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This paper studies a life-cycle optimal portfolio-consumption problem when the consumption perfor-
mance is measured by a shortfall aversion preference under an additional drawdown constraint on 
consumption rate. Meanwhile, the agent also dynamically chooses her life insurance premium to maxi-
mize the expected bequest at the death time. By using dynamic programming arguments and the dual 
transform, we solve the HJB variational inequality explicitly in a piecewise form across different regions 
and derive some thresholds of the wealth variable for the piecewise optimal feedback controls. Taking 
advantage of our analytical results, we are able to numerically illustrate some quantitative impacts on 
optimal consumption and life insurance by model parameters and discuss their financial implications.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal studies Merton (1969) and Merton (1971), the continuous time optimal investment and consumption problem under 
utility maximization has been extensively investigated by incorporating various stochastic factors, market incompleteness, trading con-
straints and the combination with other financial or actuarial decisions. Giving a complete literature review is beyond the scope of this 
paper. Among different model generalizations, the optimal life insurance in the context of utility maximization has attracted considerable 
attention. Richard (1975) proposes the optimal dynamic life insurance problem for the first time by combining the portfolio and con-
sumption control under a given distribution of a bounded death time. Pliska and Ye (2007) further study a similar optimal life insurance 
and consumption problem for an income earner when the lifetime random variable is unbounded. Later, Ye (2007) extends the model in 
Pliska and Ye (2007) by considering the dynamic portfolio in a risky asset. Huang and Milevsky (2008) solve a portfolio choice problem 
that includes mortality-contingent claims and labor income under general HARA utilities. Duarte et al. (2011) extend Ye (2007) to allow 
for multiple risky assets. Recently, Wei et al. (2020) solve the problem when a couple aims to optimize their consumption, portfolio and 
life-insurance purchasing strategies by maximizing the family objective until retirement.

On the other hand, time non-separable preferences have gained in popularity on modeling consumption performance thanks to the 
capability to explain the observed consumption smoothness and equity premium puzzle. In the existing literature, there are two major 
types of time non-separable preferences involving the information of the past consumption path. The first type is the so-called habit 
formation preference, in which the utility is generated by the difference between the consumption rate and the weighted integral of 
the past consumption control; see Constantinides (1990). Along this direction, many notable studies in complete and incomplete market 
models can be found in Detemple and Zapatero (1991), Detemple and Zapatero (1992), Detemple and Karatzas (2003), Yu (2015), Yu 
(2017), Yang and Yu (2022), Guan et al. (2020), He et al. (2022) among others. See also Angoshtari et al. (2022) where the habit formation 
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is formulated as a control constraint. Some studies on optimal life insurance in the context of consumption habit formation can also be 
found, for example, in Ben-Arab et al. (1996) and Boyle et al. (2022).

The second type of preference chooses the past consumption maximum as the reference level. Guasoni et al. (2020) propose a shortfall 
aversion preference that measures the performance by the ratio of the consumption rate and the past spending maximum. Deng et al. 
(2022) adopt the formulation from the habit formation preference where the utility is defined on the difference between the consumption 
rate and a proportion of the historical consumption maximum. Later, Li et al. (2021) extend the work of Deng et al. (2022) to an S-shaped 
utility to account for agent’s loss aversion towards the relative consumption with respect to the past consumption maximum. Liang et al. 
(2022) generalize the preference in Deng et al. (2022) such that the risk aversion differs when the consumption falls below the reference 
process and an additional drawdown constraint is enforced. We also note some fruitful studies on the impact of the past consumption 
maximum when a ratcheting or a drawdown control constraint is considered under the standard time separable utility on consumption; 
see, for example, Angoshtari et al. (2019), Arun (2012), Dybvig (1995), Jeon and Oh (2022), Jeon and Park (2021).

In this paper, we work with the second type of preference and choose the optimal relative consumption with reference to past spending 
maximum. In particular, we adopt the shortfall aversion preference proposed in Guasoni et al. (2020) together with the dynamic life 
insurance control, and enforce an additional drawdown constraint on consumption rate as a subsistence consumption requirement. The 
objective function of the control problem also involves the expected bequest from life insurance, which renders the dimension reduction in 
Guasoni et al. (2020) not applicable in our problem. Instead, we encounter a two-dimensional HJB equation. Similar to Deng et al. (2022), 
taking the wealth level and reference level as two state variables, we can derive the value function and optimal strategies in analytical form 
by solving the associated HJB inequality with some boundary conditions. The HJB equation can be expressed in a piecewise form based 
on the decomposition of the state domain such that the feedback optimal consumption: (1) equals the drawdown constraint rate; (2) lies 
between the drawdown constraint and the past spending maximum; (3) attains the past consumption peak. By using the dual transform 
and some smooth-fit conditions, the HJB variational inequality is linearized to a parameterized ODE, which can be solved in closed-form. 
The desired feedback form of optimal consumption, investment and insurance strategies can be obtained by the inverse transform. Contrary 
to Guasoni et al. (2020), our boundary curves for the wealth variable to distinguish different optimal feedback controls are all nonlinear 
functions due to the additional life insurance control. Our analytical results allow us to numerically illustrate how the model parameters 
affect the optimal decision on consumption and life insurance. By comparing with some existing results without shortfall aversion, we 
can also illustrate how the reference of past spending maximum motivates the insurance purchase. Some interesting financial implications 
induced by the shortfall aversion preference and the drawdown constraint are discussed therein.

The remainder of this paper is organized as follows. Section 2 introduces the market model with mortality risk and the stochastic 
control problem under the shortfall aversion preference. Section 3 gives some heuristic arguments to solve the HJB variational inequality 
and present main results on the optimal feedback consumption, portfolio and life insurance controls. Section 4 presents several numerical 
examples to illustrate some sensitivity analysis results and their financial implications. Some proofs are collected in Section 6.

2. Model setup and problem formulation

2.1. Market model

Let (�, F , F, P ) be a filtered probability space and F = (Ft)t≥0 satisfies the usual conditions. The financial market model consists of 
one riskless asset and one risky asset. The riskless asset price follows dBt = rBtdt , where r > 0 is the interest rate. The risky asset price is 
governed by the following stochastic differential equation (SDE)

dSt = Stμdt + StσdWt, t ≥ 0,

where W is an F -adapted Brownian motion, μ ∈ R and σ > 0 stand for the drift and volatility. It is assumed that μ > r and the sharp 
ratio is denoted by κ := μ−r

σ > 0. It is assumed that the individual’s death time τ has an exponential distribution with the parameter 
λ > 0.

Let (πt)t≥0 be the amount of wealth that the agent allocates in the risky asset, and let (ct )t≥0 represent the consumption rate. Similar 
to Lee (2021), we assume that the life insurance contracts cover mortality risk and they are actuarially fair. Denote by pt and Lt the 
instantaneous life insurance premium rate paid by the individual and insurance benefit paid by the insurer, respectively. We have that 
pt = λLt , and the bequest bt received by the individual’s heir is given by bt = Xt + Lt = Xt + pt

λ
. As a result, the wealth process satisfies

dXt = (r Xt + πt(μ − r) − ct − pt)dt + πtσdWt

= ((r + λ)Xt + πt(μ − r) − ct − λbt)dt + πtσdWt , t ≥ 0,
(2.1)

with the initial wealth X0 = x ≥ νH0/(r + λ). A control variable pt is then transformed to the bequest bt , which is assumed to be F -
adapted. The control triple (c, π, b) is said to be admissible if c is F -predictable and satisfies the drawdown constraint ct ≥ νHt where 
ν ∈ (0, 1), π is F -progressively measurable, and (c, π, b) satisfies the integrability condition 

∫ ∞
0 (ct + π2

t + bt)dt < ∞ a.s. and the no 
bankruptcy condition Xt ≥ 0 a.s. for t ≥ 0. Let A(x, h) denote the set of admissible controls (c, π, b).

In addition, similar to the proof of Corollary 1 of Arun (2012), to ensure that the consumption drawdown constraint ct ≥ νHt is 
sustainable for all t ≥ 0, the necessary condition is Xt ≥ νHt

r+λ
a.s. for all t ≥ 0. Therefore, from this point onwards, we will only consider 

the feasible domain (x, h) ∈ [0, +∞) × [0, +∞) such that x ≥ νh
r+λ

for the admissible set A(x, h).

Remark 2.1. The optimal premium pt is not required to be positive. The wage earner is allowed to purchase a special term pension annuity, 
and she can receive the premium pt from the insurance company at time t . However, the wage earner should pay pt to the company 
if she dies at time t . This situation is related to the reverse mortgage. Interested readers may refer to Pirvu and Zhang (2012) for more 
discussions.
26
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Fig. 1. Utility U (c,h) for a consumption rate c, with reference point h.

2.2. Shortfall aversion preference and control problem

It is assumed in the present paper that the agent is shortfall averse on relative consumption in the sense that utility loses of spending 
cuts from a reference. The reference process is chosen as the running maximum consumption process Ht := max {h, sups≤t cs}, and 
H0 = h ≥ 0 is the initial reference level. We adopt the shortfall aversion preference proposed in Guasoni et al. (2020) on consumption and 
also consider the expected utility on bequest at the death time. The objective function of the control problem is defined by

E

⎡⎣ τ∫
0

e−ρt U (ct , Ht)dt + e−ρτ V (bτ )

⎤⎦
=E

⎡⎣ ∞∫
0

e−(ρ+λ)t U (ct , Ht)dt + λ

∞∫
0

e−(ρ+λ)t V (bt)dt

⎤⎦ ,

(2.2)

where U (c, h) is the so-called shortfall aversion preference that satisfies

U (c,h) =
{

1
γ1

( c
hα

)γ1
, if νh ≤ c < h,

1
γ1

(
c1−α

)γ1
, if c ≥ h,

with 0 < γ1 < 1, and V (b) is a standard CRRA utility that

V (b) = K
bγ2

γ2
, 0 < γ2 < 1, K > 0,

and K stands for the bequest motive level. According to Fig. 1, the utility function U (c, h) has a kink at c = h.
The agent aims to maximize the expected utility under shortfall aversion preference subjecting to a drawdown constraint on consump-

tion control that

max
(c,π,b)∈A(x,h)

E

⎡⎣ ∞∫
0

e−(ρ+λ)t U (ct , Ht)dt + λ

∞∫
0

e−(ρ+λ)t V (bt)dt

⎤⎦ . (2.3)

For ease of presentation, it is assumed that the discount factor ρ equals the risk-free rate r.

3. Main results

3.1. The HJB equation

For problem (2.3), we can derive the auxiliary HJB variational inequality on the feasible domain {(x, h) ∈ [0, +∞) × [0, ∞) : x ≥ νh
r+λ

}
using some heuristic arguments that

sup
c∈[νh,h],π∈R,b≥0

[
−(r + λ)u + ux ((r + λ)x + π(μ − r) − c − λb) + 1

2
σ 2π2uxx + U (c,h) + λV (b)

]
= 0,

u (x,h) ≤ 0,

(3.1)
h
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for x ≥ νh
r+λ

and h ≥ 0. The free boundary condition uh(x, h) = 0 will be specified later. Our goal is to find the optimal feedback control 
c∗(x, h), π∗(x, h), and b∗(x, h). If u(x, ·) is C2 in x, the first order condition gives the optimal portfolio and optimal bequest in feedback 
form that π∗(x, h) = −μ−r

σ 2
ux
uxx

and b∗(x, h) = ( ux
K

) 1
γ2−1 , respectively. The HJB variational inequality (3.1) can be simplified to

sup
c∈[νh,h]

[U (c,h) − cux] − (r + λ)u + (r + λ)xux − λK
− 1

γ2−1
1 − γ2

γ2
u

γ2
γ2−1
x − κ2

2

u2
x

uxx
= 0,

uh ≤ 0, ∀x ≥ νh

r + λ
.

(3.2)

3.2. Some heuristic results

We aim to solve the HJB variational inequality in the analytical form. In particular, we plan to characterize some thresholds (depending 
on h) for the wealth level x such that the auxiliary value function, the optimal portfolio and consumption can be expressed analytically in 
each region.

Similar to Deng et al. (2022) and Li et al. (2021), we can heuristically decompose the domain based on the first order condition with 
respect to c and express the HJB equation (3.2) piecewisely. In particular, we have the following disjoint regions:

Region I: on the set R1 = {(x, h) ∈R2+ : x ≥ νh
r+λ

, ux > νγ1−1h(1−α)γ1−1}, U (c, h) −cux is decreasing in c on [νh, h], implying that c∗ = νh.

Region II: on the set R2 = {(x, h) ∈ R2+ : x ≥ νh
r+λ

, h(1−α)γ1−1 ≤ ux ≤ νγ1−1h(1−α)γ1−1}, U (c, h) − cux attains its maximum in [νh, h], 
implying that c∗ = h

αγ1
γ1−1 u

1
γ1−1
x .

Region III: on the set R3 = {(x, h) ∈R2+ : x ≥ νh
r+λ

, ux < h(1−α)γ1−1}, U (c, h) − cux is increasing in c on [νh, h], implying that c∗ = h. To 
distinguish whether the optimal consumption c∗

t updates the past maximum process H∗
t in this region, we need to split Region III in three 

subregions:
Region III-(i): on the set D1 = {(x, h) ∈ R+ × R+ : x ≥ νh

r+λ
, (1 − α)h(1−α)γ1−1 < ux < h(1−α)γ1−1}, we have a contradiction that ĉ(x) =( ux(x,h)

1−α

) 1
(1−α)γ1−1 < h, and therefore c∗

t is not a singular control. We still need to follow the previous feedback form c∗(x, h) = h, in which 
h is a previously attained maximum level. The corresponding running maximum process remains flat at the instant time. In this region, 
we only know that uh(x, h) ≤ 0 as we have dHt = 0.

Region III-(ii): on the set D2 := {(x, h) ∈R+ ×R+ : x ≥ νh
r+λ

, ux = (1 −α)h(1−α)γ1−1}, we get ĉ(x) = ( ux(x,h)
1−α

) 1
(1−α)γ1−1 = h and the feedback 

optimal consumption c∗(x, h) = ( ux(x,h)
1−α

) 1
(1−α)γ1−1 . This corresponds to the singular control c∗

t that creates a new peak for the whole path 

and H∗
t = c∗

t = ( ux(X∗
t ,H∗

t )

1−α

) 1
(1−α)γ1−1 is strictly increasing at the instant time so that H∗

t > H∗
s for any s < t and we must require the following 

free boundary condition that uh(x, h) = 0. In this region, it is noted that c∗(x, h) = h, therefore, the HJB equation follows the same PDE 
with in Region I but together with the new free boundary condition.

Region III-(iii): on the set D3 := {(x, h) ∈R+ ×R+ : ux(x, h) < (1 −α)h(1−α)γ1−1}, we get ĉ(x) = ( ux(x,h)
1−α

) 1
(1−α)γ1−1 > h. This indicates that 

the initial reference level h is below the feedback control ĉ(x), and the optimal consumption is again a singular control c∗(x) > h, which 
creates a new consumption peak. As the running maximum process H∗

t is updated immediately by c∗
t , the feedback optimal consumption 

pulls the associated H∗
t− upward from its original value to the new value in the direction of h and X∗

t remains the same, in which 
u(x, h) is the solution of the HJB equation on the set D2. This suggests that for any given initial value (x, h) in the set D3, the feedback 
control c∗(x, h) pushes the value function jumping immediately to the point (x, ̂h) on the boundary set D2 for the given level of x, where 
ĥ = ( ux(x,ĥ)

1−α

) 1
(1−α)γ1−1 .

Therefore, it is sufficient to consider the effective domain defined by

C :=
{
(x,h) ∈ R+ ×R+ : x ≥ νh

r + λ
, ux(x,h) ≥ (1 − α)h(1−α)γ1−1

}
= R1 ∪R2 ∪D1 ∪D2 ⊂ R2+.

(3.3)

The only possibility for (x, h) ∈ D3 occurs at the initial time t = 0. If (X∗
0, H∗

0) starts from C , then the controlled process (X∗
t , H∗

t ) always 
stay inside the region C and will either reflect at the boundary or move along the boundary D2 after visiting the boundary D2. On the 
other hand, if the process (X∗

0, H∗
0) starts from the value (x, h) inside the region D3, the optimal control enforces an instant jump (and the 

only jump) of the process H from H0− = h to H0 = ĥ on the boundary D2 and both processes Xt and Ht become continuous processes 
diffusing inside the effective domain C afterwards for t < 0.

Therefore, the HJB variational inequality (3.2) can be written as

−(r + λ)u + (r + λ)xux − κ2

2

u2
x

uxx
= −Ṽ (ux,h), and uh ≤ 0,

uh = 0, if ux = (1 − α)h(1−α)γ1−1,

(3.4)

where we define

Ṽ (q,h) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λK

− 1
γ2−1 1−γ2

γ2
q

γ2
γ2−1 + νγ1

γ h(1−α)γ1 − νhq, if q > νγ1−1h(1−α)γ1−1,

λK
− 1

γ2−1 1−γ2
γ2

q
γ2

γ2−1 + 1−γ1
γ1

h
αγ1
γ1−1 q

γ1
γ1−1 , if h(1−α)γ1−1 ≤ q ≤ νγ1−1h(1−α)γ1−1,

λK
− 1

γ2−1 1−γ2 q
γ2

γ2−1 + 1 h(1−α)γ1 − hq, if (1 − α)h(1−α)γ1−1 ≤ q < h(1−α)γ1−1.

(3.5)
γ2 γ1
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To solve the equation, some boundary conditions are needed. First, to guarantee the desired global regularity of the solution, we need to 
impose the smooth-fit condition along two free boundaries such that ux(x, h) = νγ1−1h(1−α)γ1−1 and ux(x, h) = h(1−α)γ1−1. Next, note that 
if we start with initial wealth x = νh

r+λ
, to confront the risk of bankruptcy, the optimal investment π∗(x) = −μ−r

σ 2
ux
uxx

should always be 0. 
The wealth level will never change as there is no trading strategy, the consumption rate should also be ct = νh, and the optimal bequest 
should also be 0 all the time. Therefore, we can conclude that

lim
x→ νh

r+λ

ux(x,h)

uxx(x,h)
= 0 and lim

x→ νh
r+λ

u(x,h) =
+∞∫
0

e−(r+λ)t 1

γ1

(
νh

hα

)γ1

dt = νγ1

(r + λ)γ1
h(1−α)γ1 . (3.6)

On the other hand, when the initial wealth tends to infinity, one can consume as much as possible that leads to the infinitely large 
consumption rate and bequest. A small variation of initial wealth will only lead to a negligible change of the value function. In addition, 
the optimal consumption rate should be proportional to the wealth level on region D2. It follows that

lim
x→+∞ ux(x,h) = 0, and lim

x→+∞, (x,h)∈D2

h

x
= C∞, (3.7)

where C∞ > 0 is a constant. See Corollary 3.1 for the verification of the last boundary condition.
To tackle the nonlinear HJB equation (3.4), we employ the dual transform only with respect to the variable x and treat the variable 

h as a parameter; see similar dual transform arguments in Bo et al. (2021), Deng et al. (2022) and Li et al. (2021). That is, we consider 
v(y, h) := supx≥ νh

r+λ
{u(x, h) − xy}, y ≥ (1 − α)h(1−α)γ1−1. For a given (x, h) ∈ C , let us define the variable y = ux(x, h) and it holds that 

u(x, h) = v(y, h) + xy. We can further deduce that

x = −v y(y,h), u(x,h) = v(y,h) − yv y(y,h) and uxx(x,h) = − 1

v yy(y,h)
.

The nonlinear equation (3.4) can be reduced to

κ2

2
y2 v yy − (r + λ)v = −Ṽ (y,h), (3.8)

where Ṽ (·, ·) is defined in (3.5), and the free boundary condition is transformed to the point y = (1 − α)h(1−α)γ1−1. As h can be regarded 
as a parameter, we can study the above equation as the ODE problem of the variable y. Based on the dual transform, the boundary 
conditions (3.7) can be written as

lim
y→0

v y(y,h) = −∞, and lim
h→∞

h

v y(y,h)
= −C∞, (3.9)

on free boundary y = (1 − α)h(1−α)γ1−1. The boundary condition (3.6) is equivalent to

yv yy(y,h) → 0 and v(y,h) − yv y(y,h) → νγ1

(r + λ)γ1
h(1−α)γ1 as v y(y,h) → − νh

r + λ
. (3.10)

It holds by the dual transform that v y(y, h) = −x, and one can derive that uh(x, h) = vh(y, h) + (v y(y, h) + x) dy(h)
dh = vh(y, h). The free 

boundary condition (3.4) is written by

vh(y,h) = 0 as y = (1 − α)h(1−α)γ1−1. (3.11)

In particular, to facilitate some mathematical arguments, we need to impose the following technical assumption on model parameters. 
This assumption is needed in deriving the explicit form of coefficient functions Ci(h), i = 1, ..., 6, in Proposition 3.1 below. It is also needed 
in the proof of Lemma 3.1 when we verify that the obtained solution v(y, h) is convex in the variable y and in the proof of the verification 
theorem on optimality.

Assumption (A1) γ2 ≤ (1 − α)γ1 < − r2
r1

�= γ1, where r1 > 1 and r2 < 0 are two solutions to the equation η2 − η − 2(r+λ)

κ2 = 0.

Proposition 3.1. Under Assumption (A1), boundary conditions (3.9), (3.10), the free boundary condition (3.11), and the smooth-fit conditions with 
respect to y at free boundary points y = νγ1−1h(1−α)γ1−1 and y = h(1−α)γ1−1 , the ODE (3.8) in the domain {y ∈R : y ≥ (1 −α)h(1−α)γ1−1} admits 
the unique solution given explicitly by

v(y,h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2(h)yr2 + 2λK 1−β2

κ2β2(β2 − r1)(β2 − r2)
yβ2

+ νγ1

(r + λ)γ1
h(1−α)γ1 − νh

r + λ
y,

if y > νγ1−1h(1−α)γ1−1,

C3(h)yr1 + C4(h)yr2 + 2λK 1−β2

κ2β2(β2 − r1)(β2 − r2)
yβ2

+ 2hαβ1

κ2β1(β1 − r1)(β1 − r2)
yβ1 ,

if h(1−α)γ1−1 ≤ y ≤ νγ1−1h(1−α)γ1−1,

C5(h)yr1 + C6(h)yr2 + 2λK 1−β2

κ2β2(β2 − r1)(β2 − r2)
yβ2

+ 1
h(1−α)γ1 − h

y,

if (1 − α)h(1−α)γ1−1 ≤ y < h(1−α)γ1−1,

(3.12)
(r + λ)γ1 r + λ
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where β1 = γ1
γ1−1 , β2 = γ2

γ2−1 , and functions C2(h), C3(h), · · · , C6(h) are given by

C2(h) = C4(h) + 1 − β1

(r + λ)(r1 − r2)(β1 − r2)
νr1γ1+r2 hr1(1−α)γ1+r2 ,

C3(h) = 1 − β1

(r + λ)(r1 − r2)(β1 − r1)
νr2γ1+r1 hr2(1−α)γ1+r1 ,

C4(h) = C6(h) + β1 − 1

(r + λ)(r1 − r2)(β1 − r2)
hr1(1−α)γ1+r2 ,

C5(h) = C3(h) − 1 − β1

(r + λ)(r1 − r2)(β1 − r1)
hr2(1−α)γ1+r1 ,

C6(h) = (1 − α)r1−r2(1 − β1)(r2(1 − α)γ1 + r1)

(r + λ)(r1 − r2)(β1 − r1)(r1(1 − α)γ1 + r2)
(1 − νr2γ1+r1)hr1(1−α)γ1+r2

(3.13)

where r1 > 1 and r2 < 0 are two roots to the quadratic equation η2 − η − 2(r+λ)

κ2 = 0.

Proof. It is easy to show that the general solution of the linear ODE (3.8) admits the piecewise form in each region that

v(y,h) =

⎧⎪⎪⎨⎪⎪⎩
C1(h)yr1 + C2(h)yr2 + (νh)γ1

(r+λ)γ1hαγ1 − νh
r+λ

y, if > νγ1−1h(1−α)γ1−1

C3(h)yr1 + C4(h)yr2 + 2hαβ1

κ2β1(β1−r1)(β1−r2)
yβ1 , if h(1−α)γ1−1 ≤ y ≤ νγ1−1h(1−α)γ1−1,

C5(h)yr1 + C6(h)yr2 + 1
(r+λ)γ1

h(1−α)γ − h
r+λ

y, if (1 − α)h(1−α)γ1−1 ≤ y < h(1−α)γ1−1,

(3.14)

where C1(·), · · · , C6(·) are functions of h to be determined.
The free boundary condition v y(y, h) → − νh

r+λ
in (3.10) implies that y → +∞. Together with free boundary conditions in (3.10) and the 

formula of v(y, h) in the region y > νγ1−1h(1−α)γ1−1, we deduce C1(h) ≡ 0. To determine the left parameters, we consider the smooth-fit 
conditions with respect to the variable y at two free boundary points y = y1(h) = νγ1−1h(1−α)γ1−1 and y = y2(h) = h(1−α)γ −1, that is,

− C3(h)y1(h)r1 + (C2(h) − C4(h))y1(h)r2

= 2hαβ1

κ2β1(β1 − r1)(β1 − r2)
y1(h)β1 + νh

r + λ
y1(h) − (νh)γ

(r + λ)γ hαγ
,

− r1C3(h)y1(h)r1−1 + r2(C2(h) − C4(h))y1(h)r2−1

= 2hαβ1

κ2(β1 − r1)(β1 − r2)
y1(h)β1−1 + νh

r + λ
,

(C3(h) − C5(h))y2(h)r1 + (C4(h) − C6(h))y2(h)r2

= − 2hαβ1

κ2β1(β1 − r1)(β1 − r2)
y2(h)β1 + 1

(r + λ)γ
h(1−α)γ − h

r + λ
y2(h),

r1(C3(h) − C5(h))y2(h)r1−1 + r2(C4(h) − C6(h))y2(h)r2−1

= − 2hαβ1

κ2(β1 − r1)(β1 − r2)
y2(h)β1−1 − h

r + λ
.

(3.15)

Then the equations (3.15) are linear equations for C3(h), C2(h) − C4(h), and C3(h) − C5(h) and C4(h) − C6(h). By solving the above two 
systems, we can obtain

C3(h) = 1 − β1

(r + λ)(r1 − r2)(β1 − r1)
(νh)r2γ1+r1h−r2αγ1 ,

C2(h) − C4(h) = 1 − β1

(r + λ)(r1 − r2)(β1 − r2)
(νh)r1γ1+r2h−r1αγ1 ,

C3(h) − C5(h) = 1 − β1

(r + λ)(r1 − r2)(β1 − r1)
hr2(1−α)γ1+r1 ,

C4(h) − C6(h) = β1 − 1

(r + λ)(r1 − r2)(β1 − r2)
hr1(1−α)γ1+r2 ,

(3.16)

therefore, C2(h) to C5(h) can be written by (3.12).
To obtain C2(h), C4(h) and C6(h), we aim to find C6(h) first, then C4(h) and C2(h) can be determined. Indeed, as h → +∞, we get 

y → 0 in the region (1 − α)h(1−α)γ1−1 ≤ y < h(1−α)γ1−1, and the boundary condition (3.9) leads to

lim
h→+∞

h

v y((1 − α)h(1−α)γ1−1,h)
= C,

where C is a negative constant. Along the free boundary, we have
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v y((1 − α)h(1−α)γ1−1,h) = r1C5(h)
(
(1 − α)h(1−α)γ1−1)r1−1 + r2C6(h)

(
(1 − α)h(1−α)γ1−1)r2−1 + h

r + λ
.

It follows from lim
h→+∞

h
v y((1−α)h(1−α)γ −1,h)

< 0 that v y((1 − α)h(1−α)γ −1, h) = O (h) as h → +∞. Therefore, we can deduce that

C6(h) = O (C5(h)h(r1−r2)((1−α)γ1−1)) + O (hr1(1−α)γ1+r2).

From the asymptotic property of C5(h) in Lemma 6.1, it follows that

C6(h) = O (C5(h)h(r1−r2)((1−α)γ1−1)) + O (hr1(1−α)γ1+r2) = O (hr1(1−α)γ1+r2),

as h → +∞. By Assumption (A1), we have lim
h→+∞

C6(h) = 0, and thus we have C6(h) = − 
∫ ∞

h C ′
6(s)ds.

In addition, to obtain C ′
6(h), we apply the free boundary condition (3.11) at point y = (1 − α)h(1−α)γ1−1 that

C ′
5(h)

(
(1 − α)h(1−α)γ1−1)r1 + C ′

6(h)
(
(1 − α)h(1−α)γ1−1)r2 + 1 − α

r + λ
h(1−α)γ1−1 − 1 − α

r + λ
h(1−α)γ1−1 = 0,

which yields that

C ′
6(h) = −(1 − α)r1−r2 C ′

5(h)h(r1−r2)((1−α)γ1−1)

= (1 − α)r1−r2(1 − β1)(r2(1 − α)γ1 + r1)

(r + λ)(r1 − r2)(β1 − r1)
(1 − νr2γ1+r1)hr1((1−α)γ1−1).

As a result, we conclude that

C6(h) = −
∞∫

h

C ′
6(s)ds = (1 − α)r1−r2(1 − β1)(r2(1 − α)γ1 + r1)

(r + λ)(r1 − r2)(β1 − r1)(r1(1 − α)γ1 + r2)
(1 − νr2γ1+r1)hr1(1−α)γ1+r2 . �

Theorem 3.1 (Verification Theorem). Let (x, h) ∈ C , h ∈R and 0 < λ < 1, where x ≥ 0 stands for the initial wealth, h ≥ 0 is the initial reference level, 
and C stands for the effective domain (3.3). For (y, h) ∈ {(y, h) ∈R2+ : y ≥ (1 − α)h(1−α)γ1−1}, let us define the feedback functions that

c†(y,h) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
νh, if y > νγ1−1h(1−α)γ1−1,

h
αγ1
γ1−1 u

1
γ1−1
x , if h(1−α)γ1−1 ≤ y ≤ νγ1−1h(1−α)γ1−1,

h, if (1 − α)h(1−α)γ1−1 < y < h(1−α)γ1−1,( y
1−α

) 1
(1−α)γ1−1 , if y = (1 − α)h(1−α)γ1−1,

(3.17)

π †(y,h) = μ − r

σ 2
yv yy(y,h)

=μ − r

σ 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(r+λ)

κ2 C2(h)yr2−1 + 2λK 1−β2 (β2−1)

κ2(β2−r1)(β2−r2)
yβ2−1, if y > νγ1−1h(1−α)γ1−1,

2(r + λ)

κ2
C3(h)yr1−1 + 2(r + λ)

κ2
C4(h)yr2−1

+ 2λK 1−β2(β2 − 1)

κ2(β2 − r1)(β2 − r2)
yβ2−1

+ 2(β1 − 1)hαγ1

κ2(β1 − r1)(β1 − r2)
yβ1−1,

if h(1−α)γ1−1 ≤ y ≤ νγ1−1h(1−α)γ1−1,

2(r + λ)

κ2
C5(h)yr1−1 + 2(r + λ)

κ2
C6(h)yr2−1

+ 2λK 1−β2(β2 − 1)

κ2(β2 − r1)(β2 − r2)
yβ2−1,

if (1 − α)h(1−α)γ1−1 ≤ y < h(1−α)γ1−1,

(3.18)

and

b†(y,h) =
(

y

K

) 1
γ2−1

. (3.19)

We consider the process Yt(y) := ye(r+λ)t Mt , where Mt := e−(r+λ+ κ2
2 )t−κWt is the discounted rate state price density process, and y∗ = y∗(x, h) is 

the unique solution to the budget constraint E[∫ ∞
0 (c†(Yt(y), H†

t (y)) + λb†(Yt(y), H†
t (y)))Mtdt] = x, where

H†
t (y) := h ∨ sup

s≤t
c†(Ys(y), H†

s(y)) = h ∨
(

inf
s≤t

Ys(y)/(1 − α)

) 1
(1−α)γ1−1

,

is the optimal reference process corresponding to any fixed y > 0. The value function u(x, h) can be attained by employing the optimal consumption 
and portfolio strategies in the feedback form that c∗

t = c†(Y ∗
t , H∗

t ) and π∗
t = π †(Y ∗

t , H∗
t ) for all t ≥ 0, where Y ∗

t := Yt(y∗) and H∗
t = H†

t (y∗).
The process H∗

t is strictly increasing if and only if Y ∗
t = (1 − α)H∗

t
(1−α)γ1−1 . If we have y∗(x, h) < (1 − α)h(1−α)γ1−1 at the initial time, the 

optimal consumption creates a new peak and brings H∗
0− = h jumping immediately to a higher level H∗

0 = ( y∗(x,h)
1−α

) 1
(1−α)γ1−1 such that t = 0 becomes 

the only jump time of H∗
t .
31



X. Li, X. Yu and Q. Zhang Insurance: Mathematics and Economics 108 (2023) 25–45
Proof. Similar to Deng et al. (2022), we need to show that the solution of the HJB equation (3.1) coincides with the value function, i.e. 

there exists (π∗, c∗, b∗) ∈ A(x) such that u(x, h) =E

[∫ ∞
0 e−rt u(c∗

t , H∗
t )dt

]
. For any admissible strategy (π, c) ∈ A(x), similar to the proof 

of Lemma 1 in Arun (2012), we have

E

[ ∞∫
0

(ct + λbt)Mtdt

]
≤ x. (3.20)

Let h be the fixed parameter, the dual transform of U (c, h)+λV (b) with respect to c and b in the constrained domain that Ṽ (q, h) :=
supc∈[νh,h]

[
U (c, h) − cq

] + λ supb≥0
[
V (b) − bq

]
defined in (3.5). Moreover, Ṽ can be attained by the construction of the feedback optimal 

control c†(y, h) in (3.17).
In what follows, we distinguish the two reference processes, namely Ht := h ∨ sups≤t cs and H†

t (y) := h ∨ sups≤t c†(Ys(y), H†
s(y)) that 

correspond to the reference process under an arbitrary consumption process ct and under the optimal consumption process c† with an 
arbitrary y > 0. Note that the global optimal reference process will be defined later by H∗

t := H†
t (y∗) with y∗ > 0 to be determined. Let 

us now further introduce

Ĥt(y) := h ∨
(

(1 − α)
− 1

(1−α)γ1−1
(

inf
s≤t

Ys(y)
) 1

(1−α)γ1−1

)
, (3.21)

where Yt(y) = yert Mt is the discounted martingale measure density process.
For any admissible controls (π, c) ∈ A(x), recall the reference process Ht = h ∨ sups≤t cs , and for all y > 0, we see that

E

⎡⎣ ∞∫
0

e−(r+λ)t U (ct , Ht)dt + λ

∞∫
0

e−(r+λ)t V (bt)dt

⎤⎦
= E

[ ∞∫
0

e−(r+λ)t(U (ct , Ht) − Yt(y)ct)dt

]
+ λE

[ ∞∫
0

e−(r+λ)t(V (bt) − Yt(y)bt)dt

]

+ yE

[ ∞∫
0

(ct + λbt)Mtdt

]

≤E

[ ∞∫
0

e−(r+λ)t Ṽ (Yt(y), H†
t (y))dt

]
+ yx

= E

[ ∞∫
0

e−(r+λ)t Ṽ (Yt(y), Ĥt(y))dt

]
+ yx

= v(y,h) + yx,

(3.22)

the third equation holds because of Lemma 6.2, and the last equation is verified by Lemma 6.1. In addition, Lemma 6.3 guarantees the 
inequality, and shows it becomes an equality with the choices of c∗

t = c†(Yt(y∗), H†
t (y∗)) and b∗

t = b†(Yt(y∗), H†
t (y∗)), in which y∗ is the 

solution to the equation E
[ ∫ ∞

0 (c†(Yt(y∗), H†
t (y∗)) + λb†(Yt(y∗), H†

t (y∗)))Mtdt
] = x for a given x ≥ νh

r+λ
. In conclusion, we have

sup
(π,c)∈A(x)

E

⎡⎣ ∞∫
0

e−(r+λ)t U (ct , Ht)dt + λ

∞∫
0

e−(r+λ)t V (bt)dt

⎤⎦
= inf

y>0
(v(y,h) + yx) = u(x,h). �

Using the dual relationship between u and v , we have the optimal x = g(·, h) := −v y(·, h). Define f (·, h) as the inverse of g(·, h), then 
u(x, h) = v( f (x, h), h) + xf (x, h). Note that v has different expressions in the regions c = 0, 0 < c < h and c = h, the function f should 
also have the piecewise from across these regions. By the definition of g , the invertibility of the map x �→ g(x, h) is guaranteed by the 
following lemma.

Lemma 3.1. Under Assumption (A1), the value function v(y, h) in (3.12) is convex in all regions so that the inverse Legendre transform u(x, h) =
infy≥(1−α)h(1−α)γ −1 [v(y, h) + xy] is well defined. Moreover, it implies that the feedback optimal portfolio π∗(y, h) > 0 at all time.

Proof. See Section 6.2. �
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3.3. Optimal feedback controls

The main result in this subsection is based on Assumption (A1). Thanks to Lemma 3.1, we can apply the inverse Legendre transform 
to the solution v(y, h) in (3.12). Similar to Section 3.1 in Deng et al. (2022), we can characterize the following four boundary curves 
xbound(h), xlow(h), xaggr(h), and xlavs(h) that

xbound(h) := νh

r + λ
,

xlow(h) := −C2(h)r2ν
−r1(γ1−1)h−r1((1−α)γ1−1) − 2λK 1−β2ν(β2−1)(γ1−1)

κ2(β2 − r1)(β2 − r2)
h(β2−1)((1−α)γ1−1) + νh

r + λ
,

xaggr(h) := −C3(h)r1h−r2((1−α)γ1−1) − C4(h)r2h−r1((1−α)γ1−1)

− 2λK 1−β2

κ2(β2 − r1)(β2 − r2)
h(β2−1)((1−α)γ1−1) − 2

κ2(β1 − r1)(β1 − r2)
h,

xlavs(h) := −C5(h)r1(1 − α)r1−1h−r2((1−α)γ1−1) − C6(h)r2(1 − α)r2−1h−r1((1−α)γ1−1)

− 2λ(1 − α)β2−1 K 1−β2

κ2(β2 − r1)(β2 − r2)
h(β2−1)((1−α)γ1−1) + h

r + λ
,

(3.23)

and it holds that the feedback function of the optimal consumption satisfies: (i) c∗(x, h) = νh when xbound(h) ≤ x < xlow(h); (ii) 
νh < c∗(x, h) < h when xlow(h) ≤ x ≤ xaggr(h); (iii) c∗(x, h) = h when xaggr(h) < x ≤ xlavs(h). In particular, the condition ux(x, h) ≥
(1 − α)h(1−α)γ1−1 in the effective domain C in (3.3) now can be explicitly expressed as x ≤ xlavs(h).

We also define functions f1(x, h), f2(x, h) and f3(x, h) to be the respective solutions to three equations that

x = −C2(h)r2( f1(x,h))r2−1 − 2λK 1−β2 f1(x,h)β2−1

κ2(β2 − r1)(β2 − r2)
+ νh

r + λ
, if xbound(h) ≤ x < xlow(h),

x = −C3(h)r1( f2(x,h))r1−1 − C4(h)r2( f2(x,h))r2−1

− 2λK 1−β2 f2(x,h)β2−1

κ2(β2 − r1)(β2 − r2)
− 2hαβ1 f2(x,h)β1−1

κ2(β1 − r1)(β1 − r2)
, if xlow(h) ≤ x ≤ xaggr(h),

x = −C5(h)r1( f3(x,h))r1−1 − C6(h)r2( f3(x,h))r2−1

− 2λK 1−β2 f3(x,h)β2−1

κ2(β2 − r1)(β2 − r2)
+ h

r + λ
, if xaggr(h) < x ≤ xlavs(h).

(3.24)

The following proposition shows the semi-analytical form for the value function, optimal consumption, and optimal portfolio.

Theorem 3.2. For (x, h) ∈ {(x, h) ∈ R2+ : x ≥ xbound(h)}, 0 < ν < 1, γ1, γ2 > 0, the value function u(x, h) in (2.2) can be expressed in a piecewise 
form that

u(x,h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2(h) f1(x,h)r2 + 2λK 1−β2

κ2β2(β2 − r1)(β2 − r2)
f1(x,h)β2

+ νγ

(r + λ)γ1
h(1−α)γ − νh

r + λ
f1(x,h),

if xbound(h) ≤ x < xlow(h),

C3(h) f2(x,h)r1 + C4(h) f2(x,h)r2 + 2λK 1−β2

κ2β2(β2 − r1)(β2 − r2)
f2(x,h)β2

+ 2hαγ1

κ2β1(β1 − r1)(β1 − r2)
f2(x,h)β1 ,

if xlow(h) ≤ x ≤ xaggr(h),

C5(h) f3(x,h)r1 + C6(h) f3(x,h)r2 + 2λK 1−β2

κ2β2(β2 − r1)(β2 − r2)
f3(x,h)β2

+ 1

(r + λ)γ1
h(1−α)γ1 − h

r + λ
f3(x,h),

if xaggr(h) < x ≤ xlavs(h),

(3.25)

where the boundaries xbound(h), xlow(h), xaggr(h), and xlavs(h) are given in (3.23). Moreover, the feedback optimal consumption and portfolio can also 
be given in terms of primal variables (x, h) accordingly:

c∗(x,h) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
νh, if xbound(h) ≤ x < xlow(h),

h
αγ1
γ1−1 f2(x,h)

1
γ1−1 , if xlow(h) ≤ x ≤ xaggr(h),

h, if xaggr(h) < x < xlavs(h),( f3(x,h̃(x))
1−α

) 1
(1−α)γ1−1 , if x = xlavs(h),

(3.26)

where h̃(x) := x−1 (x), the optimal portfolio
lavs

33



X. Li, X. Yu and Q. Zhang Insurance: Mathematics and Economics 108 (2023) 25–45
π∗(x,h)

=μ − r

σ 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(r+λ)

κ2 C2(h) f1(x,h)r2−1 + 2λK 1−β2 (β2−1)

κ2(β2−r1)(β2−r2)
f1(x,h)β2−1, if xbound(h) ≤ x < xlow(h),

2(r + λ)

κ2
C3(h) f2(x,h)r1−1 + 2(r + λ)

κ2
C4(h) f2(x,h)r2−1

+ 2λK 1−β2(β2 − 1)

κ2(β2 − r1)(β2 − r2)
f2(x,h)β2−1

+ 2(β1 − 1)hαγ1

κ2(β1 − r1)(β1 − r2)
f2(x,h)β1−1,

if xlow(h) ≤ x ≤ xaggr(h),

2(r + λ)

κ2
C5(h) f3(x,h)r1−1 + 2(r + λ)

κ2
C6(h) f3(x,h)r2−1

+ 2λK 1−β2(β2 − 1)

κ2(β2 − r1)(β2 − r2)
f3(x,h)β2−1,

if xaggr(h) < x ≤ xlavs(h),

(3.27)

and the optimal bequest

b∗(x,h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
f1(x,h)

K

) 1
γ2−1

, if xbound ≤ x < xlow(h),(
f2(x,h)

K

) 1
γ2−1

, if xlow ≤ x < xaggr(h),(
f3(x,h)

K

) 1
γ2−1

, if xaggr < x ≤ xlavs(h).

(3.28)

Moreover, for any initial value (X∗
0, H∗

0) = (x, h) ∈ C , the stochastic differential equation

dX∗
t = (r + λ)X∗

t dt + π∗(μ − r)dt − c∗dt − λb∗
t dt + π∗σdWt, (3.29)

has a unique strong solution under the optimal feedback control (c∗, π∗).

Proof. The proof of Theorem 3.2 is trivial under results of Theorem 3.1 and the inverse Legendre transform. Moreover, the existence and 
uniqueness of the strong solution to SDE (3.29) follows the same argument in the proof of Proposition 5.1 of Deng et al. (2022). �

Based on Theorem 3.2, we can derive some asymptotic results of the optimal consumption-wealth ratio c∗
t /X∗

t and the invest fraction 
π∗

t /X∗
t when the wealth is sufficiently large. As wealth x → +∞, the running maximum h updates to h = x−1

lavs(x) and also tends to 
infinity. Therefore, from the constraint that x ≤ xlavs(h), the asymptotic properties of optimal controls as x → +∞ should be restrained 
along the boundary curve x = xlavs(h) as h → +∞.

Corollary 3.1. Two limits lim
h→+∞

c∗(xlavs(h),h)
xlavs(h)

and lim
h→+∞

π∗(xlavs(h),h)
xlavs(h)

exist and are both positive. Meanwhile, the asymptotic behavior of optimal be-

quest lim
h→+∞

b∗(xlavs(h),h)
xlavs(h)

also exists, and is positive if and only if γ2 = (1 − α)γ1 .

Proof. See Section 6.3. �
Remark 3.1. Contrary to Guasoni et al. (2020), all boundary curves xlow(h), xaggr(h) and xlavs(h) in the present paper are all nonlinear 
functions of h, because the expected bequest and the optimal life insurance control are considered in our problem. If λ = 0 such that 
there is no life insurance control, the boundary curves will become linear functions of the reference variable h, and the results are similar 
to those in Guasoni et al. (2020).

Remark 3.2. Under the optimal control (c∗, π∗, b∗), the wealth process X∗
t satisfies the constraint that X∗

t ≥ νH∗
t

r+λ
if the initial condition 

X∗
0 = x ≥ νh

r+λ
is satisfied. Indeed, let Z∗

t := X∗
t − νH∗

t
r+λ

. If Z∗
t = 0 at some t ≥ 0, the optimal feedback controls satisfy that c∗

t = νH∗
t , π∗

t = 0, 

and b∗
t = 0, indicating that Z∗

s = 0 and c∗
s = νH∗

s for all s ≥ t . That is, the optimal wealth X∗
t stays at the level νH∗

t
r+λ

once this level is hit.

Remark 3.3. As wealth x tends to the lower bound νh
r+λ

, the optimal bequest b∗ → 0, and thus the optimal premium p∗ = λ(b∗ − x) < 0. 
If the parameters satisfy κ2(β2

2 − 1) ≥ 2r, the optimal premium shall always be negative. If the parameters satisfy κ2(β2
2 − 1) < 2r, the 

optimal premium would be positive if x > x∗ , where x∗ satisfies f (x∗, h) < h(1−α)γ1−1 and

κ2(β2
2 − 1) − 2r

κ2(β2 − r1)(β2 − r2)K β2−1
f (x∗,h)β2−1 = −r1C5(h) f (x∗,h)r1−1 − r2C6(h) f (x∗,h)r2−1 + h

r + λ
.

4. Numerical illustrations

In this section, we numerically illustrate some quantitative properties of the feedback functions of optimal consumption, investment, 
and life insurance premium policy established in Theorem 3.2. Let us choose the following values of the model parameters: r = 0.05, 
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Fig. 2. Boundary curves xbound, xlow, xaggr and xlavs with respect to the reference variable h (left), the force of mortality λ (middle), and the shortfall aversion parameter α
(right), respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Optimal consumption, portfolio and insurance premium for various force of mortality.

μ = 0.1, σ = 0.25, ρ = 0.05, λ = 0.03, ν = 0.2, γ1 = 0.5, γ2 = 0.1, α = 0.7, K = 5, and reference level h = 1. In the following figures, 
we only change the value of one parameter (while keeping other parameters fixed) to show some sensitivity results with respect to that 
parameter.

The left panel of Fig. 2 shows that three boundary curves xlow(h), xaggr(h), and xlavs(h) are increasing nonlinear functions of h. The 
graphs are consistent with the intuition that if the past reference level is higher, the investor would expect larger wealth thresholds to 
trigger the change of consumption from the low constraint c = νh to c > νh, and from c < h to the historical maximum c = h, respectively. 
From the middle panel, the higher mortality probability motivates the agent to reduce all thresholds and consume more aggressively 
before the death occurs. It can be seen from the right panel of Fig. 2 that xlow, xaggr and xlavs are all decreasing in the shortfall aversion 
parameter α, indicating that the more shortfall averse the agent is, the more eager the agent is to consume at the historical maximum 
level by lowering the corresponding thresholds.

Figs. 3 to 5 show the sensitivity results of optimal controls on the force of mortality λ, the shortfall aversion α and the bequest 
motive K , respectively. From Fig. 3, when the wealth level x is sufficiently large, the higher force of mortality motivates the larger optimal 
consumption and higher optimal insurance premium but results in the lower portfolio allocation in the risky asset. These observations can 
be explained by the real life situation that the agent would spare more cash from the financial market to consume more and purchase 
more life insurance in view of the higher probability of death. It is interesting to see from Fig. 4 that a larger shortfall aversion parameter 
α (i.e., the stronger desire to consume at the historical peak level), leads to a larger optimal insurance premium, which is similar to 
the observation made in Ben-Arab et al. (1996) that higher consumption habits would increase the demand of life insurance. It is also 
consistent with two real life observations: (i) the agent who develops higher standard of living due to larger α would purchase more life 
insurance, possibly to ensure that the left family members can afford the high living standard after the death of the agent; (ii) when the 
agent has sufficient wealth, purchasing more life insurance can also be an effective instrument to reduce some spared cash and smooth 
out the consumption path so that the reference level will not increase significantly. From Fig. 5, it is natural to see that the higher bequest 
motive K yields higher demand of life insurance and lower portfolio allocation. We stress that a higher bequest goal also lowers all 
consumption thresholds and increases the consumption level. This can be explained by the real life observation that the agent who cares 
more about the life insurance protection is more likely to develop a higher standard of living and consume more aggressively due to a 
higher reference level.

Fig. 6 shows sensitivity results of optimal controls on the drawdown constraint parameter ν . When the wealth level is sufficient such 
that the drawdown constraint on consumption rate can be supported, the larger parameter ν increases all thresholds for consumption 
plan and also leads to higher past spending maximum when the wealth level is large. Due to the higher minimum consumption rate at 
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Fig. 4. Optimal consumption, portfolio and insurance premium for various shortfall aversion.

Fig. 5. Optimal consumption, portfolio and insurance premium for various bequest motives.

Fig. 6. Optimal consumption, portfolio and insurance premium for various drawdown constraint parameters.

the drawdown constraint level and higher consumption when wealth level is large, it is reasonable to observe that the larger parameter ν
reduces the incentives of portfolio allocation and life insurance when the wealth is sufficient.

Figs. 7 and 8 present the simulated paths of the optimal wealth, the optimal consumption, the optimal portfolio, and the optimal life 
insurance premium in ten years in three different models: 1) our proposed model with life insurance, reference to past spending maximum 
and drawdown constraint (our model); 2) the shortfall aversion model in Guasoni et al. (2020); 3) the standard optimal consumption and 
life insurance model. If we do not consider life insurance and drawdown constraint, that is, λ = 0 and ν = 0, our model is equivalent to 
Guasoni’s model (Guasoni). Moreover, a non-habit individual would not be affected by the consumption path in her model and can be 
characterized by our model if shortfall aversion α = 0 (non-habit). We set the initial wealth to be X0 = 3.5. One can observe that the 
optimal wealth sample path in the non-habit model dominates other two counterparts, and the optimal wealth path in our model grows 
slowest due to the life insurance purchase and the consumption reference. For the same reasoning, the portfolio allocation in our model 
is also the least. Regarding the optimal consumption paths, the simulated path in our model is smoother than other two and the overall 
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Fig. 7. Wealth and consumption processes (X0 = 3.5).

Fig. 8. Portfolio and life insurance premium processes (X0 = 3.5).

consumption level is also highest due to the drawdown constraint. Finally, comparing the demand of life insurance between our model 
and the non-habit model, our life insurance premium path becomes much smoother, indicating that the reference to past consumption 
not only leads to the stable consumption behavior, but also helps to smooth out the optimal premium plan.

5. Conclusion

In this paper, we study the optimal life insurance problem together with dynamic portfolio and consumption plans in a new framework 
under the shortfall aversion preference and a drawdown constraint on consumption. For the infinite horizon stochastic control problem, we 
can find the classical solution to the associated HJB equation in piecewise form and characterize the optimal feedback controls explicitly 
across different regions. Thanks to our analytical results, we can numerically illustrate the sensitivity results of the optimal strategies on 
model parameters and conclude some interesting financial implications.

Several directions of future research can be considered. For example, one may consider the problem in the market model with regime 
switching, and discuss some quantitative changes in optimal strategies in the bull and bear regime states. It will also be appealing to 
study the more challenging problem over a finite horizon, in which the analytical characterization of the value function is not promising 
and all boundary curves to distinguish different optimal feedback controls will be time-dependent. Some new techniques are needed to 
tackle the parabolic PDE problem.

6. Proofs

6.1. Proof of the verification theorem

The proof of the theorem is based on some auxiliary results. We first present some asymptotic results on the coefficients in Proposi-
tion 3.1, whose proof is straightforward and hence omitted.
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Remark 6.1. Based on the semi-analytical forms in Proposition (3.1), we note that

C2(h) = O (hr1(1−α)γ1+r2), C3(h) = O (hr2(1−α)γ1+r1), C4(h) = O (hr1(1−α)γ1+r2),

C5(h) = O (hr2(1−α)γ1+r1), C6(h) = O (hr1(1−α)γ1+r2),

as h → +∞, which will be used in later proofs.

By following similar proofs of Lemma 5.1 to Lemma 5.3 in Deng et al. (2022) and using asymptotic results in Remark 6.1, we can 
readily obtain the next three lemmas.

Lemma 6.1. For any y > 0 and h ≥ 0, the dual transform v(y, h) of value function u(x, h) satisfies

v(y,h) = E

[ ∞∫
0

e−rt[Ṽ (Yt(y), Ĥt(y)) + V̄ (Yt(y))]dt

]
,

where Yt(·) and Ĥt(·) are defined in (3.21).

Lemma 6.2. For all y > 0, we have H†
t = Ĥt(y), t ≥ 0, and hence

E

[ ∞∫
0

e−rt Ṽ (Yt(y), H†
t (y))dt

]
=E

[ ∞∫
0

e−rt Ṽ (Yt(y), Ĥt(y))dt

]
.

Lemma 6.3. The inequality in (3.22) becomes equality with c∗
t = c†(Yt(y∗), Ĥt(y∗)) and b∗

t = b†(Yt(y∗), Ĥt(y∗)), t ≥ 0, with y∗ = y∗(x, h) as the 
unique solution to

E[
∞∫

0

(c†(Yt(y∗), Ĥt(y∗)) + λb†(Yt(y∗), Ĥt(y∗)))Mtdt] = x.

Let us continue to prove some other auxiliary results.

Lemma 6.4. The following transversality condition holds that for all y > 0,

lim
T →+∞E

[
e−rT v(Y T (y), ĤT (y))

]
= 0.

Proof. Let us recall that

Ĥt(y) := h ∨
(

(1 − α)
− 1

(1−α)γ1−1 (inf
s≤t

Ys(y))
1

(1−α)γ1−1

)
.

Let us firstly consider the case cT = 0. We first write that

e−rTE[v(Y T (y), ĤT (y))] = e−rTE

[
C2(ĤT (y))Y T (y)r2 + 2λK 1−β2

κ2β2(β2 − r1)(β2 − r2)
Y T (y)β2

+ νγ

(r + λ)γ1
ĤT (y)(1−α)γ − ν ĤT (y)

r + λ
Y T (y)

]
,

(6.1)

where the last two terms can vanish due to Lemma 6.6 and Lemma 6.8 respectively, and the last third term can also vanish because of 
Lemma 6.7 and the fact β2 > r2 by Assumption (A1). For the first term in (6.1), since Y T (y) > ĤT (y)(1−α)γ1−1, we have

e−rTE

[
C2(ĤT (y))(Y T (y))r2

]
= O

(
e−rT C2(ĤT (y))ĤT (y)r2((1−α)γ1−1)

)
= O

(
e−rT ĤT (y)r1(1−α)γ1+r2 ĤT (y)r2((1−α)γ1−1)

)
= O

(
e−rT ĤT (y)(1−α)γ1

)
,

which vanishes as T → +∞ due to Lemma 6.6.
We then consider the case 0 < cT < ĤT (y).

E[e−rT v(Y T (y), ĤT (y))]
=e−rTE

[
C3(ĤT (y))Y T (y)r1 + C4(ĤT (y))Y T (y)r2

+ 2λK 1−β2

2
Y T (y)β2 + 2ĤT (y)αβ1

2
Y T (y)β1

]
.

(6.2)
κ β2(β2 − r1)(β2 − r2) κ β1(β1 − r1)(β1 − r2)
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We consider asymptotic behavior of the above equation term by term as T → +∞.
Thanks to Assumption (A1), β2 > r2, the third term can vanish due to Lemma 6.7. For the fourth term in (6.2), since Y T (y) ≥

ĤT (y)(1−α)γ1−1 and β1 = γ1
γ1−1 < 0, we have

E[e−rT ĤT (y)αβ1 Y T (y)β1 ] = O
(
e−rTE

[
ĤT (y)αβ1+β1((1−α)γ1−1)

]) = O
(
e−rTE

[
ĤT (y)(1−α)γ1

])
,

which also vanishes as T → +∞ due to Lemma 6.6.
Let us consider the terms containing C3(ĤT (y)) and C4(ĤT (y)) in equation (6.2). Because of the constraint Yt(y) = O (ĤT (y)(1−α)γ1−1), 

we can deduce that

e−rTE

[
C3(ĤT (y))(Y T (y))r1

]
= O

(
e−rT C3(ĤT (y))ĤT (y)r1((1−α)γ1−1)

)
= O

(
e−rT ĤT (y)r2(1−α)γ1+r1 ĤT (y)r1((1−α)γ1−1)

)
= O

(
e−rT ĤT (y)(1−α)γ1

)
,

which converges to 0 by Lemma 6.6.
In addition, since Y T (y) ≥ ĤT (y)(1−α)γ1−1 and r2 < 0, we obtain

e−rTE

[
C4(ĤT (y))(Y T (y))r2

]
= O

(
e−rT C4(ĤT (y))ĤT (y)r2((1−α)γ1−1)

)
= O

(
e−rT ĤT (y)r1(1−α)γ1+r2 ĤT (y)r2((1−α)γ1−1)

)
= O

(
e−rT ĤT (y)(1−α)γ1

)
,

which vanishes as T → +∞ by Lemma 6.6.
Finally, we consider the case CT = ĤT (y) and write that

E[e−rT v(Y T (y), ĤT (y))]
=e−rTE

[
C5(ĤT (y))Y T (y)r1 + C6(ĤT (y))Y T (y)r2

+ 2λK 1−β2

κ2β2(β2 − r1)(β2 − r2)
Y T (y)β2 + 1

(r + λ)γ1
ĤT (y)(1−α)γ1 − ĤT (y)

(r + λ)
Y T (y)

]
,

(6.3)

where the last three terms converge to 0 by Lemma 6.7 with Assumption (A1), Lemma 6.6, and Lemma 6.8, respectively.
For the first term in (6.3), since Y T (y) ≤ ĤT (y)(1−α)γ1−1, we have

e−rTE

[
C5(ĤT (y))(Y T (y))r1

]
= O

(
e−rT C5(ĤT (y))ĤT (y)r1((1−α)γ1−1)

)
= O

(
e−rT ĤT (y)r2(1−α)γ1+r1 ĤT (y)r1((1−α)γ1−1)

)
= O

(
e−rT ĤT (y)(1−α)γ1

)
,

which converges to 0 as T → +∞ by Lemma 6.6.
For the second term in (6.3), by Y T (y) ≥ (1 − α)ĤT (y)(1−α)γ1−1 and r2 < 0, we have

e−rTE

[
C6(ĤT (y))(Y T (y))r2

]
= O

(
e−rT C6(ĤT (y))ĤT (y)r2((1−α)γ1−1)

)
= O

(
e−rT ĤT (y)r1(1−α)γ1+r2 ĤT (y)r2((1−α)γ1−1)

)
= O

(
e−rT ĤT (y)(1−α)γ1

)
,

which also vanishes as T → +∞ by Lemma 6.6. Therefore, we get the desired result. �
Lemma 6.5. For any T > 0, we have

lim
n→+∞E

[
e−rτn v(Yτn(y), Ĥτn(y))1{T >τn}

] = 0,

where τn is defined by

τn = inf{t ≥ 0|Yt(y) ≥ n, Ĥt(y) ≥ (
(1 − α)n

)− 1
(1−α)γ1−1 }.

Proof. By the definition of τn , for all t ≤ τn , we have Yt(y) ∈ [ 1
n , n

]
, and thus

h ≤ Ĥt(y) ≤ max(h,
(
(1 − α)n

)− 1
(1−α)γ1−1 ) = O (1) + O (n

− 1
(1−α)γ1−1 ).

Therefore, we have Yt(y)r1 ≤ nr1 , Yt(y)r2 ≤ ( 1
n

)r2 = n−r2 . Then we shall obtain the order of v(Yτn (y), Ĥτn (y)) in three cases, in the sense 
that c∗

τ = 0, 0 < c∗
τ < Ĥτn (y), and c∗

τ = Ĥτn (y).

n n n
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Similar to the proof of Lemma 6.4, if c∗
τn

= 0, we have

v(Yτn(y), Ĥτn (y)) = C2(Ĥτn(y))Yτn (y)r2 + 2λK 1−β2

κ2β2(β2 − r1)(β2 − r2)
Yτn (y)β2

+ νγ

(r + λ)γ1
Ĥτn(y)(1−α)γ1 − ν Ĥτn (y)

r + λ
Yτn (y)

= O (n−r2) + O (n−β2) + O (n
− (1−α)γ1

(1−α)γ1−1 ) + O (n
(1−α)γ1−2
(1−α)γ1−1 )

= O (nr∗
),

where r∗ := max
{ − r2, −β1,

(1−α)γ1−2
(1−α)γ1−1 , (r1−r2)(1−α)γ1−2r1

(α−1)γ1−1

}
. Here, we have −β2 < −r2 by Assumption (A1). If 0 < c∗

τn
< Ĥτn (y), we have

v(Yτn(y), Ĥτn (y)) =C3(Ĥτn (y))Yτn (y)r1 + C4(Ĥτn(y))Yτn (y)r2

+ 2λK 1−β2

κ2β2(β2 − r1)(β2 − r2)
Yτn (y)β2 + 2Ĥτn(y)αβ1

κ2β1(β1 − r1)(β1 − r2)
Yτn(y)β1

= O (n
(r1−r2)(1−α)γ1−2r1

(α−1)γ1−1 ) + O (n−r2) + O (n−β2) + O (n−β1)

= O (nr∗
).

If cτn = Ĥτn (y), we have

v(Yτn(y), Ĥτn (y)) = C5(Ĥτn(y))Yτn (y)r1 + C6(Ĥτn (y))Yτn (y)r2

+ 2λK 1−β2

κ2β2(β2 − r1)(β2 − r2)
Yτn (y)β2 + 1

(r + λ)γ1
Ĥτn(y)(1−α)γ1 − Ĥτn(y)

r + λ
Y T (y)

= O (n
(r1−r2)(1−α)γ1−2r1

(α−1)γ1−1 ) + O (n−r2) + O (n−β2) + O (n
−(1−α)γ1
(1−α)γ1−1 ) + O (n

(1−α)γ1−2
(1−α)γ1−1 )

= O (nr∗
).

Therefore, in all the cases, v(Yτn (y), Ĥτn (y)) = O (nr∗
). In addition, similar to the proof of (A.25) in Guasoni et al. (2020), there exists some 

constant C such that

E[1{τn≤T }] ≤ n−2ξ (1 + y2ξ )eC T ,

for any ξ ≥ 1. Putting all the pieces together, the desired claim holds that

lim
n→+∞E

[
e−rτn v(Yτn(y), Ĥτn(y))1{T >τn}

] = 0. �

Lemma 6.6. For γ1 that satisfies Assumption (A1), we have

lim
T →+∞E

[
e−rT ĤT (y)γ

∗
1

]
= 0, (6.4)

where γ ∗
1 := (1 − α)γ1 .

Proof. Let β∗
1 := γ ∗

1
γ ∗

1 −1 . It is obvious that

e−rTE

[
ĤT (y)(1−α)γ1

]
≤ e−rTE

[
sup
s≤T

(1 − α)
− (1−α)γ1

(1−α)γ1−1 Ys(y)
(1−α)γ1

(1−α)γ1−1

]
+ e−rTE[h(1−α)γ1 ]

= e−rTE

[
sup
s≤T

(1 − α)−β∗
1 Ys(y)β

∗
1

]
+ e−rTE[h(1−α)γ1 ],

in which it is clear that e−rTE[h(1−α)γ1 ] = O (e−rT ) as T → +∞.

Then we consider the first term e−rTE[sups≤T (1 − α)−β∗
1 Ys(y)β

∗
1 ]. Define W

( 1
2 κ)

t = Wt + 1
2 κt , which is also a Brownian motion under 

the equivalent measure Q, with its running maximum (W
( 1

2 κ)

t )∗ . It follows that
40



X. Li, X. Yu and Q. Zhang Insurance: Mathematics and Economics 108 (2023) 25–45
e−rTE

[
ĤT (y)(1−α)γ1

]
≤ e−rTE

[
sup
s≤T

(1 − α)−β∗
1 Ys(y)β

∗
1

]
=e−rT O

(
E

[
exp

{
− β∗

1 sup
s≤T

(1

2
κ2s + κW s

)}])
=e−rT O

(
E

[
exp

{
− κβ∗

1 sup
s≤T

W
( 1

2 κ)
s

}])
:=e−rT O

(
E

[
exp

{
aW (ζ )

T + b

(
W (ζ )

T

)∗}
I

{(
W (ζ )

T

)∗
≥ k

}])
,

where a = 0, b = −β∗
1κ > 0, ζ = 1

2 κ > 0, and k = 0. Note that 2a + b + 2ζ > 2a + b + ζ > 0, thanks to the Corollary A.7 in Guasoni et al. 
(2020), we have

E

[
exp

{
aW (ζ )

T + b

(
W (ζ )

T

)∗}
I

{(
W (ζ )

T

)∗
≥ k

}]
=2(a + b + ζ )

2a + b + 2ζ
exp

{
(a + b)(a + b + 2ζ )

2
T

}
�

(
(a + b + ζ )

√
T − k√

T

)
+ 2(a + ζ )

2a + b + 2ζ
exp

{
(2a + b + 2ζ )k + a(a + 2ζ )

2
T

}
�

(
− (a + ζ )

√
T − k√

T

)
,

and thus

lim
T →+∞

1

T
logE

[
exp

{
aW (ζ )

T + b

(
W (ζ )

T

)∗}
I

{(
W (ζ )

T

)∗
≥ k

}]
− r

= (a + b)(a + b + 2ξ)

2
− r = κ2

2
β∗

1 (β∗
1 − 1) − r = κ2

2
(β∗

1 − r1)(β
∗
1 − r2).

It follows that

e−rTE

[
exp

{
aW (ζ )

T + b

(
W (ζ )

T

)∗
I

{(
W (ζ )

T

)∗
≥ k

}}
=exp

{(
1

T
logE

[
exp

{
aW (ζ )

T + b

(
W (ζ )

T

)∗}
I

{(
W (ζ )

T

)∗
≥ k

}]
− r

)
T

}
=O

(
exp

{
κ2

2
(β∗

1 − r1)(β
∗
1 − r2)T

})
,

as T → +∞. Together with the fact that r2 < β∗
1 < r1 under Assumption (A1), we have (β∗

1 − r1)(β
∗
1 − r2) < 0 and thus

E

[
e−rT ĤT (y)(1−α)γ1

]
= O

(
exp

{
κ2

2
(β∗

1 − r1)(β
∗
1 − r2)T

})
+ O (e−rT )

= O

(
exp

{
κ2

2
(β∗

1 − r1)(β
∗
1 − r2)T

})
,

which tends to 0 as T → +∞. �
Lemma 6.7. For r2 < β0 < r1 , we have

lim
T →+∞E

[
e−rT Y T (y)β0

]
= 0. (6.5)

Proof. In fact,

E

[
e−rT Y T (y)β0

]
= e−rTE

[
(yerT · e−(r+ κ2

2 )T −κW T )β0

]
= yγ

1 e−rTE
[
eβ0(− κ2

2 T −κW T )
]

= O

(
e(β0−r1)(β0−r2) κ2

2 T
)

,

which converges to 0 in view that r2 < β0 < r1. �
Lemma 6.8. For β∗

1 = γ ∗
1

γ ∗
1 −1 < 0 with γ ∗

1 := (1 − α)γ1 , we have

lim E

[
e−rT ĤT (y)Y T (y)

]
= 0. (6.6)
T →+∞
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Proof. In fact,

E

[
e−rT ĤT (y)Y T (y)

]
≤E

[
e−rT hY T (y)

]
+E

[
e−rT Y T (y) sup

s≤T
(1 − α)

− 1
(1−α)γ1−1 Ys(y)

1
(1−α)γ1−1

]
,

where the first term converges to 0 by Lemma 6.7. For the second term,

E

[
e−rT Y T (y) sup

s≤T
(1 − α)

− 1
(1−α)γ1−1 Ys(y)

1
(1−α)γ1−1

]
= O

(
E

[
e−rT Y T (y) sup

s≤T
Ys(y)

1
γ ∗

1 −1

])
= e−rT O

(
E

[
exp

{
− κ2

2
T − κW T − 1

γ ∗
1 − 1

sup
s≤T

(
κ2

2
s + κW s

)}])
= e−rT O

(
E

[
exp

{
− κW (ζ ) − κ

γ ∗
1 − 1

(
W (ζ )

T

)∗}])
= e−rT O

(
E

[
exp

{
a1W (ζ ) + b1

(
W (ζ )

T

)∗}
I

{(
W (ζ )

T

)∗
≥ k

}])
,

where a1 = −κ , b1 = − κ
γ ∗

1 −1 > 0, ζ = 1
2 κ , and k = 0. Note that 2a1 + b1 + 2ζ = γ ∗

1
1−γ ∗

1
> 0 and a1 + ζ < 0, thank to the Corollary A.7 in 

Guasoni et al. (2020), we can derive

e−rT O

(
E

[
exp

{
a1W (ζ ) + b1

(
W (ζ )

T

)∗}
I

{(
W (ζ )

T

)∗
≥ k

}])
=O

(
exp

{(
(a1 + b1)(a1 + b1 + 2ζ )

2
− r

)
T

})
+ O

(
exp

{(
a1(a1 + 2ζ )

2
− r

)
T

})
,

where the second term equals O (exp{−rT }) as a1 + 2ζ = 0. For the first term,

(a1 + b1)(a1 + b1 + 2ζ )

2
− r = κ2

2

(
γ ∗

1

γ ∗
1 − 1

· 1

γ ∗
1 − 1

)
− r

=κ2

2

(
β∗

1 (β∗
1 − 1) − 2(r + λ)

κ2

)
= κ2

2
(β∗

1 − r1)(β
∗
1 − r2).

Thanks to Assumption (A1), we have β∗
1 > r2, and therefore κ2

2 (β∗
1 − r1)(β

∗
1 − r2) < 0. In summary, we complete the proof. �

6.2. Proof of Lemma 3.1

We prove v yy(y, h) > 0 the three regions: y > νγ1−1h(1−α)γ1−1, h(1−α)γ1−1 ≤ y ≤ νγ1−1h(1−α)γ1−1, and (1 − α)h(1−α)γ −1 ≤ y <
h(1−α)γ −1, respectively. To be more specific, we first analyze v yy(y, h) in the region (1 − α)h(1−α)γ −1 ≤ y < h(1−α)γ −1, then the region 
h(1−α)γ −1 ≤ y ≤ νγ1−1h(1−α)γ1−1, and finally the region y > νγ1−1h(1−α)γ1−1.

(i) In the region (1 − α)h(1−α)γ −1 ≤ y < h(1−α)γ −1, v yy(y, h) = r1(r1 − 1)C5(h)yr1−2 + r2(r2 − 1)C6(h)yr2−2 + 2λ(β2−1)K 1−β2

κ2(β2−r1)(β2−r2)
yβ2−2. Since 

r1(r1 − 1) = r2(r2 − 1) = 2(r+λ)

κ2 > 0 and 2λ(β2−1)K 1−β2

κ2(β2−r1)(β2−r2)
> 0, we only need to prove C5(h) ≥ 0 and C6(h) > 0. According to (3.26), we 

can easily deduce that C5(h) > 0 and C6(h) > 0.
(ii) In the region h(1−α)γ1−1 ≤ y ≤ νγ1−1h(1−α)γ1−1, because r1(r1 − 1) = r2(r2 − 1) = 2(r+λ)

κ2 , we can deduce that

v yy(y,h) = r1(r1 − 1)C3(h)yr1−2 + r2(r2 − 1)C4(h)yr2−2

+ 2λ(β2 − 1)K 1−β2

κ2(β2 − r1)(β2 − r2)
yβ2−2 + 2(β1 − 1)hαβ1

κ2(β1 − r1)(β1 − r2)
yβ1−2

= 2(r + λ)

κ2

(
C3(h)yr1−β1 + C4(h)yr2−β1 + (β1 − 1)hαβ1

(r + λ)(β1 − r1)(β1 − r2)

)
yβ1−2

+ 2λ(β2 − 1)K 1−β2

κ2(β2 − r1)(β2 − r2)
yβ2−2.

Let us define that ϕ(y) := C3(h)yr1−β1 + C4(h)yr2−β1 + (β1−1)hαβ1

(r+λ)(β1−r1)(β1−r2)
. Because the last term in the above equation is positive, it 

is enough to verify ϕ(y) > 0. We separate the proof into the following steps: (1) showing ϕ(y) is either monotone or first increasing 
and then decreasing; (2) show ϕ(y) > 0 at two points y = νγ1−1h(1−α)γ1−1 and y = h(1−α)γ1−1.
Indeed, the extreme point y† of ϕ(y) should satisfy the first order condition ϕ′(y†) = 0, i.e.

C3(h)(r1 − β1)(y†)r1−β1−1 + C4(h)(r2 − β1)(y†)r2−β1−1 = 0.
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We remark that C3(h) < 0, r1 − β1 > 0, while C4(h)(r2 − β1) can be negative or positive. If C4(h)(r2 − β1) ≤ 0, there is no solution for 
y†, hence ϕ(y) is monotone. If C4(h)(r2 − β1) > 0, there exists a unique real solution to the above equation

y† =
(

(β1 − r2)C4(h)

(r1 − β1)C3(h)

) 1
r1−r2

,

which might fall into the interval [h(1−α)γ −1, νγ1−1h(1−α)γ1−1]. Noticing that C3(h) < 0, (r1 − β1) > 0, and

ϕ′(y) = C3(h)(r1 − β1)yr1−β1−1 + C4(h)(r2 − β1)yr2−β1−1,

it follows that when y ≤ y†, ϕ′(y) ≥ 0; when y > y†, ϕ′(y) ≤ 0. Hence ϕ(y) increases before reaching y†, then decreases after 
exceeding y†.
Then we aim to prove ϕ(νγ1−1h(1−α)γ1−1) ≥ 0 and ϕ(h(1−α)γ1−1) ≥ 0. Indeed, if y = νγ1−1h(1−α)γ1−1, we obtain

ϕ(νγ1−1h(1−α)γ1−1)

= C3(h)yr1−β1 + C4(h)yr2−β1 + (β1 − 1)hαβ1

(r + λ)(β1 − r1)(β1 − r2)

≥ C3(h)yr1−β1 + (C4(h) − C6(h))yr2−β1 + (β1 − 1)hαβ1

(r + λ)(β1 − r1)(β1 − r2)

= 1 − β1

(r + λ)(r1 − r2)(β1 − r1)
hαβ1 + β1 − 1

(r + λ)(r1 − r2)(β1 − r2)

hr1γ1+r2+αβ1

(νh)r1γ1+r2

+ β1 − 1

(r + λ)(β1 − r1)(β1 − r2)
hαβ1

≥ (β1 − 1)hαβ1

r

(
− 1

(r1 − r2)(β1 − r1)
+ 1

(r1 − r2)(β1 − r2)
+ 1

(β1 − r1)(β1 − r2)

)
= 0,

where the last second inequality holds because (β1 − r2)(r1γ1 + r2) < 0 and 0 < ν < 1. On the other hand, if y = h(1−α)γ −1, we can 
obtain

ϕ(h(1−α)γ1−1)

≥ C3(h)yr1−β1 + (C4(h) − C6(h))yr2−β1 + (β1 − 1)hαβ1

(r + λ)(β1 − r1)(β1 − r2)

= 1 − β1

(r + λ)(r1 − r2)(β1 − r1)

(νh)r2γ1+r1

hr2γ1+r1−αβ1
+ β1 − 1

(r + λ)(r1 − r2)(β1 − r2)
hαβ1

+ β1 − 1

(r + λ)(β1 − r1)(β1 − r2)
hαβ1

≥ (β1 − 1)hαβ1

r + λ

(
− 1

(r1 − r2)(β1 − r1)
+ 1

(r1 − r2)(β1 − r2)
+ 1

(β1 − r1)(β1 − r2)

)
= 0.

(iii) In the region y > (νh)γ −1hαγ , similar to the proof of C5(h) ≥ 0, we can get

C2(h) > C2(h) − C6(h) ≥ 0.

Therefore, v yy(y, h) = r2(r2 − 1)C2(h)yr2−2 + 2λ(β2−1)K 1−β2

κ2(β2−r1)(β2−r2)
yβ2−2 > 0.

6.3. Proof of Corollary 3.1

Along the boundary xlavs(h), we first have c∗(xlavs(h),h)
xlavs(h)

= h
xlavs(h)

, where xlavs(h) is defined in (3.23):

xlavs(h) := −C5(h)r1(1 − α)r1−1h−r2((1−α)γ1−1) − C6(h)r2(1 − α)r2−1h−r1((1−α)γ1−1)

− 2λ(1 − α)β2−1 K 1−β2

κ2(β2 − r1)(β2 − r2)
h(β2−1)((1−α)γ1−1) + h

r + λ
.

Also, we have

C5(h)r1(1 − α)r1−1h−r2((1−α)γ1−1) = r1(1 − α)−r2(νr2γ1+r1 − 1)(1 − β1)

(r + λ)(r1 − r2)(β1 − r1)
h,

C6(h)r2(1 − α)r2−1h−r1((1−α)γ1−1) = r2(1 − α)−r2(1 − νr2γ1+r1)(1 − β1)(r2(1 − α)γ1 + r1)
h,
(r + λ)(r1 − r2)(β1 − r1)(r1(1 − α)γ1 + r2)
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and

(β2 − 1)((1 − α)γ1 − 1) ≤ 1,

thanks to Assumption (A1), and the equality holds if and only if γ2 = (1 − α)γ1. Therefore, we have

lim
h→+∞

xlavs(h)

h
= − r1(1 − α)−r2(νr2γ1+r1 − 1)(1 − β1)

(r + λ)(r1 − r2)(β1 − r1)

− r2(1 − α)−r2(1 − νr2γ1+r1)(1 − β1)(r2(1 − α)γ1 + r1)

(r + λ)(r1 − r2)(β1 − r1)(r1(1 − α)γ1 + r2)

− 2λ(1 − α)β2−1 K 1−β2

κ2(β2 − r1)(β2 − r2)
1γ2=(1−α)γ1 + 1

r + λ
.

The optimal investment on xlavs(h) is

π∗(xlavs(h),h) = 2(r + λ)

κ2
C5(h) f3(xlavs(h),h)r1−1 + 2(r + λ)

κ2
C6(h) f3(xlavs(h),h)r2−1

+ 2λK 1−β2(β2 − 1)

κ2(β2 − r1)(β2 − r2)
f3(xlavs(h),h)β2−1

= 2(r + λ)(1 − α)−r2

κ2
C5(h)h−r2((1−α)γ1−1) + 2(r + λ)(1 − α)−r1

κ2
C6(h)h−r1((1−α)γ1−1)

+ 2λK 1−β2(β2 − 1)(1 − α)β2−1

κ2(β2 − r1)(β2 − r2)
h(β2−1)((1−α)γ1−1).

Therefore, we conclude

lim
h→+∞

π∗(xlavs(h),h)

xlavs(h)
= lim

h→+∞
π∗(xlavs(h),h)

h
· lim

h→+∞
h

xlavs(h)
,

which also exists.
The optimal bequest on xlavs(h) is

b∗(xlavs(h),h) = K
− 1

γ2−1

(
(1 − α)h(1−α)γ1−1

) 1
γ2−1

=
(

1 − α

K

) 1
γ2−1

h
(1−α)γ1−1

γ2−1 .

Therefore, we conclude

lim
h→+∞

b∗(xlavs(h),h)

xlavs(h)
= lim

h→+∞

(
1 − α

K

) 1
γ2−1 h

xlavs(h)
· h

(1−α)γ1−γ2
γ2−1

= 1γ2=(1−α)γ1

(
1 − α

K

) 1
γ2−1

lim
h→+∞

h

xlavs(h)

is positive if γ2 = (1 − α)γ1, and equals 0 otherwise.
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