πT (s)Σ + Vk

(
s,Xψ∗

(s),k(s)
)T

Σk
]
dW(s)

=Mψ∗
(s)E(s)dW(s),

where

E(s) =
e−w(s−t)F (s, t)V

(
s,Xψ∗

(s),k(s)
)

Dψ∗(s)

[
γ

1− γ
θT (s) +

fTk (s,k(s))

f(s,k(s))
Σk

]
.

From the discussions in Appendix E, Q(t) is bounded in the matrix norm uniformly in t (see
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(E.7)). Then, there exists a constant c1 > 0 such that

sup
t∈[0,T ]

|b(t) + Q(t)k| ≤ c1(1 + |k|),

for k ∈ R3. Therefore,

|fk(t,k)| =
∣∣∣e− ∫ T

t ( w
1−γ+λ(u))duf̃(t,k) (b(t) + Q(t)k)

+

∫ T

t

k(s)e−
∫ s
t ( w

1−γ+λ(u))duf̃(s,k) (b(s) + Q(s)k)ds

∣∣∣∣
≤e−

∫ T
t ( w

1−γ+λ(u))duf̃(t,k) |b(t) + Q(t)k|

+

∫ T

t

k(s)e−
∫ s
t ( w

1−γ+λ(u))duf̃(s,k) |b(s) + Q(s)k|ds

≤c1 (1 + |k|) f(t,k),

for t ∈ [0, T ]. Moreover, it is evident that

e−w(s−t)F (s, t)V
(
s,Xψ∗

(s),k(s)
)

Dψ∗(s)
≤ 1.

Hence, we have |E(s)| ≤ c2(1 + |k(s)|) for some constant c2 > 0, s ∈ [0, T ]. Notice that the
components of k(s) are Gaussian processes. Then for some small enough δ > 0, we have

sup
0≤s≤T

E
(
eδ|E(s)|2

)
≤ sup

0≤s≤T
E
(
e2δc22(1+|k(s)|2)

)
<∞.

By Corollary 12.1 in Baldi (2017), Dψ∗
(s) is a martingale, and hence Mψ∗

is a martingale.

In fact, it is owing to the completeness of the financial market that we can derive the explicit
expressions for the value function and the optimal strategies. If the market is incomplete, the215

explicit expressions can be obtained only if the utility for the wage earner is defined over the
terminal wealth. For detailed discussion on this issue, one can refer to Liu (2007), which studies
utility maximization problem without life insurance purchase.

When α=β=0, the utility is defined over the terminal wealth and K(s) ≡ 0. Then (41) reduces
to

f(t,k) = exp

{
−
∫ T

t

(
1

1− γ
ω + λ(u)

)
du

}
f̃(t,k). (46)

From (29) and (43), we have the following result.

Corollary 1. The optimal investment strategy π∗1(t) in the case α=β=0 is given by

π∗1(t) =
x+ h(t,k)

1− γ
(ΣΣT )−1(µ− r) + (x+ h(t,k)) (ΣT )−1ΣkT (b(t) + Q(t)k)− (ΣT )−1ΣkThk(t,k)

=
x+ h(t,k)

1− γ


1

σ2
S(1− ρ2

Sr)
− ρSr
σSσB(1− ρ2

Sr)

− ρSr
σSσB(1− ρ2

Sr)

1

σ2
B(1− ρ2

Sr)

[ σS(φ+ φyy(t) + φz ẑ(t))
σBqr

]
(47)

14



+

 0 0
H1

σS
− H2ρSr

σS ρ̂r

− σr
σB

σy
σB

H2

σBρ̂r

 [(x+ h(t,k)) (b(t) + Q(t)k)− hk(t,k)] .

Remark 2. The explicit expression for π∗1S(t) can be decomposed as

π∗1S(t) = π∗1S−spec(t) + π∗1S−unobs(t)

=
x+ h(t,k)

(1− γ)(1− ρ2
Sr)

(
φ+ φyy(t) + φz ẑ(t)

σS
− qrρSr

σS

)
︸ ︷︷ ︸

π∗
1S−spec(t)

+ (x+ h(t,k))

(
σz(ρSz − ρSrρrz) +mφz

σS(1− ρ2
Sr)

)
(b3(t) +q31(t)r(t) + q32(t)y(t) + q33ẑ(t))︸ ︷︷ ︸

π∗
1S−unobs(t)

.

(48)

The optimal stock investment strategy π∗1S(t) is divided into two terms. The first term π∗1S−spec(t)220

is the speculative demand. It increases with the market price of the stock risk φ + φyy(t) + φz ẑ(t)
and decreases with the market price of the interest rate risk qr if the stock price and the interest
rate are positively correlated, that is, ρSr > 0. The second term π∗1S−unobs(t) hedges against adverse
changes in the unobservable factor z(t) and this term will not disappear for the unobservability of
z(t) (m 6= 0) even if it is deterministic, i.e. σz = 0.225

Remark 3. The explicit expression for π∗1B(t) can be rewritten as

π∗1B(t) = π∗1B−spec(t) + π∗1B−r(t) + π∗1B−obs(t) + π∗1B−unobs(t)

=
x+ h(t,k)

(1− γ)(1− ρ2
Sr)

(
qr
σB
− ρSr (φ+ φyy(t) + φz ẑ(t))

σB

)
︸ ︷︷ ︸

π∗
1B−spec(t)

− (x+ h(t,k))
σr
σB

(b1(t) + q11(t)r(t) + q12(t)y(t) + q13ẑ(t)) +
σr
σB
hr(t)︸ ︷︷ ︸

π∗
1B−r(t)

+ (x+ h(t,k))
σy
σB

(b2(t) + q21(t)r(t) + q22(t)y(t) + q23ẑ(t))︸ ︷︷ ︸
π∗
1B−obs(t)

+ (x+ h(t,k))
σz(ρrz − ρSrρSz)−mρSrφz

σB(1− ρ2
Sr)

(b3(t) + q31(t)r(t) + q32(t)y(t) + q33ẑ(t))︸ ︷︷ ︸
π∗
1B−unobs(t)

,

(49)

where hr(t) represents the interest rate sensitivity of the human capital:

hr(t) =

∫ T

t

i(s)
[
−eg(t,s)+a(s−t)b(s− t)B(t, s)

]
ds, t ∈ [0, T ] . (50)

The optimal bond investment strategy π∗1B(t) is divided into five components. The speculative
component π∗1B−spec(t) decreases with the market price of the stock risk φ + φyy(t) + φz ẑ(t) and
increases with the market price of the interest rate risk qr if ρSr > 0. π∗1B−r(t) and π∗1B−obs(t) are
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the components that hedge against the risk of the interest rate and the risk of the observed variable
y(t), respectively. In general, both π∗1B−r(t) and π∗1B−obs(t) vanish when r(t) and y(t) degenerate230

to deterministic functions, i.e., σr = 0 and σy = 0. π∗1B−unobs(t) is the component that hedges
against the risk of the unobserved variable z(t), which disappears when ρrz = ρSrρSz or there is no
correlation between the stock and the interest rate (ρSr = 0).

4. Suboptimal strategies

In this section, we investigate two kinds of suboptimal strategies which lead to utility losses.235

These two suboptimal strategies respectively correspond to the situations that the wage earner
ignores learning about the unobservable factor z(t) or the randomness of the interest rate. Then,

the wage earner adopts the admissible strategies ψ̃(i)(i = 1, 2) which are optimal for the cases of
ignoring learning about z(t) or the randomness of the interest rate in the optimization problem (22).
Compared to the optimal strategy ψ∗ generating the expected utility V (t, x,k) = sup

ψ∈A
J (t, x,k;ψ),240

the admissible strategies ψ̃(i)(i = 1, 2) generate lower expected utilities Ṽ (i)(t, x,k)=̂J (t, x,k; ψ̃(i))

(i = 1, 2). Then ψ̃(i)(i = 1, 2) are called the suboptimal strategies of the optimization problem
(22).

To measure the utility losses arising from adopting suboptimal strategies. We have to derive
the expected utilities Ṽ (i)(t, x,k)(i = 1, 2) associated with suboptimal strategies ψ̃(i)(i = 1, 2).245

This can be achieved by solving the partial differential equation (25) without the supremum over
ψ ∈ A. To facilitate the comparison analysis, we only derive the suboptimal strategies and the
associated expected utilities under the situation that α=β=0.

4.1. Ignoring learning

Ignoring learning means that the wage earner ignores the fact that she can learn about the
unobservable predictor from realized asset price. Instead of using the filtered estimate ẑ(t), she
chooses the long-run average level z̄ to predict the expected return rate of the stock. Under the
assumption that the wage earner ignores learning, the dynamic processes of the traded assets and
the stochastic factors evolve as

dS(t)

S(t)
dBI(t)

BI(t)

 =

[
r(t) + σS[φ+ φyy(t) + φz z̄]

r(t) + σBqr

]
︸ ︷︷ ︸

µ̃(1)

dt+

[
σS 0

σBρSr σBρ̂r

]
︸ ︷︷ ︸

Σ

[
dW1(t)
dW2(t)

]
︸ ︷︷ ︸

dW(t)

, (51)

and  dr(t)
dy(t)
dz̄(t)


︸ ︷︷ ︸

dk(t)

=

 κr(r̄ − r(t))
κy(ȳ − y(t))

0


︸ ︷︷ ︸

µ̃k(1)

dt+

 −σrρSr −σrρ̂rσyρSr σyρ̂r
0 0


︸ ︷︷ ︸

Σ̃k(1)

[
dW1(t)
dW2(t)

]
︸ ︷︷ ︸

dW(t)

. (52)
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Here z̄(t) ≡ z̄ is nonrandom in fact. From the results of optimal strategy ψ∗ in Proposition 2, we

can derive that the suboptimal strategy ψ̃(1) = (π̃(1), c̃(1), p̃(1)) is given by

π̃(1)(t) =
x+ h(1)(t,k)

1− γ

[
(ΣΣT )

−1
(µ̃(1) − r) + (1− γ)(ΣT )

−1
Σ̃k(1)T

(
b̄(1)(t) + Q̄(1)(t)k

)]
− (ΣT )−1Σ̃k(1)Th

(1)
k (t,k),

c̃(1)(t) =α
1

1−γ
x+ h(1)(t,k)

f̄ (1)(t,k)
,

p̃(1)(t) =λ(t)

[
β

1
1−γ

x+ h(1)(t,k)

f̄ (1)(t,k)
− x
]
,

(53)

where the functions f̄ (1)(t,k), b̄(1)(t) and Q̄(1)(t) are derived by solving (44) with parameters250

δ̃0, δ̃1, l̃0,d, h̃0, h̃1, h̃2, g̃0, g̃1 being given in Appendix F.

Proposition 6. The expected utility Ṽ (1)(t, x,k) corresponding to ψ̃(1) is given by

Ṽ (1)(t, x,k) =

(
x+ h(1)(t,k)

)γ
γ

(
f (1)(t,k)

)1−γ
. (54)

Here h(1)(t,k) is the human capital given by (32) and (34), and f (1)(t,k) can be written as

f (1)(t,k) = e−
∫ T
t ( 1

1−γ ω+λ(u))duf̃ (1)(t,k), (55)

where f̃ (1)(t,k) has the form

f̃ (1)(t,k) = exp

(
ã(1)(t) + b̃(1)T (t)k +

1

2
kT Q̃(1)(t)k

)
, (56)

with the functions ã(1)(t), b̃(1)(t), Q̃(1)(t) being the solutions to (F.3) with i = 1 in Appendix F.

Proof See Appendix F.

4.2. Ignoring stochastic interest rate

We now consider that the wage earner ignores the randomness of the interest rate and use the
long-run value r̄ instead of the stochastic interest rate r(t). Under this assumption, the wage earner
does not trade in the zero-coupon bond and replace the observed factor y(t) with the long-run
average level ȳ. The dynamics of the stock price process and the filtered estimate ẑ(t) are

dS(t)

S(t)
= [r̄ + σS (φ+ φyȳ + φz ẑ(t))]︸ ︷︷ ︸

µ̃(2)

dt+ σS︸︷︷︸
Σ̃(2)

dW1(t) (57)

and
dẑ(t) = κz(z̄ − ẑ(t))︸ ︷︷ ︸

µ̃ẑ(2)

dt+ H̃1︸︷︷︸
Σ̃ẑ(2)

dW1(t), (58)

where H̃1 = σzρSz + m̄φz.255
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The suboptimal strategy ψ̃(2) = (π̃
(2)
S , c̃(2), p̃(2)) with the constant interest rate is given by

π̃
(2)
S (t) =

x+ h(2)(t,k)

σS

[
φ+ φyȳ + φz ẑ(t)

1− γ
+ Σ̃ẑ(2)

(
b̄(2)(t) + Q̄(2)(t)ẑ(t)

)]
,

c̃(2)(t) =α
1

1−γ
x+ h(2)(t,k)

f̄ (2)(t,k)
,

p̃(2)(t) =λ(t)

(
β

1
1−γ

x+ h(2)(t,k)

f̄ (2)(t,k)
− x
)
,

(59)

where the functions f̄ (2)(t,k), b̄(2)(t) and Q̄(2)(t) are derived by solving (44) with parameters δ̃0,

δ̃1, l̃0, h̃0, h̃1, h̃2, g̃0, g̃1 being given in Appendix F.

Proposition 7. The expected utility Ṽ (2)(t, x,k) associated with ψ̃(2) is expressed by

Ṽ (2)(t, x,k) =
(x+ h(2)(t,k))

γ

γ

(
f (2)(t,k)

)1−γ
, (60)

where the human capital simplifies to

h(2)(t,k) = i(t)

∫ T

t

exp

[
−
∫ s

t

(λ(u) + r̄) du

]
ds, (61)

f (2)(t,k) satisfies

f (2)(t,k) = e−
∫ T
t ( 1

1−γ ω+λ(u))duf̃ (2)(t,k), (62)

and f̃ (2)(t,k) is given by

f̃ (2)(t,k) = exp

(
ã(2)(t) + b̃(2)T (t)k +

1

2
kT Q̃(2)(t)k

)
, (63)

with the functions ã(2)(t), b̃(2)(t), Q̃(2)(t) being the solutions to (F.3) with i = 2 in Appendix F.

Proof See Appendix F.

4.3. Utility losses260

In what follows, we measure the utility losses Li(i = 1, 2) by the percentage of the initial
wealth. As discussed in Branger et al. (2013) and Escobar et al. (2016), the wealth-equivalent
utility losses Li(i = 1, 2), representing the wealth losses over the entire lifetime of the wage earner,
satisfy the following equations:

V
(
t, x(1− Li),k

)
= Ṽ (i) (t, x,k) , (64)

for i = 1, 2. From Propositions 2, 6 and 7, the utility losses are expressed by

Li =1− x+ h(i)(t,k)

x
exp

[
1− γ
γ

(
ã(i)(t)− a(t) +

(
b̃(i)(t)− b(t)

)T
k

+
1

2
kT
(
Q̃(i)(t)−Q(t)

)
k

)]
+
h(t,k)

x
,

(65)
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for i = 1, 2.

5. Numerical illustration

Some numerical examples concerning the effects of the main parameters on the optimal strate-
gies are presented in this section. We also compare the optimal and the suboptimal investment-
consumption-insurance strategies and study the utility losses. Boudoukh et al. (2007) provide em-
pirical evidence that the net payout yield (dividend plus equity repurchases less equity issuances)
can predict expected stock returns, and can be used as the observable predictor y(t). With this
specification, the model parameters can be estimated by the Kalman filtering technique and the
maximum likelihood estimation. For more details about the estimation for the model based on
practical data, one can refer to Branger et al. (2013). For simplicity, the values of y(t) and z(t) are
substituted by the long-run average levels ȳ and z̄, and the conditional variance m(t) converges
to its long-run level m, which is determined by (A.13). The mortality rate λ(t) is described by
Gompertz law according to Zeng et al. (2015) and is given by

λ(t) =
1

9.5
exp

(
w0 + t− 86.3

9.5

)
, (66)

where w0 represents the initial age of the wage earner and is assumed to be 35 in this section.
Referring to Han and Hung (2017), the labor income rate i(t) of the wage earner expressed as

i(t) = 40 exp (0.0043t) . (67)

Table 1: Default values of model parameters

κr κy κz r̄ ȳ z̄ σr σy σz

0.50 0.30 4.00 0.02 -2.15 0.00 0.03 0.15 0.26

σS ρSr, qr ρrz ρSz φy φz φ ω γ

0.20 0.00 0.03 -0.02 0.32 2.68 1.00 0.03 -3.00

The default values of the parameters are listed in Table 1, which come from Branger et al.
(2013) and Wang et al. (2021a). The wage earner starts to purchase the life insurance with initial
wealth 100, the expected stock return rate is set as 5.5% and the investment horizon T − t is equal265

to 20. The following illustrations for the portfolio strategies are conducted under the assumption
that α=β=0 for the sake of simplifying the numerical examples.

Figure 1 explores the impacts of the predictive powers φy and φz on the optimal investment
strategy π∗ = (π∗S, π

∗
B). We can see that as the predictive power φy increases, the wage earner will

invest more in stock, while less in the zero-coupon bond. Due to the fact that a greater φy leads270

to a better estimate for the expected stock return rate, the wage earner tends to invest more in
the stock. The decrease of investment in the zero-coupon bond is resulted from the correlation
between the dynamics of the stock and the zero-coupon bond. On the other hand, the optimal
stock investment strategy π∗S increases with the predictive power φz. Since the predictability of
the expected stock return increases when φz is larger, the wage earner prefers to invest more in the275

stock. Moreover, the impact of φz on the optimal zero-coupon bond investment strategy π∗B is not
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significant when φy is fixed. This observation may be reasonable owing to the correlation between
the two predictors y(t) and z(t). The similar result has been reported in Escobar et al. (2016).

(a) Effects of φy and φz on π∗
S (b) Effects of φy and φz on π∗

B

Figure 1: Effects of φy and φz on π∗
S and π∗

B at t=0

In Figure 2, we illustrate the effects of the predictive powers φy and φz on the optimal con-
sumption strategy c∗ with the investment horizon T − t increasing. As the investment horizon280

increases, the wage earner will consume less. Indeed, a longer investment horizon implies that
the stock is more predictable, and the stock investment seems more attractive to the wage earner.
Thus, she even gives up part of the consumption. From Figure 2(a) and 2(b), we can see that the
greater φy and φz drive the wage earner to consume less. As shown by Figure 1, with greater φy
and φz, the wage earner is willing to invest more in stock, so less room is left to the consumption.285

Figure 3 displays the effects of the predictive powers φy and φz on the optimal life insurance
purchase strategy p∗ with the initial force of mortality rate λ(0) ranging from 0.08 to 0.15. We
find that the wage earner receives higher annuity payments as the initial force of mortality rate
λ(0) increases. Clearly, the wage earner tries to seek for more protection against the death when
the trend of mortality risk increases. She is willing to leave more bequest to the beneficiary for the290

reason that the reduced life expectancy gives the wage earner less time to achieve an investment
objective. This appears to be consistent with the results in Shen and Sherris (2018). In addition,
the optimal life insurance strategy p∗ decreases as the values of the predictive powers φy and φz
increase. The intuition behind this trend may be that the wage earner keeps investing more in
stock when the values of the predictive powers φy and φz are larger, which makes the demand for295

life insurance purchase reduced.
Figure 4(a) shows that the optimal consumption strategy c∗ decreases as the investment

horizon T−t increases, and the risk aversion 1−γ has a positive effect on the optimal consumption
rate. In other words, the more risk averse the wage earner is, the more aggressive consuming
behavior she keeps. Figure 4(b) displays the effects of the risk aversion 1− γ and the investment300

horizon T − t on the optimal life insurance purchase strategy p∗. As mentioned in Figure 2, the
longer the investment horizon T − t is, the more capital to be invested in stock. Thus, the bequest
left to the beneficiary shrinks, and the wage earner tends to receive higher annuity payments as the
investment horizon T − t increases. On the other hand, the variations of the optimal life insurance
purchase strategies p∗ are not significant for several different levels of 1− γ, which means that the305

life insurance purchase is a necessary expense in our life and cannot be influenced significantly by
the risk attitudes of the wage earner.
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(a) Effects of φy and T − t on c∗ (b) Effects of φz and T − t on c∗

Figure 2: Effect of φy and φz on the optimal consumption strategy

(a) Effects of φy and λ(0) on p∗ at t=0 (b) Effects of φz and λ(0) on p∗ at t=0

Figure 3: Effect of φy and φz on the optimal life insurance purchase strategy p∗

(a) Effects of γ and T − t on c∗ (b) Effects of γ and T − t on p∗

Figure 4: Effects of γ and T − t on the optimal consumption and life insurance strategies

Next, we illustrate the utility losses from ignoring learning or the randomness of the interest
rate for the wage earner with different risk aversions. From Figure 5, we can derive the following
three insights:310
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(1) The risk aversion parameter 1−γ has a negative influence on the welfare loss. In other words,
the more risk averse the wage earner is, the less losses are incurred from ignoring learning or
the randomness of the interest rate, which are consistent with the findings in Branger et al.
(2013) and Escobar et al. (2016).

(2) Comparing Figure 5(a) with 5(b), we can find that the utility loss from ignoring the randomness315

of interest rate is greater than that from ignoring learning. This is owing to the fact that the
interest rate is perfectly correlated with the zero-coupon bond and the observable stochastic
factor.

(3) The utility losses from ignoring learning is approximately 30% for the wage earner with risk
aversion 1− γ = 5 and can reach 60% when she has a risk aversion 1− γ = 3. In addition, the320

wage earner with 1−γ = 5 suffers a utility loss from the constant interest rate as much as 45%
of the initial wealth, and this loss increases to 90% when 1− γ = 3. To sum up, it is essential
to point out that the wage earner should take learning about the unobserved stochastic factor
z(t) and the stochastic interest rate r(t) into account when making portfolio, consumption and
life insurance purchase decisions.325

(a) Utility loss when ignoring learning (b) Utility loss when r(t) is a constant

Figure 5: Utility loss L1 and L2

Figure 6 compares the optimal strategies with two kinds of suboptimal strategies for the
wage earner. It can be observed from Figure 6(a) and 6(b) that the suboptimal stock investment
strategy π1

S in the absence of learning is smaller than π∗S, while the suboptimal zero-coupon bond
investment strategy π1

B is larger than π∗B. This is due to the absence of learning leads to a
worse estimate for the expected stock return. Hence, the wage earner tends to reduce the stock330

investment, which is diverted to the zero-coupon bond. Meanwhile, the suboptimal consumption
strategy c1 when ignoring learning is smaller than c∗, and the suboptimal life insurance purchase
strategy p1 is slightly larger than p∗. In addition, Figure 6 shows that in the case of ignoring the
randomness of the interest rate, the suboptimal stock investment strategy π2

S is smaller than π∗S
while the suboptimal consumption strategy c2 and suboptimal life insurance purchase strategy p2

335

are larger than the optimal strategies c∗ and p∗ respectively. Indeed, when the wage earner ignores
the randomness of the interest rate r(t), the observed predictor y(t) is replaced by the long-run
average level ȳ. In this case, the estimated accuracy of the expected stock return decreases.
Consequently, the wage earner tends to invest less in stock, more room is left to the consumption
and life insurance purchase.340

Figure 7 depicts the optimal stock investment strategies and life insurance purchase strategies
for the partial and complete information cases corresponding to m 6= 0 and m = 0 respectively.
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(a) π∗
S , π1

S and π2
S (b) π∗

B and π1
B

(c) c∗, c1 and c2 (d) p∗, p1 and p2

Figure 6: The investment, consumption and insurance strategies for various cases

(a) The optimal stock investment strategies for
m 6= 0 and m = 0

(b) The optimal life insurance purchase strategies
for m 6= 0 and m = 0

Figure 7: The optimal stock investment and life insurance purchase strategies for m 6= 0 and m = 0

Figure 7(a) demonstrates that the optimal stock investment strategy π∗S for the complete infor-
mation case is larger than that for the partial information case. In fact, m = 0 implies that the
estimate for the unobservable factor is accurate and no information is lost. Thus, the wage earner345

is willing to invest more in stock. Figure 7(b) indicates that the life insurance purchase strategy
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p∗ is relatively small in the complete information case. This might due to the increase of the
investment in the stock under the situation of complete information.

6. Conclusion

This paper investigates an optimal investment, consumption and life insurance purchase prob-350

lem when the market price of risk is an affine function of an observable and an unobservable factor.
The unobservable factor is estimated by the filtering technique based on the observable processes.
We derive the closed-form expressions of the optimal strategies and the corresponding value func-
tion by employing the dynamic programming principle and the HJB equation. Besides, we also
obtain the utility losses from ignoring learning and the randomness of the interest rate. Numerical355

examples reveal the impacts of the predictive powers, the mortality rate and the risk aversion on
the optimal investment, consumption and life insurance purchase strategies. In numerical illus-
tration, we find that both ignoring learning and the randomness of the interest rate will lead to
significant utility losses.
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Appendix A.450

Poof of Proposition 1 The dynamical processes of the stock, the interest rate and the
unobservable factor can be rewritten as

dS(t)

S(t)
dr(t)
dz(t)

 =

r(t) + σS (φ+ φyy(t) + φzz(t))
κr(r̄ − r(t))
κz(z̄ − z(t))

dt+

σS 0 0
0 −σr 0
0 0 σz

dWS(t)
dWr(t)
dWz(t)

. (A.1)

For a three-dimensional Brownian motion
(
W(1)(t),W(2)(t),W(3)(t)

)T
, we obtain the following

dynamics 
dS(t)

S(t)
dr(t)
dz(t)

 =

 r(t) + σS (φ+ φyy(t) + φzz(t))
κr(r̄ − r(t))
κz(z̄ − z(t))

 dt
+

 σS 0 0
0 −σr 0
0 0 σz

 1 0 0
ρSr ρ̂r 0
ρSz ρ̂rz ρ̂z

 dW(1)(t)
dW(2)(t)
dW(3)(t)

 ,
(A.2)

where

ρ̂r =
√

1− ρ2
Sr, ρ̂rz =

ρrz − ρSrρSz√
1− ρ2

Sr

, ρ̂z =
√

1− ρ2
Sz − ρ̂2

rz. (A.3)

Then, following the notations in Theorem 12.7 in Liptser and Shiryaev (2001), we separate the
observed processes S(t) and r(t) from the unobservable process z(t). The observable processes can
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be rewritten as follows

 dS(t)

S(t)
dr(t)

 =


(
r(t) + σS(φ+ φyy(t))

κr(r − r(t))

)
︸ ︷︷ ︸

A0

+

(
σSφz

0

)
︸ ︷︷ ︸

A1

z(t)

 dt+ 0︸︷︷︸
B1

dW(3)(t)

+

[
σS 0

−σrρSr −σrρ̂r

]
︸ ︷︷ ︸

B2

[
dW(1)(t)
dW(2)(t)

]
,

(A.4)

and the unobservable process is governed by

dz(t) =

κz z̄︸︷︷︸
a0

+ (−κz)︸ ︷︷ ︸
a1

z(t)

 dt+ σzρ̂z︸︷︷︸
c1

dW(3)(t) +
[
σzρSz σzρ̂rz

]︸ ︷︷ ︸
c2

[
dW(1)(t)
dW(2)(t)

]
. (A.5)

Denote B = (B1,B2) and c = (c1, c2). Since B1=0, we have B ◦ B = B2B
T
2 , (B ◦B)−1 =

(BT
2 )−1B−1

2 , c ◦B = c2B
T
2 and c ◦ c = c1c

T
1 + c2c

T
2 , where

(
BT

2

)−1
=


1

σS
− ρSr
σS ρ̂r

0 − 1

σrρ̂r

. (A.6)

We define (W1(t),W2(t))T as follows:

[
dW1(t)
dW2(t)

]
= B−1

2 ×


 dS(t)

S(t)
dr(t)

− [ r(t) + σS (φ+ φyy(t) + φz ẑ(t))
κr (r̄ − r(t))

] dt, (A.7)

where ẑ(t) is the filtered estimate defined by (15). According to Liptser and Shiryaev (2001),
(dW1(t), dW2(t))T is a two-dimensional independent Brownian motion adapted to the filtration{
FS,rt

}
t∈[0,T ]

. Then, the dynamics of observable variables are

 dS(t)

S(t)
dr(t)

 =

[
r(t) + σS (φ+ φyy(t) + φz ẑ(t))

κr (r̄ − r(t))

]
dt+

[
σS 0

−σrρSr −σrρ̂r

] [
dW1(t)
dW2(t)

]
, (A.8)

and the filtered estimate ẑ(t) satisfies

dẑ(t) = [a0+a1ẑ(t)]dt+[(c◦B)+m(t)AT1 ]×(B ◦B)−1×


 dS(t)

S(t)
dr(t)

− (A0 + A1ẑ(t))dt

 . (A.9)

Simplifying the above equation (A.9) yields

dẑ(t) = κz (z̄ − ẑ(t)) dt+H1dW1(t) +H2dW2(t), (A.10)
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where 
H1 = σzρSz +m(t)φz,

H2 =
σzρ̂rzρ̂r −m(t)ρSrφz

ρ̂r
.

(A.11)

Moreover, the dynamics of the conditional variance m(t) = E
[
(z(t)− ẑ(t))2

∣∣∣FS,rt

]
follows

dm(t)

dt
= a1m(t) +m(t)aT1 + (c ◦ c)−

(
(c ◦B) +m(t)AT

1

)
(B ◦B)−1

(
(c ◦B) +m(t)AT

1

)T
= −2κzm(t) + σ2

z −H2
1 −H2

2 .
(A.12)

The conditional variance converges to the long-run value m determined by

−2κzm+ σ2
z − (σzρSz +mφz)

2 −
(
σzρ̂rzρ̂r −mρSrφz

ρ̂r

)2

= 0. (A.13)

Furthermore, the observable factor can be rewritten as

dy(t) = κy(ȳ − y(t)) + σyρSrdW1(t) + σyρ̂rdW2(t), (A.14)

with the relationship between {Wr(t)}, {W1(t)} and {W2(t)} being

dWr(t) = ρSrdW1(t) + ρ̂rdW2(t). (A.15)

In the end, we can obtain the dynamical process of the zero-coupon bond

dBI(t)

BI(t)
= (r(t) + σBqr) dt+ σBρSrdW1(t) + σBρ̂rdW2(t). (A.16)

Appendix B.

Poof of Theorem 1 Let Xψ be the wealth process corresponding to ψ ∈ A. For fixed
t ∈ [0, T ], we define

Dψ(s) =F (s, t)e−w(s−t)V
(
s,Xψ(s),k(s)

)
+ α

∫ s

t

F (u, t)e−w(u−t)U (c(u))du

+ β

∫ s

t

f(u, t)e−w(u−t)U (Z(u)) du.

(B.1)

By the Itô formula, we obtain

dDψ(s) = e−w(s−t)F (s, t)
[
LψV

(
s,Xψ(s),k(s)

)
+ αU (c(s))

+ βλ(s)U

(
Xψ(s) +

p(s)

η(s)

)]
ds+ dMψ(s),

(B.2)

where

dMψ(s) = e−w(s−t)F (s, t)
[
Vx
(
s,Xψ∗

(s),k(s)
)
πT(s)Σ+Vk

(
s,Xψ(s),k(s)

)T
Σk
]
dW(s). (B.3)
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Let {τn} be a localizing sequence of the local martingale Mψ. Since τn ↑ ∞ a.s., τn > t a.s. for n
large enough. Therefore,

E
(
Dψ(s ∧ τn) |Ft

)
= Dψ(t)

+E
[∫ s∧τn

t
e−w(u−t)F (u, t)

[
LψV

(
u,Xψ(u),k(u)

)
+ αU (c(u)) + βλ(u)U

(
Xψ(u) +

p(u)

η(u)

)]
du

]
.

(B.4)
By condition (1) in Theorem 1,

E
(
Dψ(s ∧ τn) |Ft

)
≤ Dψ(t). (B.5)

Applying the Fatou Lemma to (B.5) yields

E
(
Dψ(s) |Ft

)
≤ lim

n→∞
E
(
Dψ(s ∧ τn) |Ft

)
≤ Dψ(t). (B.6)

Setting s = T , X(t) = x and k(t) = k, we get

Et,x,k
(
Dψ(T )

)
≤ Dψ(t). (B.7)

From (B.1), (B.7) and condition (3), we have

J (t, x,k;ψ) ≤ V (t, x,k) (B.8)

for any ψ ∈ A.
On the other hand, when ψ = ψ∗ ∈ A, by (B.2) and condition (2), we have

dDψ∗
(s) = dMψ∗

(s). (B.9)

This equality together with condition (4) deduces that Dψ∗
is a martingale. Consequently,

Et,x,k
(
Dψ∗

(T )
)

= Dψ∗
(t). (B.10)

This implies that
J (t, x,k;ψ∗) = V (t, x,k). (B.11)

Combining (B.8) and (B.11) leads to the conclusion that ψ∗ is an optimal strategy and V (t, x,k)
is the associated value function.

Appendix C.455

Poof of Proposition 2 The value function is assumed to be the form given by (26). By (23),
HJB equation (25) can be rewritten as

sup
ψ∈A
{−(λ+ ω)V + Vt+

[
rx+ πT (µ− r) + i− c− p

]
Vx + µkTVk

+
1

2
πTΣΣTπVxx +

1

2
tr(ΣkΣkTVkk) + πTΣΣkTVxk + α

cγ

γ
+ β

λ

γ

(
x+

p

λ

)γ}
= 0.

(C.1)
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According to the first-order conditions, we obtain

π∗(t) = −
(
ΣΣT

)−1
[
(µ− r)

Vx
Vxx

+ ΣΣkT Vxk
Vxx

]
,

c∗(t) =

(
Vx
α

) 1
γ−1

,

p∗(t) = λ(t)

[(
Vx
β

) 1
γ−1

− x

]
.

(C.2)

Substituting the above expressions for (π∗, c∗, p∗) into HJB equation (C.1) yields

− (λ(t) + ω)V + Vt + [(r(t) + λ(t))x+ i]Vx + µkTVk +
1

2
tr
(
ΣkΣkTVkk

)
− 1

2
(µ− r)T (ΣΣT )−1(µ− r)

V 2
x

Vxx
−
[
ΣkΣ−1(µ− r)

]T VxVxk
Vxx

− 1

2

V T
xkΣkΣkTVxk

Vxx
+

1− γ
γ

(
α

1
1−γ + β

1
1−γ

)
V

γ
1−γ
x = 0.

(C.3)

From (26), we have the following partial derivatives

Vt =(x+ h)γ−1htf
1−γ +

1− γ
γ

(x+ h)γf−γft, Vx = (x+ h)γ−1f 1−γ,

Vk =
1− γ
γ

(x+ h)γf−γfk + (x+ h)γ−1f 1−γhk, Vxx = (γ − 1)(x+ h)γ−2f 1−γ,

Vxk =(γ − 1)(x+ h)γ−2f 1−γhk + (1− γ)(x+ h)γ−1f−γfk,

Vkk =(γ − 1)(x+ h)γ−2f 1−γhTkhk + (x+ h)γ−1f 1−γhkk + 2(1− γ)(x+ h)γ−1f−γfkhk

+ (γ − 1)(x+ h)γf−γ−1fTk fk +
1− γ
γ

(x+ h)γf−γfkk.

(C.4)

Substituting (C.4) into (C.2) leads to the optimal strategies presented by (29)-(31). Moreover,
substituting (C.4) into (C.3) yields

(x+ h)γ−1f 1−γ
{
ht − (r + λ)h+

[
µk −ΣkΣ−1(µ− r)

]T
hk +

1

2
tr(ΣkΣkThkk) + i

}
+

1− γ
γ

(x+ h)γf−γ

{
ft +

[
µk +

γ

1− γ
ΣkΣ−1(µ− r)

]T
fk +

1

2
tr(ΣkΣkTfkk)

+

[
γ

1− γ
r − 1

1− γ
ω − λ+

γ

2(1− γ)2 (µ− r)T
(
ΣΣT

)−1
(µ− r)

]
f

+ α
1

1−γ + β
1

1−γ λ
}

= 0.

(C.5)

Setting the coefficients of (x+ h)γ−1f 1−γ and
1− γ
γ

(x+ h)γf−γ to be zeros gives rise to PDEs

(27) and (28).
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Appendix D.

Poof of Proposition 3 From (34), we have

h(t,k) = EQ
t,k

{∫ T
t
i(s) exp

[
−
∫ s
t

(λ(u) + r(u))du
]
ds
}

=
∫ T
t
i(s)e−

∫ s
t λ(u)duEQ

t,k

[
e−

∫ s
t r(u)du

]
ds.

(D.1)

It follows from the Girsanov theorem that

WQ(t) = W(t) +

∫ t

0

θ(s)ds (D.2)

is a standard Brownian motion under Q, where WQ(t) = (WQ
1 (t),WQ

2 (t))T , W(t) = (W1(t),W2(t))T

and θ(s) = (θ1(s), θ2(s))T . Recall that

θ =Σ−1(µ− r)

=

[
φ+ φyy(t) + φz ẑ(t),

qr − ρSr(φ+ φyy(t) + φz ẑ(t))

ρ̂r

]T
.

(D.3)

Then, the interest rate process can be rewritten as

dr(t) = (κrr̄ + σrqr − κrr(t)) dt− σr
[
ρSrdW

Q
1 (t) + ρ̂rdW

Q
2 (t)

]
. (D.4)

The solution to (D.4) is

r(u) =e−κr(u−t)r(t) +
χ

κr
(1− e−κr(u−t))−

∫ u

t

σrρSre
−κr(u−v)dWQ

1 (v)

−
∫ u

t

σrρ̂re
−κr(u−v)dWQ

2 (v),

(D.5)

for u ≥ t, where χ=κrr̄ + σrqr. By virtue of the stochastic Fubini Theorem, we have∫ s

t

∫ u

t

σrρSre
−κr(u−v)dWQ

1 (v)du =

∫ s

t

∫ s

v

σrρSre
−κr(u−v)dudWQ

1 (v)

=

∫ s

t

σrρSr
κr

(1− e−κr(s−v))dWQ
1 (v),

(D.6)

and ∫ s

t

∫ u

t

σrρ̂re
−κr(u−v)dWQ

2 (v)du =

∫ s

t

σrρ̂r
κr

(1− e−κr(s−v))dWQ
2 (v). (D.7)

Consequently,

e−
∫ s
t r(u)du = exp

{(
χ

κ2
r

− r(t)

κr

)
(1− e−κr(s−t))− χ

κr
(s− t)

+
σrρSr
κr

∫ s

t

(1− e−κr(s−u))dWQ
1 (u) +

σrρ̂r
κr

∫ s

t

(1− e−κr(s−u))dWQ
2 (u)

}
.

(D.8)
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By substituting (D.8) into (D.1), we obtain

h(t,k) =

∫ T

t

i(s) exp

{
−
∫ s

t

λ(v)dv +

[
χ

κr
− r(t)

]
b(s− t)− χ

κr
(s− t)

+
1

2
σ2
r

∫ s

t

b2(s− u)du

}
ds,

(D.9)

where b(s− t) is given by (8).

Appendix E.460

Poof of Proposition 4 From (35), f(t,k) can be rewritten as

f(t,k)=e−
∫ T
t ( 1

1−γ ω+λ(u))duẼt,k
[
exp

(∫ T

t

γ

2(1− γ)2 (µ− r)T
(
ΣΣT

)−1
(µ− r) +

γ

1− γ
r(u)du

)]
+

∫ T

t

K(s)e−
∫ s
t ( 1

1−γ ω+λ(u))duẼt,k
[
exp

(∫ T

s

γ

2(1− γ)2 (µ− r)T
(
ΣΣT

)−1
(µ− r)

+
γ

1− γ
r(u)du

)]
ds.

(E.1)
Define

f̃(t,k) = Ẽt,k
{

exp

[∫ T

t

(
γ

2(1− γ)2 (µ− r)T
(
ΣΣT

)−1
(µ− r) +

γ

1− γ
r(u)

)
du

]}
. (E.2)

By the Feynman-Kac formula, f̃(t,k) is the solution to the following PDE

f̃t +

[
γ

2(1− γ)2 (µ− r)T
(
ΣΣT

)−1
(µ− r) +

γ

1− γ
r

]
f̃ +

1

2
tr
(
ΣkΣkT f̃kk

)
+

[
µk +

γ

1− γ
ΣkΣ−1(µ− r)

]T
f̃k = 0,

(E.3)

with terminal condition f̃(T,k) = 1. Inspired by Liu (2007), we assume that f̃(t,k) has the

exponential affine form given by (43). Then, the partial derivatives of f̃(t,k) are

f̃t = f̃(at + bTt k +
1

2
kTQtk), f̃k = f̃(b + Qk),

f̃kk = f̃(b + Qk)(bT + kTQ) + f̃Q,
(E.4)

where f̃kk denotes the Hessian matrix of f̃ with respect to k. Substituting (E.4) into equation
(E.3) yields

at + bTt k +
1

2
kTQtk +

γ

2(1− γ)2 (µ− r)T
(
ΣΣT

)−1
(µ− r) +

γ

1− γ
r +

1

2
tr
(
ΣkΣkTQ

)
+

1

2

(
bT + kTQ

)
ΣkΣkT (b + Qk) +

(
µk +

γ

1− γ
ΣkΣ−1(µ− r)

)T
(b + Qk) = 0.

(E.5)
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In what follows, we rewrite the coefficients as linear or quadratic functions of the state vector
k.
(1) The drift vector µk and the diffusion matrix ΣkΣkT are

µk =

 κrr̄
κyȳ
κz z̄


︸ ︷︷ ︸

δ0

−

 κr 0 0
0 κy 0
0 0 κz


︸ ︷︷ ︸

δ1

k,

and
ΣkΣkT

=

 σ2
r −σrσy −σrρSrH1 − σrρ̂rH2

−σrσy σ2
y σyρSrH1 + σyρ̂rH2

−σrρSrH1 − σrρ̂rH2 σyρSrH1 + σyρ̂rH2 H2
1 +H2

2


︸ ︷︷ ︸

l0

.

(2) The interest rate r is
r =

[
1 0 0

]︸ ︷︷ ︸
d

k.

(3) The squared-Sharpe ratio (µ− r)T
(
ΣΣT

)−1
(µ− r) is

(φ+ φyy + φz ẑ)2 − 2qrρSr(φ+ φyy + φz ẑ) + q2
r

1− ρ2
Sr

=
φ2 − 2φqrρSr + q2

r

1− ρ2
Sr︸ ︷︷ ︸

h0

+
2 (φ− qrρSr)

1− ρ2
Sr

[
0 φy φz

]
︸ ︷︷ ︸

h1

k

+
1

2
kT

2

1− ρ2
Sr

 0 0 0
0 φ2

y φyφz
0 φyφz φ2

z


︸ ︷︷ ︸

h2

k.

(4) The hedging covariance vector ΣkΣ−1(µ− r) is −σrqrσyqr
L1


︸ ︷︷ ︸

g0

+

 0 0 0
0 0 0
0 L2 L3


︸ ︷︷ ︸

g1

k,

where 

L1 = H1φ−
ρSrH2

ρ̂r
φ+

qrH2

ρ̂r
,

L2 = H1φy −
ρSrH2

ρ̂r
φy,

L3 = H1φz −
ρSrH2

ρ̂r
φz,
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with H1 and H2 being presented in (A.11).

Then, equation (E.5) is transformed into the following ODE:

at +

(
δ0 +

γ

1− γ
g0

)T
b(t) +

1

2
tr (l0Q(t)) +

1

2
bT (t)l0b(t) +

γ

2(1− γ)2h0

+

{
bt +

γ

2(1− γ)2 hT1 +
γ

1− γ
dT + Q(t)l0b(t) +

(
−δ1 + γ

1−γg1

)T
b(t) + Q(t)

(
δ0 +

γ

1− γ
g0

)}T
k

+
1

2
kT

{
Qt + Q(t)

(
−δ1 +

γ

1− γ
g1

)
+

(
−δ1 +

γ

1− γ
g1

)T
Q(t) + Q(t)l0Q(t) +

γ

2(1− γ)2 h2

}
k

= 0.
(E.6)

Next, matching the coefficients for k and constant, we can obtain ODEs (44). Note that l0 and
h2 are nonnegative definite matrices, and γ < 0. By the comparison theorem for matrix-valued
Riccati equations (see Theorem 4.1.4 in Abou-Kandil et al. (2012)), the unique solution Q of the
matrix-valued Riccati equation in (44) satisfies

Q̂(t) ≤ Q(t) ≤ 03×3, (E.7)

for 0 ≤ t ≤ T , where Q̂ is the solution of the following linear differential equation:

dQ̂(t)

dt
+

(
−δT

1 +
γ

1− γ
gT

1

)
Q̂(t) + Q̂(t)

(
−δ1 +

γ

1− γ
g1

)
+

γ

2(1− γ)2 h2 = 03×3, (E.8)

with Q̂(T ) = 03×3. Consequently, Q(t) exists for all t ∈ [0, T ], since it cannot have finite escape-
time. Moreover, by Radon’s lemma (see Theorem 3.1.1 in Abou-Kandil et al. (2012)), the unique
solution Q admits the following representation

Q(t) = Z(u)R(u)−1, (E.9)

where u = T − t, R(u),Z(u) ∈ C([0, T ],R3×3) and (R(u)T ,Z(u)T )T are given by

d

du

(
R
Z

)
=

 δ1 −
γ

1− γ
g1 −l0

γ

2(1− γ)2 h2 −δ1
T +

γ

1− γ
g1

T

( R
Z

)
, (E.10)

with initial conditions R(0) = I3×3 and Z(0) = 03×3. Note that

(
−δ1 +

γ

1− γ
g1

)
, h2 and

l0=ΣkΣkT are matrices with constant elements. Then, the solution to (R(u)T ,Z(u)T )T is given
by (

R(u)
Z(u)

)
= exp


 δ1 −

γ

1− γ
g1 −l0

γ

2(1− γ)2 h2 −δ1
T +

γ

1− γ
g1

T

u

( I3×3

03×3

)
, (E.11)

where In×n is the n-dimensional identity matrix. Substituting (E.11) into (E.9) gives the explicit
solution to Q(t). Hence, the linear ODE for vector-valued function b(t) also has an explicit solution
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as follows (see Brockett (2015)):

bT (u) =

∫ u

0

{[
Q(s)

(
δ0 +

γ

1− γ
g0

)
+

γ

2(1− γ)2 hT1 +
γ

1− γ
dT
]T

Φ(s, 0)

}
ds[Φ(u, 0)]−1,

(E.12)
with the martix-valued function Φ(t, s) satisfying the following linear system

∂Φ(t, s)

∂t
=

(
δ1 −

γ

1− γ
g1 −Q(t)l0

)
Φ(t, s), Φ(s, s) = I3×3. (E.13)

Therefore, the real-valued function a(t) can be obtained by an integration:

a(u) =

∫ u

0

[(
δ0 +

γ

1− γ
g0

)T
b(s) +

1

2
bT (s)l0b(s) +

1

2
tr(l0Q(s)) +

γ

2(1− γ)2h0

]
ds. (E.14)

Finally, by (41), (43) and the solutions to Q(t),b(t) and a(t) (E.9, E.12, E.14), we have the
concrete expression for f(t,k).465

Appendix F.

Proof of Proposition 5 Similar to the proof of Proposition 2, we conjecture that the value
functions Ṽ (i)(i = 1, 2) has the form (54) and (60) respectively. Substituting the admissible

strategies ψ̃(i) given in (53), (59) and the guess for Ṽ (i) into the HJB equation (25) without the
supremum over ψ ∈ A, we obtain the following PDE:

−(λ+ ω)Ṽ (i) + Ṽ
(i)
t +

[
rx+ π̃(i)T (µ− r) + i− c̃(i) − p̃(i)

]
Ṽ

(i)
x + µkT Ṽ

(i)
k + π̃(i)TΣΣkT Ṽ

(i)
xk

+
1

2
π̃(i)TΣΣT π̃(i)Ṽ

(i)
xx +

1

2
tr
(
ΣkΣkT Ṽ

(i)
kk

)
+ α

cγ

γ
+ β

λ

γ

(
x+

p̃(i)

λ

)γ
= 0.

(F.1)

Substituting the partial derivatives of the value functions Ṽ (i) into (F.1) and letting the coefficient

of
1− γ
γ

(x+ h(i)(t,k))f (i)−γ(t,k) be zero yields

f
(i)
t +

(
F

(i)
1 + F

(i)
2 k
)T
f

(i)
k +

1

2
tr
(
ΣkΣkTf

(i)
kk

)
− γ

2f (i)
f

(i)T
k ΣkΣkTf

(i)
k

+
γ

(1− γ)2

(
F

(i)
3 + F

(i)
4 k +

1

2
kTF

(i)
5 k

)
f (i) = 0,

(F.2)

where the parameters F
(i)
1 , F

(i)
2 , F

(i)
3 , F

(i)
4 , F

(i)
5 are elaborated below. We suppose that f (i)(t,k)(i =

1, 2) has the form (55) and (62) respectively. Plugging the partial derivatives of f (i)(t,k) into (F.2)
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and letting the coefficients be zeros lead to

dQ̃(i)(t)

dt
+
(
F

(i)
2

)T
Q̃(i)(t) + Q̃(i)(t)F

(i)
2 + Q̃(i)(t)ΣkΣkT Q̃(i)(t) +

γ

2(1− γ)2

(
F

(i)
5 + F

(i)T
5

)
= 03×3,

db̃(i)(t)

dt
+
(
F

(i)
2

)T
b̃(i)(t) + Q̃(i)(t)ΣkΣkT b̃(i)(t) + Q̃(i)(t)F

(i)
1 +

γ

2(1− γ)2

(
F

(i)
4

)T
= 03×1,

dã(i)(t)

dt
+
(
F

(i)
1

)T
b̃(i)(t) +

1

2
b̃(i)T (t)ΣkΣkT b̃(i)(t) +

1

2
tr
(
ΣkΣkT Q̃(i)(t)

)
+

γ

2(1− γ)2F
(i)
3 = 0.

(F.3)

1. Ignore learning. The coefficients F
(1)
1 , F

(1)
2 , F

(1)
3 , F

(1)
4 , F

(1)
5 are given by

F
(1)
1 = δ0 +

γ

1− γ

 −σrqrσyqr
L1

+ γΣkΣ̃k(1)b̄(1)(t),

F
(1)
2 = −δ1 +

γ

1− γ

 0 0 0
0 0 0
0 L2 0

+ γΣkΣ̃k(1)Q̄(1)(t),

L1 =

(
H1 −

ρSrH2

ρ̂r

)
(φ+ φz z̄) +

qrH2

ρ̂r
,

L2 = H1φy −
ρSrH2

ρ̂r
φy,

F
(1)
3 =− (φ+ φz z̄)2 − 2 (φ+ φz z̄) qrρSr + q2

r

2 (1− ρ2
Sr)

− (1− γ)b̄(1)T (t)g̃0

+
φ (φ+ φzz)− (2φ+ φzz) qrρSr + q2

r

1− ρ2
Sr

− (1− γ)2

2
b̄(1)T l̃0b̄

(1) + (1− γ)b̄(1)TK,

F
(1)
4 =− φ+ φz z̄ − qrρSr

1− ρ2
Sr

[
0 φy 0

]
− (1− γ)g̃T0 Q̄(1)T (t)

+
1

1− ρ2
Sr

[
2φφy − 2φyqrρSr + φyφz z̄ 0 φφz + φ2

z z̄ − φzqrρSr
]

− (1− γ)2b̄(1)T l̃0Q̄
(1) + (1− γ)KT Q̄(1)T + (1− γ)d,

F
(1)
5 =− 1

1− ρ2
Sr

 0 0 0
0 φ2

y 0
0 0 0

+
2

1− ρ2
Sr

 0 0 0
0 φ2

y 0.5φyφz
0 0.5φyφz φ2

z

− (1− γ)2Q̄(1)T l̃0Q̄
(1),

K =
[
−σrqr σyqr 0

]T
.

Here, the coefficients δ̃0, δ̃1, l̃0,d, h̃0, h̃1, h̃2, g̃0, g̃1 are elaborated as follows:

µ̃k(1) =

 κrr̄
κyȳ
0


︸ ︷︷ ︸

δ̃0

−

 κr 0 0
0 κy 0
0 0 0


︸ ︷︷ ︸

δ̃1

k,
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Σ̃k(1)Σ̃k(1)T =

 σ2
r −σrσy 0

−σrσy σ2
y 0

0 0 0


︸ ︷︷ ︸

l̃0

,

r =
[

1 0 0
]︸ ︷︷ ︸

d

k,

(
µ̃(1) − r

)T (
ΣΣT

)−1 (
µ̃(1) − r

)
=

(φ+ φz z̄)2 − 2(φ+ φz z̄)qrρSr + q2
r

1− ρ2
Sr︸ ︷︷ ︸

h̃0

+
2 (φ+ φz z̄ − qrρSr)

1− ρSr2

[
0 φy 0

]
︸ ︷︷ ︸

h̃1

k

+
1

2
kT

2

1− ρ2
Sr

 0 0 0
0 φ2

y 0
0 0 0


︸ ︷︷ ︸

h̃2

k,

Σ̃k(1)Σ−1
(
µ̃(1) − r

)
=
[
−σrqr σyqr 0

]T︸ ︷︷ ︸
g̃0

+ 0︸︷︷︸
g̃1

·k.

2. Ignore the stochastic interest rate. The coefficients F
(2)
1 ,F

(2)
2 , F

(2)
3 ,F

(2)
4 ,F

(2)
5 are given by

F
(2)
1 = δ0 + γΣk[m1, 0]T ,

F
(2)
2 = −δ1 + γΣk

[
0 0 m2

0 0 0

]
,

F
(2)
3 = (1− γ) (φ+ φyy)m1 −

1

2
(1− γ)2m2

1,

F
(2)
4 =

[
(1− γ)φym1, (1− γ), (1− γ)m1φz + (1− γ) (φ+ φyy)m2 − (1− γ)2m1m2

]
,

F
(2)
5 =

 0 0 0
0 0 0

0 2(1− γ)φym2 2(1− γ)φzm2 − (1− γ)2m2
2

 ,
m1 =

φ+ φyȳ

1− γ
+
H̃1

σS
b̄(2)(t), m2 =

φz
1− γ

+
H̃1

σS
Q̄(2)(t).

Here, the coefficients δ̃0, δ̃1, l̃0, h̃0, h̃1, h̃2, g̃0, g̃1 are elaborated as follows:

µẑ(2) = κz z̄︸︷︷︸
δ̃0

− κz︸︷︷︸
δ̃1

ẑ,

(
Σ̃ẑ(2)

)2

= (σzρSz + m̄φz)
2︸ ︷︷ ︸

l̃0

,

r̄ = d,
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(
µ̃(2) − r̄

Σ̃(2)

)2

= (φ+ φyȳ)2︸ ︷︷ ︸
h̃0

+ 2(φ+ φyȳ)φz︸ ︷︷ ︸
h̃1

ẑ +
1

2

(
2φ2

z

)︸ ︷︷ ︸
h̃2

ẑ2,

Σ̃ẑ(2)

Σ̃(2)
(µ̃(2) − r̄) = (H̃1 + φ+ φyȳ)︸ ︷︷ ︸

g̃0

+ φz︸︷︷︸
g̃1

ẑ.
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