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In this paper, we study an optimal insurance design problem under mean-variance criterion by 
considering the local gain-loss utility of the net payoff of insurance, namely, narrow framing. We extend 
the existing results in the literature to the case where the decision maker has mean-variance preference 
with a constraint on the expected utility of the net payoff of insurance, where the premium is determined 
by the mean-variance premium principle. We first show the existence and uniqueness of the optimal 
solution to the main problem studied in the paper. We find that the optimal indemnity function involves 
a deductible provided that the safety loading imposed on the “mean part” of the premium principle is 
strictly positive. Our main result shows that narrow framing indeed reduces the demand for insurance. 
The explicit optimal indemnity functions are derived under two special local gain-loss utility functions 
– the quadratic utility function and the piecewise linear utility function. As a spin-off result, the Bowley 
solution is also derived for a Stackelberg game between the decision maker and the insurer under the 
quadratic local gain-loss utility function. Several numerical examples are presented to further analyze the 
effects of narrow framing on the optimal indemnity function as well as the interests of both parties.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The design of optimal (re)insurance has been at the forefront of actuarial and insurance research for decades. The main question arises 
from the trade-off between the ex post indemnity and the ex ante premium, which always move along the same direction. Usually, the 
premium is determined based on some principle or a function of the indemnity. In that case, the main problem boils down to finding the 
optimal indemnity function. The commonly used indemnity functions include, for example, quota-share and stop-loss functions. The usage 
of these two kinds of functions gets justified by Borch (1960) and Arrow (1974) in a theoretical way. These two seminal works ignite 
intensive interest from generations of scholars in such or related problems. We refer interested readers to Albrecher et al. (2017), who 
comprehensively review the history and some recent developments about optimal insurance problem.

To derive the optimal insurance policy, an optimization criterion is always needed. Based on the applied criteria, the majority of works 
could be categorized into two main streams – one maximizes the expected utility (EU) and the other one minimizes the risk. There are 
flourishing results in both streams. Since this paper is built on the EU maximization foundation (in particular the mean-variance criterion), 
we here first review some recent literature in the first stream, where great efforts are devoted to extending Arrow’s classical result. To 
name a few, Chi and Wei (2018) revisit Arrow’s problem by incorporating a background risk of the insurer and higher-order risk attitudes 
of the decision maker (DM) and establish the optimality of the stop-loss function under some specific dependence structures between 
the insurable risk and background risk. Chi (2019) extends Arrow’s theorem of the deductible to the case of belief heterogeneity, which 
allows the DM and insurer to hold different subjective beliefs regarding the loss distribution. Jiang et al. (2019) extend Arrow’s unilateral 
problem to the bilateral setting, which considers the interests of both the DM and insurer. They show that the optimal indemnity function 
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is of some coinsurance form. For the study of risk-minimizing optimal insurance, interested readers may refer to Cai and Chi (2020) for a 
comprehensive review of the historical and recent developments in this stream.

Although the EU framework enjoys much popularity in the past quite a few decades, it bears some criticisms due to its failure in 
explaining human’s behavior in some experiments, e.g. the famous Allais paradox and Ellsberg paradox, where DM’s decision seems to be 
“irrational” as per the classical EU theory. Some alternatives or extensions to the EU framework have been proposed and applied, such as 
dual theory of choice (Yaari, 1987), rank dependent expected utility theory (Quiggin, 1982) and cumulative prospect theory (CPT) (Tversky 
and Kahneman, 1992). All the above-mentioned three alternative theories have been broadly applied in optimal insurance problems. We 
refer the interested readers to, for example, Doherty and Eeckhoudt (1995), Sung et al. (2011), Cheung et al. (2015a), Ghossoub (2019), 
Liang et al. (2022) and the references therein.

Besides the above well known theories, Bell (1982) and Loomes and Sugden (1982) initiate another way to look into those “irrational” 
behavior, which is called “regret theory”. Essentially, regret theory could be understood as a modified EU theory where the DM would 
experience disutility when comparing the ex post optimal decision with the current decision. Afterwards, a similar theory called “disap-
pointment theory” is developed by the same authors (Bell, 1985; Loomes and Sugden, 1986) where the DM experiences disappointment if 
the realized outcome is worse than the expected level. Both theories get applied in studying optimal insurance problems in some recent 
literature. See, for instance, Cheung et al. (2015b) and Chi and Zhuang (2022).

In disappointment theory, an important notion called “isolation effect”, which is a special case of the more general phenomenon of 
“framing effect”, is re-visited by Loomes and Sugden (1986). The effect happens when the decision problem is presented to the DM with 
different logical structures. Such notion closely relates to the notion of “narrow framing” in behavioral analysis. Generally speaking, narrow 
framing refers to the situation where the DM assesses a given risky position in an isolation way rather than mixing it with other risky 
positions. Such effect has been evidenced by many empirical studies (Guiso, 2015) and popularized among the economists who focus on 
behavioral studies.

In an insurance market, insurance buyers usually view the insurance itself as a gamble with the insurance company, which exactly falls 
within the framework of narrow framing meaning that the insured cares about the realized value of an insurance contract and views it 
in isolation when the real goal is to maximize the EU of her terminal wealth. See, for example, Barberis and Huang (2001) and Barberis 
and Huang (2009). The concept of narrow framing has already been widely used in insurance and related fields. Particularly, Zheng (2020)
considers such gambling motive departure from the standard EU framework. He shows that narrow framing reduces insurance demand 
due to aversion to risk on the net insurance payoff, i.e. the difference between the insurance indemnity and premium. It is further shown 
that the optimal insurance contract involves a deductible and coinsurance above the deductible when the safety loading factor is strictly 
positive in the expected value premium principle. Later on, Chi et al. (2022) assume that the insured adopts an S-shaped local utility 
function when evaluating the gamble. Such S-shaped utility function stems from the CPT theory. They show that the policyholder under 
S-shaped narrow framing is more likely to underinsure more negatively skewed risks but to overinsure less negatively skewed risks when 
only coinsurance is offered.

In this paper, we re-visit the design of optimal insurance under narrow framing when the DM aims to optimize a mean-variance-based 
objective. The mean-variance model is different from the standard EU model as it cares about both the expected value and volatility of 
the terminal wealth. Moreover, we generalize the commonly adopted expected-value premium principle to the mean-variance premium 
principle. These extensions would bring non-trivial technical challenges to the study of optimal insurance problem. The main contributions 
of this paper are summarized in the following:

• We embed the notion of “narrow framing” into the traditional mean-variance-based profit maximization model, which complements 
the expected utility model studied in Zheng (2020). We assume that the insurer adopts the mean-variance premium principle, which 
generalizes the expected-value premium principle considered in Zheng (2020) and Chi et al. (2022).

• It finds that the “variance part” in the premium introduces a proportional coefficient to the stop-loss treaty, which differs in nature 
with the findings obtained by Zheng (2020). We also show that the existence of deductible can be characterized by the existence of 
safety loading imposed on the “mean part” in the premium principle.

• We prove the existence and uniqueness of the non-trivial optimal ceded loss function in a rigorous mathematical way, which makes 
the story of “narrow framing embedded in mean-variance preference” more intuitive and interesting.

• Under the expected-value premium principle and quadratic local gain-loss utility function, we derive the explicit Bowley solution for 
a one-period Stackelberg game between the DM and insurer. Our work differs from Li and Young (2021) in two aspects: (a) the DM 
picks the optimal insurance policy under narrow farming, and (b) the insurer also aims to optimize a mean-variance objective.

The rest of the paper is outlined as follows: Section 2 formulates the optimization problem of the DM under the mean-variance model 
and narrow framing when the insurer employs the mean-variance premium principle. Section 3 studies the DM’s demand for insurance 
when the indemnity function is restricted to the coinsurance type. Section 4 solves the main problem formulated in Section 2. Besides, 
explicit forms of the ceded loss function are provided when the utility function of the narrow framing is quadratic or linear piece-wise. 
Section 5 investigates the Bowley solution between the DM and the insurer under the quadratic local gain-loss utility and the expected-
value premium principle, serving as a comparison with the corresponding findings in Li and Young (2021) without narrow framing. 
Section 6 presents some numerical examples to show the implications of our main findings. Section 7 concludes the paper. The proofs of 
all the main results are delegated to Appendix B.

2. Problem formulation

Let (�, F , P ) be a probability space, and we assume that all the randomness (losses/risks) considered in this paper are defined on 
this space. Suppose that an individual (called decision maker, or DM) with constant initial wealth W0 faces a random loss X , which is a 
non-negative random variable with support [0, M], where M < ∞ represents the essential supremum of X . We assume that S X (x) > 0 for 
all x ∈R+ := [0, ∞), where S X (x) denotes the survival function of X and F X (x) = 1 − S X (x), for x ∈R+ .
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To prevent the potential ex post moral hazard, where the DM might be incentivized to manipulate the losses, we follow the literature, 
such as Huberman et al. (1983) and Carlier and Dana (2003), and impose the incentive compatibility condition on the indemnity functions. 
That is, we only consider the indemnity functions from the class below:

I = {
I : [0, M] �→ [0, M] ∣∣ I(0) = 0, 0 ≤ I(x) − I(y) ≤ x − y for all 0 ≤ y ≤ x ≤ M

}
. (2.1)

It is easy to see that all the functions in I are 1-Lipschitz continuous.
Suppose that the insurer charges premium according to some rule π(I(X)). In this paper, we assume that π(I(X)) admits the mean-

variance premium principle given by

π(I(X)) = (1 + θ)E(I(X)) + η

2
Var(I(X)), (2.2)

in which θ ≥ 0 and η ≥ 0 are safety loading parameters. Note that, the insurance premium in (2.2) reduces to the standard variance 
premium principle if θ = 0 and to the expected-value premium principle if η = 0.

In this paper, we incorporate “narrow framing” into the optimal insurance design. Specifically, the DM views the insurance contract not 
only as a hedging instrument for reducing her risk but also as a gamble with the insurer. The net amount of money received by the DM 
after buying an insurance contract is I(X) − π(I(X)). Thus, the DM earns money from the insurer when I(X) − π(I(X)) is positive, while 
loses money when it is negative. More precisely, narrow framing means that, when the DM is deciding whether to accept a gamble, she 
uses another utility function to evaluate the outcome of the net payoff of insurance in isolation to the utility of her end-of-period wealth 
with insurance. Zheng (2020) studied an optimal insurance design problem under narrow framing with increasing and concave utility 
functions. Chi et al. (2022) extended the study by employing S-shaped local gain-loss narrow framing functions.

In this paper, we aim to maximize a mean-variance functional of the DM’s terminal wealth under narrow framing. Specifically, we 
want to solve the following problem:

Problem 1 (Main problem).

max
I∈I V (I) :=

{
E(W ) − γ

2
Var(W ) + kE[g(I(X) − π(I(X)))]

}
,

where W = W0 − X + I(X) − π(I(X)) is the end-of-period wealth of the DM. Here γ > 0 describes the DM’s aversion to the volatility of 
her terminal wealth, and the function g(·) is assumed to be a continuous and twice differentiable utility function with g(0) = 0, g′(·) > 0
and g′′(·) < 0.

The formulation of above problem is in line with that of the main problem in Zheng (2020). The added term kE[g(I(X) − π(I(X)))]
could be understood as the penalty term resulting from the narrow framing. Here, the parameter k ≥ 0 represents the degree of penalty. 
A larger k means that the DM has a higher degree of narrow framing. When k = 0, the objective degenerates to the traditional mean-
variance criterion. We remark that for the piece-wise linear utility function employed later in (4.11), which is not twice differentiable 
everywhere, we shall re-prove our result via a slight modification of our methodology.

Problem 1 is closely related to the following constrained problem⎧⎨
⎩

max
I∈I E(W ) − γ

2
Var(W )

s.t. E[g(I(X) − π(I(X)))] ≥ G,

(2.3)

where the constraint describes the DM’s minimum acceptable expected utility of the insurance net payoff, which arises from the narrow 
framing. The details about the connection between Problems 1 and (2.3) are put in Appendix A. Furthermore, as justified in Appendix A, 
if k is too large, we will end up with trivial solution – zero insurance for Problem 1. As our main interest is in the non-trivial solution for 
Problem 1, we adopt the following assumption throughout the rest of paper.

Assumption 2.1. The DM has a reasonable degree of narrow framing such that zero insurance is not the solution for Problem 1.

The range of k that leads to non-zero insurance for Problem 1 is also discussed in detail in Appendix A.
We conclude this section by presenting the following theorem, which shows the existence and uniqueness of the solution to Problem 1.

Theorem 2.1. There exists a solution to Problem 1. Furthermore, the solution to Problem 1 is unique in the sense that P (I1(X) = I2(X)) = 1 if both I1
and I2 solve Problem 1.

Remark 2.1. Note that the objective of Problem 1 can be written as

E(W ) − γ

2
Var(W ) + kE[g(I(X) − π(I(X)))]

= E[W0 − X] +E[I(X) − π(I(X))] − γ

2
Var(W ) + kE[g(I(X) − π(I(X)))]

= E[W0 − X] +E[u(I(X) − π(I(X)))] − γ

2
Var[X − I(X)],

where u(x) = x + kg(x) which still satisfies u(0) = 0, u′(·) > 0 and u′′(·) < 0. Thus, Problem 1 can be written as

max E[u(I(X) − π(I(X)))] − γ
Var[X − I(X)]. (2.4)
I∈I 2
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Therefore, our Problem 1 can be read as a pure narrow-framing-based EU maximization problem subject to the DM’s aversion to the 
volatility of its retained risk (i.e., X − I(X)). Apparently, if the DM is not concerned of the variance, i.e. γ = 0, then no insurance will be 
purchased (as per Jensen’s inequality). Thus, for our Problem 1, it is the aversion to the volatility of the terminal wealth that pushes the 
DM to purchase insurance.

We also note that Problem (2.4) relates to the variance-constrained problem of Chi et al. (2020), where they aim to maximize the utility 
of the end-of-period wealth of the DM with variance constraint. Specifically, the optimization problem they considered is as follows:{

max
I∈I E[u(W )]
s.t. Var[I(X)] ≤ v,

(2.5)

where v > 0 is a prescribed constant. Note that the objective function of the above problem is concave w.r.t. I , and I = 0 is strictly feasible. 
By Slater’s condition (cf. Boyd and Vandenberghe, 2004), solving Problem (2.5) is equivalent to solving the problem

max
I∈I E[u(W )] − βVar[I(X)] (2.6)

for some β ≥ 0. A comparison between (2.6) and (2.4) tells that: the variance constraint of Chi et al. (2020) is set by the insurer while our 
constraint is set by the DM reflecting the degree of aversion to the volatility of its retained risk.

3. Optimal insurance under coinsurance

In this section, we characterize the optimal decision of the DM under the mean-variance criterion with narrow framing when the 
insurance treaty is of the proportional form. The main task of this section is to provide some elementary characterizations and insights 
on the optimal ceded loss function investigated in the next section. Some findings would be very helpful for the later analysis as the 
coinsurance-type indemnity function is a special case in the set I . Specifically, the DM can transfer αX to the insurer and only retains 
(1 − α)X , where α ∈ [0, 1]. The insurance premium in this case becomes

π(I(X)) = (1 + θ)αμ + η

2
α2σ 2, (3.1)

in which μ =E(X) and σ 2 = Var(X). Then, Problem 1 is reduced to the following one-variable optimization problem1

max
α∈[0,1] V (α) = max

α∈[0,1]

{
−θαμ − γ

2
(1 − α)2σ 2 − η

2
α2σ 2 + kEg(h(α, X))

}
, (3.2)

where h(α, x) = αx − (1 + θ)αμ − η
2 α2σ 2. Note that the second derivative of V (α) is

V ′′(α) = − (γ + η)σ 2 + kE

(
g′′(h(α, X))

[
∂h

∂α
(α, X)

]2

+ g′(h(α, X))
∂2h

∂α2
(α, X)

)

= − (γ + η)σ 2 + kE

(
g′′(h(α, X))

[
∂h

∂α
(α, X)

]2

+ g′(h(α, X))(−ησ 2)

)
< 0.

Thus, V (α) is strictly concave. By the first-order condition, we get that the optimal proportion α∗ is given by α∗ = max{0, min{1, α̃}}
where α̃ satisfies

−θμ + γ (1 − α̃)σ 2 − α̃ησ 2 + kE

(
g′(h(α̃, X))

∂h

∂α
(α̃, X)

)
= 0. (3.3)

The strict concavity of V (α) guarantees the existence and uniqueness of α∗ .
For the special case of k = 0 corresponding to the optimal coinsurance design without narrow framing, we denote by α̃0 the solution 

of Eq. (3.3). Obviously, one has α̃0 = γ σ 2−θμ

σ 2(γ +η)
< 1, which yields the optimal quota-share coefficient α∗

0 = max{0, min{1, α̃0}} = max{0, α̃0}. 
It is interesting to investigate how narrow framing affects the coinsurance policy. The following proposition concludes the main result of 
this section.

Proposition 3.1. The optimal proportion of insurance coverage α∗ is decreasing in the degree of narrow framing (i.e. k), which further implies that 
the DM with a positive degree of narrow framing (i.e. k > 0) strictly prefers partial insurance even when the insurance premium is actuarially fair 
(i.e. θ = 0, η = 0). As a direct consequence, it holds that 0 ≤ α∗ ≤ α∗

0 , that is, the optimal quota-share coefficient without narrow framing serves as 
an upper bound of the one derived with narrow framing.

Note that the local utility function g is strictly increasing, which results in that a DM with a positive degree of narrow framing should 
purchase less coinsurance than a DM without narrow framing. This finding is exactly what we obtained in Proposition 3.1, which echoes 
the finding in Zheng (2020). Although Proposition 3.1 only applies to the proportional insurance, we will show later that in general 
situations the marginal coverage for the loss in excess of the deductible point will be reduced in the presence of narrow framing. Another 
important message delivered by Proposition 3.1 is that full insurance can never be the solution to Problem 1. This conclusion will be 
helpful in proving Theorem 4.1 in the next section.

1 We slightly abuse the notation V , which represents the objective function.
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4. Optimal insurance design with mean-variance preference under narrow framing

In this section, we fully characterize the solution to Problem 1 under Assumption 2.1. It is also proved that the optimal indemnity I∗
also has a deductible under certain mild conditions and is incentive compatible.

Theorem 4.1. Under Assumption 2.1, the optimal indemnity I∗ ∈ I for Problem 1 solves the equation

I∗(x) =
(
π(I∗(X)) + L−1

(
γ

2λ2
x − λ1

2λ2
− π(I∗(X))

))
+

, (4.1)

in which L−1(·) is the inverse function of L(·), which is defined as

L(z) := z − k

2λ2
g′(z).

Moreover, if I∗(x) > 0, then the marginal coverage I∗′(x) satisfies

I∗′
(x) = γ

2λ2

(
1 − k

2λ2
g′′(I∗(x) − π(I∗(X)))

)−1

∈ [0,1] , (4.2)

where λ1 and λ2 are two KKT coefficients determined by Eqs. (B.10)∼(B.13). Further, the marginal coverage is increasing if g′′′(·) ≥ 0, i.e., (I∗)′′(x) ≥ 0. 
Moreover, for the optimal indemnity I∗ , there is a deductible point D ≥ 0.2 In particular, D = 0 if the safety loading factor θ = 0, and D > 0 if the 
safety loading factor θ > 0.3

Compared with Proposition 3 in Zheng (2020), our Theorem 4.1 presents a more clear structure for the optimal indemnity function. 
Some other findings are similar to those in Zheng (2020), such as that the slope of I∗ is within [0, 1] (thus I∗ is in I), and the marginal 
coverage is increasing if g′′′(·) ≥ 0. Another interesting finding is that, though we adopt the mean-variance premium principle, the de-
ductible is also proven to be 0 if the safety loading imposed on the mean part is 0 regardless of the safety loading applied to the variance 
part. This partially generalizes the statement in Proposition 3(i) of Zheng (2020) to the situation that the deductible can still be 0 if one 
adopts the standard variance premium principle.

Remark 4.1. Now, we examine two extreme cases with the results of Theorem 4.1. First, when k → ∞ (which will be greater than k0
eventually), it is not hard to observe that I∗′(x) → 0. Since I∗(0) = 0, we have I∗(x) ≡ 0, which explains that when the individual places 
an extremely high weight on the expected utility of the net payoff of insurance, zero insurance will be purchased.

Second, when k = 0, we have L(z) = z. Then, L−1(z) = z, which results in

I∗(x) =
(

γ

2λ2
x − λ1

2λ2

)
+

= γ

2λ2

(
x − λ1

γ

)
+

.

Based on Eqs. (B.12) and (B.13), it is easy to find that 2λ2 = γ + η and λ1 = θ + γE[X] − (η + γ )E[I∗(X)]. Then, the above optimal 
indemnity function could be written as

I∗(x) = γ

γ + η
(x − d)+, (4.3)

where d = λ1
γ solves the equation θ = γ

∫ d
0 F X (x)dx, which agrees with the corresponding result of Corollary 3.1 in Li and Young (2021).

Remark 4.2. Although Theorem 4.1 characterizes the optimal indemnity function for Problem 1, the explicit structure might not be avail-
able if the utility function g is not specified. Nevertheless, we can still determine the upper and lower bounds for I∗ in Theorem 4.1, 
which provide extra insights into the structure of I∗ .

First, note that when k > 0, L(z) = z − k
2λ2

g′(z) < z. In other words, L−1(z) > z, which results in

I∗(x) >

(
γ

2λ2
x − λ1

2λ2

)
+

= γ

2λ2

(
x − λ1

γ

)
+

.

Thus, I∗ is bounded from below by the proportional stop-loss function I L(x) := γ
2λ2

(x − λ1
γ )+ .

Second, Theorem 4.1 tells that a deductible point D exists for I∗ if θ > 0. By Eq. (B.14), we can derive that D = λ1−kg′(−π(I∗))
γ . Moreover, 

when k > 0, Eq. (4.2) tells that I∗′(x) < γ
2λ2

. Hence, I∗ is bounded from above by another proportional stop-loss function IU (x) := γ
2λ2

(x −
λ1−kg′(−π(I∗))

γ )+ . See Fig. 1.

When k > 0, the proportion γ
2λ2

is strictly smaller than γ
γ +η according to Eq. (B.13). Thus, in the presence of narrow framing, the DM 

will under-insure the loss in excess of the deductible point (as compared with the coverage under (4.3) when narrow framing is absent). 
This agrees well with the result in Section 3. However, generally it is difficult to compare d in (4.3) with D in I∗ of Theorem 4.1 due to 
the implicit forms of both deductible points. Such comparison could be done by using specific examples.

2 I∗(x) = 0 for x ≤ D , and I∗(x) > 0 for x > D .
3 Note that whether D is zero only depends on the expected-value safety loading θ , but independent on the variance safety loading η. Similar observations can be also 

found in Li and Young (2021).
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Fig. 1. The lower and upper bounds for I∗ .

In the next two sub-sections, we present some closed or semi-closed solutions for Problem 1 when the local gain-loss function g is 
taking some specific forms. This allows a more straightforward comparison between our results and those in Zheng (2020) and Li and 
Young (2021).

4.1. g is a quadratic local gain-loss function

In this section we consider a special case when g is a quadratic local gain-loss function

g(w) = w − bw2, (4.4)

where 0 < b < 1
2M is a constant.4 In this case, g is continuous and twice differentiable everywhere. As we see in the following proposition, 

the optimal indemnity is in the form of proportional stop-loss. For simplicity, in the following we use E(I∗) and π(I∗) to denote E(I∗(X))

and π(I∗(X)) respectively.

Corollary 4.1. Under the quadratic local gain-loss utility g(·) as given by (4.4), the optimal indemnity function for Problem 1 is given by

I∗(x) = γ

λ + 2bk

(
x − d

γ

)
+

, (4.5)

where λ, d are determined by the following two equations

λ = η + γ − 2kbηE(I∗) + kη(1 + 2bπ(I∗)),

d =
(

− (γ + η) − ηk(1 + 2bπ(I∗)) + 2bkηE(I∗) − 2bk(1 + θ)
)
E(I∗) + θ + γE(X) + θk(1 + 2bπ(I∗)).

If the expected-value premium principle is used, the above result can be further simplified.

Corollary 4.2. Under the quadratic local gain-loss utility function g(·) as given by (4.4) and the expected-value premium principle π(I(X)) = (1 +
θ)E[I(X)], the optimal indemnity function for Problem 1 is given by

I∗(x) = γ

γ + 2bk

(
x − d1

γ

)
+

, (4.6)

where

d1 = inf{d ∈ [0, γ M] : κ1(d) ≥ 0}, (4.7)

and5

κ1(d) = d + γ + 2bk(1 − θ2)

γ + 2bk
γ

M∫
d
γ

S X (x)dx − (1 + k)θ − γE[X].

4 The constraint on b is used to guarantee that the local gain-loss utility g(·) is increasing with the local payoff I(x) − π(I(X)), since M is the essential supremum of loss 
X .

5 It is easy to verify that κ ′
1(d) ≥ 0.
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Note that, after some rearrangements,

κ1(d) = d + (1 − θ2)γ

M∫
d
γ

S X (x)dx − (1 + k)θ − γE[X] + γ 2θ2

γ + 2bk
E

[(
X − d

γ

)
+

]
,

which shows that κ1(d) is decreasing in k. This indicates that a larger k leads to a larger d1, which shows that the deductible point 
increases w.r.t. the degree of narrow framing. This specific example shows that the DM will under-insure its risk under narrow framing.6

Comparing the optimal indemnity functions in Corollaries 4.1 and 4.2, it is not difficult to see that

λ = γ + η(1 + k) + 2kbη(π(I∗) −E[I∗]) > γ

if η > 0. Hence, the marginal indemnity function for the loss in excess of deductible is reduced if using the mean-variance premium 
principle. If k = 0 (in the absence of narrow framing), Li and Young (2021) has shown that the deductible point is not affected by the 
safety loading for the variance component in the mean-variance premium principle. This may no longer hold in the presence of narrow 
framing (i.e., k > 0).

The results in Corollaries 4.1 and 4.2 are close to the result in Corollary 1 of Zheng (2020), where they considered an example in 
which both the DM’s terminal wealth and the net payoff of insurance are assessed by quadratic utility functions under the expected-value 
premium principle. However, they did not provide explicit optimal deducible point D . To further compare the optimal indemnity function 
under the mean-variance preference and the one under the quadratic utility, we consider the following problem

max
I∈I

{
E(W ) − γ̂

2
E(W 2) + kE[g(I(X) − π(I(X)))]

}
, (4.8)

with 0 < γ̂ ≤ 1
W0

, and g(·) is a quadratic function given by (4.4). The following proposition gives the explicit solution to Problem (4.8).

Proposition 4.1. Under the expected-value premium principle π(I(X)) = (1 + θ)E(I(X)), the optimal indemnity function for Problem (4.8) is given 
by

I∗(x) = γ̂

γ̂ + 2bk

(
x − d2

γ̂

)
+

, (4.9)

where

d2 = inf{d ∈ [0, γ̂ M] : κ2(d) ≥ 0}, (4.10)

and7

κ2(d) = d + (1 − θ2)γ̂

M∫
d
γ̂

S X (x)dx − (1 + k)θ + γ̂ W0θ − γ̂ (1 + θ)E[X].

Generally, optimizing the mean-variance objective is different from optimizing the expected utility under the quadratic utility function 
as the former is linear in the mean while the latter is quadratic in the mean (Collins and Gbur, 1991). By comparing Corollary 4.2 and 
Proposition 4.1, we have the following findings.

• If γ̂ = γ , i.e. the DM adopts the quadratic utility function with the same averse coefficient as the mean-variance preference setting, 
the optimal indemnity functions (4.6) and (4.9) have the same slope but different deductible points. Notably, d1 in (4.6) does not 
depend on the DM’s initial wealth8 while d2 in (4.9) depends on the DM’s initial wealth. To compare d1 and d2 when γ̂ = γ , we 
re-write κ1(d) and κ2(d) as

κ1(d) = d + (1 − θ2)γ

M∫
d
γ

S X (x)dx − (1 + k)θ − γE[X] + γ θ
γ θ

γ + 2bk
E

[(
X − d

γ

)
+

]
,

κ2(d) = d + (1 − θ2)γ

M∫
d
γ

S X (x)dx − (1 + k)θ − γE[X] + γ θ (W0 −E[X]) .

6 In Remark 4.2, we only show that the marginal indemnity above the deductible will be reduced if the DM has narrow framing. In the case where g is a quadratic 
function, we further show that the deductible point becomes larger.

7 It is easy to verify that κ ′
2(d) ≥ 0.

8 This is well explained in Remark 2.1, where Problem 1 can be re-formulated as (2.4).
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Thus, if W0 >E[X] + γ θ

γ +2bkE[(X − d1
γ )+] (the DM is wealthier), then d2 < d1, which means that the DM will purchase more coverage 

under the quadratic utility than under the mean-variance preference. On the contrary, if W0 < E[X] + γ θ

γ +2bkE[(X − d1
γ )+] (the DM 

is poorer), then d2 > d1, which means that the DM would like to purchase less coverage under the quadratic utility than under the 
mean-variance preference.

• Note that (4.9) can also be written as

I∗(x) = γ̂

γ̂ + 2bk

(
x − d̂2

)
+ ,

where d̂2 = inf{d ∈ [0, M] : κ̂2(d) ≥ 0}, where

κ̂2(d) = d + (1 − θ2)

M∫
d

S X (x)dx − (1 + k)θ

γ̂
+ W0θ − (1 + θ)E[X].

Since κ̂2(d) is increasing in γ̂ , a larger γ̂ leads to a smaller d̂2. Note that γ̂ ∈ (0, 1/W0], under the quadratic utility function the DM 
will at most purchase

I∗(x) = 1

1 + 2bkW0
(x − dmin)+ ,

where dmin = inf{d ∈ [0, M] : κ̃2(d) ≥ 0}, where

κ̃2(d) = d + (1 − θ2)

M∫
d

S X (x)dx − kθW0 − (1 + θ)E[X].

In other words, if the DM is wealthy enough (e.g., W0 → ∞), she will not purchase any insurance.
The mean-variance preference is not dependent on the DM’s initial wealth, and the coefficient γ has no upper bound. If γ → ∞, 
then the variance component in (2.4) will play the dominating role in the objective function, which pushes the DM to purchase full 
insurance (i.e., I∗(x) = x). This phenomenon can also be seen more clearly in (4.6) under the expected-value premium principle.

The above comparisons show that the decision of the DM whose preference is captured by expected utility can heavily depend on 
her initial wealth while the decision of the DM who has mean-variance preference is mostly affected by her aversion to the volatility. 
For a wealthy DM who is very concerned of the volatility, applying expected utility and mean-variance may yield significantly different 
demands for insurance.

4.2. g is a piece-wise linear function

In this section we slightly weaken the assumption that the utility function g(·) is twice differentiable everywhere by taking into 
account possible loss aversion. Specifically, the local gain-loss utility function g(·) has the following piece-wise linear form:

g(I(x) − π(I(X))) =
{

I(x) − π(I(X)), if I(x) ≥ π(I(X));
−β[π(I(X)) − I(x)], if I(x) < π(I(X)),

(4.11)

where β > 1 measures the degree of loss aversion, which implies that limx→0− g′(x) > limx→0+ g′(x). Also, note that even though g(·) is 
not continuously differentiable at zero, g(·) is still globally concave. In the following proposition, we present the optimal indemnity under 
this type of utility function.

Proposition 4.2. Under the local gain-loss utility g(·) as in (4.11), the optimal indemnity function for Problem 1 is given by

I∗(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ
2λ2

(x − D), if x ≥ D + 2λ2
γ π(I∗(X));

π(I∗(X)), if D + 2λ2
γ π(I∗(X)) ≤ x < D + 2λ2

γ π(I∗(X));
γ

2λ2
(x − D), if D ≤ x < D + 2λ2

γ π(I∗(X));
0, if x < D.

(4.12)

where D = λ1 − kβ

γ
and D = λ1 − k

γ
. When θ = 0, the lower deductible barrier D = 0. When θ > 0, D is strictly positive.

Under the expected utility theory with the local gain-loss utility g(·) as in (4.11), it was shown in Proposition 4 of Zheng (2020)
that the optimal indemnity function also has two layers. However, our result shows that the optimal ceded loss function is based on 
the mixture of proportional insurance and stop-loss insurance as displayed in Proposition 4.2. We attribute such difference to the mean-
variance premium principle being used here.9

9 Generally, 2λ2 > γ if η > 0. See Eq. (B.13).
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5. Bowley solution under the expected-value premium principle and narrow framing

Section 4 presents the main results of this paper by assuming that the safety loading factors θ and η are given. In a monopolistic 
market where the insurer has the absolute power to adjust these safety loading factors, a Stackelberg game between the DM and the 
insurer is interesting to investigate. That is, the DM first selects the optimal indemnity function in response to the given safety loading 
factors, and then the insurer adjusts the safety loading factors to optimize its objective. The solution to such a Stackelberg game is called 
the Bowley solution. For sake of comparison, in what follows we denote the DM’s level of volatility aversion γ by γ1. Since the general 
solution to Problem 1 is quite complex, to make the problem tractable, we focus on a simple setting in this section where the DM’s local 
gain-loss utility function is of the quadratic form (4.4) and the variance safety loading factor η = 0.

The DM’s problem:
As per Corollary 4.2, given the safety loading factor θ ≥ 0, the optimal indemnity I∗ is given by

I∗(x) = α(x − ξ)+, (5.1)

where α = γ1
γ1+2bk and

ξ = inf{d ∈ [0, M] : κ(ξ) ≥ 0} (5.2)

where

κ(ξ) = γ1

⎛
⎝ξ −

ξ∫
0

S X (x)dx

⎞
⎠ − 2αbkθ2

M∫
ξ

S X (x)dx − (1 + k)θ,

and inf ∅ = M . Note that

κ ′(ξ) = γ1(1 − S X (ξ)) + 2αbkθ2 S X (ξ) > 0 for ξ ∈ (0, M)

and

κ(0) = − 2αbkθ2E[X] − (1 + k)θ ≤ 0,

κ(M) =γ1(M −E[X]) − (1 + k)θ.

Here k is treated as a fixed parameter representing the DM’s degree of narrow framing, then if κ(M) = γ1(M −E[X]) − (1 + k)θ ≤ 0, we 
have ξ = M and the DM purchases zero insurance. Thus, it suffices to discuss the case when κ(M) = γ1(M −E[X]) − (1 + k)θ ≥ 0, which 
also includes zero insurance when the equality holds. In other words, the insurer only needs to focus on θ ∈

[
0,

γ1(M−E[X])
1+k

]
, and then ξ

uniquely satisfies

γ1

⎛
⎝ξ −

ξ∫
0

S X (x)dx

⎞
⎠ − 2αbkθ2

M∫
ξ

S X (x)dx = (1 + k)θ. (5.3)

The insurer’s problem:
Knowing the DM’s optimal choice of the indemnity function I∗ (as shown by (5.1)) for a given θ ≥ 0, we assume that the insurer would 

choose the optimal safety loading factor θ∗ that maximizes a mean-variance functional of her terminal wealth W i :

θ∗ = arg max
θ

E(W i) − γ2

2
Var(W i), (5.4)

where γ2 > 0 describes the insurer’s volatility aversion level, and

W i = W i
0 − I∗(X) + π(I∗(X)) (5.5)

with W i
0 being the initial surplus of the insurer.

With π(I∗(X)) = (1 + θ)E(I∗(X)), Problem (5.4) could be written as⎧⎪⎨
⎪⎩

max
(θ,ξ)∈[0,

γ1(M−E[X])
1+k ]×[0,M]

θE[(X − ξ)+] − α
γ2

2
Var[(X − ξ)+]

s.t. (θ, ξ) satisfies Eq. (5.3).

(5.6)

Note that Eq. (5.3) is a quadratic equation regarding θ . Since θ ≥ 0, for a selected deductible point ξ ∈ [0, M], we can figure out the 
unique corresponding safety loading factor θ from Eq. (5.3):

θ =
√

(1 + k)2 + 8bαγ1k(ξ −E[X ∧ ξ ])E[(X − ξ)+] − (1 + k)

4bαkE[(X − ξ)+]
= 2γ1(ξ −E[X ∧ ξ ])√

(1 + k)2 + 8bαγ1k(ξ −E[X ∧ ξ ])E[(X − ξ)+] + (1 + k)
∈

[
0,

γ1(M −E[X])
1 + k

]
. (5.7)
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Thus, there is a one-to-one relationship between θ and ξ .
By inserting (5.7) into (5.6), we see that Problem (5.6) becomes

max
ξ∈[0,M] f (ξ) := 2γ1(ξ −E[X ∧ ξ ])E[(X − ξ)+]√

(1 + k)2 + 8bαγ1k(ξ −E[X ∧ ξ ])E[(X − ξ)+] + (1 + k)
− α

γ2

2
Var[(X − ξ)+]. (5.8)

We conclude this section by presenting the following proposition, which shows the Bowley solution for this section in the presence of 
narrow framing. The proof is omitted since it involves only the use of first order condition.

Proposition 5.1. The optimal deductible point ξ∗ for Problem (5.8) satisfies the first order condition f ′(ξ∗) = 0, where

f ′(ξ) = γ1
(E[X ∧ ξ ] − ξ)S X (ξ) + (1 − S X (ξ))E[(X − ξ)+]√

(1 + k)2 + 8bαγ1k(ξ −E[X ∧ ξ ])E[(X − ξ)+] + αγ2(1 − S X (ξ))E[(X − ξ)+]. (5.9)

Then, the pair (θ∗, ξ∗), where θ∗ is derived by inserting ξ∗ into Eq. (5.7), is the Bowley solution to the Stackelberg game.

Remark 5.1. Notably, in Eq. (5.7) the safety loading factor θ decreases in k. In other words, for a given deductible point ξ , the insurer 
needs to lower the safety loading factor to attract or keep a DM with higher degree of narrow framing.

Remark 5.2. In the work of Li and Young (2021), they explored the Bowley solution of a one-period mean-variance Stackelberg game in 
insurance. One can observe that if we let k → 0, the optimal indemnity function in (5.1) is equal to the one in Corollary 3.1 in Li and 
Young (2021) with η = 0. Moreover, Eq. (5.9) implies that the optimal deductible ξ∗ is independent of the parameter k when γ2 = 0, and 
the derived optimal deductible ξ∗ is as the same as the optimal one in Li and Young (2021) with η = 0.

6. Numerical examples

In this section, we present some numerical examples to further analyze the effect of narrow framing on the indemnity function, 
efficient frontier and the Bowley solution.

6.1. The effect of narrow framing on the indemnity function

In this subsection, we investigate the effect of narrow framing on the demand for insurance using the results in Section 4. Due to the 
simple form of the indemnity function when assuming a quadratic utility function g , we confine ourselves to this specific utility function. 
More specifically, we adopt the following setup for the numerical example:

• The ground-up loss X follows a truncated exponential distribution,10 i.e.

f X (x) =
1

100 e− x
100

1 − e−10
, x ∈ [0,1000].

• g(x) = x − x2

2000 .
• θ = 0.2, η = 0.2 and γ = 0.1.

Apparently, in the absence of narrow framing, or when k = 0, we recover the result of Li and Young (2021) (see Eq. (4.3)). When k > 0, we 
already know from Remark 4.2 that the marginal coverage for the loss in excess of the deductible will be reduced. However, it is not clear 
whether the deductible point will be larger or not. We thus change the value of k from 0 to 0.7 to see the effect of narrow framing on the 
overall coverage. Fig. 2 shows the optimal indemnity functions for k = 0, 0.3 and 0.7, and Fig. 3 shows the optimal slopes and deductible 
points for different values of k. These results indicate that a higher degree of narrow framing will result in a lower demand for insurance, 
which echoes the main result in Section 3.

6.2. The effect of narrow framing on the efficient frontier

Let LI = X − I(X) + π(I(X)), which is the terminal loss faced by the DM. Then, the objective of Problem (2.3) could be written as

min
I∈I E[LI ] + γ

2
Var[LI ]. (6.1)

Note that

E[LI ] =E[X − I(X) + π(I(X))]
=E[X] −E[I(X)] + (1 + θ)E[I(X)] + η

2
Var[I(X)]

=E[X] + θE[I(X)] + η

2
Var[I(X)] ≥E[X]

10 Note that here the truncation point is set to be 1000. It could be verified that P (X > 1000) ≈ 0 if the mean of the original exponential distribution is 100.
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Fig. 2. The optimal indemnity functions for k = 0,0.3 and 0.7.

Fig. 3. The optimal slopes and deductible points for different degrees of narrow framing.

and

Var[LI ] =Var[X − I(X) + π(I(X))]
=Var[X − I(X)]
=Var[X] − Var[I(X)] − 2Cov[X − I(X), I(X)] ≤ Var[X].

Thus, the DM is sacrificing its expected terminal loss for the reduction of the variance of its terminal loss. Since the DM is a mean-variance 
user, for different volatility aversion levels (i.e. different values of γ ), minimizing the weighted average of E[LI ] and Var[LI ] will result 
in a Pareto-optimal indemnity function I∗ such that no other indemnity function Ĩ ∈ I can further reduce both the expected value and 
variance of the terminal wealth, i.e.

E[L Ĩ ] ≤ E[LI∗ ] and Var[L Ĩ ] ≤ Var[LI∗ ]
with at least one inequality being strict (for details, see Miettinen (2012)). By varying the value of γ , we can obtain different Pareto-
optimal indemnity functions, whose resulting (E[LI ], Var[LI ]) constitutes the so-called efficient frontier. Under the setting of our paper, it 
is interesting to investigate the effect of narrow framing on such efficient frontier.

Using the general setup of Section 6.1, we change the value of γ under k = 0 (no narrow framing) and k = 1 (with narrow framing) 
and plot the efficient frontiers in Fig. 4, from which we can clearly see that the presence of narrow framing reduces the expected terminal 
loss but increases the volatility of the terminal loss. Therefore, with narrow framing the DM pursues more the reduction of its expected 
terminal loss and puts less weight on the volatility component of its mean-variance objective.

6.3. The effect of narrow framing on the Bowley solution

Under the same setting of Section 6.1 and by assuming that γ2 = 0.1 (the insurer’s volatility aversion level), we calculate the Bowley 
solution for the Stackelberg game as described in Section 5. Fig. 5 shows the plots of f ′(ξ) under different degrees of narrow framing. 
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Fig. 4. The comparison between the efficient frontiers for k = 0 and k = 1.

Fig. 5. The plots of f ′(ξ) for different values of k. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Under our setting, it is found that f (ξ) is firstly increasing and then decreasing on the range [0, 1000], and thus admits only one max-
imum point. This facilitates the calculation of ξ∗ for Problem (5.8). Fig. 6 shows the Bowley solution (θ∗, ξ∗) for different degrees of 
narrow framing. Interestingly, under our setting the optimal deductible point ξ∗ still increases w.r.t. k, which shows that the DM will still 
underinsure its risk even in a monopolistic market. At the meantime, θ∗ decreases w.r.t. k, which implies that the insurer would reduce 
the safety loading factor to keep or attract the DM with higher degree of narrow framing.

In addition to analyzing the change of (θ∗, ξ∗) w.r.t. k, we are also interested in the change of the objectives of the DM and insurer 
w.r.t. k. Note that the DM’s problem, similar to Section 6.2, could be written as

min
I∈I DM’s objective := E[X − I(X) + π(I(X))] + γ1

2
Var[X − I(X)],

while the insurer’s problem could be written as

min
I∈I Insurer’s objective := E[I(X) − π(I(X))] + γ2

2
Var[I(X)].

This way, we get rid of the influence of their initial wealth on their objectives. Under the setting of this section, the Bowley solution in a 
monopolistic market depends on k. We plot the value of the DM’s objective versus the value of the insurer’s objective in Fig. 7. It shows 
that the insurer is always worse off when the DM’s degree of narrow framing increases, while the DM is first better off and then worse 
off when its degree of narrow framing increases.

7. Conclusions

In this paper, we study the problem of optimal insurance design under mean-variance criterion by incorporating the narrow framing of 
the DM. With the intention to gamble with the insurer, the optimal indemnity function is characterized when the DM aims to maximize 
a mean-variance objective of her terminal wealth, which extends the work of Zheng (2020) under the expected utility model.
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Fig. 6. The Bowley solutions (θ∗, ξ∗) for different degrees of narrow framing.

Fig. 7. The comparison between the objectives of the DM and insurer under different degrees of narrow framing.

Assuming that the insurer adopts the mean-variance premium principle, which generalizes the commonly adopted expected-value 
premium principle, we study analytically the DM’s demand for insurance when the indemnity function is restricted to the coinsurance 
type. Our result tells that the DM’s demand decreases with respect to her degree of narrow framing, which echoes the result in Zheng 
(2020). Without restricting the type of indemnity function, we show that the optimal indemnity function involves a deductible point. Our 
main results further confirm that when narrow framing is incorporated, the DM’s insurance demand will be reduced and partial insurance 
will always be purchased. We also present explicit forms for the optimal indemnity functions when the local gain-loss utility function is 
quadratic or piecewise linear. As a spin-off result, the explicit Bowley solution is derived for a Stackelberg game between the DM and 
insurer under the quadratic local gain-loss utility and the expected-value premium principle, which extends the results of Li and Young 
(2021) without narrow framing. We finally provide several numerical examples to further analyze the effects of narrow framing on the 
optimal indemnity function, efficient frontier and the Bowley solution.

As a future research, motivated by the study of Chi et al. (2022), it would be very interesting to extend the current results to the 
case when the DM is a S-shaped utility user. Besides, how to build the notion of “narrow framing” upon the framework of modern risk 
management is also worth investigating.
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Appendix A. The connection between Problems 1 and (2.3)

To facilitate the subsequent discussions, we adopt the following assumptions for Problem (2.3).

Assumption A.1. 0 > G > minI∈I E[g(I(X) − π(I(X)))].

By using Jensen’s inequality, we note that

G ≤E[g(I(X) − π(I(X)))] ≤ g (E[I(X)] − π(I(X))) = g(−θE[I(X)] − η

2
Var[I(X)]) ≤ g(0) = 0.

Thus, G < 0 implies that zero insurance is strictly feasible to Problem (2.3). If G ≥ 0, Problem (2.3) has no solution or only the trivial 
solution – zero insurance. The condition G > minI∈I E[g(I(X) − π(I(X)))] implies that the utility arising from the gambling against the 
insurer should not be too small, as otherwise the constraint of (2.3) becomes useless.

However, imposing only Assumption A.1 cannot guarantee that we will not end up with the trivial solution – zero insurance. The 
following assumption is therefore adopted in the rest of this paper.

Assumption A.2. θ + γE[X] < γ M .

Assumption A.2 says that the safety loading for the premium should not be too large in order to get a non-trivial solution to Prob-
lem (2.3) without constraint. With Assumptions A.1 and A.2, we have the following lemma.

Lemma A.1. Under Assumptions A.1 and A.2, zero insurance can never be optimal for Problem (2.3).

Proof. Notice that Problem (2.3) without the constraint is exactly the buyer’s problem studied by Li and Young (2021), for which the 
optimal indemnity function is given by

I∗(x) = x −
(

ηx + λ

η + γ
∧ x

)

where λ satisfies

λ = θ + γ

λ
γ∫

0

S X (x)dx.

Under Assumption A.2, we have

λ ≤ θ + γ

∞∫
0

S X (x)dx = θ + γE[X] < γ M.

Thus,

I∗(M) = M −
(

ηM + λ

η + γ
∧ M

)
> 0.

Since I∗ is continuous, we get that I∗ is not zero insurance.
Now consider another indemnity function Iα = α I∗ , where I0 is zero insurance. Note that

V (Iα) =E[W0 − X + Iα(X) − π(Iα(X))] − γ

2
Var[W0 − X + Iα(X) − π(Iα(X))]

=W0 −E[X] − γ

2
Var[X] − θE[Iα(X)] − η + γ

2
Var[Iα(X)] + γ Cov[X, Iα(X)]

=V (I0) − θE[Iα(X)] − η + γ

2
Var[Iα(X)] + γ Cov[X, Iα(X)].

Now let
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f (α) := − θE[Iα(X)] − η + γ

2
Var[Iα(X)] + γ Cov[X, Iα(X)]

= − θαE[I∗(X)] − η + γ

2
α2Var[I∗(X)] + γ αCov[X, I∗(X)],

which is a quadratic function of α. Since I∗ is strictly better than zero insurance when optimizing the mean-variance objective function, 
it must follow that

V (I∗) > V (I0),

that is

V (I0) − θE[I∗(X)] − η + γ

2
Var[I∗(X)] + γ Cov[X, I∗(X)] > V (I0),

which implies that

f (1) = −θE[I∗(X)] − η + γ

2
Var[I∗(X)] + γ Cov[X, I∗(X)] > 0.

Hence

f (α) = α

[
f (1) + (1 − α)

η + γ

2
Var[I∗(X)]

]
> 0, for all α ∈ (0,1],

from which we immediately have f ′(0) > 0.
Note that I0, i.e. zero insurance, satisfies the constraint of (2.3) under Assumption A.1. Since the mapping

α �→ E[g(Iα(X) − π(Iα(X)))]
is continuous w.r.t. α, there exists an α̃ > 0 such that E[g(Iα̃(X) − π(Iα̃ (X)))] > G and f (α̃) > 0 (since f ′(0) > 0), which results in

V (Iα̃) = V (I0) + f (α̃) > V (I0).

Therefore, zero insurance cannot be optimal to Problem (2.3). �
It is easy to check that the objective function of (2.3) is concave w.r.t. the indemnity function I . Under Assumption A.1, strong duality 

holds due to Slater’s condition. This leads to the following lemma (see also Chapter 5 of Boyd and Vandenberghe (2004)).

Lemma A.2. The indemnity function I∗ solves Problem (2.3) if and only if there exists a k∗ ≥ 0 such that (k∗, I∗) solves the following problem

min
k∈R+

{
max
I∈I

{
E(W ) − γ

2
Var(W ) + k (E[g(I(X) − π(I(X)))] − G)

}}
. (A.1)

Now let

L(k) = max
I∈I

{
E(W ) − γ

2
Var(W ) + k(E[g(I(X) − π(I(X)))] − G)

}
. (A.2)

It is easy to verify that L(k) is a convex function. Under Assumptions A.1 and A.2, the following lemma presents the range of k such that 
zero insurance cannot be the solution to the maximization problem of (A.2).

Lemma A.3. Let Assumptions A.1 and A.2 hold and define

k0 := inf{k ∈R+ : E[W0 − X] − γ

2
Var[X] − kG ≥ L(k)}, (A.3)

where inf∅ = ∞. If k ∈ [0, k0), then zero insurance cannot be the solution to

max
I∈I

{
E(W ) − γ

2
Var(W ) + k(E[g(I(X) − π(I(X)))] − G)

}
. (A.4)

If k ∈ [k0, ∞), then zero insurance is the solution to Problem (A.4).

Proof. First, since E[g(I(X) − π(I(X)))] ≤ 0, we have

L(k) ≤ max
I∈I

{
E[W ] − γ

2
Var[W ] − kG

}
= max

I∈I

{
E[W ] − γ

2
Var[W ]

}
− kG := l1(k) (A.5)

for k ∈R+ , where l1(k) is a linear function of k with l′1(k) = −G > 0. Since L(k) is convex, the inequality (A.5) implies that L′(k) ≤ l′1(k) =
−G at a differentiable point k.11

11 A proper convex function is almost everywhere differentiable.
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Let

l2(k) = E[W0 − X] − γ

2
Var[X] − kG.

Since L(0) = maxI∈I
{
E[W ] − γ

2 Var[W ]} >E[W0 − X] − γ
2 Var[X] = l2(0) under Assumption A.2, we have k0 > 0. When k = k0, we have

L(k0) = l2(k0)

=⇒ max
I∈I

{
E[W ] − γ

2
Var[W ] + k0(E[g(I(X) − π(I(X))) − G)

}
= E[W0 − X] − γ

2
Var[X] − k0G

=⇒ I∗(x) = 0 on [0, M],
where the uniqueness of I∗ is due to Theorem 2.1. Now we claim that when k > k0, we always have

max
I∈I

{
E[W ] − γ

2
Var[W ] + k(E[g(I(X) − π(I(X))) − G)

}
= E[W0 − X] − γ

2
Var[X] − kG.

Otherwise, L(k) < l2(k) for some k > k0 due to L′(k) ≤ −G . However, from the definition of L(k), we see L(k) ≥ l2(k), for any k. Hence, we 
get the contradiction. Therefore, I∗(x) = 0 for x ∈ [0, M] when k ≥ k0.

Since L(k) is convex and L(0) > l2(0), we have L(k) > l2(k) when k ∈ [0, k0). Therefore I∗(x) is not always equal to zero on [0, M] when 
k ∈ [0, k0). This completes the proof. �
Appendix B. Proofs of the main results in the paper

Proof of Theorem 2.1

First, we define a metric for the set I:

d(I1, I2) = max
x∈[0,M] |I1(x) − I2(x)| (B.1)

for any two indemnity functions I1, I2 ∈ I . With this metric, it is easy to check that the objective function of Problem 1 is continuous 
w.r.t. I . Thus, the maximum is attainable if the admissible set for I , i.e. I , is compact. Note the following facts about the functions in I:

• They are all 1-Lipschitz continuous, which means they are equicontinuous.
• They are uniformly bounded (by M).
• The 1-Lipschitz continuity is preserved under the uniform convergence.

Thus, by applying Arzelà-Ascoli Theorem, we get that the set I is sequentially compact, or equivalently, I is compact. This ends the proof 
of existence.

To prove the uniqueness of the solution to Problem 1, we first recognize that Problem 1 could be written as

min
I∈I E[L(I)] + γ

2
Var[L(I)] − kE[g(I(X) − π(I(X)))] (B.2)

where L(I) = X − I(X) + π(I(X)). Note that the variance Var[X] is convex in X . That is, for ε ∈ [0, 1] and X1, X2 whose second moments 
exist,

Var[ε X1 + (1 − ε)X2] = E[(ε X1 + (1 − ε)X2 −E[ε X1 + (1 − ε)X2])2]
≤ E[ε(X1 −E[X1])2 + (1 − ε)(X2 −E[X2])2]
= εVar[X1] + (1 − ε)Var[X2].

Then for I1, I2 ∈ I , we have for any ε ∈ [0, 1]
π(ε I1 + (1 − ε)I2) ≤ επ(I1) + (1 − ε)π(I2).

Now if I1, I2 ∈ I both solve Problem (B.2), then we have

E[L(I1)] + γ

2
Var[L(I1)] − kE[g(I1(X) − π(I1(X)))] = E[L(I2)] + γ

2
Var[L(I2)] − kE[g(I2(X) − π(I2(X)))].

We now claim that

E[L(I1)] =E[L(I2)], Var[L(I1)] = Var[L(I2)] and E[g(I1(X) − π(I1(X)))] = E[g(I2(X) − π(I2(X)))]. (B.3)

If not, then we construct another indemnity function I3 = ε I1 + (1 − ε)I2 for some ε ∈ (0, 1). Note that

E[L(I3)] ≤ E[εL(I1) + (1 − ε)L(I2)] = εE[L(I1)] + (1 − ε)E[L(I2)],
Var[L(I3)] = Var[εL(I1) + (1 − ε)L(I2)] ≤ εVar[L(I1)] + (1 − ε)Var[L(I2)]

and
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E[g(I3(X) − π(I3))] ≥ E[g(ε I1 + (1 − ε)I2 − επ(I1) − (1 − ε)π(I2))]
= E[g(ε(I1 − π(I1)) + (1 − ε)(I2 − π(I2)))]
≥ εE[g(I1 − π(I1))] + (1 − ε)E[g(I2 − π(I2))].

Therefore, we have

E[L(I3)] + γ

2
Var[L(I3)] − kE[g(I3(X) − π(I3(X)))]

≤ ε
(
E[L(I1)] + γ

2
Var[L(I1)] − kE[g(I1(X) − π(I1(X)))]

)
+ (1 − ε)

(
E[L(I2)] + γ

2
Var[L(I2)] − kE[g(I2(X) − π(I2(X)))]

)
= E[L(I1)] + γ

2
Var[L(I1)] − kE[g(I1(X) − π(I1(X)))],

where the inequality is strict if I1 �= I2. This gives rise to the contradiction to the fact that I1 solves the problem (B.2). Thus (B.3) holds, 
from which we get

E[g(I1(X) − π(I1))] = E[g(I2(X) − π(I2))].
Since 0 is in the support of X , by using the similar arguments in the proof of Lemma 2.1 of Chi and Zhuang (2020), we can reach the 
conclusion that P (I1(X) = I2(X)) = 1. This ends the proof of uniqueness.

Proof of Proposition 3.1

Note that α∗ is monotone in α̃, so we only need to show that α̃ is decreasing in k. Since g′′ < 0, thus V ′(α) is strictly decreasing with 
respect to α. If we can prove that V ′(α) decreases with k, then one can immediately derive that α̃ decreases with k, which implies that 
an individual with a higher degree of narrow framing will purchase less insurance. Thus, we only need to check

E

(
g′(h(α, X))

∂h

∂α
(α, X)

)
< 0. (B.4)

We first rewrite the left side of (B.4) as an integration form:

M∫
0

g′ (αx − (1 + θ)αμ − η

2
α2σ 2

)
[x − (1 + θ)μ − αησ 2]dF X (x)

=
[(1+θ)μ+αησ 2]−∫

0

g′ (αx − (1 + θ)αμ − η

2
α2σ 2

)
[x − (1 + θ)μ − αησ 2]dF X (x)

+ g′ (η

2
α2σ 2

)
× 0 × P (X = (1 + θ)μ + αησ 2)

+
M∫

[(1+θ)μ+αησ 2]+
g′ (αx − (1 + θ)αμ − η

2
α2σ 2

)
[x − (1 + θ)μ − αησ 2]dF X (x). (B.5)

Because g′′(·) < 0, we get

g′ (αx − (1 + θ)αμ − η

2
α2σ 2

)
< g′ (η

2
α2σ 2

)
, ∀ x > (1 + θ)μ + αησ 2. (B.6)

By substituting (B.6) into (B.5), we obtain

M∫
0

g′ (αx − (1 + θ)αμ − η

2
α2σ 2

)
[x − (1 + θ)μ − αησ 2]dF X (x)

< g′ (η

2
α2σ 2

) [(1+θ)μ+αησ 2]−∫
0

g′ (αx − (1 + θ)αμ − η
2 α2σ 2

)
g′ (η

2 α2σ 2
) [x − (1 + θ)μ − αησ 2]dF X (x)

+ g′ (η

2
α2σ 2

) M∫
[(1+θ)μ+αησ 2]+

[x − (1 + θ)μ − αησ 2]dF X (x). (B.7)

Again, because the strictly concavity of g , we have
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g′ (αx − (1 + θ)αμ − η
2 α2σ 2

)
g′ (η

2 α2σ 2
) > 1, ∀0 < x < (1 + θ)μ + αησ 2.

Thus, we can rewrite (B.7) as

M∫
0

g′ (αx − (1 + θ)αμ − η

2
α2σ 2

)
[x − (1 + θ)μ − αησ 2]dF X (x)

< g′ (η

2
α2σ 2

) M∫
0

[x − (1 + θ)μ − αησ 2]dF X (x)

= −(θμ + αησ 2)g′ (η

2
α2σ 2

)
≤ 0.

As we see, even θ = η = 0, inequality (B.4) still holds. Hence, the optimal proportion α∗ is decreasing with k.
With Eq. (B.4), we can get that

V ′(1) = −θμ − ησ 2 + kE

(
g′(h(1, X))

∂h

∂α
(1, X)

)
< 0.

Thus, α∗ < 1 since V (α) is concave. In other words, the DM strictly prefers partial insurance. This ends the proof.

Proof of Theorem 4.1

By expanding E(W ) − γ
2 Var(W ) + k E[g(I(X) − π(I))] with W = W0 − X + I(X) − π(I) and π(I) given in (2.2), one can see that 

Problem 1 is equivalent to12

max
I∈I − θE(I) − η

2
Var(I) − γ

2

{
E(I2) − 2E(X I) − (E(I))2 + 2E(X)E(I)

}
+ kE

[
g
(

I(X) − (1 + θ)E(I) − η

2
Var(I)

)]
.

We adopt a step-by-step procedure to solve the above problem. In the first step, we fix E(I) = m ∈ [0, E(X)], and E(I2) = n ∈ [0, E(X2)], 
and solve the above problem subject to these two constraints. In the second step, we search for the optimal m and n. In summary, we 
want to solve

max
(m,n)∈[0,E[X]]×[0,E[X2]]

{
min
λ1,λ2

max
I∈I f (I, λ1, λ2,m,n)

}
(B.8)

where

f (I, λ1, λ2,m,n) = −θm − η

2
(n − m2) − γ

2
[n − 2E(X I) − m2 + 2mE(X)]

+ kE
[

g
(

I − (1 + θ)m − η

2
(n − m2)

)]
− λ1(E(I) − m) − λ2(E(I2) − n). (B.9)

Here, λ1, λ2 ∈R are two KKT multipliers. As proved by Theorem 2.1, there exists a solution to Problem (B.8). Based on Proposition 3.1 and 
Lemma A.1, we know that zero insurance and full insurance are not optimal to Problem 1. Thus, the optimal solution (I∗, λ∗

1, λ
∗
2, m

∗, n∗)
is an interior point of the set{

(I, λ1, λ2,m,n)

∣∣∣ (I, λ1, λ2,m,n) ∈ I × (−∞,∞) × (−∞,∞) × [0,E[X]] × [0,E[X2]
}

.

Since f (I, λ1, λ2, m, n) is continuously differentiable w.r.t. all the arguments, the following first-order conditions are necessary conditions 
for the optimality of (I∗, λ∗

1, λ
∗
2, m

∗, n∗):

∂ f

∂λ1
= 0 ⇐⇒ E[I∗] = m∗, (B.10)

∂ f

∂λ2
= 0 ⇐⇒ E[I∗2] = n∗, (B.11)

∂ f

∂m
= 0 ⇐⇒ −θ + (η + γ )m∗ − γE(X) + kE[g′(I∗(X) − π(I∗))](ηm∗ − (1 + θ)) + λ∗

1 = 0, (B.12)

∂ f

∂n
= 0 ⇐⇒ 2λ∗

2 = η + γ + kηE[g′(I∗(X) − π(I∗))]. (B.13)

12 For simplicity, in this appendix, we write I to mean I(X), for example, we use E(I), E(I2), E(X I), and π(I) to mean E(I(X)), E((I(X))2), E(X I(X)), and π(I(X)).
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Note that

f (I, λ1, λ2,m,n)

= − θm − η

2
(n − m2) − γ

2

[
n − m2 + 2mE[X]

]
+ λ1m + λ2n

+ γE[X I] + kE
[

g(I − (1 + θ)m − η

2
(n − m2)

]
− λ1E[I] − λ2E[I2]

= − θm − η

2
(n − m2) − γ

2

[
n − m2 + 2mE[X]

]
+ λ1m + λ2n

+
M∫

0

{
γ xI(x) + kg(I(x) − (1 + θ)m − η

2
(n − m2)) − λ1 I(x) − λ2 I(x)2

}
dF X (x).

Let f̃ (I, λ1, λ2, m, n) := γ xI(x) + kg(I(x) − (1 + θ)m − η
2 (n − m2)) − λ1 I(x) − λ2 I(x)2. It is easy to verify that, when the optimum is 

attained, i.e. m = m∗ , n = n∗ , λ1 = λ∗
1 and λ2 = λ∗

2, maximizing f (I, λ∗
1, λ

∗
2, m

∗, n∗) is equivalent to maximizing f̃ (I, λ∗
1, λ

∗
2, m

∗, n∗) for each 
x ∈ [0, M]. Note that

∂2 f̃

∂ I2
= kg′′(I(x) − π(I∗)) − 2λ∗

2 < 0,

thus f̃ (I, λ∗
1, λ

∗
2, m

∗, n∗) is strictly concave w.r.t. I . Due to the strict concavity of f̃ w.r.t. I , let Ĩ (not necessarily in I) be the function that 
satisfies the following first-order condition

γ x − λ∗
1 − 2λ∗

2 Ĩ(x) + kg′( Ĩ(x) − π(I∗)) = 0. (B.14)

Taking derivative on both sides of (B.14) w.r.t. x, we get

Ĩ ′(x) = γ

2λ∗
2

(
1 − k

2λ∗
2

g′′( Ĩ(x) − π(I∗))
)−1

. (B.15)

Since 2λ∗
2 ≥ γ (from (B.13)) and g′′(·) < 0, we obtain that 0 ≤ Ĩ ′(x) ≤ 1. If g′′′(·) ≥ 0, then taking derivative on both sides of (B.15) w.r.t. x

again leads to

Ĩ ′′(x) = γ k

4λ∗
2

2

g′′′( Ĩ(x) − π(I∗))(
1 − k

2λ∗
2

g′′( Ĩ(x) − π(I∗))
)2

Ĩ ′(x) ≥ 0.

Define a function L(z) := z − k
2λ∗

2
g′(z), then L′(z) = 1 − k

2λ∗
2

g′′(z) > 1, since g′′(·) < 0. Thus, L(·) is strictly increasing and L−1(·) exists. 

Then, the function Ĩ(x) is given by

Ĩ(x) = π(I∗) + L−1
(

γ

2λ∗
2

x − λ∗
1

2λ∗
2

− π(I∗)
)

. (B.16)

Since I∗ ∈ I , which implies that I∗(x) ∈ [0, x]. It is easy to check that

I∗(x) = min{x,max{0, Ĩ(x)}} = arg max
I∈I

f̃ (I, λ∗
1, λ

∗
2,m∗,n∗), (B.17)

since I∗(0) = 0 and I∗′(x) = 1 or 0 or Ĩ ′(x) (∈ [0, 1]), and I∗ element-wisely maximizes the function f̃ (I, λ∗
1, λ

∗
2, m

∗, n∗).
We now proceed to show that there exists a deductible point D ≥ 0 for the optimal indemnity function I∗ . Based on Eq. (B.17), it is 

easy to see that the deductible exists if and only if Ĩ(0) < 0. Suppose now we have Ĩ(0) > 0, then since Ĩ ′(x) ∈ [0, 1], we have Ĩ(x) > 0 for 
each x ∈ [0, M]. Then, we get from (B.17) that I∗(x) = min{x, ̃I(x)} ≤ Ĩ(x). Now define

x1 := inf{x ∈ [0, M] : I∗(x) ≥ Ĩ(x)},
then I∗(x) < Ĩ(x) for x ∈ [0, x1) and I∗(x) = Ĩ(x) for x ∈ [x1, M]. Since f̃ (I, λ∗

1, λ
∗
2, m

∗, n∗) is strictly concave in I , the first order condition 
(B.14) implies that

γ x − λ∗
1 − 2λ∗

2 I∗(x) + kg′(I∗(x) − π(I∗)) ≥ 0, (B.18)

where the strict inequality holds for x ∈ [0, x1). With Eqs. (B.12) and (B.13), we can get that

γ x − λ∗
1 − 2λ∗

2 I∗(x) + kg′(I∗(x) − π(I∗)) ≥ 0

=⇒ γ x − 2λ∗
2 I∗(x) + kg′(I∗(x) − π(I∗)) ≥ λ∗

1

=⇒ γ x − (η + γ + kηE[g′(I∗(X) − π(I∗))])I∗(x) + kg′(I∗(x) − π(I∗)) ≥ λ∗
1
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=⇒
M∫

0

{
γ x − (η + γ + kηE[g′(I∗(X) − π(I∗))])I∗(x) + kg′(I∗(x) − π(I∗))

}
dF X (x) > λ∗

1

=⇒ γE[X] − (η + γ + kηE[g′(I∗(X) − π(I∗))])E[I∗(x)] + kE[g′(I∗(X) − π(I∗))] > λ∗
1

=⇒ γE[X] − (η + γ + kηE[g′(I∗(X) − π(I∗))])m∗ + kE[g′(I∗(X) − π(I∗))]
> θ − (η + γ )m∗ + γE(X) − kE[g′(I∗(X) − π(I∗))](ηm∗ − (1 + θ))

=⇒ 0 > θ
(
1 + kE[g′(I∗(X) − π(I∗))]) ,

which gives rise to the contradiction. Thus, Ĩ(0) ≤ 0, which indicates the existence of the deductible point.
Moreover, if the safety loading factor θ > 0, then we claim that the deductible point D > 0. Otherwise, if D = 0, or equivalently 

Ĩ(0) = 0, we can derive that I∗(x) = Ĩ(x). Following the same steps presented above, we can get that

0 = θ
(
1 + kE[g′(I∗(X) − π(I∗))]) ,

which contradicts with our assumption θ > 0. Hence, we obtain that the deductible point D > 0.
If θ = 0, then we claim that the deductible point D = 0. Otherwise, if D > 0, or equivalently Ĩ(0) < 0, we can derive that I∗(x) =

max{0, ̃I(x)} ≥ Ĩ(x). Following the similar approach as above, we can get that

0 < θ
(
1 + kE[g′(I∗(X) − π(I∗))]) ,

which contradicts with our assumption θ = 0. Hence, we obtain that the deductible point D = 0.

Proof of Proposition 4.2

Similar to the proof of Theorem 4.1, by substituting the gain-loss utility function g(·) in (4.11) into (B.14), we see that the candidate 
indemnity function Ĩ(x) equals to

Ĩ(x) =

⎧⎪⎨
⎪⎩

γ
2λ2

(x − D), if Ĩ(x) ≥ π(I∗(X));
π(I∗(X)), if Ĩ(x) = π(I∗(X));
γ

2λ2
(x − D), if Ĩ(x) < π(I∗(X)),

with λ1 and λ2 satisfy the following two equations:

λ1 = kβ − (η(1 + kβ) + γ )E(I∗) + γE(X) + k(β − 1)(ηE(I∗) − 1)P (I∗(X) > π(I∗(X)))

+ θ + kθ(βP (I∗(X) < π(I∗(X))) + P (I∗(X) ≥ π(I∗(X)))); (B.19)

2λ2 = η(1 + kβ) + γ − kη(β − 1)P (I∗(X) ≥ π(I∗(X))). (B.20)

Now, we prove the last assertion that D > 0 if θ > 0. Otherwise, D ≤ 0, or equivalently, Ĩ(0) ≥ 0. Then from the proof of Theorem 4.1, we 
see there must exist a point x1 ≥ 0, such that I∗(x) ≤ Ĩ(x) for x ∈ [0, x1) and I∗(x) = Ĩ(x) for x ∈ [x1, M], where I∗(x) = min{x, ̃I(x)}. Since 
the objective function in this case is strictly concave in I , the inequality (B.18) still holds, that is,

γ x − λ1 − 2λ2 I∗(x) + k1{I∗(x)≥π(I∗)} + βk1{I∗(x)<π(I∗)} ≥ 0.

With Eqs. (B.12) and (B.13), we can get that

γ x − λ1 − 2λ2 I∗(x) + k1{I∗(x)≥π(I∗)} + βk1{I∗(x)<π(I∗)} ≥ 0

=⇒ γ x − 2λ2 I∗(x) + k1{I∗(x)≥π(I∗)} + βk1{I∗(x)<π(I∗)} ≥ λ1

=⇒ γ x − [
η(1 + kβ) + γ − kη(β − 1)P (I∗(X) ≥ π(I∗(X)))

]
I∗(x)

+ k1{I∗(x)≥π(I∗)} + βk1{I∗(x)<π(I∗)} ≥ λ1

=⇒ γE(X) − [
η(1 + kβ) + γ − kη(β − 1)P (I∗(X) ≥ π(I∗(X)))

]
E(I∗(X)) + kP (I∗(x) ≥ π(I∗))

+ βkP (I∗(x) < π(I∗)) ≥ λ1

=⇒ γE(X) − [
η(1 + kβ) + γ − kη(β − 1)P (I∗(X) ≥ π(I∗(X)))

]
E(I∗(X)) + kP (I∗(x) ≥ π(I∗))

+ βkP (I∗(x) < π(I∗)) ≥ kβ − (η(1 + kβ) + γ )E(I∗)
+ γE(X) − k(1 − β)(ηE(I∗) − 1)P (I∗(X) ≥ π(I∗(X)))

+ θ + kθ
(
βP (I∗(X) < π(I∗(X))) + P (I∗(X) ≥ π(I∗(X)))

)
=⇒ 0 ≥ θ + kθ

(
βP (I∗(X) < π(I∗(X))) + P (I∗(X) ≥ π(I∗(X)))

)
,

which contradicts with the assumption θ > 0, thus, D > 0. If θ = 0, we claim that D = 0. Otherwise, if D < 0, then one can get the 
contradiction from the above discussion; if D > 0, or equivalently, Ĩ(0) < 0, we see I∗(x) = max{0, ̃I(x)} ≥ Ĩ(x). Following the similar 
approach as above, one can derive the contradiction.
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