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We consider a continuous-time model in which an insurer proposes an insurance contract to a potential 
insured. Motivated by climate change and catastrophic events, we assume that the number of claims 
process is a shot-noise Cox process. The insurer selects the premium to be paid by the potential insured 
and the amount to be paid for each claim. In addition, the insurer can request some actions from the 
potential insured to reduce the number of claims. The insurer wants to maximize his expected total 
utility, while the potential insured signs the contract if his expected total utility for signing the contract 
is greater than or equal to his expected total utility when he does not sign the contract. We obtain 
an analytical solution for the optimal premium, the optimal amount to be paid for each claim, and the 
optimal actions of the insured. This leads to interesting managerial insights.
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1. Introduction

We consider a finite-horizon, continuous-time model in which an insurer proposes an insurance contract to a potential insured.
It has been standard in the actuarial sciences literature to assume that the total claim amount process is a compound Poisson process 

with deterministic intensity, or equivalently that the number of claims process is a Poisson process with deterministic intensity. See, for 
example, Bühlmann (1970), Medhi (1982), Lindskog and McNeil (2003), and Moore and Young (2006). However, there are many important 
cases in which a Poisson process with deterministic intensity does not represent well the total number of claims. For instance, Beard et al. 
(1984) show that the standard Poisson process is not an appropriate model for the number of claims in catastrophe, fire, and some other 
types of insurance. Instead, Beard et al. (1984) suggest considering stochastic intensity.

The Cox process, also called doubly stochastic Poisson process, is a generalized Poisson process with stochastic intensity. We consider a 
Cox process where the intensity is a shot noise process. The shot noise process can be used to model the stochastic nature of catastrophic 
events. Due to climate change, natural disasters occur more frequently. The losses caused by catastrophes are usually enormous, so it is 
important to insure against losses caused by this type of events. Dassios and Jang (2003) explain that claims arising from catastrophic 
events depend on the intensity of natural disasters, and that one of the processes that can be used to measure the impact of catastrophic 
events is the shot noise process. Further, Dassios and Jang (2003) and Schmidt (2014) explain in detail the application of shot-noise Cox 
process in catastrophe insurance, although they do not study optimal insurance contracts. Following Dassios and Jang (2003) and Schmidt 
(2014), we adopt a shot-noise Cox process to count the number of claims. Besides catastrophe insurance, our model is also appropriate 
to other types of insurance. For example, Dassios et al. (2015) point out that the shot-noise Cox process models very well the number of 
traffic accidents if the rate of the event arrival is large.
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We consider two cases: the insured does not intervene through his actions to reduce the number of claims, and the insured intervenes 
through his actions to reduce the number of claims. In the first case, we assume that the number of claims process is a shot-noise Cox 
process. In the second case, we assume that the number of claims process is a Cox process but the actions of the insured can affect the 
shot noise intensity. Equation (2) shows how the insured’s actions a = {at; t ∈ [0, T ]} affect the intensity. The first case is the special case 
of the second case in which the actions of the insured are null. This is the first paper on optimal insurance contracts in which the number 
of claims is modeled by a Cox process with shot noise intensity.

We allow the actions of the insured to be persistent. That is, the actions of the insured at any point in time are effective until maturity. 
For instance, in flood insurance, the insurer may require the insured to bring the property up to some standards. See the national flood 
insurance program of the Federal Emergency Management Agency (2022). This action of the property owner will reduce the probability 
of having a loss caused by floods, and its protection against flood will last from the time of action. However, along with aging and wear, 
the flood-resistance equipment becomes less protective over time. Thus, we further assume that the action is discounted by time. We 
will discuss further details of persistent actions in Section 2. Hoffmann et al. (2021), Hopenhayn and Jarque (2010), Jarque (2010), and 
Mukoyama and Şahin (2005) have also considered persistent actions. We present a model in which persistent actions affect a Cox process.

The insurer selects the premium to be paid by the potential insured, the amount to be paid for each claim, and also requests some 
actions from the potential insured. The potential insured has a cost associated with his actions. Section 3 presents details on the utility 
and cost functions of the insurer and the potential insured. The insurer wants to maximize his expected total utility, while the potential 
insured signs the contract if his expected total utility for signing the contract is greater than or equal to his expected total utility when he 
does not sign the contract. Thus, the problem studied in our paper is different from other papers (such as Zou and Cadenillas (2014), and 
Zou and Cadenillas (2017)) in which an insurer has already designed an insurance contract (which might not be the optimal insurance 
contract) and decides its optimal liability. To the best of our knowledge, we obtain, for the first time in the literature, an analytical solution 
for the optimal premium, the optimal amount to be paid for each claim, and the optimal actions of the insured when the number of claims 
process is a Cox process. The analytical solution leads to interesting managerial insights. For instance, we show that the optimal expected 
action decreases over time. Furthermore, the insured will perform less expected action over time to reach the reservation utility when 
he does not enter the insurance market. Jarque (2010) presents the same trend of the optimal action only through a numerical example 
while we prove it with an analytical solution in a general setting. Our result challenges the assumption of Mukoyama and Şahin (2005)
that the principal prefers the agent to insert the highest action all the time. The decreasing trend of the optimal actions results from 
action persistence, where the earlier action reduces the loss further because it is effective for a relatively long period. We also present an 
example.

Section 2 presents the total claim amount model and Section 3 presents the problem that we study in this paper. The solution is 
presented in Section 4. Section 5 discusses the reservation utility. An example is presented in Section 6. The conclusions are presented in 
Section 7. The proofs of the theorems, propositions, corollaries, and lemmas are presented in Appendix A.

2. The total claim amount process

We consider a finite time horizon [0, T ]. There are two possibilities: the insured does not affect the risky external environment and 
the insured affects the risky external environment.

If the insured does not affect the risky external environment, then the total claim amount process S = {S(t); t ∈ [0, T ]} is given by

S(t) =
N(t)∑
i=1

Li = L1 + L2 + · · · + LN(t),

where N(t) is the number of claims up to time t ∈ [0, T ] and {L1, L2, · · · , LN(t)} are the amounts claimed until time t . We make the 
following assumptions.
a) The random variables {L1, L2, L3, · · · } are independent and identically distributed. Furthermore, their range is R L and inf R L > 0.
b) The sequence of random variables {L1, L2, L3, · · · } are independent of the stochastic process N = {N(t); t ∈ [0, T ]}.
c) The stochastic process N = {N(t); t ∈ [0, T ]} is a shot-noise Cox process with stochastic intensity rate I = {I(t); t ∈ [0, T ]} given by

I(t) = θ

M(t)∑
i=0

Yie
δ(τi−t) = θ

M(t)∑
i=0

Yie
−δ(t−τi). (1)

In the above equation, θ represents the risk level of the insured, M(t) counts the number of risky events exposed to the insured from 
time 0 to time t , Yi is the jump size caused by the i-th random risky event, τi is the time when the i-th risky event occurs, and δ is the 
rate of decay. The effect of a risk event happening at time τ lasts in the time period [τ , T ] but is discounted by δ at time t ∈ [τ , T ]. We 
make the following assumptions about the stochastic process I:
c1) θ is a positive constant.
c2) M = {M(t); t ∈ [0, T ]} is a Poisson process with a deterministic intensity process ρ(t) ≥ 0, t ∈ [0, T ]. If the frequency of exposures is 
high, then ρ(·) is large.
c3) {Yi}i=1,2,3,··· is a sequence of i.i.d. random variables and independent of M . We suppose they are the images of a random variable Y
that is positive and finite almost surely. Y0 > 0 is a constant known at time 0. We denote μ = E[Y ].
c4) {τi}i=1,2,3,··· is a sequence of non-decreasing stopping times. In the above equation, τ0 = 0, and for every i ∈ {1, 2, · · · , M(t)}: τi ≤ t .
c5) δ is a positive constant.

Applications of Cox processes with shot noise intensity to insurance can be found in Albrecher and Asmussen (2006), Macci and Torrisi 
(2011), Schmidt (2014), and Zhu (2013). The number of claims from catastrophic events depends on the stochastic intensity of natural 
disasters. The above intensity process I measures the frequency of external risky events (by M), their magnitude (by Yi ), and their time 
(by τi) to determine the effect of catastrophic events. As time passes, the magnitude decreases (by δ). We consider a probability space 
(�, F , P ) together with a filtration F := {Ft, t ∈ [0, T ]} that is the P -augmentation of the natural filtration
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σ
(
N(s), M(s), s ∈ [0, t]; Li, i ∈ {0,1, · · · , N(t)}; Y j, τ j, j ∈ {0,1, · · · , M(t)}) .

If the insured affects the risky external environment, the total claim amount process S = {S(t); t ∈ [0, T ]} is given by

S(t) =
Na(t)∑
i=1

Li = L1 + L2 + · · · + LNa(t),

where the number of claims process Na = {Na(t); t ∈ [0, T ]} is a Cox process with stochastic intensity rate λ = {λ(t); t ∈ [0, T ]} given by

λ(t) := θ

⎛
⎝M(t)∑

i=0

Yie
δ(τi−t)

⎞
⎠
⎛
⎝1 − e−t(A0 +

t∫
0

asrsesds)

⎞
⎠ . (2)

Here, the process a = {at; t ∈ [0, T ]} represents the actions to reduce the magnitude of external risk events and A0 is a constant that 
represents the measures to reduce the magnitude of risk events taken before the contract is implemented. We assume that a is adapted to 
the filtration F . We also assume that 0 ≤ at ≤ K for t ∈ [0, T ] and A0 ∈ [0, K ], where K ∈ [0, 1] is a constant that represents the proportion 
of the intensity that can be cleared through actions. The remaining 1 − K proportion of the intensity is not avoidable through actions. rs
is the effectiveness of action as . The process r = {rt; t ∈ [0, T ]} is called the productivity of action in the principal-agent problem (Williams 
(2009)). Demarzo and Learning (2017) and Cvitanić and Zhang (2013) also introduce the coefficient rs to adjust for the action as . For 
example, the precaution against flood is more effective in the rainy season than in the dry season. Correspondingly, in flood insurance, rs
is generally larger in rainy seasons. We assume that rs ∈ [0, 1] for every s ∈ [0, T ]. If the action and the effective rate take their highest 

values K and 1 respectively at every time in [0, T ], then (2) becomes θ

⎛
⎝M(t)∑

i=0

Yie
δ(τi−t)

⎞
⎠ (1 − K ). Under the conditions that 0 ≤ A0 ≤ 1, 

0 ≤ as ≤ 1, and 0 ≤ rs ≤ 1 for s ∈ [0, T ], we have that λ(t) is nonnegative for t ∈ [0, T ]. In other words, the intensity of the random variable 
Na(t) is nonnegative for t ∈ [0, T ]. In the special case where A0 = 0 and as = 0 for every s ∈ [0, T ], we have for every t ∈ [0, T ]: I(t) = λ(t). 
Hence, the case in which the insured affects the external risk environment is more general than the case in which the insured does not 
affect the external risk environment.

Therefore, we assume that the insured can affect the external risk environment. In other words, we assume that the number of claims is 
represented by the stochastic process Na = {Na(t); t ∈ [0, T ]}, which is a Cox process with the stochastic intensity rate λ = {λ(t); t ∈ [0, T ]}
defined in (2).

We can understand the actions a = {at; t ∈ [0, T ]} in the intensity process from the following four aspects. First, the more actions 
inserted, the smaller the intensity is. Second, as has an effect on λ(t) for every t ∈ [s, T ]. Thus, an earlier action can play a role for a long 
time while a late action plays a role only for a short time. Particularly, aT is effective for almost zero duration. Third, the ratio between 
the weights of as′ and as in (2) is e(s′−s) if 0 < s′, s ≤ t . If it is closer to time t when an action is implemented, the action is more effective 
at time t . Fourth, the action as is made at time s. As time passes by, the contribution of as shrinks by es−t at time t ∈ (s, T ].

In the case of flood insurance, the insured is a property owner and the risk event is a flood. We denote by Yi the magnitude of the 
i-th flood. The risk events can affect the frequency of claims, so we represent them in the intensity rate process λ = {λ(t); t ∈ [0, T ]}. The 
effect of each risk event lasts for some time, but it is discounted (by δ) as time passes. For instance, the destructive power of a flood 
lasts from the time of flood rising to the time of cleaning up. However, the effect of the flood is weaker as time goes by. The process a
represents actions, like using flood-resistance materials, that the property owner is required to take to reduce the frequency of claims.

3. The insurance problem

We assume symmetric information, in the sense that all the information is transparent and accessible to both insurer and insured. The 
information structure is denoted by F = {Ft, t ∈ [0, T ]} and the model is constructed on the probability space (�, F , P ). Following the 
principal-agent literature that considers a representative principal and a representative agent (see, for instance, Section 4.1 of Bolton and 
Dewatripont (2005), Cadenillas et al. (2007) and Continuous (2008)), we consider a representative insurer and a representative insured.

The insurer selects the premium rate and the compensation. During the contract period, the client will pay the premium continuously. 
The company commits to compensate the insured immediately after he faces a loss. The compensation can cover partially or completely 
the loss. The insurer observes all the information, in particular, the insured’s actions. The insurer requires the amount of action in the 
contract, and that must be followed by the insured. That is consistent with many papers on optimal contract theory. Under the full 
information case, Cvitanić and Zhang (2013) points out that the principal offers the contract and dictates the agent’s actions. In the 
full information section, Williams (2015) also said the principal decides the actions. The first-best models in Chapter 4 of Bolton and 
Dewatripont (2005) expressed the same ideas. In practice, to reduce losses, the insurance company may write down provisions that 
require the insured to take designated actions in catastrophe and other insurance contracts. For example, the catastrophe insurance policy 
may require the insured to do necessary maintenance on the property. Otherwise, the insurer is entitled to deny compensation for the 
loss directly or indirectly caused by the lack of maintenance. See, for instance, Flex Insurance Company (2022). Thus, we suppose the 
actions are taken to maximize the insurer’s utility in this paper. On the other hand, the insured will sign the contract if his participation 
constraint is satisfied. We denote by

(a,q, P ) = {(at,qt, Pi); t ∈ [0, T ] and i = 1,2, · · · }
the contract offered by the insurer. After signing the contract, the insured pays continuously the premium rate qt and takes action at at 
time t . When the i-th loss happens, the insurer compensates the insured with the amount Pi . We do not assume that Pi is equal to Li .

We assume that the insured and the insurer have Von Neumann-Morgenstern utility functions U1 :R �→R and U2 :R �→ R, respec-
tively. These utility functions are strictly increasing, concave, and twice differentiable with the following properties:
71



W. Liu and A. Cadenillas Insurance: Mathematics and Economics 109 (2023) 69–93
U1(0), U2(0) ≤ 0,

U ′
1(−∞) = lim

x→−∞ U ′
1(x) = +∞, U ′

1(+∞) = lim
x→+∞ U ′

1(x) = 0,

U ′
2(−∞) = lim

x→−∞ U ′
2(x) = +∞, U ′

2(+∞) = lim
x→+∞ U ′

2(x) = 0.

(3)

The insurer’s expected total utility for a policy (a, q, P ) is

J (q, P ,a) := E

⎡
⎣ T∫

0

U2(qt)dt +
Na(T )∑

i=1

U2(−Pi)

⎤
⎦ . (4)

The cost function of action is denoted by V 1, and is assumed to be positive, increasing, differentiable, strictly convex and satisfying 
V 1(0) = V ′

1(0) = 0. Next, we present the participation constraint. We denote the reservation utility by R ∈ R. R is the expected total 
utility that the insured can obtain from outside options. The insurer wants to offer a contract that gives an expected total utility greater 
than or equal to R to the insured. Otherwise, the insured will prefer outside options, and will not accept the contract offer.

The income rate of the insured is represented by {wt , t ≥ 0}. We assume that wt > 0 is deterministic for every t ≥ 0.
We denote by A the class of admissible controls. These are the controls (a, q, P ) that are adapted to the filtration F .

Problem 1. The insurer wants to select the policy (â, ̂q, P̂ ) ∈A that solves the problem

max
(q,P ,a)∈A

J (q, P ,a)

s.t. E

⎡
⎣ T∫

0

U1(wt − qt)dt +
Na(T )∑

i=1

U1(Pi − Li) −
T∫

0

V 1(at)dt

⎤
⎦≥ R, (5)

0 ≤ at ≤ K , for all t ∈ [0, T ]. (6)

In (3), we assume the utility functions are negative when the variables are negative. The insurer loses some amount of utility if 
a compensation is made and the insured loses some amount of utility if he encounters the loss from an accident. From the terms 
Na(T )∑

i=1

U2(−Pi) in (4) and 
Na(T )∑

i=1

U1(Pi − Li) in (5), we observe that the total loss of utility due to the claims can be reduced by taking 

actions.

4. The optimal insurance contract

An extended generator on Markov processes consisting of random jumps is explicitly calculated in Theorem 5.5 in Davis (1984). 
Following this theorem, we will present a generator of the process {(I(t), t), t ≥ 0}. The generator helps with our calculation of the 
expectation of Na(T ). We denote the cumulative distribution function of the jump Y by FY . We assume that FY and the intensity ρ
defined in Section 3 are Riemann integrable.

Suppose a function f (·, ·) belongs to the domain of the generator denoted by A. Then A acting on f (I, t) is defined by

A f (I, t) := ∂ f

∂t
− δ I

∂ f

∂ I
+ ρ(t)

∞∫
0

f (I + θ y, t)dFY (y) − ρ(t) f (I, t). (7)

Theorem 5.5 of Davis (1984) describes the domain of the generator, and Dassios and Jang (2003) give sufficient conditions under which f
is in the domain of A. In our case, f : [0, ∞) × [0, T ] �→R belongs to the domain of A if f ∈ C1([0, ∞) × [0, T ]; R) and

∣∣∣
∞∫

0

f (I + θ y, t)dFY (y) − f (I, t)
∣∣∣< ∞.

As stated by Proposition 1 in Dassios and Embrechts (1989), { f (It , t), t ≥ 0} is a martingale if A f (I, t) = 0. See also Davis (1984). 
Therefore, we have the following result.

Lemma 1. The stochastic process

M(t)∑
i=0

Yie
δτi − μ

t∫
0

eδuρ(u)du

is a martingale.

Proof. See Appendix A. �
Now we can obtain the expected number of claims.
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Proposition 1. The expected number of claims corresponding to actions a = {as, s ∈ [0, T ]} is

E[Na(T )] =θ

T∫
0

(1 − e−t A0)e−δt

⎛
⎝Y0 + μ

t∫
0

ρ(u)eδudu

⎞
⎠dt

− θ

T∫
0

e−(1+δ)t E

⎡
⎣ t∫

0

asrses

⎛
⎝μ

t∫
s

ρ(u)eδudu +
M(s)∑
i=0

Yie
δτi

⎞
⎠ds

⎤
⎦dt.

(8)

Proof. See Appendix A. �
Changing the order of integration, we can obtain another way to express (8).

E[Na(T )] =θ

T∫
0

(1 − e−t A0)e−δt

⎛
⎝Y0 + μ

t∫
0

ρ(u)eδudu

⎞
⎠dt

− θ E

⎡
⎣ T∫

0

asrses

T∫
s

e−(1+δ)t

⎛
⎝μ

t∫
s

ρ(u)eδudu +
M(s)∑
i=0

Yie
δτi

⎞
⎠dtds

⎤
⎦ .

The role actions a = {as, s ∈ [0, T ]} play can also be observed through the expression above. The integration following as is from time s to 
T . It indicates that the effect of as lasts in the time period [s, T ]. The action exerted at different moments makes different contributions 
in the remaining period.

We denote

B̄ :=
T∫

0

(1 − e−t A0)e−δt

⎛
⎝Y0 + μ

t∫
0

ρ(u)eδudu

⎞
⎠dt,

Bt := rtet

T∫
t

e−(1+δ)s

⎛
⎝μ

s∫
t

ρ(u)eδudu +
M(t)∑
i=0

Yie
δτi

⎞
⎠ds.

Now, we can write E[Na(T )] as

E[Na(T )] = θ B̄ − θ E

⎡
⎣ T∫

0

at Btdt

⎤
⎦ . (9)

Since rt ≥ 0, ρ(t) ≥ 0 for t ∈ [0, T ], and Yi > 0 for i = 0, 1, 2, · · · , it immediately follows that Bt ≥ 0 for each ω ∈ � and t ∈ [0, T ]. 
Recalling that λ(t) is nonnegative for t ∈ [0, T ], we derive that E[Na(T )] ≥ 0. Let as = 1 almost surely for s ∈ [0, T ], we can see E[Na(T )] =

θ

⎛
⎝B̄ − E

⎡
⎣ T∫

0

Btdt

⎤
⎦
⎞
⎠ from (9). Further, let A0 = 1 and rt = 1 almost surely for t ∈ [0, T ], then λ(t) = 0 almost surely for t ∈ [0, T ] and it 

results in E[Na(T )] = 0. It follows that B̄ = E

⎡
⎣ T∫

0

Btdt

⎤
⎦. Otherwise, B̄ > E

⎡
⎣ T∫

0

at Btdt

⎤
⎦. B̄ can be understood as the expected number of 

claims if actions are not involved. Bt is the intensity rate of accidents that can be removed by one unit of action at time t.
To find the solution of the model, we use the Lagrangian method and define the functional L1 by

L1(q, P ,a;�1,�2) :=E

⎡
⎣ T∫

0

U2(qt)dt +
Na(T )∑

i=1

U2(−Pi)

⎤
⎦

+ �1 E

⎡
⎣ T∫

0

U1(wt − qt)dt +
Na(T )∑

i=1

U1(Pi − Li) −
T∫

0

V 1(at)dt

⎤
⎦+ E

⎡
⎣ T∫

0

�t
2atdt

⎤
⎦ ,

(10)

where �1 and �t
2, adapted to F , t ∈ [0, T ] are Lagrangian multipliers. The first order conditions for q and P are

U ′
2(−Pi) − �1U ′

1(Pi − Li) = 0 and U ′
2(qt) − �1U ′

1(wt − qt) = 0. (11)

Since �1 is constant, the solution of Pi from the equations above is dependent of Li only. Hence, the sequences {U2(Pi)}i=1,2,··· and 
{U1(Pi − Li)}i=1,2,··· are i.i.d. and independent of the process Na . Thus, the Lagrangian (10) can be rewritten as
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L1(q, P ,a;�1,�2) =E

⎡
⎣ T∫

0

U2(qt)dt

⎤
⎦+ E[Na(T )]E[U2(−P ) + �1U1(P − L)]

+ �1 E

⎡
⎣ T∫

0

U1(wt − qt)dt

⎤
⎦− �1 E

⎡
⎣ T∫

0

V 1(at)dt

⎤
⎦+ E

⎡
⎣ T∫

0

�t
2atdt

⎤
⎦ .

(12)

Derive the first order condition from (12) for at to obtain

�1 V ′
1(at) − �t

2 = −θ E[U2(−P ) + �1U1(P − L)]Bt (13)

for each t ∈ [0, T ] and ω ∈ �. The values of the Lagrangian multipliers can show important information of the solutions. Consider �1

first. To ensure the first order condition (11) valid, �1 must be positive. If �1 = 0, we can get Pi = −∞ and qt = ∞ from (11). However, 
this causes a contradiction to constraint (5). From (3), we have lim

Pi→−∞ U1(Pi − Li) = −∞ for i = 1, 2, · · · and lim
qt→∞ U1(wt − qt) = −∞ for 

t ∈ [0, T ]. Then, the left-hand-side of (5) is going to −∞. Since R is finite, (5) can not be satisfied. Hence, �1 > 0. Consider �t
2 now. If 

�t
2 = 0 for some t ∈ [0, T ] and some ω ∈ �, it means the constraint (6) is not binding. The action we obtain from (13),

at = V ′−1
1

(
− θ

�1
E[U2(−P ) + �1U1(P − L)]Bt

)
,

satisfies (6). If �t
2 < 0 for some t ∈ [0, T ] and some ω ∈ �, it means the RHS of (13) is big enough such that

�1 V ′
1(K ) < −θ E[U2(−P ) + �1U1(P − L)]Bt,

which shows the marginal cost of action is always smaller than the marginal benefit. Inserting actions more than K will bring the company 
more utility, but this preference is prevented by the upper bound of at . The constraint at ≤ K binds and the optimal action is just K . If 
�t

2 > 0 for some t ∈ [0, T ] and some ω ∈ �, it means the RHS of (13) is negative such that

�1 V ′
1(0) > −θ E[U2(−P ) + �1U1(P − L)]Bt,

which shows the marginal cost of action is always bigger than the marginal benefit. Less action is required but the constraint 0 ≤ at binds. 
The optimal action is just 0.

Recalling that the utility functions are increasing functions, we have U ′
2(−x1) > 0 and U ′

1(x1 − x2) > 0. Recalling that the utility 
functions are concave functions, we have U ′

2(−x1) is an increasing function of x1 and U ′
1(x1 − x2) is a decreasing function of x1. Hence, 

the function g defined by

g(x1, x2) := U ′
2(−x1)

U ′
1(x1 − x2)

, x1, x2 ∈R

is a positive, increasing function of x1, meaning that g(x1, x2) is invertible for any fixed x2. The inverse function is denoted by g−1(·, x2). 
Consider the function U1 defined by

U1(�1) :=
T∫

0

U1(wt − q�1
t )dt + E

[
U1(P�1 − L)

]
θ

⎛
⎝B̄ − E[

T∫
0

a�1
t Btdt]

⎞
⎠− E

⎡
⎣ T∫

0

V 1(a
�1
t )dt

⎤
⎦ , (14)

where

P�1 = g−1(�1, L),

q�1
t = −g−1(�1,−wt),

a�1
t = V ′−1

1

(
− θ E

[
1

�1
U2(−g−1(�1, L)) + U1(g−1(�1, L) − L)

]
Bt

)

if 0 ≤ −θ E

[
1

�1
U2(−g−1(�1, L)) + U1(g−1(�1, L) − L)

]
Bt ≤ V ′

1(K ),

a�1
t = K if V ′

1(K ) < −θ E

[
1

�1
U2(−g−1(�1, L)) + U1(g−1(�1, L) − L)

]
Bt,

a�1
t = 0 if − θ E

[
1

�1
U2(−g−1(�1, L)) + U1(g−1(�1, L) − L)

]
Bt < 0.

(15)

The controls in (15) are the solution of equations (11) and (13). U1(�1) is the customer’s expected total utility corresponding to the 
controls (q�1 , P�1 , a�1 ). We know that g(x1, x2) is an increasing function of x1, so the inverse function is also an increasing function. 
Thus, P�1

i increases and q�1
t decreases when �1 increases. That is, the customer can get more compensation and pay less premium at the 

same time. The customer’s utility from the contract may also increase. It inspires us to think that U1(�1) may be an increasing function 
of �1. The obstacle is we are not sure how a�1

t moves according to �1. From (15), we can see a�1
t is closely related to
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u(�1) := − 1

�1
U2(−g−1(�1, L)) − U1(g−1(�1, L) − L). (16)

Here, θ E[u(�1)]Bt can be recognized as the marginal benefit of the action. V ′
1(at) can be recognized as the marginal cost of the action. 

When �t
2 = 0 for some t , (13) becomes V ′

1(at) = −θ E[u(�1)]Bt . It illustrates that the optimal action is reached when its marginal benefit 
equals its marginal cost. To explore more connections between a�1

t and �1, we consider the derivative

u′(�1) = 1

�2
1

U2(−g−1(�1, L)) + 1

�1
U ′

2(−g−1(�1, L))g−1′
(�1, L) − U ′

1(g−1(�1, L) − L)g−1′
(�1, L). (17)

From (11), we have 
U ′

2(−Pi)

�1
= U ′

1(Pi − Li). Here, P�1
i = g−1(�1, Li), so we obtain 

1

�1
U ′

2(−g−1(�1, L)) = U ′
1(g−1(�1, L) − L). Now, we 

rewrite (17) to get

u′(�1) = 1

�2
1

U2(−g−1(�1, L)). (18)

Theorem 1. U1(�1) is an increasing function of �1 for �1 ∈ (0, ∞).

Proof. See Appendix A. �
We define �̂1 by the following equation,

U1(�̂1) = R. (19)

Then we have

Theorem 2. If there exists �̂1 > 0 such that (19) holds, then the optimal insurance contract (q̂, P̂ , ̂a) = (q�̂1 , P �̂1 , a�̂1) is given by

q̂t = −g−1(�̂1,−wt), (20)

P̂ i = g−1(�̂1, Li), (21)

ât =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if − θ E

[
1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)

]
Bt < 0,

V ′−1
1

(
− θ E

[
1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)

]
Bt

)

if 0 ≤ −θ E

[
1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)

]
Bt ≤ V ′

1(K ),

K if V ′
1(K ) < −θ E

[
1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)

]
Bt .

(22)

Proof. See Appendix A. �
Remark 1. There is �1 such that U1(�1) < R whatever R is.1 It must be smaller than �̂1 according to Theorem 1 if �̂1 exists. However, 
the existence of �̂1 depends on the value of R . In Theorem 4 of the next section, we will show the existence and uniqueness of �̂1 with 
an appropriate value of R .

Remark 2. The optimal action ât is an increasing function of Bt . We can explain it in three ways. First, if rt is high, actions at this moment 
are more effective. The insured wants to take this opportunity to insert more actions. Second, the insured prefers to insert more actions 
earlier if we neglect the uncertainty elements rt , Yi , and τi . For example, if rt = r0 for every t ∈ [0, T ] and Y = 0 almost surely, then

Bt = r0et

T∫
t

e−(1+δ)s (Y0eδτ0
)

ds = r0Y0

1 + δ
(e−δt − et−(1+δ)T ),

which is a decreasing function of t . Thus, ât is also a decreasing function of t . Especially, Bt = 0 when t = T , resulting in aT = 0. The 
action taken at an earlier time is effective for a longer period. It can reduce the intensity of the accidents throughout the whole period. 
The insured is motivated to act as much as possible at the beginning. The action taken at maturity is only effective at the moment T . It 
makes almost no contribution to lowering the intensity. The insured does not want to waste his action, thus takes zero action at time T . 

Third, the bigger 
M(t)∑
i=0

Yieδτi is, the bigger Bt is. Thus more actions should be inserted when the accumulated external exposure is more. 

Note that the same amount of action deducts the same proportion of the intensity of claims. When the exposure is high, the same amount 
of action can remove more intensity. The actions are therefore more valuable and the insured will choose to execute more actions at these 
moments.

1 We showed lim + U1(�1) = −∞ when we discussed Lagrangian multipliers in (13).

�1→0
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5. The reservation utility

In this section, we calculate the reservation utility R of (5), which is the utility of the potential insured if he does not purchase 
insurance. The participation constraint (5) means that the expected total utility from purchasing insurance is greater than or equal to 
the expected total utility from not purchasing insurance. In this section, we will (i) calculate the reservation utility R when the potential 
insured does not purchase insurance, (ii) compare the actions taken when the potential insured does and does not enter the insurance 
market, and (iii) show that �̂1 of Theorem 2 exists uniquely.

If the potential insured does not enter the insurance market, then he will not pay a premium and, as a consequence, will not receive 
any compensation. However, he will select the action to maximize his expected total utility.

We denote by AR the class of stochastic processes a : [0, T ] × � �→R that are adapted to the filtration F .

Problem 2. If the potential insured does not purchase insurance, he wants to obtain the control a∗ ∈AR that solves the problem

max
a∈AR

E

⎡
⎣ T∫

0

U1(wt)dt +
Na(T )∑

i=1

U1(−Li) −
T∫

0

V 1(at)dt

⎤
⎦

s.t. 0 ≤ at ≤ K , for all t ∈ [0, T ].

According to (9), E

⎡
⎣Na(T )∑

i=1

U1(−Li)

⎤
⎦ can be rewritten as

E

⎡
⎣Na(T )∑

i=1

U1(−Li)

⎤
⎦= E[U1(−L)]

⎛
⎝θ B̄ − θ E

⎡
⎣ T∫

0

at Btdt

⎤
⎦
⎞
⎠ . (23)

We define the Lagrangian function

L2(a;�3) :=
T∫

0

U1(wt)dt + E[U1(−L)]
⎛
⎝θ B̄ − θ E

⎡
⎣ T∫

0

at Btdt

⎤
⎦
⎞
⎠− E

⎡
⎣ T∫

0

V 1(at)dt

⎤
⎦+ E

⎡
⎣ T∫

0

�t
3atdt

⎤
⎦ ,

where �t
3, t ∈ [0, T ], adapted to F , are Lagrangian multipliers. We take the differentiation of the Lagrangian function with respect to at

and obtain the first order conditions

V ′
1(at) − �t

3 = −θ Bt E[U1(−L)] (24)

for t ∈ [0, T ] and ω ∈ �. U1(−L) < 0 for L ∈ R L from (3), then −θ Bt E[U1(−L)] ≥ 0 for each t ∈ [0, T ] and ω ∈ �. If 0 ≤ −θ Bt E[U1(−L)] ≤
V ′

1(K ) for some t ∈ [0, T ] and ω ∈ �, �t
3(ω) = 0. The solution of (24) for at satisfies the constraint, so the constraint does not bind. If 

−θ Bt E[U1(−L)] ≥ V ′
1(K ) for some t ∈ [0, T ] and ω ∈ �, �t

3(ω) < 0. In this case, the marginal benefit of the action is always bigger than 
its marginal cost. However, the constraint at ≤ K binds, so the optimal action is just K .

Proposition 2. The optimal control of Problem 2 is given by

a∗
t =

{
V ′−1

1 (−θ Bt E[U1(−L)]) if V ′
1(K ) ≥ −θ Bt E[U1(−L)]

K if V ′
1(K ) < −θ Bt E[U1(−L)]. (25)

Proof. See Appendix A. �
We recall a�1 defined in (15). Comparing the two action processes a�1 and a∗ , we have the following relation.

Theorem 3. For every t ∈ [0, T ]:

V ′
1(a

�1
t ) ≤ V ′

1(a
∗
t ) − 1

�1
U2(0)Btθ.

Proof. See Appendix A. �
We observe that if U2(0) = 0, then V ′

1(a
�1
t ) ≤ V ′

1(a
∗
t ) as a consequence of Theorem 3. Since V ′

1(·) is an increasing function, we have 
the following relation between the two action processes.

Corollary 1. If U2(0) = 0, then for every t ∈ [0, T ]:

a�1
t ≤ a∗

t .
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Theorem 3 shows that a�1 is constrained by a∗ . This constraint is more evident when U2(0) = 0.
Taking a∗ into the objective function of Problem 2, we obtain the reservation utility

R =
T∫

0

U1(wt)dt + θ E[U1(−L)]
⎛
⎝B̄ − E

⎡
⎣ T∫

0

a∗
t Btdt

⎤
⎦
⎞
⎠− E

⎡
⎣ T∫

0

V 1(a
∗
t )dt

⎤
⎦ . (26)

We define �1 by the equation

E[U1(g−1(�1, L) − L)] = E[U1(−L)]. (27)

Lemma 2. �1 exists uniquely. Furthermore, U1(�1) < R, where R is the reservation utility defined by (26).

Proof. See Appendix A. �
Theorem 4. There exists a unique �̂1 such that (19) holds and �̂1 ∈ (�1, ∞).

Proof. See Appendix A. �
Thus, Theorem 4 completes the solution of Problem 1.

We define the highest income rate by wsup := sup{wt : t ∈ [0, T ]}. We also define �̄1 := U ′
2(0)

U ′
1(wsup)

. Then we have the following 

constraint for �̂1.

Corollary 2. If U2(0) = 0, then there exists a unique �̂1 such that (19) holds and �̂1 ∈ (�1, �̄1).

Proof. See Appendix A. �
6. The exponential utility and the quadratic cost

In this section, we apply the theory developed in Sections 4 and 5 to the case

U1(x) = −e−γ1x, U2(x) = −e−γ2x, V 1(x) = mx2, K = 1, wt = 0,

where γ1 > γ2 > 0 and m > 0 are constant parameters. Then, g is given by

g(x1, x2) = U ′
2(−x1)

U ′
1(x1 − x2)

= γ2eγ2x1

γ1e−γ1(x1−x2)
.

For a fixed x2, the inverse function g−1(·, x2) is given by

g−1(y, x2) =
ln(y) + ln(

γ1
γ2

) + γ1x2

γ1 + γ2
.

From (20) and (21), we obtain

q̂t = −g−1(�̂1,−wt) = −g−1(�̂1,0) = −
ln(

�̂1γ1
γ2

)

γ1 + γ2
for t ∈ [0, T ]; (28)

P̂ i = g−1(�̂1, Li) =
γ1Li + ln(

�̂1γ1
γ2

)

γ1 + γ2
for i = 1,2,3, · · · . (29)

We have

−θ E[ 1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)]Bt

= θ E

[
1

�̂1
e

γ2
γ1+γ2

(γ1 L+ln(
�̂1γ1
γ2

)) + e
− γ1

γ1+γ2
(ln(

�̂1γ1
γ2

)−γ2 L)
]

Bt

= θ Bt(
�̂1γ1

γ2
)
− γ1

γ1+γ2 E[e
γ1γ2 L
γ1+γ2 ](1 + γ1

γ2
),

which is positive for every t ∈ [0, T ]. In this example, V ′
1(x) = 2mx, so V ′

1(K ) = V ′
1(1) = 2m and V ′−1

1 (y) = y
2m . Hence,

ât =

⎧⎪⎪⎨
⎪⎪⎩

θ
2m Bt(

�̂1γ1
γ2

)
− γ1

γ1+γ2 E[e
γ1γ2 L
γ1+γ2 ](1 + γ1

γ2
) if θ Bt(

�̂1γ1
γ2

)
− γ1

γ1+γ2 E[e
γ1γ2 L
γ1+γ2 ](1 + γ1

γ2
) ≤ 2m

1 if θ Bt(
�̂1γ1 )

− γ1
γ1+γ2 E[e

γ1γ2 L
γ1+γ2 ](1 + γ1 ) > 2m.

(30)
γ2 γ2
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Since −θ Bt E[U1(−L)] = θ Bt E
[
eγ1 L

]
, applying (25), we obtain

a∗
t =

{
θ

2m Bt E
[
eγ1 L

]
if θ Bt E

[
eγ1 L

]≤ 2m
1 if θ Bt E

[
eγ1 L

]
> 2m.

�̂1 in (28)-(30) is the solution of U1(�̂1) = R . We denote Ct := θ Bt(
�̂1γ1
γ2

)
− γ1

γ1+γ2 E[e
γ1γ2 L
γ1+γ2 ](1 + γ1

γ2
). Recalling (14), we have

U1(�̂1) =
T∫

0

U1

⎛
⎝0 +

ln(
�̂1γ1
γ2

)

γ1 + γ2

⎞
⎠dt + E

⎡
⎣U1

⎛
⎝γ1Li + ln(

�̂1γ1
γ2

)

γ1 + γ2
− L

⎞
⎠
⎤
⎦ θ

⎛
⎝B̄ − E[

T∫
0

ât Btdt]
⎞
⎠

− E

⎡
⎣ T∫

0

mâ2
t dt

⎤
⎦

= − (
�̂1γ1

γ2
)
− γ1

γ1+γ2 T − E

[
e

γ1γ2 L
γ1+γ2

]
(
�̂1γ1

γ2
)
− γ1

γ1+γ2 θ

⎛
⎝B̄ − E

⎡
⎣ T∫

0

(
θ

2m
B2

t (
�̂1γ1

γ2
)
− γ1

γ1+γ2 E[e
γ1γ2 L
γ1+γ2 ](1 + γ1

γ2
)I{Ct≤2m} + BtI{Ct>2m}

)
dt

⎤
⎦
⎞
⎠

− E

⎡
⎣ T∫

0

m

(
θ2

4m2
B2

t (
�̂1γ1

γ2
)
− 2γ1

γ1+γ2

(
E[e

γ1γ2 L
γ1+γ2 ]

)2

(1 + γ1

γ2
)2I{Ct≤2m} + I{Ct>2m}

)
dt

⎤
⎦

= − (
�̂1γ1

γ2
)
− γ1

γ1+γ2 T − E

[
e

γ1γ2 L
γ1+γ2

]
(
�̂1γ1

γ2
)
− γ1

γ1+γ2 θ

⎛
⎝B̄ − E

⎡
⎣ T∫

0

BtI{Ct>2m}dt

⎤
⎦
⎞
⎠

+ θ2

2m

(
E[e

γ1γ2 L
γ1+γ2 ]

)2 (
1 + γ1

γ2
− 1

2
(1 + γ1

γ2
)2
)

E

⎡
⎣ T∫

0

B2
t I{Ct≤2m}dt

⎤
⎦ (

�̂1γ1

γ2
)
− 2γ1

γ1+γ2

− mE

⎡
⎣ T∫

0

I{Ct>2m}dt

⎤
⎦

= θ2

4m

(
E[e

γ1γ2 L
γ1+γ2 ]

)2

(1 − γ 2
1

γ 2
2

)E

⎡
⎣ T∫

0

B2
t I{Ct≤2m}dt

⎤
⎦ (

�̂1γ1

γ2
)
− 2γ1

γ1+γ2

−
⎛
⎝T + θ E[e

γ1γ2 L
γ1+γ2 ]

⎛
⎝B̄ − E

⎡
⎣ T∫

0

BtI{Ct>2m}dt

⎤
⎦
⎞
⎠
⎞
⎠ (

�̂1γ1

γ2
)
− γ1

γ1+γ2 − mE

⎡
⎣ T∫

0

I{Ct>2m}dt

⎤
⎦ .

According to (26), we have

R =
T∫

0

U1(0)dt + θ E[U1(−L)]
⎛
⎝B̄ − E

⎡
⎣ T∫

0

a∗
t Btdt

⎤
⎦
⎞
⎠− E

⎡
⎣ T∫

0

m(a∗
t )2dt

⎤
⎦

= − (T + θ B̄ E[eγ1 L]) + θ E[eγ1 L]E

⎡
⎣ T∫

0

(
θ

2m
Bt E[eγ1 L]I{θ Bt E[eγ1 L ]≤2m} + I{θ Bt E[eγ1 L ]>2m}

)
Btdt

⎤
⎦

− mE

⎡
⎣ T∫

0

(
θ2

4m2
(E[eγ1 L])2 B2

t I{θ Bt E[eγ1 L ]≤2m} + I{θ Bt E[eγ1 L ]>2m}
)

dt

⎤
⎦

= θ2

4m
(E[eγ1 L])2 E

⎡
⎣ T∫

0

B2
t I{θ Bt E[eγ1 L ]≤2m}dt

⎤
⎦

+ E

⎡
⎣ T∫

(θ Bt E[eγ1 L] − m)I{θ Bt E[eγ1 L ]>2m}dt

⎤
⎦− (T + θ B̄ E[eγ1 L]).
0
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Fig. 1. The other parameters are θ = 1, ρ = 1, γ1 = 2, and γ2 = 1. Furthermore, P {L = 2.0} = 0.5, P {L = 2.2} = 0.3, P {L = 2.4} = 0.2.

Even though the equation U1(�̂1) = R looks complicated, the monotonicity of U1(�1) and the uniqueness of �̂1 allow us to use the 
bisection method to find �̂1 in the following numerical analysis.

Equation (29) shows that P̂ i 
= Li , so full compensation is not optimal.

Example 1. To consider a numerical example, assume that the magnitude Y of the external risky events has exponential distribution, and 
the intensity ρ is constant: ρ(t) ≡ ρ ∈ [0, ∞).

We will investigate how the solution depends on the parameters θ , ρ , E[L], μ, γ1, γ2, and the variance of I(t) for t ∈ [0, T ]. We fix 
the other parameters as T = 1, Y0 = 1, m = 5, δ = 1, rt = 1, and A0 = 0.

The benchmark parameter values are θ = 1, ρ = 1, μ = 1, γ1 = 2, γ2 = 1, and L has probability distribution P {L = 2} = 0.5, P {L =
2.2} = 0.3, P {L = 2.4} = 0.2. Then, �̂1 = 0.0108 and the optimal insurance contract (for these parameter values) is given by

q̂t = 1.2794;

P̂ i =
⎧⎨
⎩

0.0539 if Li = 2.0
0.1873 if Li = 2.2
0.3206 if Li = 2.4;

ât = min{16.2321Bt,1}.
Since â is a stochastic process, we will consider E[ât ]. Figs. 1 to 4 show that q̂t , P̂ i , and E[ât] increase when the parameters μ, θ , ρ , 

and E[L] increase. These four parameters reflect the risk in different aspects. Thus, when the risk increases, the insurer requires a higher 
premium, pays less compensation, and requires the insured to increase his expected action.

Figs. 1 to 4 also show that the expected insured’s action decreases when time passes, and that the insured is required to take no action 
when maturity approaches. This is consistent with Remark 2 of Theorem 2.

Fig. 5 shows that when the insured’s risk aversion γ1 increases, the premium increases, the compensation decreases, and the expected 
action increases.

Fig. 6 shows how the solution depends on the insurer’s risk aversion γ2. We recall that the insured’s reservation utility presented in 
Section 5 is not affected by the insurer’s risk aversion γ2. Fig. 6 shows that the premium and the compensation decrease when the insurer’s 
risk aversion increases. This makes sense because, as the risk aversion increases, the insurer avoids risk by paying less compensation in 
exchange for receiving less premium.

We have also studied the situation in which the mean remains the same but the variance changes. Fig. 7 shows that the variance does 
not affect much the optimal premium q or compensation P when the mean is fixed. However, the optimal expected action E[â] decreases 
when the variance of I(t) increases. Since it is impossible to list the variances of I(t) for all t ∈ [0, T ] in the figure, we use the variance of 
I(T ) as a representation.

7. Conclusions

We have studied the optimal insurance contract that an insurer should propose to a potential insured. Motivated by climate change 
and catastrophic events, we have assumed that the number of claims process is a shot-noise Cox process. However, this model for the 
number of claims can be applied to many other risk management problems. This is the first paper on optimal insurance contracts that 
allows the number of claims to be a shot-noise Cox process. It is also a model in which persistent actions affect a Cox process.

To the best of our knowledge, we have obtained the first analytical solution for the optimal premium, the optimal compensation, and 
the optimal actions of the insured when the number of claims process is a Cox process. The solution shows that the optimal expected 
action decreases over time. It also shows that the amount of action decided by the insurer is restricted by the amount of action the 
potential insured selects when he is not in the insurance market.
W. Liu and A. Cadenillas Insurance: Mathematics and Economics 109 (2023) 69–93
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Fig. 2. The other parameters are ρ = 1, μ = 1, γ1 = 2, and γ2 = 1. Furthermore, P {L = 2.0} = 0.5, P {L = 2.2} = 0.3, P {L = 2.4} = 0.2.

Fig. 3. The other parameters are θ = 1, μ = 1, γ1 = 2, and γ2 = 1. Furthermore, P {L = 2.0} = 0.5, P {L = 2.2} = 0.3, P {L = 2.4} = 0.2.

Fig. 4. The other parameters are θ = 1, ρ = 1, μ = 1, γ1 = 2, and γ2 = 1.
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Fig. 5. The other parameters are θ = 1, μ = 1, ρ = 1, and γ2 = 1. Furthermore, P {L = 2.0} = 0.5, P {L = 2.2} = 0.3, P {L = 2.4} = 0.2.

Fig. 6. The other parameters are θ = 1, μ = 1, ρ = 1, and γ1 = 2. Furthermore, P {L = 2.0} = 0.5, P {L = 2.2} = 0.3, P {L = 2.4} = 0.2.

Fig. 7. The other parameters are θ = 1, γ1 = 2, and γ2 = 1. Furthermore, P {L = 2.0} = 0.5, P {L = 2.2} = 0.3, P {L = 2.4} = 0.2.
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An example with exponential utilities allows us to see how the solution depends on the parameters of the model.
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Appendix A. Proofs

A.1. Proof of Lemma 1

Proof. We denote

f (I, t) := 1

θ
Ieδt − μ

t∫
0

eδuρ(u)du.

It is obvious that f (I, t) is differentiable with respect to each I and t .

∣∣∣
∞∫

0

f (I + θ y, t)dFY (y) − f (I, t)
∣∣∣

=
∣∣∣

∞∫
0

⎛
⎝1

θ
(I + θ y)eδt − μ

t∫
0

eδuρ(u)du

⎞
⎠dFY (y) −

⎛
⎝1

θ
Ieδt − μ

t∫
0

eδuρ(u)du

⎞
⎠∣∣∣

=
∣∣∣eδtμ

∣∣∣< ∞
Applying (7), we obtain

A f (I, t) = 1

θ
Iδeδt − μeδtρ(t) − 1

θ
Iδeδt + ρ(t)

∞∫
0

⎛
⎝1

θ
(I + θ y)eδt − μ

t∫
0

eδuρ(u)du

⎞
⎠dFY (y)

−ρ(t)

⎛
⎝1

θ
Ieδt − μ

t∫
0

eδuρ(u)du

⎞
⎠

= −μeδtρ(t) + ρ(t)
1

θ
Ieδt + ρ(t)μeδt − ρ(t)μ

t∫
0

eδuρ(u)du

−ρ(t)
1

θ
Ieδt + ρ(t)μ

t∫
0

eδuρ(u)du

= 0.

According to Proposition 1 in Dassios and Embrechts (1989), we obtain that the stochastic process defined by

f (I(t), t) = 1

θ
I(t)eδt − μ

t∫
0

eδuρ(u)du

is a martingale. From (1), we can get the required statement. �
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A.2. Proof of Proposition 1

Proof. Na = {Na(t); t ≥ 0} is a Cox process with intensity process λ(·). From Lemma 3a of Grandell (1976) or Theorem 2.7 of Dassios and 
Jang (2003), we have

E[Na(T )] =
T∫

0

E[λ(t)]dt. (31)

According to equation (2),

E[λ(t)] = θ

(
(1 − e−t A0)E

[M(t)∑
i=0

Yie
δ(τi−t)

]
− e−(1+δ)t E

[(M(t)∑
i=0

Yie
δτi

) t∫
0

asrsesds
])

.

According to Lemma 1,

E
[M(t)∑

i=0

Yie
δ(τi−t)

]
= e−δt E

[M(t)∑
i=0

Yie
δτi

]
= e−δt

⎛
⎝Y0 + μ

t∫
0

ρ(u)eδudu

⎞
⎠

and

E
[(M(t)∑

i=0

Yie
δτi

) t∫
0

asrsesds
]

=
t∫

0

E

⎡
⎣asrses

(M(t)∑
i=0

Yie
δτi

)⎤⎦ds

= E

⎡
⎣ t∫

0

asrses E
[M(t)∑

i=0

Yie
δτi |Fs

]
ds

⎤
⎦

= E

⎡
⎣ t∫

0

asrses

⎛
⎝μ

t∫
s

ρ(u)eδudu +
M(s)∑
i=0

Yie
δτi

⎞
⎠ds

⎤
⎦ .

Therefore,

E[λ(t)] = θ(1 − e−t A0)e−δt

⎛
⎝Y0 + μ

t∫
0

ρ(u)eδudu

⎞
⎠

−θe−(1+δ)t E

⎡
⎣ t∫

0

asrses

⎛
⎝μ

t∫
s

ρ(u)eδudu +
M(s)∑
i=0

Yie
δτi

⎞
⎠ds

⎤
⎦ . (32)

We replace E[λ(t)] in (31) by (32) to obtain (8). �
A.3. Proof of Theorem 1

Proof. We split B̄ as B̄ = E

⎡
⎣ T∫

0

K Btdt

⎤
⎦+ B̄ − E

⎡
⎣ T∫

0

K Btdt

⎤
⎦. Then, we rewrite (14) to obtain

U1(�1) =
T∫

0

U1(wt − q�1
t )dt (33)

+E
[
U1(P�1 − L)

]
θ

⎛
⎝B̄ − E

⎡
⎣ T∫

0

K Btdt

⎤
⎦
⎞
⎠ (34)

+E
[
U1(P�1 − L)

]
θ

⎛
⎝E

⎡
⎣ T∫

0

K Btdt

⎤
⎦− E

⎡
⎣ T∫

0

a�1
t Btdt

⎤
⎦
⎞
⎠− E

⎡
⎣ T∫

0

V 1(a
�1
t )dt

⎤
⎦ (35)

From (15), q�1
t is a decreasing function of �1 for every t ∈ [0, T ]. Thus, the term (33) is an increasing function of �1. Recalling from (9)

that B̄ − E

⎡
⎣ T∫

at Btdt

⎤
⎦ ≥ 0, we obtain B̄ − E

⎡
⎣ T∫

K Btdt

⎤
⎦ ≥ 0. Also recalling that P�1 is an increasing function of �1 for every L ∈ R L , 
0 0
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we see that the term (34) is an increasing function of �1. Next, we will analyze the remaining terms in (35). For each ω ∈ � and each 
t ∈ [0, T ], consider

ϕ(�1) := θ E
[
U1(P�1 − L)

](
K − a�1

t

)
Bt − V 1(a

�1
t ).

We will show ϕ(�1) is an increasing function of �1. a�1
t takes different values for different �1, so we will discuss the following three 

cases.
(i) If �1 is such that a�1

t = 0, then we have

ϕ(�1) = θ E
[
U1(P�1 − L)

]
K Bt − V 1(0) = E

[
U1(P�1 − L)

]
K Bt . (36)

Recalling K ≥ 0, Bt ≥ 0, and P�1 is an increasing function of �1 for every L ∈ R L , we get (36) is an increasing function of �1.
(ii) If �1 is such that a�1

t = K , then we have

ϕ(�1) = θ E
[
U1(P�1 − L)

]
(K − K ) Bt − V 1(K ) = −V 1(K ). (37)

(37) is constant.

(iii) If �1 is such that a�1
t = V ′−1

1

(
− θ E[ 1

�1
U2(−g−1(�1, L)) + U1(g−1(�1, L) − L)]Bt

)
, then we have

ϕ′(�1) = θ E

[
U ′

1(P�1 − L)
∂ P�1

∂�1

]
(K − a�1

t )Bt + θ E
[
U1(P�1 − L)

]
Bt(−∂a�1

t

∂�1
) − V ′

1(a
�1
t )

∂a�1
t

∂�1
.

Here, P�1 = g−1(�1, L) and V ′
1(a

�1
t ) = −θ E[ 1

�1
U2(−g−1(�1, L)) + U1(g−1(�1, L) − L)]Bt . Now we have

ϕ′(�1) = θ E

[
U ′

1

(
g−1(�1, L) − L

) ∂ g−1(�1, L)

∂�1

]
(K − a�1

t )Bt + θ E
[
U1

(
g−1(�1, L) − L

)]
Bt(−∂a�1

t

∂�1
)

+θ E[ 1

�1
U2(−g−1(�1, L)) + U1(g−1(�1, L) − L)]Bt

∂a�1
t

∂�1

= θ E

[
U ′

1

(
g−1(�1, L) − L

) ∂ g−1(�1, L)

∂�1

]
(K − a�1

t )Bt + θ E[ 1

�1
U2(−g−1(�1, L))]Bt

∂a�1
t

∂�1
. (38)

Recalling the definition of u(�1) in (16), we can see a�1
t = V ′−1

1 (θ E[u(�1)]Bt). From (18), we obtain

∂a�1
t

∂�1
= V ′−1′

1 (θ E[u(�1)]Bt) θ Bt E[u′(�1)]

= V ′−1′
1 (θ E[u(�1)]Bt) θ Bt E[ 1

�2
1

U2(−g−1(�1, L))].

We rewrite (38) to get

ϕ′(�1) = θ E

[
U ′

1

(
g−1(�1, L) − L

) ∂ g−1(�1, L)

∂�1

]
(K − a�1

t )Bt (39)

+θ2 1

�3
1

(
E[U2(−g−1(�1, L))])2

B2
t V ′−1′

1 (θ E[u(�1)]Bt) . (40)

U1 is an increasing function and g−1(�1, L) is an increasing function of �1, meaning

U ′
1

(
g−1(�1, L) − L

) ∂ g−1(�1, L)

∂�1
> 0.

We also know that K − a�1
t > 0 and Bt ≥ 0 for every t ∈ [0, T ] and ω ∈ �. Therefore, (39) is non-negative. V ′

1 is an increasing function, so 
its inverse V ′−1

1 must also be an increasing function. We can state that V ′−1′
1 (θ E[u(�1)]Bt) ≥ 0 and therefore (40) is non-negative.

To summarize, we have shown that ϕ(�1) is an increasing function of �1 in each case. It is obvious that ϕ(�1) is continuous, so we 
state that ϕ(�1) is an increasing function of �1 in the interval �1 ∈ (0, ∞).

Taking the integration of ϕ(�1) from 0 to T and then taking the expectation on the integration, we obtain (35). So (35) increases 
when �1 increases. Recalling that (33) and (34) also increase when �1 increases, we conclude that U1(�1) is an increasing function of 
�1 ∈ (0, ∞). �
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A.4. Proof of Theorem 2

Proof. First, we want to verify that the process a defined by (22) satisfies the constraint (6).

We consider three possibilities for −θ E
[

1
�̂1

U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)
]

Bt . If

−θ E

[
1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)

]
Bt < 0,

then ât = 0 and the constraint (6) is trivially satisfied. If

−θ E

[
1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)

]
Bt > V ′

1(K ),

then ât = K and the constraint (6) is trivially satisfied. If

0 ≤ −θ E

[
1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)

]
Bt ≤ V ′

1(K ),

then the strict convexity of V 1 and the condition V ′
1(0) = 0 imply that

0 ≤ V ′−1
1

(
−θ E

[
1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)

]
Bt

)
≤ K ,

which is equivalent to 0 ≤ ât ≤ K . Hence, ât ∈ [0, K ] for each t ∈ [0, T ] and (22) satisfies the condition (6).
Let a be a fixed admissible action process that satisfies (6). Then we find the first order conditions similar to (11) for Pi and qt ,

U ′
2(−Pi) − �aU ′

1(Pi − Li) = 0, U ′
2(qt) − �aU ′

1(wt − qt) = 0, (41)

where �a is the Lagrangian multiplier. Since U1 and U2 are increasing functions, �a must be positive to make the equations above 
meaningful. The solution of the first order conditions is

P a
i = g−1(�a, Li), qa

t = −g−1(�a,−wt).

We define

Ua(�
a) := E

⎡
⎣ T∫

0

U1(wt + g−1(�a,−wt))dt +
Na(T )∑

i=1

U1(g−1(�a, Li) − Li) −
T∫

0

V 1(at)dt

⎤
⎦ .

We denote the root of Ua(�
a) = R by �̂a and correspondingly we define P̂ a

i := g−1(�̂a, Li) and q̂a
t := −g−1(�̂a, −wt). Next, we discuss 

the existence of �̂a for a fixed process a. We will show that �̂a exists if for the fixed process a, there are compensation and premium 
processes such that (5) holds. For the fixed process a, let P = {Pi; i = 1, 2, · · · } and q = {qt; t ∈ [0, T ]} be any adapted compensation 
sequence and premium process that satisfy (5). When �a → ∞,

g−1(�a, Li) → ∞, g−1(�a,−wt) → ∞,

which yields g−1(�a, Li) ≥ Pi for i = 1, 2, · · · and g−1(�a, −wt) ≥ −qt for t ∈ [0, T ]. Recalling that U1 is an increasing function, we have

lim
�a→∞Ua(�

a) ≥ E

⎡
⎣ T∫

0

U1(wt − qt)dt +
Na(T )∑

i=1

U1(Pi − Li) −
T∫

0

V 1(at)dt

⎤
⎦≥ R

from (5). When �a → 0+ ,

g−1(�a, Li) → −∞, g−1(�a,−wt) → −∞,

resulting in Ua(�
a) → −∞ and consequently Ua(�

a) < R . Due to the continuity of Ua(�
a), we see that there exists �̂a ∈ (0, ∞) such 

that Ua(�̂
a) = R holds.

We will prove Theorem 2 in two steps. First, we will show J (q̂a, P̂ a, a) ≥ J (q, P , a) for any fixed action process a that satisfies (6). 
Afterwards, we will show J (q̂, P̂ , ̂a) ≥J (q̂a, P̂ a, a). We need some preparation before starting the steps.

Lemma 3.

θ E

[
1
ˆ U2(− P̂ ) + U1( P̂ − L)

]
Bt(at − ât) ≥ V 1(ât) − V 1(at).
�1
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Proof. According to (20) and (21), it is sufficient to prove that

θ E

[
1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)

]
Bt(at − ât) ≥ V 1(ât) − V 1(at).

If 0 < ât < K ,

V ′
1(ât)(ât − at) = θ E[ 1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)]Bt(at − ât).

If ât = K , then

ât − at = K − at ≥ 0 and V ′
1(ât) = V ′

1(K ) < −θ E[ 1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)]Bt

which yields

V ′
1(ât)(ât − at) ≤ θ E[ 1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)]Bt(at − ât).

If ât = 0, then

ât − at = 0 − at ≤ 0 and V ′
1(ât) = V ′

1(0) = 0 > −θ E[ 1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)]Bt

which yields

V ′
1(ât)(ât − at) ≤ θ E[ 1

�̂1
U2(−g−1(�̂1, L)) + U1(g−1(�̂1, L) − L)]Bt(at − ât).

Due to the convexity of V 1, we have V ′
1(ât)(ât − at) ≥ V 1(ât) − V 1(at). The required statement follows. �

Step 1. Since U1 and U2 are both concave functions, we obtain the inequality

T∫
0

U1(wt − qt)dt +
Na(T )∑

i=1

U1(Pi − Li) −
⎛
⎝ T∫

0

U1(wt − q̂a
t )dt +

Na(T )∑
i=1

U1( P̂ a
i − Li)

⎞
⎠

≤
T∫

0

U ′
1(wt − q̂a

t )(q̂
a
t − qt)dt +

Na(T )∑
i=1

(
U ′

1( P̂ a
i − Li)(Pi − P̂ a

i )
)

. (42)

Furthermore, (4) implies

J (q̂a, P̂ a,a) −J (q, P ,a) = E

⎡
⎣ T∫

0

(
U2(q̂

a
t ) − U2(qt)

)
dt +

Na(T )∑
i=1

(
U2(− P̂ a

i ) − U2(−Pi)
)⎤⎦ ,

which yields

J (q̂a, P̂ a,a) −J (q, P ,a) ≥ E

⎡
⎣ T∫

0

U ′
2(q̂

a
t )(q̂

a
t − qt)dt +

Na(T )∑
i=1

(
U ′

2(− P̂ a
i )(Pi − P̂ a

i )
)⎤⎦ . (43)

According to (41), we can replace U ′
2(q̂

a
t ) by �̂aU ′

1(wt − q̂a
t ) and replace U ′

2(− P̂ a
i ) by �̂aU ′

1( P̂ a
i − Li) in (43). Comparing (42) and (43), we 

obtain

J (q̂a, P̂ a,a) −J (q, P ,a)

≥ E

⎡
⎣ T∫

0

�̂aU ′
1(wt − q̂a

t )(q̂
a
t − qt)dt + �̂a

Na(T )∑
i=1

(
U ′

1( P̂ a
i − Li)(Pi − P̂ a

i )
)⎤⎦

≥ �̂a E

⎡
⎣ T∫

0

U1(wt − qt)dt +
Na(T )∑

i=1

U1(Pi − Li) −
⎛
⎝ T∫

0

U1(wt − q̂a
t )dt +

Na(T )∑
i=1

U1( P̂ a
i − Li)

⎞
⎠
⎤
⎦ .

According to (5), we obtain

J (q̂a, P̂ a,a) −J (q, P ,a) ≥ �̂a

⎛
⎝(R + E

⎡
⎣ T∫

V 1(at)dt

⎤
⎦) − (R + E

⎡
⎣ T∫

V 1(at)dt

⎤
⎦)

⎞
⎠= 0.
0 0
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Therefore, q̂a and P̂ a are the optimal controls when a is the fixed action process.

Step 2. As a Lagrangian multiplier, �̂a is a constant. The randomness of P̂ a
i depends on Li only, so P̂ a

i is independent of Na(t) for 
i = 1, 2, · · · , and we get the following equations for any a satisfying (5) and (6).

E

⎡
⎣Na(T )∑

i=1

U1( P̂ a
i − Li)

⎤
⎦= E[Na(T )]E

[
U1( P̂ a − L)

]
, E

⎡
⎣Na(T )∑

i=1

U2(− P̂ a
i )

⎤
⎦= E[Na(T )]E

[
U2(− P̂ a)

]
, (44)

where E[Na(T )] = θ E

⎡
⎣B̄ −

T∫
0

at Btdt

⎤
⎦ from (9). Similarly, we obtain

E

⎡
⎣Nâ(T )∑

i=1

U1( P̂ i − Li)

⎤
⎦= E[Nâ(T )]E

[
U1( P̂ − L)

]
, E

⎡
⎣Nâ(T )∑

i=1

U2(− P̂ i)

⎤
⎦= E[Nâ(T )]E

[
U2(− P̂ )

]
, (45)

where E[Nâ(T )] = θ E

⎡
⎣B̄ −

T∫
0

ât Btdt

⎤
⎦. Hence, the difference between J (q̂, P̂ , ̂a) and J (q̂a, P̂ a, a) is

J (q̂, P̂ , â) −J (q̂a, P̂ a,a)

=
T∫

0

(
U2(q̂t) − U2(q̂

a
t )
)

dt + E

⎡
⎣Nâ(T )∑

i=1

U2(− P̂ i) −
Na(T )∑

i=1

U2(− P̂ a
i )

⎤
⎦

=
T∫

0

(
U2(q̂t) − U2(q̂

a
t )
)

dt

+θ E

⎡
⎣B̄ −

T∫
0

ât Btdt

⎤
⎦ E

[
U2(− P̂ )

]
− θ E

⎡
⎣B̄ −

T∫
0

at Btdt

⎤
⎦ E

[
U2(− P̂ a)

]

=
T∫

0

(
U2(q̂t) − U2(q̂

a
t )
)

dt + θ E

⎡
⎣ T∫

0

(at − ât)Btdt

⎤
⎦ E

[
U2(− P̂ )

]

+θ E

⎡
⎣B̄ −

T∫
0

at Btdt

⎤
⎦ E

[
U2(− P̂ ) − U2(− P̂ a)

]
.

Recalling E
[

B̄ − ∫ T
0 at Btdt

]
≥ 0 and the concavity of the utility function U2, we obtain

J (q̂, P̂ , â) −J (q̂a, P̂ a,a) ≥
T∫

0

U ′
2(q̂t)(q̂t − q̂a

t )dt + θ E

⎡
⎣ T∫

0

(at − ât)Btdt

⎤
⎦ E

[
U2(− P̂ )

]

+θ E

⎡
⎣B̄ −

T∫
0

at Btdt

⎤
⎦ E

[
U ′

2(− P̂ )( P̂ a − P̂ )
]
.

According to (11), this inequality can be rewritten as

J (q̂, P̂ , â) −J (q̂a, P̂ a,a) ≥
T∫

0

�̂1U ′
1(wt − q̂t)(q̂t − q̂a

t )dt + θ E

⎡
⎣ T∫

0

(at − ât)Btdt

⎤
⎦ E

[
U2(− P̂ )

]

+θ E

⎡
⎣B̄ −

T∫
0

at Btdt

⎤
⎦ E

[
�̂1U ′

1( P̂ − L)( P̂ a − P̂ )
]
.

Due to the concavity of the utility function U1, we have

J (q̂, P̂ , â) −J (q̂a, P̂ a,a)

≥ �̂1

T∫ (
U1(wt − q̂a

t ) − U1(wt − q̂t)
)

dt
0

87



W. Liu and A. Cadenillas Insurance: Mathematics and Economics 109 (2023) 69–93
+�̂1θ E

⎡
⎣ T∫

0

(at − ât)Btdt

⎤
⎦ E

[
1

�̂1
U2(− P̂ ) + U1( P̂ − L) − U1( P̂ − L)

]

+�̂1θ E

⎡
⎣B̄ −

T∫
0

at Btdt

⎤
⎦ E

[
U1( P̂ a − L) − U1( P̂ − L)

]
.

Applying Lemma 3, we obtain

1

�̂1

(
J (q̂, P̂ , â) −J (q̂a, P̂ a,a)

)

≥
T∫

0

(
U1(wt − q̂a

t ) − U1(wt − q̂t)
)

dt + E

⎡
⎣ T∫

0

(
V 1(ât) − V 1(at)

)
dt

⎤
⎦

+θ E

⎡
⎣ T∫

0

(ât − at)Btdt

⎤
⎦ E

[
U1( P̂ − L)

]
+ θ E

⎡
⎣B̄ −

T∫
0

at Btdt

⎤
⎦ E

[
U1( P̂ a − L) − U1( P̂ − L)

]

=
T∫

0

(
U1(wt − q̂a

t ) − U1(wt − q̂t)
)

dt + E

⎡
⎣ T∫

0

(
V 1(ât) − V 1(at)

)
dt

⎤
⎦

+θ E

⎡
⎣B̄ −

T∫
0

at Btdt

⎤
⎦ E

[
U1( P̂ a − L)

]
− θ E

⎡
⎣B̄ −

T∫
0

ât Btdt

⎤
⎦ E

[
U1( P̂ − L)

]
.

Applying (44) and (45)to the expression above, we obtain

1

�̂1

(
J (q̂, P̂ , â) −J (q̂a, P̂ a,a)

)
≥ E

⎡
⎣ T∫

0

U1(wt − q̂a
t )dt +

Na(T )∑
i=1

U1( P̂ a
i − Li) −

T∫
0

V 1(at)dt

⎤
⎦

−E

⎡
⎣ T∫

0

U1(wt − q̂t)dt +
Nâ(T )∑

i=1

U1( P̂ i − Li) −
T∫

0

V 1(ât)dt

⎤
⎦

= R − R = 0.

Therefore, J (q̂, P̂ , ̂a) ≥ J (q, P , a) for every admissible control (q, P , a) that satisfies the constraints of Problem 1. If �̂1 > 0 satisfies (19), 
we conclude that (q̂, P̂ , ̂a) is the optimal solution. �
A.5. Proof of Proposition 2

Proof. Let {at}t∈[0,T ] be any action process that satisfies the constraints of Problem 2. We will compare the utilities from implementing 
the two action processes a∗ and a. We denote by D(a∗, a) the difference of the expected total utilities associated with a∗ and a. That is,

D(a∗,a) : = E

⎡
⎣ T∫

0

U1(wt)dt +
Na∗

(T )∑
i=1

U1(−Li) −
T∫

0

V 1(a
∗
t )dt

⎤
⎦

−E

⎡
⎣ T∫

0

U1(wt)dt +
Na(T )∑

i=1

U1(−Li) −
T∫

0

V 1(at)dt

⎤
⎦ .

According to (23), we have

D(a∗,a) =E [U1(−L)]

⎛
⎝θ B̄ − θ E

⎡
⎣ T∫

0

a∗
t Btdt

⎤
⎦
⎞
⎠− E [U1(−L)]

⎛
⎝θ B̄ − θ E

⎡
⎣ T∫

0

at Btdt

⎤
⎦
⎞
⎠

+ E

⎡
⎣ T∫

0

(
V 1(at) − V 1(a

∗
t )
)

dt

⎤
⎦

=θ E[U1(−L)]
⎛
⎝E

⎡
⎣ T∫

0

(at − a∗
t )Btdt

⎤
⎦
⎞
⎠+ E

⎡
⎣ T∫

0

(
V 1(at) − V 1(a

∗
t )
)

dt

⎤
⎦ .
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The convexity of V 1 implies

D(a∗,a) ≥ θ E[U1(−L)]
⎛
⎝E

⎡
⎣ T∫

0

(at − a∗
t )Btdt

⎤
⎦
⎞
⎠+ E

⎡
⎣ T∫

0

V ′
1(a

∗
t )(at − a∗

t )dt

⎤
⎦

= E

⎡
⎣ T∫

0

(
V ′

1(a
∗
t ) + θ E[U1(−L)]Bt

)
(at − a∗

t )dt

⎤
⎦ .

Next, we consider the two cases described in equation (25). If a∗
t = K , from (25), we have

at − a∗
t = at − K ≤ 0 and V ′

1(a
∗
t ) = V ′

1(K ) ≤ −θ E[U1(−L)]Bt

which yields(
V ′

1(a
∗
t ) + θ E[U1(−L)]Bt

)
(at − a∗

t ) ≥ 0.

Otherwise, if a∗
t = V ′−1

1 (−θ Bt E[U1(−L)]), we have V ′
1(a

∗
t ) = −θ E[U1(−L)]Bt , which yields(

V ′
1(a

∗
t ) + θ E[U1(−L)]Bt

)
(at − a∗

t ) = 0.

Now we can obtain D(a∗, a) ≥ 0 and conclude that the action process a∗ is the optimal control of Problem 2. �
A.6. Proof of Theorem 3

Proof. Since U2(0) ≤ 0 and �1 > 0, we have − 1

�1
U2(0)θ Bt ≥ 0. We will consider three cases for a�1

t .

(i) Consider a�1
t = 0. Then, V ′

1(a
�1
t ) = V ′

1(0) = 0. Noting a∗
t > 0, we know V ′

1(a
∗
t ) > 0. It follows that

V ′
1(a

�1
t ) ≤ V ′

1(a
∗
t ) ≤ V ′

1(a
∗
t ) − 1

�1
U2(0)θ Bt .

(ii) Consider a�1
t = K . From (15), we have

V ′
1(a

�1
t ) = V ′

1(K ) < −θ E

[
1

�1
U2(−g−1(�1, L)) + U1(g−1(�1, L) − L)

]
Bt .

If a∗
t = V ′−1

1 (−θ Bt E[U1(−L)]), we have

V ′
1(a

∗
t ) = −θ Bt E[U1(−L)].

It follows that

V ′
1(a

�1
t ) − V ′

1(a
∗
t ) ≤ −θ Bt E

[
1

�1
U2(−g−1(�1, L)) + U1(g−1(�1, L) − L) − U1(−L)

]
.

The concavity of the utility functions implies

U1(g−1(�1, L) − L) − U1(−L) ≥ g−1(�1, L)U ′
1(g−1(�1, L) − L)

and

U2(0) − U2(−g−1(�1, L)) ≤ g−1(�1, L)U ′
2(−g−1(�1, L))

for every L ∈ R L , so we have

V ′
1(a

�1
t ) − V ′

1(a
∗
t ) ≤ −θ Bt E

[
1

�1
U2(−g−1(�1, L)) + g−1(�1, L)U ′

1(g−1(�1, L) − L)

]

= −θ Bt E

[
1

�1
U2(−g−1(�1, L)) + g−1(�1, L)

1

�1
U ′

2(−g−1(�1, L))

]

≤ − 1

�1
θU2(0)Bt . (46)

If a∗
t = K , then

V ′
1(a

�1
t ) − V ′

1(a
∗
t ) = V ′

1(K ) − V ′
1(K ) = 0 ≤ − 1

�1
θU2(0)Bt .

(iii) Consider a�1
t = V ′−1

1

(
−θ E[ 1

U2(−g−1(�1, L)) + U1(g−1(�1, L) − L)]Bt

)
.

�1
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If a∗
t = V ′−1

1 (−θ Bt E[U1(−L)]), we have

V ′
1(a

�1
t ) − V ′

1(a
∗
t ) = −θ Bt E

[
1

�1
U2(−g−1(�1, L)) + U1(g−1(�1, L) − L) − U1(−L)

]
.

Now we can repeat (46) to get V ′
1(a

�1
t ) − V ′

1(a
∗
t ) ≤ − 1

�1
θU2(0)Bt .

If a∗
t = K , it is obvious that

V ′
1(a

�1
t ) − V ′

1(a
∗
t ) = V ′

1(a
�1
t ) − V ′

1(K ) < 0 ≤ − 1

�1
θU2(0)Bt .

As a summary of all the cases discussed above, the required statement is proved. �
A.7. Proof of Lemma 2

Proof. We consider φ(λ) := E[U1(g−1(λ, L) − L)] as a function of λ. From the definition of the function g , we have g(0, L) = U ′
2(0)

U ′
1(0 − L)

. 

It follows that g−1
(

U ′
2(0)

U ′
1(−L)

, L

)
= 0. When λ = U ′

2(0)

U ′
1(− inf R L)

, λ ≥ U ′
2(0)

U ′
1(−L)

for every L ∈ R L due to the concavity of U1. Since g−1(·, x2)

is an increasing function, g−1(λ, L) ≥ 0 for every L ∈ R L . It results in φ(λ) ≥ E [U1(−L)]. When λ = U ′
2(0)

U ′
1(− sup R L)

, λ ≤ U ′
2(0)

U ′
1(−L)

for every 

L ∈ R L . Then we have g−1(λ, L) ≤ 0 for every L ∈ R L and φ(λ) ≤ E [U1(−L)]. φ(λ) is continuous and monotone because g−1 and U1 are 
continuous and monotone functions. Using the Mean Value Theorem, we can conclude there is a unique �1 such that φ(�1) = E [U1(−L)]

and �1 ∈
[

U ′
2(0)

U ′
1(− sup R L)

,
U ′

2(0)

U ′
1(− inf R L)

]
.

Noting P�1 = g−1(�1, L), we have E[U1(P�1 − L)] = E[U1(−L)] according to (27). From (14),

U1(�1) =
T∫

0

U1(wt − q
�1
t )dt + E [U1(−L)] θ

⎛
⎝B̄ − E[

T∫
0

a
�1
t Btdt]

⎞
⎠− E

⎡
⎣ T∫

0

V 1(a
�1
t )dt

⎤
⎦ .

Comparing (26) and the expression above, we obtain

R −U1(�1) =
T∫

0

(
U1(wt) − U1(wt − q

�1
t )

)
dt + θ E[U1(−L)]E

⎡
⎣ T∫

0

(a
�1
t − a∗

t )Btdt

⎤
⎦

+E

⎡
⎣ T∫

0

(
V 1(a

�1
t ) − V 1(a

∗
t )
)

dt

⎤
⎦ .

The range of �1 indicates that �1 <
U ′

2(0)

U ′
1(0)

<
U ′

2(0)

U ′
1(wt)

. It yields q
�1
t > 0 and U1(wt) − U1(wt − q

�1
t ) > 0 for t ∈ [0, T ]. Thus, the equation 

above implies

R −U1(�1) > θ E[U1(−L)]E

⎡
⎣ T∫

0

(a
�1
t − a∗

t )Btdt

⎤
⎦+ E

⎡
⎣ T∫

0

(
V 1(a

�1
t ) − V 1(a

∗
t )
)

dt

⎤
⎦ .

Since V 1(·) is a convex function, V 1(a
�1
t ) − V 1(a∗

t ) ≥ V ′
1(a

∗
t ) 
(

a
�1
t − a∗

t

)
. Hence,

R −U1(�1) > E

⎡
⎣ T∫

0

(
θ E[U1(−L)]Bt + V ′

1(a
∗
t )
)
(a

�1
t − a∗

t )dt

⎤
⎦ . (47)

Next, we consider the two cases described in (25). If a∗
t = K , then from (25),

V ′
1(a

∗
t ) < −θ E[U1(−L)]Bt and a

�1
t ≤ a∗

t ,

which yield 
(
θ E[U1(−L)]Bt + V ′

1(a
∗
t )
)
(a

�1
t − a∗

t ) ≥ 0. If a∗
t = V ′−1

1 (−θ E[U1(−L)]Bt), then

V ′
1(a

∗
t ) = −θ E[U1(−L)]Bt

which yields 
(
θ E[U1(−L)]Bt + V ′

1(a
∗
t )
)
(a

�1
t − a∗

t ) = 0. Then, from (47), we obtain R −U1(�1) > 0. �
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A.8. Proof of Theorem 4

Proof. Our first objective is to show that U1(�1) ≥ R when �1 → ∞. Here R is presented in (26). Since lim
�1→∞

1

�1
U2(0)θ Bt = 0 almost 

surely for each t ∈ [0, T ], we have lim
�1→∞a�1

t ≤ a∗
t almost surely for t ∈ [0, T ] according to Theorem 3. From the definition of P�1 and q�1

t

in (15), we have

U ′
2(−P�1)

U ′
1(P�1 − L)

= �1 and
U ′

2(q
�1
t )

U ′
1(wt − q�1

t )
= �1.

When �1 → ∞, we obtain P�1 → ∞ and q�1
t → −∞, which means P�1 > 0 for every L ∈ R L and q�1

t < 0 for every t ∈ [0, T ]. To simplify 

the notation, we rewrite B̄ as B̄ =
T∫

0

btdt , where

bt := (1 − e−t A0)e−δt

⎛
⎝Y0 + μ

t∫
0

ρ(u)eδudu

⎞
⎠ .

If lim
�1→∞a�1

t = K , then a∗
t = K and

(
θ E

[
U1(P�1 − L)

](
bt − a�1

t Bt

)
− V 1(a

�1
t )

)
−
(
θ E[U1(−L)] (bt − a∗

t Bt
)− V 1(a

∗
t )
)

=
(
θ E

[
U1(P�1 − L)

]
(bt − K Bt) − V 1(K )

)
−
(
θ E[U1(−L)] (bt − K Bt) − V 1(K )

)
= θ E

[
U1(P�1 − L) − U1(−L)

] (
bt − a∗

t Bt
)

(48)

almost surely when �1 → ∞. If lim
�1→∞a�1

t < K , then from (15), we have

lim
�1→∞ V ′

1(a
�1
t ) ≥ lim

�1→∞−θ E

[
1

�1
U2(−g−1(�1, L)) + U1(g−1(�1, L) − L)

]
Bt

= lim
�1→∞−θ E

[
1

�1
U2(−P�1) + U1(P�1 − L)

]
Bt .

Noting lim
�1→∞ P�1 > 0 and the negativity property of U2 in (3), we get

lim
�1→∞ V ′

1(a
�1
t ) ≥ lim

�1→∞−θ E
[
U1(P�1 − L)

]
Bt .

Hence,

V 1(a
∗
t ) − lim

�1→∞ V 1(a
�1
t ) ≥ lim

�1→∞ V ′
1(a

�1
t )(a∗

t − a�1
t ) ≥ lim

�1→∞−θ E
[
U1(P�1 − L)

]
Bt(a

∗
t − a�1

t )

almost surely, and consequently(
θ E

[
U1(P�1 − L)

](
bt − a�1

t Bt

)
− V 1(a

�1
t )

)
−
(
θ E[U1(−L)] (bt − a∗

t Bt
)− V 1(a

∗
t )
)

≥ θ E
[
U1(P�1 − L)

](
bt − a�1

t Bt

)
− θ E[U1(−L)] (bt − a∗

t Bt
)− θ E

[
U1(P�1 − L)

]
Bt(a

∗
t − a�1

t )

= θ E
[
U1(P�1 − L) − U1(−L)

] (
bt − a∗

t Bt
)

(49)

almost surely when �1 → ∞. From (48) and (49), we see that it is almost surely that(
θ E

[
U1(P�1 − L)

](
bt − a�1

t Bt

)
− V 1(a

�1
t )

)
−
(
θ E[U1(−L)] (bt − a∗

t Bt
)− V 1(a

∗
t )
)

≥ θ E
[
U1(P�1 − L) − U1(−L)

] (
bt − a∗

t Bt
)

for each case when �1 → ∞. Integrating and taking expectation on both sides of the above inequality, we obtain

(
θ E

[
U1(P�1 − L)

]
E

⎡
⎣ T∫

0

btdt −
T∫

0

a�1
t Btdt

⎤
⎦− E

⎡
⎣ T∫

0

V 1(a
�1
t )dt

⎤
⎦)

−
(

θ E [U1(−L)] E

⎡
⎣ T∫

btdt −
T∫

a∗
t Btdt

⎤
⎦− E

⎡
⎣ T∫

V 1(a
∗
t )dt

⎤
⎦)
0 0 0
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≥ θ E
[
U1(P�1 − L) − U1(−L)

]
E

⎡
⎣ T∫

0

btdt −
T∫

0

a∗
t Btdt

⎤
⎦ ,

which is equivalent to(
θ E

[
U1(P�1 − L)

]
E

⎡
⎣B̄ −

T∫
0

a�1
t Btdt

⎤
⎦− E

⎡
⎣ T∫

0

V 1(a
�1
t )dt

⎤
⎦)

−
(

θ E [U1(−L)] E

⎡
⎣B̄ −

T∫
0

a∗
t Btdt

⎤
⎦− E

⎡
⎣ T∫

0

V 1(a
∗
t )dt

⎤
⎦
)

≥ θ E
[
U1(P�1 − L) − U1(−L)

]
E

⎡
⎣B̄ −

T∫
0

a∗
t Btdt

⎤
⎦ . (50)

Recalling B̄ − E

⎡
⎣ T∫

0

a∗
t Btdt

⎤
⎦≥ 0 and lim

�1→∞ P�1 > 0 for every L ∈ R L , we obtain that the right-hand-side of (50) is non-negative. Thus,

θ E
[
U1(P�1 − L)

]
E

⎡
⎣B̄ −

T∫
0

a�1
t Btdt

⎤
⎦− E

⎡
⎣ T∫

0

V 1(a
�1
t )dt

⎤
⎦

≥ θ E [U1(−L)] E

⎡
⎣B̄ −

T∫
0

a∗
t Btdt

⎤
⎦− E

⎡
⎣ T∫

0

V 1(a
∗
t )dt

⎤
⎦ (51)

when �1 → ∞. Recalling that lim
�1→∞ q�1

t < 0 for t ∈ [0, T ], we have

lim
�1→∞ U1(wt − q�1

t ) > U1(wt) (52)

for t ∈ [0, T ]. Combining (51) and (52), we obtain

T∫
0

U1(wt − q�1
t )dt + θ E

[
U1(P�1 − L)

]⎛⎝B̄ − E

⎡
⎣ T∫

0

a�1
t Btdt

⎤
⎦
⎞
⎠− E

⎡
⎣ T∫

0

V 1(a
�1
t )dt

⎤
⎦

>

T∫
0

U1(wt)dt + θ E[U1(−L)]
⎛
⎝B̄ − E

⎡
⎣ T∫

0

a∗
t Btdt

⎤
⎦
⎞
⎠− E

⎡
⎣ T∫

0

V 1(a
∗
t )dt

⎤
⎦

when �1 → ∞. This is equivalent to lim
�1→∞U1(�1) > R . Lemma 2 states that U1(�1) < R . U1(�1) is a continuous function of �1. 

From Theorem 1, we also know that U1(�1) is an increasing function of �1. Therefore, there is a unique �̂1 such that (19) holds and 
�̂1 ∈ (�1, ∞). �
A.9. Proof of Corollary 2

Proof. From (15), we see that q�1
t = −g−1(�1, −wt) = 0 when �1 = g(0, −wt) = U ′

2(0)

U ′
1(wt)

for each t ∈ [0, T ]. Noting that �̄1 =
U ′

2(0)

U ′
1(wsup)

≥ U ′
2(0)

U ′
1(wt)

and that q�1
t is a decreasing function of �1 for t ∈ [0, T ], we have q�̄1

t ≤ 0 for t ∈ [0, T ].

From (15), we see that P�1 = g−1(�1, L) = 0 when �1 = g(0, L) = U ′
2(0)

U ′
1(−L)

for each L ∈ R L . Noting that �̄1 = U ′
2(0)

U ′
1(wsup)

>
U ′

2(0)

U ′
1(−L)

and that P�1 is an increasing function of �1 for L ∈ R L , we have P �̄1 > 0 for L ∈ R L .
From (14) and (26), we obtain

U1(�̄1) − R =
T∫

0

(
U1(wt − q�̄1

t ) − U1(wt)
)

dt

+ θ E
[

U1(P �̄1 − L)
]⎛⎝B̄ − E

⎡
⎣ T∫

a�̄1
t Btdt

⎤
⎦
⎞
⎠− θ E[U1(−L)]

⎛
⎝B̄ − E

⎡
⎣ T∫

a∗
t Btdt

⎤
⎦
⎞
⎠

0 0
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+ E

⎡
⎣ T∫

0

(
V 1(a

∗
t ) − V 1(a

�̄1
t )

)
dt

⎤
⎦ .

In the above equation, we have U1(wt − q�̄1
t ) − U1(wt) ≥ 0 for t ∈ [0, T ] because q�̄1

t ≤ 0 for t ∈ [0, T ]. Since P �̄1 > 0 for L ∈ R L , we have

−θ E[U1(−L)]
⎛
⎝B̄ − E

⎡
⎣ T∫

0

a∗
t Btdt

⎤
⎦
⎞
⎠≥ −θ E[U1(P �̄1 − L)]

⎛
⎝B̄ − E

⎡
⎣ T∫

0

a∗
t Btdt

⎤
⎦
⎞
⎠ .

From (15), we also have

V 1(a
∗
t ) − V 1(a

�̄1
t ) ≥V ′

1(a
�̄1
t )(a∗

t − a�̄1
t )

= − θ E

[
1

�̄1
U2(−P �̄1) + U1(P �̄1 − L)

]
Bt(a

∗
t − a�̄1

t ).

Hence, we obtain

U1(�̄1) − R ≥ θ E
[

U1(P �̄1 − L)
]⎛⎝B̄ − E

⎡
⎣ T∫

0

a�̄1
t Btdt

⎤
⎦
⎞
⎠− θ E[U1(P �̄1 − L)]

⎛
⎝B̄ − E

⎡
⎣ T∫

0

a∗
t Btdt

⎤
⎦
⎞
⎠

−θ E

[
1

�̄1
U2(−P �̄1) + U1(P �̄1 − L)

]
E

⎡
⎣ T∫

0

Bt(a
∗
t − a�̄1

t )dt

⎤
⎦

= −θ E

[
1

�̄1
U2(−P �̄1)

]
E

⎡
⎣ T∫

0

Bt(a
∗
t − a�̄1

t )dt

⎤
⎦ . (53)

Here, E
[

U2(−P �̄1 )
]

≤ 0 because P �̄1 ≥ 0 for each L ∈ R L . Corollary 1 shows that a∗
t − a�̄1

t ≥ 0 for every t ∈ [0, T ] when U2(0) = 0. Now 

we can get U1(�̄1) − R ≥ 0 from (53). Because U1(�1) is an increasing function of �1, �̂1 < �̄1. Theorem 4 shows that �̂1 > �1, so we 
can conclude the unique �̂1 is located in the interval (�1, �̄1). �
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