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The aim of this paper is to study the optimal time for the individual to join an unemployment insurance 
scheme which is intended to protect workers against the consequences of job loss and to encourage 
the unemployed workers to find a new job as early as possible. The wage dynamic is described by a 
geometric Brownian motion model under drift uncertainty and the problem is a kind of two-dimensional 
degenerate optimal stopping problems which is hard to analyze. The optimal time of decision for the 
workers is given by the first time at which the wage process hits the free boundary which therefore 
plays a key role in solving the problem. This paper analyzes the monotonicity and continuity of the free 
boundary and derives a nonlinear integral equation for it. For a particular case the closed-form formula of 
free boundary is obtained and for the general case the free boundary is solved by the numerical solution 
of the nonlinear integral equation. The key in the analysis is to convert the degenerate problem into the 
non-degenerate one using the probability approach.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Due to the COVID-19 pandemic, unemployment poses great challenge to society. The decision for the individual to enter an unemploy-
ment insurance (UI) contract is crucial to help cushion the financial blow of loss of job. Various UI systems are available in many countries 
and funded by the governments or insurance company (Holmlund (1998)). Mortensen (1977) has been a basic reference in the literature 
on UI. The design of UI contract has received considerable attention from economic literature (see e.g., Hopenhayn and Nicolini (2009), 
Biagini and Widenmann (2012), Biagini et al. (2013), Barnichon and Zylberberg (2022), and the recent book Potestio (2022) and references 
therein).

A particular type of UI products is designed to help cushion the financial blow of loss of job and to encourage unemployed workers 
to find a new job as early as possible in view of the continued reduction of benefits. The protection is normally provided in the form of 
regular financial benefits payable after the insured individual becomes unemployed and until a new job is found, but often only up to 
a certain maximum duration and with payments gradually decreasing over time. The optimal entry time to join the scheme is the main 
concern of this product. More precisely, the individual should choose an optimal entry time to maximize the expected net present value 
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of the UI scheme. Anquandah and Bogachev (2019) formulate this problem as a perpetual optimal stopping problem under the assumption 
that the wage process follows geometric Brownian motion and give a closed-form solution to this problem.

To be noted that the UI scheme in Anquandah and Bogachev (2019) is designed on the complete information of the wage process. 
However in practice incomplete information is often inevitable as one needs a very long time series to estimate the drift which is rarely 
available. The incomplete models have been widely used in the financial market, for example, optimal liquidation problems (Ekström and 
Lu (2011), Lu (2013), Ekström and Vannestål (2016), Ekström and Vaicenavicius (2016) and Vaicenavicius (2020)); optimal investment 
problems (Björk and Davis (2010), Hata and Sheu (2018), Bäuerle and Chen (2019), and Xiong et al. (2021)); American option pricing 
(Gapeev (2012) and Ekström and Vannestål (2019)); optimal time to invest in an indivisible project (Décamps et al. (2005) and Klein 
(2009)); optimal redeeming problem of stock loan (Xu and Yi (2020)); perpetual commodity equities (Gapeev (2021)); optimal insurance 
(Huang et al. (2010), Wei et al. (2012), Ceci et al. (2017), and Brachetta and Ceci (2020)).

But to the best of our knowledge, the incomplete information model in the UI scheme has not received sufficient attention. Therefore, 
this paper attempts to fill in the gap by studying the optimal time to join the UI scheme under incomplete information. In particular it 
is assumed in this paper that the individual does not know the drift of the wage process, so he or she has to make a timing decision 
to enter an UI scheme based on the incomplete information. The unknown drift of the wage makes the corresponding two-dimensional 
optimal stopping problem degenerate which is hard to analyze and not possible to solve using the argument in Anquandah and Bogachev 
(2019). To overcome the difficulty, this paper introduces an auxiliary non-degenerate optimal stopping problem. The monotonicity and 
continuity of the free boundary to the auxiliary problem are proved and the nonlinear integral equation is derived. In turn, the free 
boundary to the auxiliary problem is solved analytically for a particular case or numerically by the numerical methods for the nonlinear 
integral equation. With these theoretical and numerical results, the original two-dimensional optimal stopping problem is then solved by 
the inverse transformation.

The rest of this paper is arranged as follows. In Section 2, we set up the model and then use the techniques from filtering theory to 
reformulate it as an auxiliary non-degenerate optimal stopping problem. In Section 3, we analyze the auxiliary problem and obtain the 
main results for the original problem. In Section 4, we give the numerical results. In Section 5, we give the conclusions.

2. Optimal stopping problems of unemployment insurance

In this section, we model the problem of unemployment insurance. On a filtered probability space (�, F , F, P ) where F = {Ft}t≥0

satisfies the usual conditions, we assume that the dynamic of the individual’s wage Xt follows

dXt = μXtdt + σ XtdW̄t , X0 = x, (2.1)

where W̄ is a standard Brownian motion, σ > 0 is the volatility and μ, which is uncertain and independent of the Brownian motion W̄ , 
takes only two possible values μh and μl with μh > μl . Let τ0 be the time that the individual gets unemployment and the individual finds 
a new job again after the unemployment spell of duration τ1. Furthermore, the random times τ0 and τ1, which are both independent of 
Xt , have independent exponential distribution (with parameters λ0 and λ1, respectively). We assume that

E
[ ∞∫

0

e−r̃t Xtdt
]

< ∞, (2.2)

where r̃ := r + λ0 and r > 0 is the inflation rate. The dynamic benefit h(s)Xτ0 will be paid by the insurance company during the period 
of unemployment, where Xτ0 is final wage and h(s) is a decreasing function in order to encourage the individual to look for a new job. 
Using Fubini’s theorem, the expected future benefit to be received during the period of unemployment is given by

Xτ0E
[ τ1∫

0

e−rsh(s)ds
]

= Xτ0

∞∫
0

e−(r+λ1)sh(s)ds = γ Xτ0 ,

where

γ :=
∞∫

0

e−(r+λ1)sh(s)ds. (2.3)

Next, we consider a delayed entry time τ ∈ T and the payment of premium is P , where P is a positive constant and T is the set of 
F X−stopping time. Here F X = {F X

t }t≥0 is the natural filtration generated by the wage process X . Then the individual’s problem is to 
maximize the gain by choosing an optimal entry time τ ∈ T , i.e.,

V (x,π) := sup
τ∈T

E
[

e−rτ (e−r(τ0−τ )γ Xτ0 − P )I(τ < τ0)
]
, (2.4)

where I(·) is the indicator function of some set.
To determine the optimal stopping time, the policyholder has to estimate the current trend of the wage first. To this end, we introduce 

a posteriori probability process � = (�t)t≥0 as

�t := P (μ = μh|F X
t ),

and the innovation process
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W̃t := W̄t +
t∫

0

μ − (1 − �s)μl − �sμh

σ
ds.

By Lévy’s characterization theorem, W̃ is a P−standard Brownian motion. The innovation approach (see (Liptser and Shiryaev, 2001, 
Chapter 7.9 )) gives that

d�t = ω�t(1 − �t)dW̃t, (2.5)

where

ω := μh − μl

σ
> 0. (2.6)

Applying Itô’s formula, the wage dynamic (2.1) is re-written as

dXt

Xt
= [μl + �t(μh − μl)]dt + σdW̃t . (2.7)

We then simplify the individual’s problem (2.4) as the following proposition.

Proposition 2.1. Finding the solution to problem (2.4) is equivalent to finding the solution to the following optimal stopping problem:

inf
τ∈T E

[ τ∫
0

γ λ0e−r̃ξ Xξdξ + Pe−r̃τ
∣∣∣X0 = x,�0 = π

]
, (2.8)

where r̃ := r + λ0 , which is further equivalent to finding the solution to

V̂ (x,π) := inf
τ∈T E

[ τ∫
0

e−r̃t(γ λ0 Xt − r̃ P )dt
∣∣∣X0 = x,�0 = π

]
. (2.9)

Proof. Due to law of total expectation, Fubini’s theorem, and the fact that τ0 is independent of X and τ , a direct computation shows that

E[e−rτ (e−r(τ0−τ )γ Xτ0 − P )I(τ < τ0)]
= E[E[e−rτ (e−r(τ0−τ )γ Xτ0 − P )I(τ < τ0)|τ0]]

=
∞∫

0

E[e−rτ (e−r(τ0−τ )γ Xτ0 − P )I(τ < τ0)|τ0 = ξ ]λ0e−λ0ξdξ

=
∞∫

0

E[e−rτ (e−r(ξ−τ )γ Xξ − P )I(τ < ξ)]λ0e−λ0ξdξ

= E
[ ∞∫

τ

e−rτ (e−r(ξ−τ )γ Xξ − P )λ0e−λ0ξdξ
]

= E
[ ∞∫

0

e−r̃ξ λ0γ Xξdξ
]
−E

[ τ∫
0

e−r̃ξ λ0γ Xξdξ + Pe−r̃τ
]
. (2.10)

Since the first term in the last equality of (2.10) is independent of stopping time τ , solving problem (2.4) is equivalent to solving problem 
(2.8), which is further equivalent to solving problem (2.9) using Itô’s formula. �

Utilizing the dynamic programming principle, the value function V̂ satisfies the following variational inequality

min
{
LX,� V̂ − r̃ V̂ + γ λ0x − r̃ P , −V̂

}
= 0, (2.11)

where the infinitesimal generator of (Xt , �t) is given by

LX,� V̂ = 1

2
σ 2x2 ∂2 V̂

∂x2
+ 1

2
ω2π2(1 − π)2 ∂2 V̂

∂π2
+ σ xπ(1 − π)ω

∂2 V̂

∂x∂π
+ (ωσπ + μl)x

∂ V̂

∂x
.

Since LX,� is degenerate in the entire region (0, +∞) × (0, 1), it is hard to analyze (2.11) (or (2.9)) directly.
To analyze the problem, we transform the degenerate optimal stopping problems (2.9) into the non-degenerate one using change of 

measure. Following Klein (2009), we introduce a new process
33
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Wt := ω

t∫
0

�sds + W̃ s,

and a new measure Q by Radon-Nikodym derivative

dQ

dP

∣∣∣
F X

t

= exp
(

− 1

2

t∫
0

ω2(�s)
2ds −

t∫
0

ω�sdW̃ s

)

= exp
(1

2

t∫
0

ω2(�s)
2ds −

t∫
0

ω�sdW s

)
, for any t > 0. (2.12)

By Girsanov’s theorem, W is a Q-standard Brownian motion. Define the likelihood ratio process �t := �t
1−�t

. Due to Itô’s formula, we 
have � satisfies

d�t = ω�tdWt

with

�0 = ϕ := π

1 − π
,

which gives that

�t = ϕ Zt, (2.13)

where

Zt := exp
(
ωWt − 1

2
ω2t

)
. (2.14)

Then we can express the dynamics in terms of W by(
dXt/Xt

d�t/�t

)
=

(
μl
0

)
dt +

(
σ
ω

)
dWt .

Eliminating W yields

Xt = xeεt
(�t

ϕ

)β

, (2.15)

where

ε := 1

2
(μh + μl − σ 2) and β := σ 2

μh − μl
= σ

ω
> 0, (2.16)

ω is defined in (2.6). Let

Ft = 1 + �t

1 + ϕ
.

Then

dFt

Ft
= d�t

1 + �t
= ω�tdWt

1 + �t
= ω�tdWt

with F0 = 1. By (2.12), it turns out that

dP

dQ

∣∣∣
F X

t

= Ft = exp
(

− 1

2

t∫
0

ω2(�s)
2ds +

t∫
0

ω�sdW s

)
, t > 0. (2.17)

Now, we will study the optimal stopping problem (2.9) under measure Q.

Proposition 2.2. With the measure Q given by (2.17), finding the solution to the optimal stopping problem (2.9) is equivalent to finding the solution 
to

V (ζ,ϕ) := inf
τ∈T EQ

[ τ∫
0

e−r̃t H(ζ + t,�t)dt
]
, (2.18)

for ε �= 0, where ε is defined by (2.16), �t by (2.13) and
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H(ζ,ϕ) := (1 + ϕ)(eεζ ϕβ − K ), ζ := 1

ε
log

γ λ0x

ϕβ
, K := r̃ P , (2.19)

with assumption that

EQ
[ ∞∫

0

e−r̃ζ |H(ζ,�ζ )|dζ
]

< ∞ or r̃ − ε >
1

2
ω2β(β + 1), (2.20)

and finding the solution to (2.9) is equivalent to finding the solution to

V (ϕ) := inf
τ∈T EQ

[ τ∫
0

e−r̃t Ĥ(�t)dt
]
, (2.21)

for ε = 0, where

Ĥ(ϕ) := (1 + ϕ)(ϕβ − K̂ ), K̂ := r̃ Pϕβ

γ λ0x
, (2.22)

with assumption that

EQ
[ ∞∫

0

e−r̃t |Ĥ(�t)|dt
]

< ∞ or r̃ >
1

2
ω2β(β + 1). (2.23)

Proof. By monotone convergence theorem and change of measure, we see that

E
[ τ∫

0

e−r̃t Xtdt
]

= lim
n→∞ lim

m→∞E
[ τ∧m∫

0

e−r̃t(Xt ∧ n)dt
]

(2.24)

= lim
n→∞ lim

m→∞EQ
[

Fτ∧m

τ∧m∫
0

e−r̃t(Xt ∧ n)dt
]
,

where a ∧ b := min{a, b}. Furthermore, Itô’s formula yields

Fs

s∫
0

e−r̃t(Xt ∧ n)dt =
s∫

0

Fte−r̃t(Xt ∧ n)dt +
s∫

0

ξ∫
0

e−r̃t(Xt ∧ n)dtdFξ .

Since F is a martingale under Q, the optional sampling theorem gives that

EQ
[

Fτ∧m

τ∧m∫
0

e−r̃t(Xt ∧ n)dt
]

= EQ
[ τ∧m∫

0

Fte−r̃t(Xt ∧ n)dt
]
. (2.25)

Combining (2.24) and (2.25) and using monotone convergence theorem, we deduce that

E
[ τ∫

0

e−r̃t Xtdt
]

= lim
n→∞ lim

m→∞EQ
[ τ∧m∫

0

Fte−r̃t(Xt ∧ n)dt
]

=EQ
[ τ∫

0

e−r̃t Ft Xtdt
]
. (2.26)

By a similar argument, it is easy to see that

E
[ τ∫

0

e−r̃tdt
]

= EQ
[ τ∫

0

e−r̃t Ftdt
]
. (2.27)

Using (2.26), (2.27) and (2.15) gives that

E
[ τ∫

0

e−r̃t(γ λ0 Xt − r̃ P )dt
]

= EQ
[ τ∫

0

e−r̃t Ft(γ λ0 Xt − r̃ P )dt
]

(2.28)

= 1

1 + ϕ
EQ

[ τ∫
e−r̃t(1 + �t)

(
γ λ0xeεt

(�t

ϕ

)β − r̃ P
)

dt
]

0
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for any stopping time τ .
If ε �= 0, using the transformation ζ = 1

ε log γ λ0x
ϕβ inspired by Johnson and Peskir (2017a) and Johnson and Peskir (2017b), (2.28) is 

re-written as

E
[ τ∫

0

e−r̃t(γ λ0 Xt − r̃ P )dt
]

= 1

1 + ϕ
EQ

[ τ∫
0

e−r̃t(1 + �t)
(

eε(t+ζ )(�t)
β − K

)
dt

]
, (2.29)

where K = r̃ P > 0. Therefore, solving optimal stopping problem (2.9) is equivalent to solving (2.18). Moreover simple calculation gives that

EQ
[ ∞∫

0

e−r̃ζ |H(ζ,�ζ )|dζ
]

< ∞,

which is equivalent to

r̃ − ε >
1

2
ω2β(β + 1).

If ε = 0, we deduce that

E
[ τ∫

0

e−r̃t(γ λ0 Xt − r̃ P )dt
]

= 1

1 + ϕ
EQ

[ τ∫
0

e−r̃t(1 + �t)
(
γ λ0x

(�t

ϕ

)β − r̃ P
)

dt
]

= γ λ0x

(1 + ϕ)ϕβ
EQ

[ τ∫
0

e−r̃t(1 + �t)
(
(�t)

β − K̂
)

dt
]
, (2.30)

where K̂ = r̃ Pϕβ

γ λ0x . In this case, solving optimal stopping problem (2.9) is equivalent to solving (2.21) and

EQ
[ ∞∫

0

e−r̃t |Ĥ(�t)|dt
]

< ∞,

is equivalent to

r̃ >
1

2
ω2β(β + 1). �

3. Analysis and solution of the optimal stopping problems

We first consider the case ε �= 0. Applying dynamic programming principle, we deduce that V in (2.18) satisfies the following varia-
tional inequality

min
{

V ζ + 1

2
ω2ϕ2 Vϕϕ − r̃V + H(ζ,ϕ), −V

}
= 0, (3.1)

where H is defined in (2.19). As usual in optimal stopping theory, we define the stopping region and the continuation region by

S := {(ζ,ϕ) : V (ζ,ϕ) = 0}, (3.2)

C := {(ζ,ϕ) : V (ζ,ϕ) < 0}. (3.3)

From Peskir and Shiryaev (2006), we see that the optimal stopping time for problem (2.18) is given by

τ ∗(ζ,ϕ) = inf {s ≥ 0 : (s + ζ,�s) ∈ S} .

We first study the smoothness of the value function defined in (2.18) in the following proposition.

Proposition 3.1. The value function V defined in (2.18) satisfies that

(i) It is locally Lipschitz continuous in R ×R+ and satisfies for a.e. (ζ, ϕ) ∈R ×R+ that

∂V

∂ϕ
(ζ,ϕ) = EQ

[ τ ∗∫
0

e−r̃s Hϕ(ζ + s,�s)Zsds
]
, (3.4)

where Zs = exp
(
ωW s − 1

2 ω2s
)

defined in (2.14) and

∂V

∂ζ
(ζ,ϕ) = εeεζEQ

[ τ ∗∫
e−(r̃−ε)s(1 + �s)(�s)

βds
]
. (3.5)
0
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(ii) It belongs to C1,2 in the continuation region and satisfies

V ζ + 1

2
ω2ϕ2 Vϕϕ − r̃V + H(ζ,ϕ) = 0, (ζ,ϕ) ∈ C,

V (ζ,ϕ) = 0, (ζ,ϕ) ∈ ∂C.

Proof. Following the techniques of Gapeev (2021), we prove this proposition. We first prove (i). For any δ > 0, we choose τ ∗(ζ, ϕ) as an 
optimal stopping time for V (ζ, ϕ). Then using the mean value theorem and (2.13) gives

V (ζ,ϕ + δ) − V (ζ,ϕ) ≤ EQ
[ τ ∗∫

0

e−r̃s H(ζ + s,�ϕ+δ
s )ds

]
−EQ

[ τ ∗∫
0

e−r̃s H(ζ + s,�ϕ
s )ds

]

= EQ
[ τ ∗∫

0

e−r̃s Hϕ(ζ + s, ξ1 Zs)(�
ϕ+δ
s − �

ϕ
s )ds

]
(3.6)

= δEQ
[ τ ∗∫

0

e−r̃s
(

eε(ζ+s)β(ξ1 Zs)
β−1 + eε(ζ+s)(β + 1)(ξ1 Zs)

β − K
)

Zsds
]
,

for some ξ1 ∈ (ϕ, ϕ + δ), where �ϕ denotes the process � starting at ϕ . The assumption (2.20) implies that

∞∫
0

EQ
[

e−(r̃−ε)s(Zs)
β
]
ds < ∞,

∞∫
0

EQ
[

e−(r̃−ε)s(Zs)
β+1

]
ds < ∞. (3.7)

Denote m(ϕ) := max{(ϕ/2)β−1, (ϕ + 1)β−1}. Then for small 0 < δ < 1 using (3.7) and Fubini’s theorem gives that

V (ζ,ϕ + δ) − V (ζ,ϕ)

≤ δEQ
[ τ ∗∫

0

e−(r̃−ε)s (
eεζ m(ϕ)β(Zs)

β + eεζ (β + 1)(ϕ + 1)β(Zs)
β+1)ds

]
+ Kδ

r̃

≤ δEQ
[ ∞∫

0

e−(r̃−ε)s (
eεζ m(ϕ)β(Zs)

β + eεζ (β + 1)(ϕ + 1)β(Zs)
β+1)ds

]
+ Kδ

r̃

≤ L(ζ,ϕ)δ, (3.8)

where

L(ζ,ϕ) = βeεζ m(ϕ)

∞∫
0

EQ
[

e−(r̃−ε)s(Zs)
β
]
ds + eεζ (β + 1)(ϕ + 1)β

·
∞∫

0

EQ
[

e−(r̃−ε)s(Zs)
β+1

]
ds + K

r̃
< +∞ (3.9)

by (3.7). A symmetric argument shows that for small 0 < δ < min{1, ϕ/2}
V (ζ,ϕ) − V (ζ,ϕ − δ)

≥ δEQ
[ τ ∗∫

0

e−r̃s
(

eε(ζ+s)β(ξ2 Zs)
β−1 + eε(ζ+s)(β + 1)(ξ2 Zs)

β − K
)

Zsds
]
, (3.10)

for some ξ2 ∈ (ϕ − δ, ϕ), and then

V (ζ,ϕ) − V (ζ,ϕ − δ) ≥ −L(ζ,ϕ)δ, (3.11)

where the constant L is given by (3.9). On the other hand, by choosing the optimal stopping time τ+
δ := τ ∗(ζ, ϕ + δ) for V (ζ, ϕ + δ), we 

have

V (ζ,ϕ + δ) − V (ζ,ϕ)

≥ EQ
[ τ+

δ∫
e−r̃s

(
H(ζ + s,�ϕ+δ

s ) − H(ζ + s,�ϕ
s )

)
ds

]

0
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= EQ
[ τ+

δ∫
0

e−r̃s Hϕ(ζ + s, ξ3 Zs)(�
ϕ+δ
s − �

ϕ
s )ds

]

= δEQ
[ τ+

δ∫
0

e−r̃s
(

eε(ζ+s)β(ξ3 Zs)
β−1 + eε(ζ+s)(β + 1)(ξ3 Zs)

β − K
)

Zsds
]
,

and

V (ζ,ϕ + δ) − V (ζ,ϕ) ≥ −L(ζ,ϕ)δ, (3.12)

for some ξ3 ∈ (ϕ, ϕ + δ), where the constant L is given by (3.9).
Using a similar argument and choosing τ−

δ := τ ∗(ζ, ϕ − δ), we have

V (ζ,ϕ) − V (ζ,ϕ − δ) ≤ δEQ
[ τ−

δ∫
0

e−r̃s(eε(ζ+s)β(ξ4 Zs)
β−1 + eε(ζ+s)(β + 1)(ξ4 Zs)

β − K )Zsds
]
,

for some ξ4 ∈ (ϕ − δ, ϕ), and

V (ζ,ϕ) − V (ζ,ϕ − δ) ≤ L(ζ,ϕ)δ, (3.13)

where L is given by (3.9). Combining (3.8), (3.11), (3.12), and (3.13), gives that

|V (ζ,ϕ ± δ) − V (ζ,ϕ)| ≤ Lδ,

for some constant L depending on ζ and ϕ , which proves V (ζ, ·) is locally Lipschitz continuous.
Similarly we show V (·, ϕ) is locally Lipschitz continuous. Direct computation shows that

V (ζ + δ,ϕ) − V (ζ,ϕ)

≤ EQ
[ τ ∗∫

0

e−r̃s H(ζ + δ + s,�s)ds
]
−EQ

[ τ ∗∫
0

e−r̃s H(ζ + s,�s)ds
]

= (eεδ − 1)EQ
[ τ ∗∫

0

e−(r̃−ε)s+εζ (1 + �s)(�s)
βds

]
. (3.14)

Letting ν+
δ := τ ∗(ζ + δ, ϕ) to be optimal for V (ζ + δ, ϕ), we have

V (ζ + δ,ϕ) − V (ζ,ϕ)

≥ EQ
[ ν+

δ∫
0

e−r̃s H(ζ + δ + s,�s)ds
]
−EQ

[ ν+
δ∫

0

e−r̃s H(ζ + s,�s)ds
]

= (eεδ − 1)EQ
[ ν+

δ∫
0

e−(r̃−ε)s+εζ (1 + �s)(�s)
βds

]
. (3.15)

By symmetric arguments, we have

V (ζ,ϕ) − V (ζ − δ,ϕ) ≥ (1 − e−εδ)EQ
[ τ ∗∫

0

e−(r̃−ε)s+εζ (1 + �s)(�s)
βds

]
, (3.16)

and

V (ζ,ϕ) − V (ζ − δ,ϕ) ≤ (1 − e−εδ)EQ
[ ν−

δ∫
0

e−(r̃−ε)s+εζ (1 + �s)(�s)
βds

]
, (3.17)

with ν−
δ := τ ∗(ζ − δ, ϕ) being the optimal stopping time for V (ζ − δ, ϕ). Since

(ε − 1)δ < eεδ − 1 < (1 + ε)δ, (ε − 1)δ < 1 − e−εδ < (1 + ε)δ,

for sufficiently small δ > 0, using (3.7), (3.14), (3.15), (3.16), and (3.17), we conclude that V (·, ϕ) is Lipschitz continuous.
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Furthermore, we conclude that V is differentiable a.e. in R ×R+ . Suppose that (ζ, ϕ) is any differentiable point of V . Dividing (3.6), 
(3.10), (3.14) and (3.16) by δ and letting δ → 0 yield (3.4) and (3.5).

To prove (ii) we use standard argument of PDE analysis. Indeed, for any point (ζ, ϕ) ∈ C , we consider the following problem

fζ + 1

2
ω2ϕ2 fϕϕ − r̃ f = −H(ζ,ϕ) in D,

f = V on ∂D,

where D := ζ1, ζ2) × (ϕ1, ϕ2) ⊂ C and ∂D denotes the parabolic boundary of D. Since we have showed that V is continuous, the classical 
theory for parabolic equations (see e.g., (Friedman, 1964, Chapter 3)) guarantees the existence of a unique solution f with fxx and ft

being continuous in D. On the other hand, a standard verification argument (see e.g., (Karatzas and Shreve, 1998, Theorem 2.7.7)) gives 
that f = V in D. We conclude V ∈ C1,2 by the arbitrariness of (ζ, ϕ). �

Next we further characterize the stopping region and the continuation region by the free boundary and analyze the properties of the 
free boundary.

Proposition 3.2. Assume ε �= 0 and define the free boundary as

b(ζ ) := sup{ϕ : V (ζ,ϕ) < 0} (3.18)

for ζ ∈R. Then

S = {(ζ,ϕ) : ϕ ≥ b(ζ )}, (3.19)

C = {(ζ,ϕ) : ϕ < b(ζ )}, (3.20)

and b(ζ ) < +∞ for any finite number ζ ∈R.

Proof. From the variational inequality (3.1), it is known that the stopping region S satisfies that

S ⊂ {(ζ,ϕ) : H(ζ,ϕ) ≥ 0},
where H is defined in (2.19). Letting H(ζ, ϕ) = 0 gives that

ϕ = K
1
β e− ε

β
ζ =: �(ζ ). (3.21)

Since H(ζ, ϕ) ≥ 0 is equivalent to ϕ ≥ �(ζ ), we have

S ⊂ {(ζ,ϕ) : ϕ ≥ �(ζ )}. (3.22)

We now proceed the analysis in the following two steps.
Step 1. Assume that ε > 0. Since H(ζ, ϕ) is increasing in ζ , we see that V (ζ, ϕ) is increasing in ζ . Hence we deduce that if (ζ0, ϕ0) ∈ S

and ζ ′ > ζ0, then V (ζ ′, ϕ0) ≥ V (ζ0, ϕ0) = 0. Moreover the variational inequality (3.1) implies that V (ζ ′, ϕ0) ≤ 0. Therefore we have

V (ζ ′,ϕ0) = 0, for ζ ′ > ζ0. (3.23)

On the other hand, we assume (ζ0, ϕ0) ∈ S and ϕ′ > ϕ0 > 0. Denoting R := {ζ ≥ ζ0, ϕ ≥ ϕ0}, letting τ ∗ := τ ∗(ζ0, ϕ′) to be the optimal 
stopping time for V (ζ0, ϕ′) and τR to be the first exit time from R for the process (ζ0 + s, �ϕ′

s ), then the definition of τ ∗ and (3.23)
means that τ ∗ ≤ τR . That is

�
ϕ′
s ≥ ϕ0 ≥ �(ζ0) ≥ �(s + ζ0),

for s ∈ [0, τ ∗], where the second inequality follows from (3.22) and the third inequality follows from the fact that �(ζ ) is decreasing. 
Therefore we have

H(s + ζ0,�
ϕ′
s ) ≥ 0, for s ∈ [0, τ ∗],

and consequently

V (ζ0,ϕ
′) = EQ

[ τ ∗∫
0

e−r̃s H(s + ζ0,�
ϕ′
s )ds

]
≥ 0.

This together with V (ζ0, ϕ′) ≤ 0 that is implied from the variational inequality (3.1), yields

V (ζ0,ϕ
′) = 0, for ϕ′ > ϕ0. (3.24)

Now if we define a function b(t) as in (3.18), then the upward connectedness of S means that (3.19) and (3.20) hold.
Now we prove b(ζ ) < +∞ for any finite number ζ ∈R by methods of contradiction. To this end, we define the ζ -section of S and C

respectively as
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Sζ := {ϕ : ϕ ≥ b(ζ )}, Cζ := {ϕ : ϕ < b(ζ )}.
Suppose that b(ζ0) = +∞ for some ζ0, that is, Cζ0 = (0, +∞), then Cζ = (0, +∞) for ζ < ζ0 by the monotone increasing property of 
V (·, ϕ). Hence, this implies

S ⊂ {(ζ,ϕ) : ζ > ζ0, ϕ ≥ �(ζ )},
which further guarantees the optimal stopping time τ ∗(ζ̃ , ϕ) ≥ ζ0 − ζ̃ > 0 for any ζ̃ < ζ0 and ϕ > 0, since the process {(ζ̃ + s, �ϕ

s )}s≥0

starting at (ζ̃ , ϕ) will take at least ζ0 − ζ̃ to arrive at the stopping region S . By dominated convergence theorem, it follows that

lim
ϕ→+∞ V (ζ̃ ,ϕ) = lim

ϕ→+∞EQ
[ τ ∗∫

0

e−r̃s H(s + ζ̃ ,�
ϕ
s )ds

]

= EQ
[ τ ∗∫

0

lim
ϕ→+∞ e−r̃s H(s + ζ̃ ,�

ϕ
s )ds

]

= +∞.

This contradicts with V (ζ, ϕ) ≤ 0 for any (ζ, ϕ) ∈R ×R+ . Hence, b(ζ ) < +∞ for any ζ ∈R.
Step 2. Assume that ε < 0. Let ζ = −ϑ and V(ϑ, ϕ) = V (−ϑ, ϕ). Then we find that

V(ϑ,ϕ) = inf
τ
EQ

[ τ∫
0

e−r̃s H(−ϑ + s,�s)ds
]
. (3.25)

Since for ε < 0, H(·, ϕ) defined in (2.19) is decreasing and function � defined in (3.21) is increasing, from (3.25) we see that V(·, ϕ) is 
increasing and �̃(ϑ) := �(−ϑ) is decreasing. Using a similar argument as Step 1, it follows that there exists a unique free boundary b̃(ϑ)

such that

S = {(ϑ,ϕ) : ϕ ≥ b̃(ϑ)}, C = {(ϑ,ϕ) : ϕ < b̃(ϑ)}.
Then the desired results follow by letting b(ζ ) := b̃(−ζ ). �

Now we establish the smooth pasting condition for the value function across the free boundary (see Proposition 3.3). To prove the 
results, we first introduce the following lemma.

Lemma 3.1. Assume that ε �= 0. Let τν be an optimal stopping time for V (ζ, b(ζ ) − ν) given by

τν := τ ∗(ζ,b(ζ ) − ν) = inf{s ≥ 0 : �
b(ζ )−ν
s ≥ b(s + ζ )}.

Then lim
ν→0

τν = 0.

Proof. The proof mainly follows Cox and Peskir (2015). Firstly, assume that ν > 0. Direct computation shows that

�
b(ζ )−ν
s = (b(ζ ) − ν)Zs,

where Zs = exp
(

− 1
2 ω2s +ωW s

)
. Then we see that τν is increasing in ν . Hence, we can denote lim

ν→0
τν := τ+ . We introduce the truncated 

version of τν by setting

τ δ
ν := inf

{
s > δ : Zs ≥ b(s + ζ )

b(ζ ) − ν

}
with fixed δ > 0 and sufficiently small ν such that b(ζ ) − ν > 0. Note that τ δ

ν is also increasing in ν . So we can also denote lim
ν→0

τ δ
ν := τ δ+ . 

Since τ δ
ν ≥ τ δ

0 for any ν > 0, it follows that

τ δ+ ≥ τ δ
0 . (3.26)

We claim that

τ δ+ = τ δ
0 , Q− a.s. (3.27)

Hence we derive that

lim
ν→0

τν = lim
ν→0

lim
δ→0

τ δ
ν = lim

δ→0
lim
ν→0

τ δ
ν = lim

δ→0
τ δ+

= lim
δ→0

τ δ
0 = inf {s > 0 : b(ζ )Zs ≥ b(s + ζ )}

= 0,
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where the two limits commute since τ δ
ν is increasing in δ and ν . Thus the proof of this lemma is complete if we prove claim (3.27) is 

true.
To prove (3.27), we choose ν <

b(ζ )
2 and by mean value theorem and the definition of τν there exists some ξ̃ ∈ (b(ζ ) − ν,b(ζ )) such 

that

Q(τ δ
ν > ξ) = Q

(
W s <

1

ω
log

(b(s + ζ )

b(ζ )

)
+ 1

ω
log

( b(ζ )

b(ζ ) − ν

)
+ 1

2
ωs, s ∈ (δ, ξ ]

)

= Q
(

W s <
1

ω
log

(b(s + ζ )

b(ζ )

)
+ 1

ωξ̃
ν + 1

2
ωs, s ∈ (δ, ξ ]

)
(3.28)

≤ Q
(

W s −
s∫

0

Hν
r dr <

1

ω
log

(b(s + ζ )

b(ζ )

)
+ 1

2
ωs, s ∈ (δ, ξ ]

)
,

where Hν
r = 2

ωb(ζ )
ν
δ

I(0 ≤ r ≤ δ) and I(·) denotes the indicator function. If we let

dQ̃

dQ
= exp

( T∫
0

Hν
r dWr − 1

2

T∫
0

(Hν
r )2dr

)
= exp

( 2ν2

ω2b(ζ )2δ
+ 2ν

ωb(ζ )δ
Bδ

)
,

and

Bs = W s −
s∫

0

Hν
r dr,

then Bs is a standard Brownian motion under Q̃ by Girsanov’s theorem. Using the fact that τ δ
ν is increasing in ν and (3.28), the dominated 

convergence theorem gives that

Q(τ δ+ > ξ) ≤ lim
ν→0

Q(τ δ
ν > ξ)

≤ lim
ν→0

EQ̃
[

e
− 2ν2

ω2b(ζ )2δ
− 2ν

ωb(ζ )δ
Bδ

I
(

Bs <
1

ω
log

(b(s + ζ )

b(ζ )

)
+ 1

2
ωs, s ∈ (δ, ξ ]

)]

= Q̃
(

Bs <
1

ω
log

(b(s + ζ )

b(ζ )

)
+ 1

2
ωs, s ∈ (δ, ξ ]

)
= Q

(
b(ζ )Zs < b(s + ζ ), s ∈ (δ, ξ ]

)
= Q(τ δ

0 > ξ).

So the Fubini’s theorem gives that

EQ[τ δ+] = EQ
[ ∞∫

0

I(ξ < τ δ+)dξ
]

=
∞∫

0

Q(τ δ+ > ξ)dξ ≤
∞∫

0

Q(τ δ
0 > ξ)dξ = EQ[τ δ

0 ].

Now claim (3.27) follows from (3.26). If ν < 0, the proof follows by the fact that (ζ, b(ζ ) − ν) ∈ S . Thus the proof of this lemma is 
complete. �
Proposition 3.3. Assume that ε �= 0. The smooth pasting condition holds true

lim
ϕ→b(ζ )

Vϕ(ζ,ϕ) = Vϕ(ζ,b(ζ )) = 0, (3.29)

for any ζ ∈R.

Proof. Using the techniques of Gapeev (2021), we prove this proposition. Since for any ϕ > b(ζ ), V (ζ, ϕ) = 0, the right derivative in ϕ at 
b(ζ ) is given by

V +
ϕ (ζ,b(ζ )) = 0. (3.30)

Moreover the left derivative in ϕ at b(ζ ) satisfies

lim inf
ν→0+

V (ζ,b(ζ )) − V (ζ,b(ζ ) − ν)

ν
= lim inf

ν→0+
−V (ζ,b(ζ ) − ν)

ν
≥ 0. (3.31)

On the other hand, for ν > 0, by mean value theorem,
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V (ζ,b(ζ )) − V (ζ,b(ζ ) − ν)

ν

≤
EQ

[ ∫ τν

0 e−r̃s(H(ζ + s,�b(ζ )
s ) − H(ζ + s,�b(ζ )−ν

s ))ds
]

ν

=
EQ

[ ∫ τν

0 e−r̃s Hϕ(ζ + s, ηZs)ν Zsds
]

ν

= EQ
[ τν∫

0

e−r̃s Hϕ(ζ + s, ηZs)Zsds
]
,

for some η ∈ (
b(ζ ) − ν, b(ζ )

)
, where τν is an optimal stopping time for V (ζ, b(ζ ) − ν). Applying Lemma 3.1 and dominated convergence 

theorem, we have

lim sup
ν→0+

V (ζ,b(ζ )) − V (ζ,b(ζ ) − ν)

ν
≤ 0. (3.32)

Therefore combining (3.31) with (3.32) gives that the left derivative V −
ϕ (ζ, b(ζ )) = 0. Further recalling (3.30) gives the second equality in 

(3.29) holds. The first equality in (3.29) follows from (3.4) and Lemma 3.1. Thus, the proof is completed. �
In the following proposition, we present the continuity and monotonicity of the free boundary.

Proposition 3.4. Assume that ε �= 0. The free boundary b(ζ ) defined by (3.18) is continuous. If ε < 0, then b(ζ ) is strictly increasing; if ε > 0, then 
b(ζ ) is strictly decreasing.

Proof. Since V (ζ, ϕ) is increasing in ζ for ε > 0 and decreasing for ε < 0, from the definition of the free boundary (3.18), it is seen that 
b(ζ ) is decreasing for ε > 0 and increasing for ε < 0. Next, we prove b(ζ ) is strictly increasing for ε < 0. If it is not the case, then there 
exists ζ1 < ζ2, ϕ0 > 0, such that b(ζ ) = ϕ0 for ζ ∈ [ζ1, ζ2]. The region [ζ1, ζ2] × (0, ϕ0] is a subset of continuation region (see (3.20)). 
Therefore from (3.1) and (3.3), in the region it holds that

V ζ + 1

2
ω2ϕ2 Vϕϕ − r̃V + H(ζ,ϕ) = 0.

So V ζ satisfies

V ζζ + 1

2
ω2ϕ2 V ζϕϕ − r̃V ζ = −Hζ (ζ,ϕ) ≥ 0,

V ζ (ζ,ϕ0) = 0, for ζ ∈ (ζ1, ζ2),

where the second equation follows from the fact that V (ζ, ϕ0) = 0 for ζ ∈ (ζ1, ζ2). On the other hand, V ζ (ζ, ϕ) ≤ 0 for any (ζ, ϕ) ∈
[ζ1, ζ2] × (0, ϕ0]. Now by Hopf lemma (see Lieberman (1996)), V ζϕ(ζ, ϕ0) > 0 for any ζ ∈ (ζ1, ζ2). However, as Vϕ(ζ, ϕ0) = Vϕ(ζ, b(ζ )) = 0, 
we deduce that V ζϕ(ζ, ϕ0) = 0 for ζ ∈ (ζ1, ζ2), which is contradiction. Thus b(ζ ) is strictly increasing for ε < 0. Similarly it can be proved 
that b(ζ ) is strictly decreasing for ε > 0.

The proof of the continuity of b(ζ ) follows Peskir and Shiryaev (2006). We first consider the case ε > 0. Let ζn ↓ ζ0. It follows from 
V (ζn, b(ζn)) = 0 and the continuity of V that

V (ζ0,b(ζ0+)) = 0.

Then the definition of b implies that b(ζ0+) ≥ b(ζ0). Furthermore, the decreasing monotonicity of b gives that b(ζ0+) ≤ b(ζ0). We conclude 
that b(ζ ) is right continuous at ζ0. Suppose that b(ζ0+) �= b(ζ0−). Then it must have b(ζ0+) < b(ζ0−). The definition of b yields V (ζ0, ϕ) =
0 for any ϕ ∈ (b(ζ0+), b(ζ0−)). Hence, Vϕ(ζ0, ϕ) = 0 for any ϕ ∈ (b(ζ0+), b(ζ0−)) from smooth pasting condition in Proposition 3.3. 
Consider the region R = {ζ ′ ≤ s ≤ ζ0, ϕ′ ≤ ϕ ≤ b(s)} and R ′ = {ζ ′ ≤ s ≤ ζ0, ϕ′ ≤ ϕ ≤ b(ζ ′)} for some ζ ′ < ζ0 and ϕ′ ∈ (b(ζ0+), b(ζ0−)). As 
b is a decreasing function, we deduce that R ⊂ R ′ . Since in the continuation region C ,

1

2
ω2ϕ2 Vϕϕ = −V ζ − H + r̃V ,

V ζ ≥ 0 and V ≤ 0, we derive that for any (s, ϕ) ∈ R ,

Vϕϕ(s,ϕ) ≤ −2H(s,ϕ)

ω2ϕ2
≤ − min

(s,ϕ)∈R

2H(s,ϕ)

ω2ϕ2
≤ − min

(s,ϕ)∈R ′
2H(s,ϕ)

ω2ϕ2
≤ −C,

where C is a positive constant. By the continuity of V and the smooth pasting condition in Proposition 3.3, it follows that for any 
ζ ′ < s < ζ0,

V (s,ϕ′) =
b(s)∫
′

b(s)∫
u

Vϕϕ(s, v)dvdu ≤ −C

b(s)∫
′

b(s)∫
u

dvdu = − C

2
(b(s) − ϕ′)2.
ϕ ϕ
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Now the continuity of V implies that

lim
s→ζ0− V (s,ϕ′) = V (ζ0,ϕ

′) ≤ − C

2
(b(ζ0−) − ϕ′)2 < 0,

which contradicts the fact that (ζ0, ϕ′) ∈ S . Therefore it has b(ζ0+) = b(ζ0−). The proof for the case ε > 0 is thus complete using that 
b(ζ ) is right continuous at ζ0.

For the case ε < 0, a similar argument also shows that b(ζ ) is continuous. Consequently, the whole proof is complete. �
Now we derive the integral equation for the free boundary as follows.

Proposition 3.5. Assume that ε �= 0. The free boundary b(ζ ) defined by (3.18) satisfies the following integral equation:

0 =
+∞∫
0

[
− K e−r̃s N

(
d
(
s,b(ζ + s),b(ζ )

))
(3.33)

− K e−r̃sb(ζ )N
(

d
(
s,b(ζ + s),b(ζ )

) − ω
√

s
)

+ b(ζ )βeεζ+(
ε− 1

2 ω2β+ 1
2 ω2β2−r̃

)
s N

(
d
(
s,b(ζ + s),b(ζ )

) − ωβ
√

s
)

+ b(ζ )β+1eεζ+(
ε− 1

2 ω2(β+1)+ 1
2 ω2(β+1)2−r̃

)
s N

(
d
(
s,b(ζ + s),b(ζ )

) − ω(β + 1)
√

s
)]

ds,

where d(s, b(ζ + s), ϕ) = 1
ω

√
s

log
(

b(ζ+s)
ϕ

)
+ 1

2 ω
√

s and N is the CDF of standard normal distribution.

Proof. Applying the local time-space formula (see Peskir and Shiryaev (2006) and Johnson and Peskir (2017a)) and the smooth pasting 
condition, we deduce that

d(e−r̃s V (ζ + s,�s)) = e−r̃s
[

V ζ + 1

2
ω2ϕ2 Vϕϕ − r̃V

]
(ζ + s,�s)I(�s �= b(ζ + s))ds

+ e−r̃sω�s Vϕ(ζ + s,�s)I(�s �= b(ζ + s))dW s

+ 1

2
e−r̃s(Vϕ(ζ + s,�+

s ) − Vϕ(ζ + s,�−
s ))I(�s = b(ζ + s))d�b

s (�)

= −e−r̃s H(ζ + s,�s)I(�s < b(ζ + s))ds

+ e−r̃sω�s Vϕ(ζ + s,�s)I(�s �= b(ζ + s))dW s,

where �b
s (�) is the local time of � at the curve b given by

�b
s (�) = Q- lim

δ→0

1

2δ

s∫
0

I
(
b(r) − δ < �r < b(r) + δ

)
d[�,�]r .

Integrating from 0 to T and taking expectation under Q, we have

EQ[e−r̃T V (ζ + T ,�T )] − V (ζ,ϕ) = −EQ
[ T∫

0

e−r̃s H(ζ + s,�s)I(�s < b(ζ + s))ds
]
. (3.34)

We choose τ ∗ as the optimal stopping time for V (ζ, ϕ). By assumption (2.23), the Fubini’s theorem gives that

|V (ζ,ϕ)| =
∣∣∣EQ

[ τ ∗∫
0

e−r̃s H(ζ + s,�s)ds
]∣∣∣

≤ EQ
[ +∞∫

0

e−r̃s
∣∣H(ζ + s,�s)

∣∣ds
]

=
+∞∫
0

e−r̃sEQ
[∣∣H(ζ + s,�s)

∣∣]ds

≤ K

r̃
(1 + ϕ) + eεζ ϕβ

r̃ − ε + 1
2ω2β(1 − β)

+ eεζ ϕβ+1

r̃ − ε − 1
2ω2(β + 1)β

,

where Zs = exp
( − 1 ω2s + ωW s

)
, which leads to
2
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EQ
[

e−r̃T
∣∣V (ζ + T ,�T )

∣∣] ≤ K

r̃
EQ[

e−r̃T (1 + �T )
] + e−(r̃−ε)T +εζEQ

[
(�T )β

]
r̃ − ε + 1

2ω2β(1 − β)

+ e−(r̃−ε)T +εζEQ[(�T )β+1]
r̃ − ε − 1

2ω2(β + 1)β

= K

r̃
e−r̃T (1 + ϕ) + e−(

r̃−ε+ 1
2 ω2β(1−β)

)
T +εζ ϕβ

r̃ − ε + 1
2ω2β(1 − β)

+ e−(
r̃−ε− 1

2 ω2(β+1)β
)
T +εζ ϕβ+1

r̃ − ε − 1
2ω2(β + 1)β

. (3.35)

Due to the assumption (2.23), (3.34) and (3.35), letting T → +∞, the dominated convergence theorem gives that

V (ζ,ϕ) = EQ
[ +∞∫

0

e−r̃s H(ζ + s,�s)I
(
�s < b(ζ + s)

)
ds

]
,

which is further calculated as

V (ζ,ϕ) = EQ
[ +∞∫

0

e−r̃s(1 + �s)(eε(ζ+s)(�s)
β − K )I

(
�s < b(ζ + s)

)
ds

]

=
+∞∫
0

e−r̃s[G1(s) + G2(s) + G3(s) + G4(s)
]
ds, (3.36)

with

G1(s) := eε(ζ+s)EQ
[
(�s)

β I
(
�s < b(ζ + s)

)]
= ϕβeεζ+(

ε− 1
2 ω2β+ 1

2 ω2β2)
s N

(
d(s,b(ζ + s),ϕ) − ωβ

√
s
)
,

G2(s) := eε(ζ+s)EQ
[
(�s)

β+1 I
(
�s < b(ζ + s)

)]
= ϕβ+1eεζ+(

ε− 1
2 ω2(β+1)+ 1

2 ω2(β+1)2)
s N

(
d(s,b(ζ + s),ϕ) − ω(β + 1)

√
s
)
,

G3(s) := −KEQ
[

I
(
�s < b(ζ + s)

)] = −K N
(
d(s,b(ζ + s),ϕ)

)
,

G4(s) := −KEQ
[
�s I

(
�s < b(ζ + s)

)] = −KϕN
(
d(s,b(ζ + s),ϕ) − ω

√
s
)
.

Since the left-hand side of (3.36) is 0 if taking ϕ = b(ζ ), evaluating (3.36) by ϕ = b(ζ ) gives (3.33). �
Now we give the asymptotic properties of the free boundary b in the following proposition.

Proposition 3.6. The following relations hold:

lim
ζ→+∞ b(ζ ) = 0, lim

ζ→−∞ b(ζ ) = +∞,

for ε > 0, and

lim
ζ→+∞ b(ζ ) = +∞, lim

ζ→−∞ b(ζ ) = 0,

for ε < 0.

Proof. For ε > 0, it has that b(ζ ) ≥ �(ζ ) → 0 as ζ → +∞ and b(ζ ) ≥ �(ζ ) → +∞ as ζ → −∞ where � is defined in (3.21). Therefore 
lim

ζ→−∞ b(ζ ) = +∞. Furthermore assume that lim
ζ→+∞ b(ζ ) := A ≥ 0. Then multiplying (3.33) by e−εζ , we derive that

e−εζ

+∞∫
0

[
K e−r̃s N

(
d
(
s,b(ζ + s),b(ζ )

))

+ K e−r̃sb(ζ )N
(

d
(
s,b(ζ + s),b(ζ )

) − ω
√

s
)]

ds
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=
+∞∫
0

[
b(ζ )βe

(
ε− 1

2 ω2β+ 1
2 ω2β2−r̃

)
s N

(
d
(
s,b(ζ + s),b(ζ )

) − ωβ
√

s
)

+b(ζ )β+1e
(
ε− 1

2 ω2(β+1)+ 1
2 ω2(β+1)2−r̃

)
s N

(
d
(
s,b(ζ + s),b(ζ )

) − ω(β + 1)
√

s
)]

ds.

Letting ζ → +∞, and noting that d
(
s, b(ζ + s), b(ζ )

) → 1
2 ω

√
s as ζ → +∞, the dominated convergence theorem gives that

0 = Aβ

+∞∫
0

e
(
ε− 1

2 ω2β+ 1
2 ω2β2−r̃

)
s N

((1

2
− β

)
ω

√
s
)

+ Ae
(
ε− 1

2 ω2(β+1)+ 1
2 ω2(β+1)2−r̃

)
s N

((1

2
− β − 1

)
ω

√
s
)

ds.

Hence, we have A = 0.
For the case ε < 0, by ζ = −ζ ′ and b(ζ ) = b̃(ζ ′), a similar argument shows that lim

ζ→+∞ b(ζ ) = +∞ and lim
ζ→−∞ b(ζ ) = 0. �

Now we consider the case ε = 0. Following Ekström and Vannestål (2019), we study problem (2.21) by varying the initial point ψ for 
the process �,

Ṽ (ψ; K̂ ) := inf
τ∈T EQ

[ τ∫
0

e−r̃s H̃(�
ψ
s )ds

]
, (3.37)

where

H̃(ψ) = (1 + ψ)(ψβ − K̂ ), K̂ = r̃ Pϕβ

γ λ0x
.

Obviously the value function defined by (2.21) satisfies that

V (ϕ) = Ṽ (ϕ; K̂ ).

Using the dynamic programming principle to problem (3.37) yields

min
{1

2
ω2ψ2 Ṽ ′′ − r̃ Ṽ + H̃(ψ),−Ṽ

}
= 0.

Define the stopping region and the continuation region as

S := {ψ : Ṽ (ψ; K̂ ) = 0}, C := {ψ : Ṽ (ψ; K̂ ) < 0}.
Using a similar argument as Proposition 3.2 and Proposition 3.3, we find that there exists a number b0(K̂ ) > 0 depending on ϕ and x such 
that

S := [b0,+∞), C := (0,b0),

and Ṽ (b0; K̂ ) = 0. From Peskir and Shiryaev (2006), we see that the optimal stopping time for problem (3.37) is

τ̃ ∗ = inf{s ≥ 0 : �
ψ
s ∈ S }. (3.38)

Therefore the optimal stopping problem (3.37) is converted into the following free boundary problem

1

2
ω2ψ2 Ṽ ′′ − r̃ Ṽ = −(1 + ψ)(ψβ − K̂ ), for ψ < b0, (3.39)

Ṽ (ψ; K̂ ) = 0, for ψ ≥ b0, (3.40)

Ṽ ′(b0; K̂ ) = 0. (3.41)

The above problem has a unique solution and can be solved explicitly in the following theorem.

Proposition 3.7. Assume that ε = 0 and denote

θ+ = 1

2
+

√
ω2 + 8r̃

2ω
, �(ψ) = C1ψ

θ+ + C3 + C3ψ + C4ψ
β + C5ψ

β+1,

where

C3 = − K̂

r̃
, C4 = 1

r̃ − 1
2ω2β(β − 1)

, C5 = 1

r̃ − 1
2ω2β(β + 1)

, (3.42)

C1 = −C3b−θ+ − C3b1−θ+ − C4bβ−θ+ − C5bβ−θ++1
.
0 0 0 0
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Then the free boundary problem (3.39) - (3.41) has the following closed-form solution

Ṽ (ψ; K̂ ) = �(ψ) I(ψ < b0), (3.43)

where b0(K̂ ) depending on x and ϕ is the unique solution to the following equation in b,

C5(β + 1 − θ+)bβ+1 + C4(β − θ+)bβ + C3(1 − θ+)b − C3θ+ = 0. (3.44)

Proof. Firstly, we set θ± = 1
2 ±

√
ω2+8r̃
2ω . Solving ODE (3.39) gives that

Ṽ (ψ; K̂ ) = C̃1ψ
θ+ + C2ψ

θ− + C3 + C3ψ + C4ψ
β + C5ψ

β+1,

where C3, C4, C5 are defined by (3.42) and C̃1 and C2 are to be determined. Denote τ̃ ∗ as the optimal stopping time for (3.37). Then by 
the dominated convergence theorem we derive that

0 ≥ lim
ψ→0

Ṽ (ψ; K̂ ) = lim
ψ→0

EQ
[ τ̃ ∗∫

0

e−r̃s(1 + ψ Zs)(ψ
β(Zs)

β − K̂ )ds
]

= EQ
[

lim
ψ→0

τ̃ ∗∫
0

e−r̃s(1 + ψ Zs)(ψ
β(Zs)

β − K̂ )ds
]

= −K̂EQ
[ τ̃ ∗∫

0

e−r̃sds
]

≥ − K̂

r̃
,

where Zs = exp
(

− 1
2 ω2s + ωW s

)
. This means that lim

ψ→0
Ṽ (ψ; K̂ ) is bounded from below. Therefore it must have C2 = 0. It then follows 

from the continuous pasting condition and smooth pasting condition that

C1bθ+ + C3 + C3b + C4bβ + C5bβ+1 = 0,

C1θ+bθ+−1 + C3 + C4βbβ−1 + C5(β + 1)bβ = 0,

which leads to equation (3.44). Now we verify that equation (3.44) has a unique solution. Denote the left-hand side of equation (3.44) by 
G(b). Then differentiating G gives that

G ′(b) = C5(β + 1)(β + 1 − θ+)bβ + C4β(β − θ+)bβ−1 + C3(1 − θ+),

G ′′(b) = C5β(β + 1)(β + 1 − θ+)bβ−1 + C4β(β − θ+)(β − 1)bβ−2.

From the definition of β in (2.16), β > 1 for ε = 0. A direct computation shows that

β + 1 − θ+ = σ

ω
+ 1

2
−

√
ω2 + 8r̃

2ω
= 2σ + ω − √

ω2 + 8r̃

2ω
.

By assumption (2.23), namely r̃ > 1
2 ω2β(β + 1), we deduce that

(2σ + ω)2 − ω2 − 8r̃ = 4ω2(β2 + β) − 8r̃ < 0.

Hence, we have β − θ+ < β + 1 − θ+ < 0. Assumption (2.23) also gives that C4, C5 > 0. So we have G ′′(b) < 0. Obviously, we see that 
G ′(0) = C3(1 −θ+) > 0, lim

b→+∞
G ′(b) = −∞. Therefore, there exists a unique b∗ ∈ (0, +∞) such that G is increasing in (0, b∗) and decreasing 

in (b∗, +∞). Moreover

G(0) = −C3θ+ > 0,

lim
b→+∞

G(b) = bβ(C3b1−β(1 − θ+) − C3θ+b−β + C4(β − θ+) + C5(β + 1 − θ+)b) = −∞.

Therefore equation (3.44) has a unique solution b0 ∈ (b∗, +∞). �
Using the previous results, the optimal stopping problem (2.9) is solved and the result is summarized in the following proposition.

Proposition 3.8. If ε �= 0, then the value function of problem (2.9) is given by

V̂ (x,π) = (1 − π)V
(1

ε
log

γ λ0x(1 − π)β

πβ
,

π

1 − π

)
, (3.45)

for any x > 0, 0 < π < 1, where V (ζ, ϕ) is given by (3.36). The optimal stopping time in the problem (2.9) is given by

τ̂ ∗ = inf
{

s ≥ 0 : Xs ≥ b̂(�s)
}

, (3.46)
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where

b̂(π) := πβ

γ λ0(1 − π)β
exp

(
εb−1(π/(1 − π)

))
. (3.47)

If ε = 0, then the value function of problem (2.9) is given by

V̂ (x,π) = γ λ0x(1 − π)β+1

πβ
Ṽ (π/(1 − π); K̂ ), (3.48)

where Ṽ is given by (3.43) and

K̂ = r̃ Pϕβ

γ λ0x
= r̃ P

γ λ0x

(
π

1 − π

)β

.

The optimal stopping time in the problem (2.9) has the same form as (3.46) with

b̂(π) := (θ+ − π)P

γ λ0
[
C4(θ+ − β)(1 − π) + C5(θ+ − β − 1)π

] (3.49)

and C4 , C5 are given by (3.42).

Proof. For ε �= 0, since V̂ (x, π) = 1
1+ϕ V (ζ, ϕ) by (2.29) where V (ζ, ϕ) is given by (3.36), using the transformations ζ = 1

ε log γ λ0x
ϕβ , ϕ =

π
1−π gives (3.45). Moreover since b(·) is strictly monotone (see Proposition 3.4), equation ϕ = b(ζ ) with b(ζ ) in (3.33) gives x = b̂(π) with 
b̂(π) in (3.47).

For ε = 0, to prove (3.46), we first show that b−1
0 (·) exists in (0, +∞). To this end, we differentiate equation (3.44) in K̂ and deduce 

that

−1

r̃
b0(1 − θ+) + θ+

r̃
=

[
−C3(1 − θ+) − C4(β − θ+)βbβ−1

0 − C5(β + 1 − θ+)(β + 1)bβ

0

] ∂b0

∂ K̂
.

Using (3.44) and the fact that C3 < 0, C5 > 0, β > 1, β + 1 − θ+ < 0 and θ+ > 1, we have

b0

[
−C3(1 − θ+) − C4(β − θ+)βbβ−1

0 − C5(β + 1 − θ+)(β + 1)bβ

0

]
= −C3(1 − θ+)βb0 − C4(β − θ+)βbβ

0 − C5(β + 1 − θ+)βbβ+1
0

− C5(β + 1 − θ+)bβ+1
0 + C3(1 − θ+)b0(β − 1)

= −C3βθ+ + C3(1 − θ+)b0(β − 1) − C5(β + 1 − θ+)bβ

0 > 0,

and

−1

r̃
b0(1 − θ+) + θ+

r̃
= 1

r̃
[θ+(1 + b0) − b0] > 0.

Hence, we have ∂b0

∂ K̂
> 0. Taking K̂ → 0 and K̂ → +∞ in (3.44), respectively we have lim

K̂→0
b0(K̂ ) = 0 and lim

K̂→+∞
b0(K̂ ) = +∞. This implies 

that b−1
0 (·) exists in (0, +∞). Therefore (3.46) follows from (3.38), where the free boundary b̂(π) can be represented as

b̂(π) := r̃ Pπβ

γ λ0(1 − π)βb−1
0 (π/(1 − π))

.

Thus, the free boundary of problem (2.9) is unique. Furthermore plugging ϕ = b0(K̂ ) and K̂ = r̃ P
γ λ0x

(
π

1−π

)β

into (3.44) gives x = b̂(π) with 

b̂(π) in (3.49). Using V̂ (x, π) = γ λ0x
(1+ϕ)ϕβ V (ϕ) = γ λ0x

(1+ϕ)ϕβ Ṽ (ϕ; K̂ ) by (2.30) with Ṽ in (3.43) and

ϕ = π

1 − π
, K̂ = r̃ P

γ λ0x

( π

1 − π

)β

,

gives (3.48). �
Remark 3.1. From (2.10) and Proposition 3.8, it follows that the individual’s value function (2.4) is given by

V (x,π) =E
[ ∞∫

0

e−r̃tλ0γ Xtdt
]
− V̂ (x,π) − P

= λ0γ x

∞∫
0

e−r̃tE[eμt]dt − V̂ (x,π) − P

= λ0γ x
( π

r̃ − μh
+ 1 − π

r̃ − μl

)
− V̂ (x,π) − P , (3.50)
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Fig. 1. The free boundaries x = b̂(π).

where the second equality follows from that μ is independent of W̄t and the third equality follows from that the assumption (2.20)
is equivalent to r̃ > μh . The function V̂ can be calculated by (3.45) and (3.48) for ε �= 0 and ε = 0, respectively. Moreover, the optimal 
stopping time for problem (2.4) can also be represented as (3.46) with the free boundary given by (3.47) for ε �= 0 and (3.49) for ε = 0, 
respectively.

4. Numerical examples

In this section, we take the benefit function h(s) from Anquandah and Bogachev (2019),

h(s) =
{

h0, 0 ≤ s ≤ s0,

h0e−κ(s−s0), s ≥ s0,

where 0 < h0 ≤ 1, 0 < s0 < ∞, and κ > 0. Thus the insurant receives a certain fraction of his final wage h0 Xτ0 for a grace period s0, after 
which the benefit is falling down exponentially with rate κ . This benefit schedule encourages the insurant to look for a new job. With 
this function h, constant γ defined in (2.3) is calculated as

γ = h0(1 − e−(r+λ1)s0)

r + λ1
+ h0e−(r+λ1)s0

r + λ1 + κ
.

Example 4.1. This example studies the case ε = 0 by implementing the theoretical formulas and simulating individual’s wage path and 
performing sensitivity analysis. As Anquandah and Bogachev (2019), the parameters are set as follows. The inflation rate is taken as 
r = 0.0004, the unemployment rate λ0 = 0.01, benefit exponentially falling down rate κ = 0.0094 (per week), certain fraction benefit 
h0 = 0.574 and the grace period s0 = 34.7 (weeks). The waiting rate λ1 is chosen such that γ = 30. The initial wage is set x = 346 (euro 
per week) and the payment premium P = 9000 (euro). The volatility is set σ = 0.04, top value of wage drift uh = 0.0012 and low value 
ul = 0.0004. Thus, ε = 1

2 (μh + μl − σ 2) = 0.

For the case that ε = 0, the free boundary b̂ has a closed-form (3.49), thus can be calculated directly. We draw the free boundary 
x = b̂(π), the stopping region and the continuation region in Fig. 1(a). Then we simulate the processes �t and Xt with different initial 
probability using the Euler methods and simulate the running process. By the definition of optimal stopping time (3.46), namely,

τ̂ ∗ = inf
{

s ≥ 0 : Xs ≥ b̂(�s)
}

,

we know that it is the optimal entry time when the path of Xt meets the path of b̂(�t) for the first time. Figs. 3(a), 4(a) and 5(a) shows 
the paths of �t , Xt and b̂(�t) and the optimal entry time τ̂ ∗ with initial probability π = 0.75, 0.5 and 0.25 respectively. After finding 
the free boundary b̂, we can further calculate the value function V (x, π) of the initial individual’s problem (2.4) using Proposition 3.8 and 
Remark 3.1. We depict the x−sections of the value functions in Fig. 6(a). Finally, in order to understand how varying values of exogenous 
parameters affect the free boundary b̂, we conduct some comparative static analysis. To be specific, we change the value of P , λ1, λ0 and 
show the free boundary b̂ in Fig. 2.

Fig. 1 shows that the optimal entry boundary is decreasing with respect to π . The economic explanation is clear as a higher π means 
that the individual is more optimistic about his/her wage, which adds incentive to an earlier entry of the UI contract and thus makes the 
threshold b̂ lower.

From Figs. 3(a), 4(a) and 5(a), we know that at the origin time t = 0, an individual has a job with wage Xt which follows (2.7). It is 
the optimal to join the UI scheme by paying a premium P when the wage process Xt hits the free boundary b̂. When the policyholder 
loses his/her job at time τ0, he/she receives benefits from the insurance company which is dependent on his final wage Xτ0 and benefit 
function h, till to finding a new job after a period τ1.

Fig. 6(a) reveals that the value of contract is increasing with respect to the initial belief π . Economically, as π increases, the individual 
becomes more and more optimistic about his/her career prospects, which means that the contract is more valuable to the individual.
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Fig. 2. Sensitivity of the free boundary b̂(π) to the premium P , the intensities λ1 of unemployment duration and λ0 of losing a job.

Fig. 3. Simulation of individual’s wage path, the probability process and optimal stopping time for initial probability π = 0.75.

Fig. 2(a) shows that as the level of the premium increases, the corresponding threshold wage is increasing. Economically, increasing 
premium makes it more expensive to enter the UI contract, which further results in a higher optimal entry boundary.

It is also interesting to analyze how the parameter λ1 affects the decision of the individual to enter the UI contract. From Fig. 2(b), 
it is evident that the optimal entry boundary moves up as λ1 is increased. Economically, when λ1 increases, the average period of 
unemployment will decease. It follows that the benefit γ Xτ0 paid by the insurance company will also decrease and the UI contract 
appears to be less attractive to the individual, which will reduce the incentive to an early entry.

Finally, we study the impact of varying λ0 on the optimal entry boundary. Increasing λ0 leads to the lower entry boundaries as revealed 
in Fig. 2(c). Economically, the bigger λ0 means a higher risk of losing the job, which motivates the individual to join the UI contract earlier 
and thus makes the threshold b̂ lower.

Example 4.2. This example studies the case ε �= 0, by solving integral equation (3.33), simulating individual’s wage path, the probability 
process and optimal stopping time and plotting x−sections of the solution to problem (2.4). The setting is as the same as Example 4.1
except σ = 0.02 and σ = 0.06 such that ε = 1 (μh + μl − σ 2) = 0.0006 and ε = 1 (μh + μl − σ 2) = −0.001 respectively.
J. Xing, J. Ma and W. Yang Insurance: Mathematics and Economics 110 (2023) 31–52
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Fig. 4. Simulation of individual’s wage path, the probability process and optimal stopping time for initial probability π = 0.5.

Fig. 5. Simulation of individual’s wage path, the probability process and optimal stopping time for initial probability π = 0.25.
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Fig. 6. The values of individual’s problem (2.4).

For the case that ε �= 0, the free boundary b̂ is given by (3.47), which is dependent on b−1. Since b is the solution of the integral 
equation (3.33), there is no closed-form formula for b̂. We now develop the numerical method based on the ideas put forward by Johnson 
and Peskir (2017a). Replacing T with T − ζ in (3.34) gives that

V (ζ,ϕ) = EQ
[ T −ζ∫

0

e−r̃s H(ζ + s,�s)I(�s < b(ζ + s))ds
]
+EQ[

e−r̃(T −ζ )V (T ,�T −ζ )
]

≈ EQ
[ T −ζ∫

0

e−r̃s H(ζ + s,�s)I(�s < b(ζ + s))ds
]

:=
T −ζ∫
0

J (s, ζ,b(ζ + s),ϕ)ds,

where the second term in the first equality tends to zero by (3.35). Thus, instead of solving (3.33) immediately, using the continuous 
pasting condition, we truncate the upper limit of integration by T − ζ (i.e., replace +∞ by T − ζ ) and set ζ ∈ [−T , T ]. That is, we shall 
solve

T −ζ∫
0

J (s, ζ,b(ζ + s),b(ζ ))ds = 0. (4.1)

We compute the boundary b by backward recursion. Set the discretization mesh ζi = −T + i� for i = 0, . . . , n with � = 2T /n. Then we 
use rectangular rule to discretize the integral

T −ζi∫
0

J
(
s, ζi,b(ζi + s),b(ζi)

)
ds =

n−i∑
j=1

j�∫
( j−1)�

J
(
s, ζi,b(ζi + s),b(ζi)

)
ds

≈
n−i∑
j=1

J
(

j�,ζi,b(ζi + j�),b(ζi)
)
�.

Let bi ≈ b(ζi) such that

0 =
n−i∑
j=1

J ( j�,ζi,bi+ j,bi)�. (4.2)

According to Proposition 3.6, we set

bn = 0, b0 = T ,

for ε > 0, and

bn = T , b0 = 0,
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for ε < 0. If bi+ j is known for all j ≥ 1, then (4.2) is a nonlinear equation for bi . Thus, in each state the free boundary approximation bi
can be solved by Newton iteration methods. And all bi can be obtained by iterating from i = n − 1 to 0. After getting bi for i = 0, 1, . . . , n, 
we can find a ζi such that bi = π

1−π for a given π , and then use this relationship ζ = 1
ε log γ λ0x

ϕβ to find the corresponding x. Consequently 
the free boundary is solved.

We draw the free boundary x = b̂(π), the stopping region and the continuation region in Fig. 1(b) for ε > 0 and Fig. 1(c) for ε < 0
respectively. Then we simulate the processes �t and Xt with different initial probability using the Euler methods and simulate the running 
process for ε > 0 and ε < 0 respectively. The results are shown in Figs. 3, 4 and 5. After solving the free boundary, we can further calculate 
the prime values by Monte-Carlo simulations. To be more specific, we simulate the path of Xt and record the time when a path of the 
wage first touches the free boundary. Then we use the numerical integration formula to calculate V̂ (x, π). And the value V (x, π) can be 
calculated by (3.50) using the results of V̂ (x, π). The x−sections of the value function V (x, π) are shown in Figs. 6(b) and 6(c).

We notice that the properties of the optimal entry boundary and the value function in this example are similar to the case ε = 0 in 
Example 4.1.

5. Conclusions

This paper studies the optimal time for the individual to join an UI scheme under uncertainty drift of the wage process. This problem 
is a kind of degenerate two-dimensional optimal stopping problem. The degeneration makes the analysis and solution extremely hard. 
This paper solves it by converting the problem into an equivalent auxiliary non-degenerate optimal stopping problem and studying the 
auxiliary free boundary problem instead. The monotonicity and continuity of the auxiliary free boundary are rigorously proved and then 
the results for the original problem are established by the inverse transformation. The running process of the UI scheme is simulated and 
the dynamic optimal entry decision is clearly shown in the simulation.
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