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Under contemporary insurance regulatory frameworks, an insolvent insurer placed in receivership may 
have the option of rehabilitation, during which a plan is devised to resolve the insurer’s difficulties. 
The regulator and receiver must analyze the company’s financial condition and determine whether a 
rehabilitation is likely to be successful or if its problems are so severe that the appropriate action is to 
liquidate the insurer. Therefore, it is essential to evaluate the cost required to support the insurer during 
its insolvent states in the decision-making process. To this end, we study areas in the red (below level 
0) up to the recovery time, Poissonian, and continuous first passage times in this paper. Furthermore, 
we extend the study to the areas associated with Parisian ruin to evaluate the total cost until possible 
liquidation. For spectrally negative Lévy processes (SNLPs), also known as Lévy risk models, we derive 
the expectations of these quantities in terms of the well-known scale functions. Our results improve the 
existing literature, in which only expected areas for the Brownian motion and the Cramér-Lundberg risk 
process with exponential jumps are known.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

One of the central topics in risk theory is to analyze ruin-related quantities such as the time to ruin and the deficit at ruin, due 
to their significant roles in assessing an insurer’s solvency risk. In practice, when an insurer enters a period of financial difficulty, an 
appropriate course of action will be explored first to help the company regain its financial footing before liquidation. Therefore, it is of 
interest to continue monitoring the insurer’s surplus process after the ruin time. In this paper, we study the recovery of the risk process 
from insolvency under practical considerations.

As discussed in Li et al. (2014), declaring bankruptcy and implementing liquidation should not be treated as the same event and 
they are often highly regulated. Under Chapter 7 liquidation (which is also known as a “straight bankruptcy”) of the U.S. Bankruptcy 
Code, a distressed firm ceases operations and liquidates its assets. This is in contrast to Chapter 11 reorganization, which allows the 
firm to continue operating its business and restructuring its debts and obligations within a grace period granted by the federal court. 
Contemporary insurance regulatory frameworks have also included similar features. According to the handbook published by the National 
Association of Insurance Commissioners (NAIC) (2021), an insurer may be placed in receivership if the state insurance department believes 
that its solvency situation cannot be corrected. During a conservation procedure, the receiver will analyze the insurer’s financial condition 
and decide whether a liquidation or rehabilitation plan should be implemented. If rehabilitation is warranted, a plan is devised to resolve 
the insurer’s difficulties and return it to the marketplace. As pointed out by NAIC,1

“The regulator must determine whether a rehabilitation of the company is likely to be successful or if its problems are so severe that the rehabilitation 
would significantly increase the risk of loss to policyholders. If the latter is true, the appropriate course of action is to liquidate the insurer.” For more 
discussions on this topic, we refer readers to Li et al. (2020) and the references therein.

From the above discussion, one can conclude that it is crucial to assess the insurer’s ability to recover from financial distress during 
the decision-making process. There has been a wide range of risk indicators proposed in the ruin theory literature to address this. For a 
risk process {Xt}t≥0 with ruin time τ−

0 = inf{t ≥ 0 : Xt < 0} (where we adopt the convention that inf ∅ = ∞), Picard (1994) proposed two 
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Fig. 1. A sample path of X , where the gray shaded region is the total area in the red At and the blue pattern shaded region is the cost of recovery I . (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

indexes: (1) the recovery time τ − τ−
0 where τ = inf{t > τ−

0 : Xt = 0}, which represents the time required for the recovery of the insurer, 
and (2) the maximum severity of ruin supτ−

0 ≤t≤τ {|Xt |} to describe the worst situation the company would experience before recovery. These 
quantities are further studied by Dickson and dos Reis (1997), dos Reis (2000), and Landriault et al. (2019) in the Cramér-Lundberg risk 
process, and Li (2008) in the Sparre Andersen risk model. Note that the aforementioned works relate to the first excursion of X below 
level 0. For risk processes perturbed by diffusion or business lines that may experience financial distress again after recovering from the 
first insolvent state, analyzing the recovery of the process in the long run may be more relevant. The total time in the red

∫∞
0 1{Xs<0}ds, 

first proposed and studied by dos Reis (1993) in the context of Cramér-Lundberg risk processes, was later extended to SNLPs in Landriault 
et al. (2011), Guérin and Renaud (2017), Landriault et al. (2020), among others.

It is worth noting that three key aspects should be addressed when evaluating an insurer’s financial condition and the feasibility of a 
rehabilitation/recovery plan: duration, severity, and frequency of distress. If the financial distress lasts too long, it may be too expensive to 
keep the business ongoing, especially when taking the time value of money into account. If the company stays in the red too deeply, the 
decision may be negative as it will take a significant cost to save the business with little hope of recovery. Furthermore, if the company 
experiences many distress periods over time, even if the durations and severities are low, the cost may still be high due to court fees and 
arrears. Therefore, it is of practical interest to consider risk indicators that incorporate these factors.

In light of the above, we propose to study two main risk indicators that take both the time spent in the red and the severity of distress 
into account: the so-called cost of recovery, which is defined as the aggregate severity of ruin until recovery:

I =
τ∫

τ−
0

|Xt |dt, (1)

and the total area in the red up to a fixed time t > 0, defined by

At =
t∫

0

|Xs|1{Xs<0}ds. (2)

In the case where τ−
0 = ∞, we adopt the convention that I = 0. See Fig. 1 for a sample path illustration. We note that the quantity I was 

first proposed by Picard (1994), and the author derived its expectation using a martingale approach for the Cramér-Lundberg risk process. 
For processes with bounded variation, the quantity I can be viewed as the area in the red of the first negative excursion of X . The second 
quantity At may be interpreted as the total costs required for keeping the business line alive during its stress periods until time t .

In the literature, there are a few results concerning the area in the red for the Brownian motion. For example, the distribution of 
A1 has been studied by Perman and Wellner (1996) using the results of Shepp (1982). For an infinite horizon time, the expectation of 
A∞ has been calculated by Gerber et al. (2012). An application of the aforementioned results to structural credit risk models has been 
introduced by Yildirim (2006) and a new default time defined as ξ = inf{t > 0 : At > b}, that is the first time the cumulative area of 
the asset value of the firm below the threshold level 0 exceeds a fixed level b > 0, was studied. For general risk processes, Loisel (2005)
discusses the relations between the expected area in the red and the expected time in the red through differentiation formulas, and a 
closed-form formula for E[A∞] is derived for the Cramér-Lundberg risk process with exponential jumps. In Loisel and Trufin (2014), the 
authors propose a new relevant risk indicator defined as the minimum initial capital needed to ensure that the expected area in red is 
less than a predetermined value. More recently, Callant et al. (2022) studied a generalized version of the expected area in the red up to a 
fixed time making use of Schwartz’s theory of distributions in Schwartz (1945). In Bayraktar and Young (2010), a minimization problem 
of the expected area in the red has been briefly studied. Undoubtedly, solving the distribution functions of I and At is more desirable. 
However, it is a highly non-trivial problem and, to the best of our knowledge, the distribution of At has only been found for the Brownian 
motion.

Our main contribution lies in deriving explicit expressions (in terms of scale functions) for the expectations of the aforementioned 
area-related quantities in a more general context of SNLPs. As the main results of our paper, we first provide analytical expressions for the 
expected cost of recovery and other related quantities of interest, such as the covariance between the recovery time and area. We further 
examine the expected area in the red up to a Poissonian first passage time2 for general SNLPs. Consequently, the expected areas up to a 
continuous first passage time and up to an infinite horizon time are obtained as limiting cases, and the expected areas obtained in Gerber 

2 There is an extensive literature on Lévy risk processes under Poissonian observations in insurance mathematics. See, e.g., Albrecher et al. (2016) and Landriault et al. 
(2018).
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et al. (2012) and Loisel (2005) are recovered as special cases. Moreover, we extend our results by investigating the areas associated with 
Parisian ruin, which occurs at the first time the risk process stays in the red for longer than a certain period (see, e.g., Loeffen et al. (2013)
and Landriault et al. (2014) for more details). By evaluating the expected (total) cost required to recover from financial distress, our results 
provide insights into comprehensively assessing the feasibility of a recovery plan.

The rest of the paper is organized as follows. In Section 2, we first present the necessary background material on spectrally negative 
Lévy processes and scale functions. The main results of this paper are presented in Section 3, where analytical expressions for expectations 
of area-related quantities are derived. In Section 4, we study the cases of the Brownian risk process, the Cramér-Lundberg process with 
exponential jumps and the jump-diffusion risk process with phase-type claims and conduct a numerical study to illustrate the main 
results. All technical proofs are postponed to the Appendix.

2. Preliminaries on spectrally negative Lévy processes

First, we present the necessary background material on spectrally negative Lévy processes. A Lévy insurance risk process X is a process 
with stationary and independent increments and no positive jumps. To avoid trivialities, we exclude the case where X has monotone 
paths. As the Lévy process X has no positive jumps, its Laplace transform exists: for all λ, t ≥ 0,

E
[

eλXt
]

= etψ(λ),

where

ψ(λ) = γ λ + 1

2
σ 2λ2 +

∫
(−∞,0)

(
eλz − 1 − λz1{z>−1}

)
�(dz),

for γ ∈R and σ ≥ 0, and � is a σ -finite measure on (0, ∞) called the Lévy measure of X such that∫
(−∞,0)

(1 ∧ z2)�(dz) < ∞.

Recall that the function ψ is infinitely differentiable and strictly convex on (0, ∞). For a SNLP, there exists a function 	 : [0, ∞) → [0, ∞)

defined by 	q = sup{λ ≥ 0 : ψ(λ) = q} (the right inverse of ψ ) such that

ψ(	q) = q, q ≥ 0,

and thus

	′
q = 1

ψ ′(	q)
, q ≥ 0. (3)

Throughout this paper, we will suppose that X satisfies the security loading condition, namely E[X1] > 0, and in this case we have

lim
q→0

q

	q
= ψ ′(0+) > 0.

Moreover, we will use the standard Markovian notation: the law of X when starting from X0 = x is denoted by Px and the corresponding 
expectation by Ex . We write P and E when x = 0.

2.1. Scale functions

We now present the definitions of the scale functions Wq and Zq of X . For q ≥ 0, the q-scale function of the process X is defined as 
the continuous function on [0, ∞) with Laplace transform

∞∫
0

e−λy Wq(y)dy = 1

ψq(λ)
, for λ > 	q ,

where ψq(λ) = ψ(λ) − q. This function is unique, positive and strictly increasing for x ≥ 0. We extend Wq to the whole real line by setting 
Wq(x) = 0 for x < 0. We write W = W0 when q = 0. The initial values of Wq and W ′

q are given by

Wq(0+) =
{

1/c when σ = 0 and
∫
(−1,0)

z�(dz) < ∞,

0 otherwise,

and

W ′
q(0+) =

⎧⎪⎨
⎪⎩

2/σ 2 when σ > 0,

(�(−∞,0) + q)/c2 when σ = 0 and �(−∞,0) < ∞,

∞ when σ = 0 and �(−∞,0) = ∞.

(4)

where c := γ + ∫ z�(dz) > 0. On the other hand, when ψ ′(0+) > 0, the limit of W is given by

(−1,0)
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lim
x→∞ W (x) = 1

ψ ′(0+)
= 1

E[X1] .

We also define another scale function Zq(x, λ) by

Zq(x, λ) = eλx

⎛
⎝1 − ψq(λ)

x∫
0

e−λy Wq(y)dy

⎞
⎠ , x ≥ 0,

and Zq(x, λ) = eλx for x < 0. We write Z = Z0 when q = 0. For λ = 0,

Zq(x,0) = 1 + q

x∫
0

Wq(y)dy, x ∈ R.

By straightforward calculations, one deduces that

Z ′(x,0) = x − ψ ′(0+)

x∫
0

W (y)dy, (5)

Z ′′(x,0) = x2 − (2xψ ′(0+) + ψ ′′(0+)
) x∫

0

W (y)dy + 2ψ ′(0+)

x∫
0

yW (y)dy, (6)

and

Z ′′′(x,0) =x3 −
(

3x2ψ ′(0+) + xψ ′′(0+) + ψ ′′′(0+)
) x∫

0

W (y)dy

+ (6xψ ′(0+) + 3ψ ′′(0+)
) x∫

0

yW (y)dy − 3ψ ′(0+)

x∫
0

y2W (y)dy, (7)

where Z ′, Z ′′ and Z ′′′ are the first, second and third order derivatives of Z with respect to the second argument, respectively.

2.2. Fluctuation identities

For b ∈R, we define the standard first passage times by

τ
+(−)

b = inf{t > 0 : Xt > (<)b}.
The Laplace transform of the deficit at ruin is given by

Ex

[
e
θ X

τ−
0 1{τ−

0 <∞}
]

= Z(x, θ) − ψ(θ)

θ − 	0
W (x). (8)

We also recall that the q-potential measure of X killed on exiting (−∞, 0] is given by

Px
(

Xeq ∈ dz,eq < τ+
0

)= q
(
e	qxWq (−z) − Wq (x − z)

)
dz,

for x, z ≤ 0 and eq denotes an exponential random variable with rate q > 0 that is independent of X . Consequently,

Ex

[
eθ Xeq 1{eq<τ+

0

}]= q
(
e	qx − eθx

)
ψq(θ)

, (9)

for any q, θ ≥ 0 and x ≤ 0.
An extensive body of literature has recently emerged on the so-called Poissonian exit times, which are defined as

T +(−)

b := inf{Ti : XTi > (<)b, i ∈N}, b ∈ R,

where {Ti}i∈N are the arrival times of an independent Poisson process with intensity rate λ > 0. For b, λ, θ ≥ 0 and x ≤ b, we have the 
following useful identity taken from Albrecher et al. (2016),

Ex

[
e
θ X

τ−
0 1{τ−

0 <T +
b

}]= Z(x, θ) − W (x)

θ − 	λ

(
ψ (θ) − λ

Z(b, θ)

Z(b,	λ)

)
. (10)

We refer the reader to Kyprianou (2014) and Albrecher et al. (2016) for more details on spectrally negative Lévy processes and fluctuation 
identities.
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3. Main results

In this section, we first extend the results of Picard (1994) by deriving the expected cost of recovery Ex[I] and other relevant quantities 
for SNLPs. Then, an analytical expression of Ex[AT +

b
] is obtained, which respectively leads to the expectations of Aτ+

b
and A∞ by taking 

appropriate limits. Extensions to the Parisian ruin time are also considered at the end of this section.

3.1. Expected cost of recovery

Theorem 1. For x ∈R, the expected cost of recovery is given by

Ex [I] =
(

ψ ′′(0+)2

4ψ ′(0+)2
− ψ ′′′(0+)

6ψ ′(0+)

)
W (x) −R(x), (11)

where

R(x) = ψ ′′(0+)

2ψ ′(0+)2 x − x2

2ψ ′(0+)
+ x

x∫
0

W (y)dy −
x∫

0

yW (y)dy. (12)

In particular, for X of unbounded variation, we have E [I] = 0.

The following proposition provides an expression for the covariance between τ − τ−
0 and 

∫ τ
τ−

0
|Xs|ds, which measures the relationship 

between the duration and cost of recovery.

Proposition 2. For x ∈R,

Covx

⎡
⎢⎢⎣τ − τ−

0 ,

τ∫
τ−

0

|Xs| ds

⎤
⎥⎥⎦=
⎛
⎝ ψ ′′(0+)

ψ ′(0+)3
+

Ex

[
Xτ−

0
1{τ−

0 <∞}
]

2ψ ′(0+)2

⎞
⎠Ex

[
X2

τ−
0

1{τ−
0 <∞}
]
−

Ex

[
X3

τ−
0

1{τ−
0 <∞}
]

2ψ ′(0+)2

−
⎛
⎝ψ ′′(0+)2

ψ ′(0+)4
− ψ ′′′(0+)

2ψ ′(0+)3
+

ψ ′′(0+)Ex

[
Xτ−

0
1{τ−

0 <∞}
]

2ψ ′(0+)3

⎞
⎠Ex

[
Xτ−

0
1{τ−

0 <∞}
]
, (13)

where expressions for the first and second moments of deficit Xτ−
0

are given in Eqs. (28) and (29), and

Ex

[
X3

τ−
0

1{τ−
0 <∞}
]

= Z ′′′(x,0) − ψ ′′′′(0+)

4
W (x).

In particular, for x ≤ 0,

Covx

⎡
⎢⎣τ+

0 ,

τ+
0∫

0

|Xs| ds

⎤
⎥⎦= ψ ′′(0+)x2

2ψ ′(0+)3
−
(

ψ ′′(0+)2

ψ ′(0+)4
− ψ ′′′(0+)

2ψ ′(0+)3

)
x. (14)

Remark 3. Using similar arguments as in the proof of Theorem 1, one can derive an expression for a more general quantity, namely

Ex

⎡
⎢⎢⎣

τ∫
τ−

0

Xn
s ds

⎤
⎥⎥⎦ , n ∈N+.

For x ≤ 0 and n ∈N+ , applying Eq. (9) and Leibniz’s rule yields

Ex

⎡
⎢⎣

τ+
0∫

0

Xn
s ds

⎤
⎥⎦= lim

q→0

1

q
Ex

[
Xn

eq
1{eq<τ+

0

}]

= lim
q→0

1

q

dn

dλn Ex

[
eλXeq 1{eq<τ+

0

}] ∣∣∣∣
λ=0

= lim
q→0

{
e	qxψ̂q

(n)
(0) −

n∑
k=0

(
n

k

)
xkψ̂q

(n−k)
(0)

}
,

where ψ̂(n)
q (λ) is the n-th derivative of 

(
ψq(λ)
)−1

with respect to λ and it can be evaluated recursively using di Bruno’s formula (see, e.g., 
Riordan (2012)). It follows that
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Ex

⎡
⎢⎢⎣

τ∫
τ−

0

Xn
s ds

⎤
⎥⎥⎦= Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xn
s ds

⎤
⎥⎦1{τ−

0 <∞}
⎤
⎥⎦

= Ex

[
lim
q→0

{
e
	q X

τ−
0 ψ̂q

(n)
(0) −

n∑
k=0

(
n

k

)
Xk

τ−
0

ψ̂q
(n−k)

(0)

}
1{τ−

0 <∞}
]

,

for x ∈R. For example, for the case where n = 2, one can obtain from the above that

Ex

⎡
⎢⎢⎣

τ∫
τ−

0

X2
s ds

⎤
⎥⎥⎦=Ex

[
lim
q→0

{
e
	q X

τ−
0 ψ̂q

(2)
(0) −

2∑
k=0

(
2

k

)
Xk

τ−
0

ψ̂q
(2−k)

(0)

}
1{τ−

0 <∞}
]

= −
Ex

[
X3

τ−
0

1{τ−
0 <∞}
]

3ψ ′(0+)
+

ψ ′′(0+)Ex

[
X2

τ−
0

1{τ−
0 <∞}
]

2ψ ′(0+)2

+
(

ψ ′′′(0+)

3ψ ′(0+)2
− ψ ′′(0+)2

2ψ ′(0+)3

)
Ex

[
Xτ−

0
1{τ−

0 <∞}
]
. (15)

In the case where X is the Cramér-Lundberg risk process, Eqs. (14) and (15) recover the results in Corollary of Picard (1994).

Remark 4. One can also study the discounted cost of recovery defined as

I(q) =
τ∫

τ−
0

e−qt |Xt |dt, q > 0.

Following the same step as in the proof of (11), one obtains

Ex

[
I(q)
]

= −Ex

⎡
⎢⎣e−qτ−

0 EX
τ−

0

⎡
⎢⎣

τ+
0∫

0

e−qs Xs ds

⎤
⎥⎦1{τ−

0 <∞}
⎤
⎥⎦

= Wq(x)

(
1

	2
q

− ψ ′(0+)

q2	′
q

)
− ψ ′(0+)

q2

(
Zq(x) − e	qx)− Z ′

q(x,0)

q
.

The expression of Ex [I] can be recovered by taking the limit as q → 0. By L’Hôpital’s rule, we have

Ex [I] = lim
q→0

Ex

[
I(q)
]

= lim
q→0

Wq(x)

(
1

	2
q

− ψ ′(0+)

q2	′
q

)
− lim

q→0

(
ψ ′(0+)

q2

(
Zq(x) − e	qx)− Z ′

q(x,0)

q

)

=W (x) lim
q→0

(
2q	′

q + q2	′′
q − 2	′

q	
′
qψ

′(0+)

2	′
q	q

)
+ 1

2ψ ′(0+)
Z ′′(x,0) − ψ ′′(0+)

2ψ ′(0+)2
Z ′(x,0)

=W (x)

(
ψ ′′(0+)2

4ψ ′(0+)2
− ψ ′′′(0+)

6ψ ′(0+)

)
−R(x).

For the sake of compactness and brevity of our proofs and results, we have omitted the discount factor in the analysis of other quantities.

3.2. Expected area in the red

The next result provides an expression for the expectation of the total area in the red up to a Poissonian passage time T +
b , which can 

be interpreted as the expected total costs required to keep the business alive until the insurer’s surplus reaches threshold b ≥ 0 under 
Poissonian observations.

Theorem 5. For λ, b ≥ 0 and x ≤ b,

Ex

[
AT +

b

]
=R(b) −R(x) − 1

	λ

(
Z ′ (b,0)

ψ ′(0+)
+ 1

ψ ′(0+)	λ

− ψ ′′(0+)

2ψ ′(0+)2
− Z (b,	λ)

λ

)
. (16)

The total area in the red up the continuous first passage time τ+
b , that is Ex

[
Aτ+

b

]
, can be obtained from the expression in Eq. (16)

by letting the Poisson arrival rate go to infinity.
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Corollary 6. For b ≥ 0 and x ≤ b, we have

Ex

[
Aτ+

b

]
= R(b) −R(x), (17)

In particular, for x = 0,

E
[
Aτ+

b

]
= R(b).

The total area in the red is then given by

Ex [A∞] = ψ ′′(0+)2

4ψ ′(0+)3
− ψ ′′′(0+)

6ψ ′(0+)2
−R(x), (18)

for x ∈R.

Remark 7. Finally, note that the expressions for expectations of AT +
b

, Aτ+
b

and A∞ in Eqs. (16), (17) and (18) only rely on the scale 
functions and the Laplace exponent ψ . Hence, one can obtain closed-form expressions for the expected areas as long as W (x) and ψ are 
explicit.

3.3. Extensions to Parisian ruin

The quantities Ex [I] and Ex

[
AT +

b

]
discussed in previous sections measure the cost required until the insurer recovers from the 

classical ruin and until it is financially stable, respectively. It is also interesting to consider the cost of recovery associated with the 
Parisian ruin time. More specifically, suppose that each time the insurer enters an insolvent state, it is granted a grace period during 
which a rehabilitation plan is implemented. The company will be liquidated at the end of the grace period unless its surplus recovers to 
level 0 within the period. In this context, it is of practical interest to consider the following questions:

• What is the total cost of supporting the insurer during its stressful periods until liquidation?
• If the Parisian ruin occurs, how much additional cost will be required for the insurer to recover?

This section aims to provide insights for answering the questions.
We first recall that the Parisian ruin time with a fixed grace period r > 0 is defined as

κr = inf {t > 0 : t − gt > r} ,

where gt := sup {0 ≤ s ≤ t : Xs ≥ 0}. We refer readers to Loeffen et al. (2013) and Loeffen et al. (2018) for additional references on this 
topic. In this context, one may consider the cost of recovery from the Parisian ruin time:

Ir =
τr∫

κr

|Xt | dt,

where τr = inf{t > κr : Xt = 0}, and the total area in the red until recovery Aτr .

Proposition 8. For r > 0 and x ∈R,

Ex [Ir] = �(x, r)∫∞
0

z
r P (Xr ∈ dz)

⎛
⎝ ψ ′′(0+)2

4ψ ′(0+)2
− ψ ′′′(0+)

6ψ ′(0+)
−
(
rψ ′(0+)

)2 + rψ ′′(0+)

2
−ψ ′(0+)

r∫
0

∞∫
0

(r − s)
z

s
P (Xs ∈ dz)ds

⎞
⎠

+ r Z ′(x,0) + r2ψ ′(0+)

2
− ψ ′(0+)

r∫
0

(r − s)�(x, s)ds −R(x), (19)

and

Ex
[
Aτr

]= �(x, r)∫∞
0

z
r P (Xr ∈ dz)

(
ψ ′′(0+)2

4ψ ′(0+)2
− ψ ′′′(0+)

6ψ ′(0+)

)
−R(x). (20)

where �(x, r) = ∫∞0 W (x + z) z
r P (Xr ∈ dz).

If the length of the grace period is modeled by an exponential random variable eβ (independent of X) with mean 1/β > 0, this leads 
to the exponential Parisian ruin time:

κβ = inf
{

t > 0 : t − gt > egt
β

}
,

where egt
β denotes an independent copy of eβ associated with the negative excursion that began at time gt . We refer the reader to 

Landriault et al. (2014), Baurdoux et al. (2016), and references therein for more discussions on this stopping time. The cost of recovery 
from the exponential Parisian ruin time is then
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Fig. 2. A sample path of X , where the gray shaded region is the total area in the red until liquidation Aκβ and the green pattern shaded region is the cost of recovery from 
the Parisian ruin time Iβ .

Iβ =
τβ∫

κβ

|Xt | dt,

where τβ = inf{t > κβ : Xt = 0}. See Fig. 2 for a sample path illustration.
The next proposition is a counterpart to Proposition 8 under the assumption of exponential grace periods.

Proposition 9. For β > 0 and x ∈R,

Ex
[
Iβ
]=Z
(
x,	β

) 	β

β

(
ψ ′′(0+)2

4ψ ′(0+)2
− ψ ′′(0+)

2β
− ψ ′(0+)2

β2
− ψ ′′′(0+)

6ψ ′(0+)

)

+ ψ ′(0+)

β2
+ Z ′(x,0)

β
−R(x), (21)

Ex
[
Aτβ

]= 	β

β
Z(x,	β)

(
ψ ′′(0+)2

4ψ ′(0+)2
− ψ ′′′(0+)

6ψ ′(0+)

)
−R(x), (22)

and

Ex

[
Aκβ 1{κβ<∞}

]
=
(

ψ ′′(0+)

2β
+ ψ ′(0+)2

β2
− ψ ′(0+)

β	β

+ ψ ′(0+)	′
β

	2
β

− 	′′
βψ ′(0+)

2	′
β	β

)
	β Z
(
x,	β

)
β

− 	βψ ′(0+)

2β

(
	′

β Z ′′ (x,	β

)+ 	′′
β

	′
β

Z ′ (x,	β

))− ψ ′(0+)

β2
− Z ′(x,0)

β
. (23)

Finally, it is worth mentioning that the expressions for Ex[I] and Ex[A∞] can be obtained from the above propositions as limiting 
cases by taking appropriate limits.

4. Examples

This section is devoted to provide some examples of the spectrally negative Lévy process X for the main results in Section 3. For cases 
of the Brownian risk process, the Cramér-Lundberg process with exponential jumps, and the jump-diffusion risk process with phase-type 
claims, we will provide explicit expressions for the areas in the red.

4.1. Brownian motion

Let X be a drifted Brownian motion, i.e.,

Xt = x + μt + σ Bt,

for t ≥ 0, where μ, σ > 0 and {Bt}t≥0 is a standard Brownian motion. The Laplace exponent is then given by ψ(θ) = μθ + σ 2

2 θ2 for θ ≥ 0, 
and consequently we have ψ ′(0+) = μ and ψ ′′(0+) = σ 2. In this case, for x ≥ 0 and λ > 0, it is well known that the scale functions of X
are given by

W (x) = 1

μ

(
1 − e−2μx/σ 2

)
,

and

Z(x,	λ) = λ

μ

(
1

	λ

− e−2μx/σ 2

	λ + 2μ/σ 2

)
,

where 	λ =
(√

μ2 + 2σ 2λ − μ
)
σ−2. It follows from Eq. (12) that
264



M.A. Lkabous and Z. Wang Insurance: Mathematics and Economics 111 (2023) 257–278
R(x) = σ 2

2μ2
x − x2

2μ
+ x

μ

x∫
0

1 − e−2μy/σ 2
dy − 1

μ

x∫
0

y
(

1 − e−2μy/σ 2
)

dy

= σ 4

4μ3

(
1 − e−2μx/σ 2

)
.

It is worth noting that Ex [I] = 0 for any x ≥ 0, which is consistent with the fact that X creeps downward to 0 and 0 is regular for (0, ∞). 
Using Theorem 5 and Corollary 6, we obtain

Ex

[
AT +

b

]
= σ 4

4μ3
e−2μx/σ 2 − e−2μb/σ 2

(
σ 4

4μ3
+ 1

	λ

(
σ 2

2	λμ2
+ 1

μ
(
	λ + 2μσ 2

)
))

,

the total area in the red up to τ+
b is given by

Ex

[
Aτ+

b

]
= σ 4

4μ3

(
e−2μx/σ 2 − e−2μb/σ 2

)
,

and the total area in the red is

Ex [A∞] = σ 4

4μ3
e−2μx/σ 2

,

which corresponds to the expression Eq. (59) obtained by Gerber et al. (2012).

4.2. Cramér-Lundberg process

Let X be a Cramér-Lundberg risk processes with exponentially distributed claims, i.e.,

Xt = x + ct −
Nt∑

i=1

Ci,

where N = {Nt}t≥0 is a Poisson process with intensity η > 0 and {Ci}i∈N+ is an iid sequence of exponential random variables with mean 
1/α, independent of N . In what follows, we also assume that c > η/α so that the ruin probability is not trivially 1. In this case, the 
Laplace exponent of X is given by

ψ(θ) = cθ − η + αη

θ + α
, θ ≥ 0,

and its first three derivatives evaluated at θ = 0 are

ψ ′(θ) =c − αη

(θ + α)2
⇒ ψ ′(0+) = c − η

α
> 0,

ψ ′′(θ) = 2αη

(θ + α)3
⇒ ψ ′′(0+) = 2η

α2
,

ψ ′′′(θ) = − 6αη

(θ + α)4
⇒ ψ ′′′(0+) = −6η

α3
,

and its right inverse 	λ = (

√
(η + λ − cα)2 + 4cλα + η + λ − cα)/(2c). Moreover, for x ≥ 0, the scale functions of X are given by

W (x) = 1

c − η/α

(
1 − η

cα
e(

η
c −α)x
)

,

and

Z(x,	λ) = λ

c − η/α

(
1

	λ

− η

cα

e(
η
c −α)x

	λ + α − η/c

)
, λ ≥ 0.

Using Eq. (12), we obtain

R(x) = − x2

2 (c − η/α)
+ ηx

(αc − η)2
+ x

c − η/α

⎛
⎝x −

η
(

e(
η
c −α)x − 1

)
cα(η/c − α)

⎞
⎠

− 1

c − η/α

(
x2

2
− η

cα

(
xe(

η
c −α)x

η/c − α
− e(

η
c −α)x − 1

(η/c − α)2

))

= cη

(η − cα)3

(
e(η/c−α)x − 1

)
.
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Table 1
Impact of λ on Ex

[
AT +

b

]
for b = 35 and c = 5.

x λ = 1 λ = 10 λ = 100 λ = 500 λ = ∞
1 71.0063 70.9426 70.9245 70.9223 70.9217
5 47.1418 47.0781 47.0600 47.0578 47.0572
10 28.0497 27.9860 27.9679 27.9657 27.9651
20 9.4462 9.3824 9.3644 9.3622 9.3616
30 2.6023 2.5386 2.5205 2.5183 2.5177

Table 2
Impact of b on Ex

[
AT +

b

]
for c = 5 and λ = 10.

x b = 25 b = 50 b = 100 b = ∞
1 65.9137 71.8556 72.3834 72.3870
5 42.0492 47.9911 48.5189 48.5225
10 22.9571 28.8990 29.4268 29.4304
15 11.3771 17.3191 17.8468 17.8504
20 4.3535 10.2955 10.8232 10.8268

Table 3
Impact of c on Ex

[
AT +

b

]
for b = 25 and x = 1.

c λ = 1 λ = 10 λ = 100 λ = ∞
5 66.1994 65.9137 65.9137 65.8202
7 3.3303 3.3290 3.3290 3.3285
10 0.5484 0.5484 0.5484 0.5483
12 0.2686 0.2686 0.2686 0.2686

By Theorem 1, we obtain the following expression for the expected cost of recovery,

Ex [I] =
(

4η2

4 (c − η/α)3 α4
+ 6η

6α3 (c − η/α)2

)(
1 − η

cα
e(η/c−α)x

)
− cη
(
e(η/c−α)x − 1

)
(η − cα)3

= ηe(η/c−α)x

α (η − cα)2
.

For the total area in the red up to T +
b and τ+

b , using Theorem 5 and Corollary 6, we get

Ex

[
AT +

b

]
= cη

(η − cα)3

(
e(η/c−α)b − e(η/c−α)x

)
− ηe(η/c−α)b

	λ(cα − η)

(
1

α(η − cα)
+ 1

	λ + α − η/c

)
and

Ex

[
Aτ+

b

]
= R(b) −R(x) = cη

(
e(η/c−α)b − e(η/c−α)x

)
(η − cα)3

.

Consequently, the total area in the red can be obtained by taking limit as follows,

Ex [A∞] = lim
b→∞

Ex

[
Aτ+

b

]
= cηe(η/c−α)x

(cα − η)3
,

which recovers Theorem 7 of Loisel (2005).

To examine the impact of the model parameters on the expected total area, we provide the values of Ex

[
AT +

b

]
for X under the 

parameter setting η = 1/α = 2 in Tables 1, 2 and 3. It can be observed from Table 1 and the left panel of Fig. 3 that Ex

[
AT +

b

]
decreases 

and converges to Ex

[
Aτ+

b

]
as λ increases, which is expected as τ+

b < T +
b almost surely for λ > 0 and T +

b → τ+
b as λ → ∞. Also, note 

that expected total area decreases as the initial capital x increases. In Table 2, we notice that the cost for supporting the insurer during its 
insolvent states (i.e., Ex

[
AT +

b

]
) increases as the threshold level b increases. See the right panel of Fig. 3 for the convergence of Ex

[
AT +

b

]
to Ex [A∞]. Table 3 contains values of Ex

[
AT +

b

]
with different premium rates c and we note that the expected total area decreases 

significantly as the premium rate increases.

Remark 10. For general claim size distributions, one can use Theorem 1 and Proposition 2 to recover identities related to the cost of 
recovery (see p. 115 of Picard (1994)).

Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xsds

⎤
⎥⎦1{τ−

0 <∞}
⎤
⎥⎦=

Ex

[
X2

τ−
0

1{τ−
0 <∞}
]

2(c − ηE[C1]) −
ηE[C2

1]Ex

[
Xτ−

0
1{τ−

0 <∞}
]

2(c − ηE[C1])2
,
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Fig. 3. Convergence of Ex

[
AT +

b

]
to Ex

[
Aτ+

b

]
and Ex [A∞] as λ → ∞ and b → ∞ respectively.

and

Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

X2
s ds

⎤
⎥⎦1{τ−

0 <∞}
⎤
⎥⎦= −

Ex

[
X3

τ−
0

1{τ−
0 <∞}
]

3(c − ηE[C1]) +
ηE[C2

1]Ex

[
X2

τ−
0

1{τ−
0 <∞}
]

2(c − ηE[C1])2

−
⎛
⎝ η2E[C2

1]2

2(c − ηE[C1])3
+

ηE[C3
1]Ex

[
Xτ−

0
1{τ−

0 <∞}
]

3(c − ηE[C1])2

⎞
⎠ ,

and the covariance

CovX
τ−

0

⎡
⎢⎣τ+

0 ,

τ+
0∫

0

Xsds

⎤
⎥⎦= −

ηE[C2
1]X2

τ−
0

2(c − ηE[C1])3
−
(

λE[C2
1]2

c − ηE[C1] + E[C3
1]

2

)
ηXτ−

0

(c − ηE[C1])3
.

4.3. Jump diffusion risk process with phase-type claims

As a generalization of the previous two examples, we consider a jump diffusion risk process with phase-type claims, that is,

Xt = ct + σ Bt −
Nt∑

i=1

Ci,

where σ ≥ 0, {Bt}t≥0 is a standard Brownian motion, {Nt}t≥0 is a Poisson process with intensity η > 0, and {C1, C2, . . . } are independent 
random variables with common phase-type distribution with the minimal representation (m, T, α), i.e., its cumulative distribution function 
is given by F (x) = 1 − αeTx1, where T is an m × m matrix of a continuous-time killed Markov chain, its initial distribution is given by a 
simplex α = [α1, ..., αm], and 1 denotes a column vector of ones. All of the aforementioned objects are mutually independent, see Egami 
and Yamazaki (2014) for more details.

The Laplace exponent of X is known to be of the form

ψ(λ) = cλ + σ 2λ2

2
+ η
(
α(λI − T)−1t − 1

)
,

where t = −T1. Let ρ j be the roots with negative real parts of the equation θ �→ ψ(θ) = 0. Since we assume the net profit condition 
E[X1] > 0, from Proposition 5.4 in Kuznetsov et al. (2012), we have that the ρ j ’s are distinct roots. Then, from Proposition 2.1 in Egami 
and Yamazaki (2014), we have

W (x) = 1

ψ ′(0+)
+

n∑
j=1

A je
ρ j x, (24)

where A j = 1
ψ ′(ρ j)

and n = |Iρ | where Iρ is the set of indices corresponding to the ρ j ’s. From Eqs. (42) and (43) in Strietzel and Behme 
(2022), we have
267



M.A. Lkabous and Z. Wang Insurance: Mathematics and Economics 111 (2023) 257–278
1

ψ ′ (0+)
= 1

c
1{σ 2=0

} −
n∑

i=1

1

ψ ′ (ρi)
,

and

ψ ′′ (0+)

ψ ′ (0+)3
= −

n∑
i=1

ψ ′′ (ρi)

ψ ′ (ρi)
3
.

Using Eq. (24), we obtain

x

x∫
0

W (y)dy = x2

ψ ′ (0+)
+ x

n∑
i=1

eρi x − 1

Aiρi
,

and

x∫
0

yW (y)dy = x2

2ψ ′ (0+)
+

n∑
i=1

1

Aiρi

(
xeρi x − eρi x − 1

ρi

)
.

Thus,

x

x∫
0

W (y)dy −
x∫

0

yW (y)dy = x2

2ψ ′ (0+)
− x

n∑
i=1

1

Aiρi
+

n∑
i=1

1

Aiρi

(
eρi x − 1

ρi

)
.

Putting all the pieces together, one can obtain the expression for R(x).

5. Conclusion

Under contemporary insurance regulatory frameworks, it is essential to evaluate the cost required to recover from an insurer’s insol-
vency when determining whether rehabilitation should be granted. To this end, we study several area-related quantities in the context of 
Lévy risk processes. We obtain explicit and compact expressions, expressed in terms of the scale functions and the Laplace exponent, for 
the expected areas up to the recovery times, the Poissonian first passage time, the continuous first passage time, and the infinite horizon 
time.
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Appendix A

A.1. Proof of Theorem 1

Proof. First, using Fubini’s Theorem, we have

Ex

⎡
⎢⎣

τ+
0∫

0

Xsds

⎤
⎥⎦= Ex

⎡
⎣ ∞∫

0

Xs1{s<τ+
0

}ds

⎤
⎦

= lim
q→0

∞∫
0

e−qsEx

[
Xs1{s<τ+

0

}]ds

= lim
q→0

1

q
Ex

[
Xeq 1{eq<τ+

0

}] , (25)

for x ≤ 0. By Eq. (9), one obtains
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Ex

[
Xeq 1{eq<τ+

0

}]= d

dλ
Ex

[
eλXeq 1{eq<τ+

0

}] ∣∣∣∣
λ=0

= qxeλx (q − ψ(λ)) + q
(
eλx − e	qx

)
ψ ′(λ)

ψq(λ)2

∣∣∣∣
λ=0

=
(
1 − e	qx

)
ψ ′(0+) + qx

q
, (26)

for x ≤ 0. Substituting Eq. (26) into Eq. (25) and noting that 	′′
0 = − ψ ′′(0+)

ψ ′(0+)3 , it follows that

Ex

⎡
⎢⎣

τ+
0∫

0

Xsds

⎤
⎥⎦= lim

q→0

(
1 − e	qx

)
ψ ′(0+) + qx

q2

= − x

2

(
x

ψ ′(0+)
− ψ ′′(0+)

ψ ′(0+)2

)
, (27)

for x ≤ 0.
Also, by taking the right-hand derivative of Eq. (8) with respect to θ at zero, we get an expression for the expected discounted deficit 

at ruin,

Ex

[
Xτ−

0
1{τ−

0 <∞}
]

= d

dθ
Ex

[
e
θ X

τ−
0 1{τ−

0 <∞}
] ∣∣∣∣

θ=0

= d

dθ

{
Z(x, θ) − ψ(θ)

θ
W (x)

}∣∣∣∣
θ=0

=Z ′(x,0) − ψ ′′(0+)

2
W (x), (28)

and similarly,

Ex

[
X2

τ−
0

1{τ−
0 <∞}
]

= d2

dθ2
Ex

[
e
θ X

τ−
0 1{τ−

0 <∞}
] ∣∣∣∣

θ=0

=
{

Z ′′(x, θ) − ψ ′′(θ)θ2 − 2ψ ′(θ)θ + 2ψ(θ)

θ3
W (x)

} ∣∣∣∣
θ=0

=Z ′′(x,0) − ψ ′′′(0+)W (x)

3
. (29)

Combining Eqs. (27) ∼ (29) and applying the strong Markov property of X , we obtain

Ex [I] = −Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xs ds

⎤
⎥⎦1{τ−

0 <∞}
⎤
⎥⎦

= 1

2ψ ′(0+)
Ex

[
X2

τ−
0

1{τ−
0 <∞}
]
− ψ ′′(0+)

2ψ ′(0+)2
Ex

[
Xτ−

0
1{τ−

0 <∞}
]

= 1

2ψ ′(0+)

(
Z ′′(x,0) − ψ ′′′(0+)W (x)

3

)
− ψ ′′(0+)

2ψ ′(0+)2

(
Z ′(x,0) − ψ ′′(0+)

2
W (x)

)
, (30)

for x ∈R. Applying Eqs. (5) and (6) and noting that

R(x) = ψ ′′(0+)Z ′(x,0)

2ψ ′(0+)2
− Z ′′(x,0)

2ψ ′(0+)
, (31)

Eq. (30) reduces to Eq. (11). �

A.2. Proof of Proposition 2

Proof. For x ∈R, using the strong Markov property of X , we have

Covx

⎡
⎢⎢⎣τ − τ−

0 ,

τ∫
τ−

Xs ds

⎤
⎥⎥⎦=Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣τ+

0

τ+
0∫

0

Xs ds

⎤
⎥⎦
⎤
⎥⎦
0
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−Ex

[
EX

τ−
0

[
τ+

0

]]
Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xs ds

⎤
⎥⎦
⎤
⎥⎦

=Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣τ+

0

τ+
0∫

0

Xs ds

⎤
⎥⎦
⎤
⎥⎦

−Ex

[
Xτ−

0

ψ ′(0+)

]
Ex

[
Xτ−

0

2

(
Xτ−

0

ψ ′(0+)
− ψ ′′(0+)

ψ ′(0+)2

)]
, (32)

where the last equation follows from Eq. (27) and the fact that,

Ex
[
τ+

0

]= − d

dq
Ex

[
e−qτ+

0

]∣∣∣
q=0

= − d

dq
e	qx
∣∣
q=0 = − x

ψ ′(0+)
,

for x ≤ 0.
To calculate the first term of Eq. (32), we note that, for x ≤ 0,

Ex

⎡
⎢⎣τ+

0

τ+
0∫

0

Xs ds

⎤
⎥⎦= lim

q→0

1

q
Ex

[
τ+

0 Xeq 1{eq<τ+
0

}]

= − lim
q→0

1

q

d2

dλdp
Ex

[
e−pτ+

0 +λXeq 1{eq<τ+
0

}]∣∣∣∣
λ=p=0

, (33)

where

Ex

[
e−pτ+

0 +λXeq 1{eq<τ+
0

}]= Ex

[
eλXeq −peq 1{eq<τ+

0

}EXeq

[
e−pτ+

0

]]
= q

p + q
Ex

[
e
(
λ+	p
)

Xep+q 1{ep+q<τ+
0

}]

=
q
(

e
(
λ+	p
)
x − e	p+qx

)
p + q − ψ

(
λ + 	p

) . (34)

Substituting Eq. (34) into Eq. (33) yields

Ex

⎡
⎢⎣τ+

0

τ+
0∫

0

Xsds

⎤
⎥⎦= − lim

q→0

d2

dλdp

e
(
λ+	p
)
x − e	p+qx

p + q − ψ
(
λ + 	p

)
∣∣∣∣∣
λ=p=0

= − lim
q→0

xqx	′
0 + (x	′

0 − x	′
qe	qx
)
ψ ′ (0+) + (1 − e	qx

)
ψ ′′ (0+)	′

0

q2

=
(

ψ ′′(0+)2

ψ ′(0+)4
− ψ ′′′(0+)

2ψ ′(0+)3

)
x − ψ ′′(0+)

ψ ′(0+)3
x2 + 1

2ψ ′(0+)2
x3, (35)

where in the last equality, we applied L’Hôpital’s rule and used 	′′′
0 = 3ψ ′′(0+)2

ψ ′(0+)5 − ψ ′′′(0+)

ψ ′(0+)4 . Combining Eq. (35) and Eq. (32) and using the 
linearity of covariance completes the proof of Eq. (13). �

A.3. Proof of Theorem 5

Proof. We first consider the case where the paths of X are of bounded variation. Applying the strong Markov property of X , it follows 
that

Ex

[
AT +

b

]
= −Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xsds

⎤
⎥⎦1{τ−

0 <T +
b

}
⎤
⎥⎦+ Px

(
τ−

0 < T +
b

)
E
[
AT +

b

]

= −Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xsds

⎤
⎥⎦1{τ−

0 <T +
b

}
⎤
⎥⎦+
(

1 − λW (x)

	λ Z (b,	λ)

)
E
[
AT +

b

]
, (36)
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where in the last equality we used Eq. (10) for θ = 0.
Using a similar technique as in the proof of Theorem 1, one deduces that

Ex

[
Xτ−

0
1{τ−

0 <T +
b

}]= d

dθ
Ex

[
e
θ X

τ−
0 1{τ−

0 <T +
b

}] ∣∣∣∣
θ=0

= d

dθ

{
Z(x, θ) − W (x)

θ − 	λ

(
ψ (θ) − λ

Z(b, θ)

Z(b,	λ)

)}∣∣∣∣
θ=0

=Z ′(x,0) + W (x)

(
ψ ′(0+)

	λ

− λ
(
	λ Z ′(b,0) + 1

)
Z(b,	λ)	

2
λ

)
, (37)

and

Ex

[
X2

τ−
0

1{τ−
0 <T +

b

}]= d2

dθ2
Ex

[
e
θ X

τ−
0 1{τ−

0 <T +
b

}] ∣∣∣∣
θ=0

=Z ′′(x,0) + W (x)

(
ψ ′′(0+)	λ + 2ψ ′(0+)

	2
λ

)

− λW (x)

Z(b,	λ)

Z ′′(b,0)

	λ

− 2λW (x)

Z(b,	λ)

(
	λ Z ′(b,0) + 1

	3
λ

)
. (38)

Combining Eqs. (27), (37) and (38), we obtain

Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xs ds

⎤
⎥⎦1{τ−

0 <T +
b

}
⎤
⎥⎦= ψ ′′(0+)

2ψ ′(0+)2
Ex

[
Xτ−

0
1{τ−

0 <T +
b

}]− 1

2ψ ′(0+)
Ex

[
X2

τ−
0

1{τ−
0 <T +

b

}]

= ψ ′′(0+)

2ψ ′(0+)2

(
Z ′(x,0) + W (x)

(
ψ ′(0+)

	λ

− λ
(
	λ Z ′(b,0) + 1

)
Z (b,	λ)	2

λ

))

− 1

2ψ ′(0+)

(
Z ′′(x,0) + W (x)

(
ψ ′′(0+)	λ + 2ψ ′(0+)

	2
λ

))

+ 1

2ψ ′(0+)

λW (x)

Z (b,	λ)

(
Z ′′(b,0)

	λ

+ 2

(
	λ Z ′(b,0) + 1

	3
λ

))

=R(x) − λW (x)

Z (b,	λ)	λ

R(b) − W (x)

	2
λ

+ λW (x)

2ψ ′(0+)Z (b,	λ)	2
λ

⎛
⎝2	λ

(
b − ψ ′(0+)

∫ b
0 W (y)dy

)
+ 2

	λ

− ψ ′′(0+)

ψ ′(0+)

⎞
⎠ , (39)

for x ≤ b and b ≥ 0. Specifically, letting x = 0 in Eq. (39), one obtains

E

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xs ds

⎤
⎥⎦1{τ−

0 <T +
b

}
⎤
⎥⎦

= W (0)

	2
λ Z (b,	λ)

⎛
⎝λ	λ

(
b − ψ ′(0+)

∫ b
0 W (y)dy

)
+ λ

ψ ′(0+)	λ

− λψ ′′(0+)

2ψ ′(0+)2
− Z (b,	λ) − λ	λR(b)

⎞
⎠ . (40)

Substituting Eq. (40) into Eq. (36) leads to

E
[
AT +

b

]
= − 	λ Z (b,	λ)

λW (0)
E

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xsds

⎤
⎥⎦1{τ−

0 <T +
b

}
⎤
⎥⎦

= ψ ′′(0+)

2ψ ′(0+)2	λ

+ Z (b,	λ)

λ	λ

+R(b) −
	λ

(
b − ψ ′(0+)

∫ b
0 W (y)dy

)
+ 1

ψ ′(0+)	2
λ

. (41)

Substituting Eqs. (41) and (39) into Eq. (36) completes the proof of Eq. (16) for the case where the paths of X are of bounded variation.
Now, if X has paths of unbounded variation, we consider an approximation approach similar to Yin and Yuen (2014) and Zhang and 

Wu (2002). More specifically, for ε > 0, let
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L1(ε) = τ−−ε = inf {t ≥ 0 : Xt < −ε} ,

and

R1(ε) = inf {t ≥ L1(ε) : Xt = 0} .

Recursively, we define two sequences of stopping times {Lk(ε)}k≥1 and {Rk(ε)}k≥1 as follows: for k ≥ 2, let

Lk(ε) = inf
{

t ≥ Rk−1(ε) : Xt < −ε
}
,

and

Rk(ε) = inf {t ≥ Lk(ε) : Xt = 0} .

Define

A(ε)

T +
b

=
Nb(ε)∑
i=1

Ri(ε)∫
Li(ε)

|Xs|ds,

where

Nb(ε) = sup
{
k : Lk(ε) < T +

b

}
,

with the convention that sup ∅ = 0 and 
∑0

i=1 = 0. Note that Nb(ε) follows a geometric distribution:

Px (Nb(ε) = 0) = Px
(
T +

b ≤ τ−−ε

)
,

and

Px (Nb(ε) = n) = Px
(
τ−−ε < T +

b

) (
P
(
τ−−ε < T +

b

))n−1
P
(
τ−−ε ≥ T +

b

)
,

for n = 1, 2, .... Moreover, given that Nb(ε) = n, one can show that 
{∫ Ri(ε)

Li(ε)
|Xs|ds
}

i∈N+ is a sequence of independent random variables 

and 
{∫ Ri(ε)

Li(ε)
|Xs|ds
}

i≥2
are identically distributed (see p. 108 of Bertoin (1996)). Then, applying the law of total expectation and the strong 

Markov property of X , we obtain

Ex

[
A(ε)

T +
b

]

=
∞∑

n=1

⎛
⎜⎝Ex

⎡
⎢⎣

R1(ε)∫
L1(ε)

|Xs|ds

∣∣∣∣Nb(ε) = n

⎤
⎥⎦+Ex

⎡
⎢⎣ n∑

i=2

Ri(ε)∫
Li(ε)

|Xs|ds

∣∣∣∣Nb(ε) = n

⎤
⎥⎦
⎞
⎟⎠Px (Nb(ε) = n)

=Ex

⎡
⎢⎣

R1(ε)∫
L1(ε)

|Xs| ds

∣∣∣∣Nb(ε) ≥ 1

⎤
⎥⎦Px
(
τ−−ε < T +

b

)

+Px
(
τ−−ε < T +

b

) ∞∑
n=2

E

⎡
⎢⎣n−1∑

i=1

Ri(ε)∫
Li(ε)

|Xs|ds

∣∣∣∣Nb(ε) = n − 1

⎤
⎥⎦(P (τ−−ε < T +

b

))n−1
P
(
τ−−ε > T +

b

)

= −Ex

⎡
⎢⎣EX

τ−−ε

⎡
⎢⎣

τ+
0∫

0

Xs ds

⎤
⎥⎦1{τ−−ε<T +

b

}
⎤
⎥⎦+ Px

(
τ−−ε < T +

b

)
E

[
A(ε)

T +
b

]
. (42)

Using a similar argument as in the bounded variation case and noting that

Ex

[
X2

τ−−ε
1{τ−−ε<T +

b

}]=Ex+ε

[
X2

τ−
0

1{
τ−

0 <T +
b+ε

}]− 2εEx

[
Xτ−−ε

1{τ−−ε<T +
b

}]− ε2Px
(
τ−−ε < T +

b

)
,

and

Ex

[
Xτ−−ε

1{τ−−ε<T +
b

}]=Ex+ε

[
Xτ−

0
1{

τ−
0 <T +

b+ε

}]− εPx
(
τ−−ε < T +

b

)
,

one can deduce that
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Ex

⎡
⎢⎣EX

τ−−ε

⎡
⎢⎣

τ+
0∫

0

Xs ds

⎤
⎥⎦1{τ−−ε<T +

b

}
⎤
⎥⎦=
(

ψ ′′(0+)

2ψ ′(0+)2
+ ε

ψ ′(0+)

)
Ex+ε

[
Xτ−

0
1{

τ−
0 <T +

b+ε

}]

− 1

2ψ ′(0+)
Ex+ε

[
X2

τ−
0

1{
τ−

0 <T +
b+ε

}]

−
(

εψ ′′(0+)

2ψ ′(0+)2
+ ε2

2ψ ′(0+)

)
Px
(
τ−−ε < T +

b

)
=R(x + ε) − λW (x + ε)

Z (b + ε,	λ)	λ

R(b + ε) + ε Z ′(x + ε,0)

ψ ′(0+)

−
(

εψ ′′(0+)

2ψ ′(0+)2
+ ε2

2ψ ′(0+)

)

+ (ε	λ − 1) W (x + ε)

2	2
λψ

′(0+)

(
2ψ ′(0+) − 2λZ ′(b + ε,0)

Z (b + ε,	λ)

)

+ (ε	λ − 1) W (x + ε)

2	2
λψ

′(0+)

(
λψ ′′(0+)

ψ ′(0+)Z (b + ε,	λ)
− 2λ

Z (b + ε,	λ)	λ

)

+ λε2W (x + ε)

2ψ ′(0+)	λ Z (b + ε,	λ)
. (43)

Combining Eqs. (42) and (43) leads to

E

[
A(ε)

T +
b

]
= − 	λ Z (b + ε,	λ)

λW (ε)

{
R(ε) + ε Z ′(ε,0)

ψ ′(0+)
− εψ ′′(0+)

2ψ ′(0+)2
− ε2

2ψ ′(0+)

}
+R(b + ε)

− ε	λ − 1

	λψ ′(0+)

{
ψ ′′(0+)

2ψ ′(0+)
− Z ′(b + ε,0) − 1

	λ

− ψ ′(0+)Z (b + ε,	λ)

λ

}
− ε2

2ψ ′(0+)
. (44)

Also, it follows from Eq. (4) and L’Hôpital’s rule that

lim
ε↓0

∫ ε
0 e−θ y W (y)dy

W (ε)
= 0, (45)

for θ ≥ 0. Substituting Eqs. (43) and (44) into Eq. (42), Eq. (16) follows by taking the limit of Ex

[
A(ε)

T +
b

]
as ε → 0 and applying Eq. 

(45). �

A.4. Proof of Corollary 6

Proof. Taking limits as λ → ∞ in Eq. (16), we see that Eq. (17) is proved by showing that

lim
λ→∞

1

	λ

{
Z ′ (b,0)

ψ ′(0+)
+ 1

ψ ′(0+)	λ

− ψ ′′(0+)

2ψ ′(0+)2
− Z (b,	λ)

λ

}
= 0. (46)

Note that Z(b, 	λ) can be rewritten as

Z(b,	λ) = λ

∞∫
0

e−	λ y W (b + y)dy,

for λ > 0, and it follows from the dominated convergence theorem that

lim
λ→∞

Z(b,	λ)

λ
= 0.

Then Eq. (46) follows.
To prove Eq. (18), we see that we need to show

lim
b→∞

R(b) = ψ ′′(0+)2

4ψ ′(0+)3
− ψ ′′′(0+)

6ψ ′(0+)2
,

which follows immediately from Eq. (31) if we can show that

lim
b→∞

Z ′(b,0) = ψ ′′(0+)

2ψ ′(0+)
, (47)

and
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lim
b→∞

Z ′′(b,0) = ψ ′′′(0+)

3ψ ′(0+)
. (48)

Eq. (47) can be proved using Eq. (31) in Loeffen and Renaud (2010), that is

lim
b→∞

Eb

[
Xτ−

0
1{τ−

0 <∞}
]

= lim
b→∞

(
Z ′(b,0) − ψ ′′(0+)

2
W (b)

)
= 0. (49)

We now provide an alternative proof to the above limit. First, using Eq. (11) in Albrecher et al. (2016), one deduces that

lim
b→∞

Z(b,	λ) = λ

ψ ′ (0+)	λ

,

and consequently,

lim
b→∞

lim
λ→0

∂

∂λ
Z(b,	λ) = lim

λ→0

∂

∂λ

λ

ψ ′(0+)	λ

= ψ ′′(0+)

2ψ ′(0+)2
. (50)

Also, note that

lim
b→∞

lim
λ→0

∂

∂λ
Z(b,	λ) = lim

b→∞
lim
λ→0

	′
λ Z ′(b,	λ)

= lim
b→∞

Z ′(b,0)

ψ ′ (0+)
. (51)

Combining Eqs. (51) and (50) proves Eq. (47). Using similar arguments, one can prove that

lim
b→∞

Eb

[
X2

τ−
0

1{τ−
0 <∞}
]

= lim
b→∞

(
Z ′′(b,0) − ψ ′′′(0+)W (b)

3

)
= 0,

and thus Eq. (48) follows. �

A.5. Proof of Proposition 8

Proof. Using Eq. (27), one obtains

Ex [Ir] = −Ex

⎡
⎢⎣EXκr

⎡
⎢⎣

τ+
0∫

0

Xs ds

⎤
⎥⎦1{κr<∞}

⎤
⎥⎦

= 1

2ψ ′(0+)
Ex

[
X2

κr
1{κr<∞}

]
− ψ ′′(0+)

2ψ ′(0+)2
Ex
[

Xκr 1{κr<∞}
]
. (52)

It is known from Corollary 3.5 in Loeffen et al. (2018) that

Ex

[
eλXκr 1{κr<∞}

]
=eψ(λ)r Z(x, λ) − ψ (λ)

r∫
0

e−ψ(λ)(s−r)� (x, s)ds − H (r, λ)�(x, r)∫∞
0

z
r P (Xr ∈ dz)

,

for x ∈R, where

H (r, λ) = ψ (λ) eψ(λ)r

⎛
⎝1

λ
+

r∫
0

e−ψ(λ)s

∞∫
0

z

s
P (Xs ∈ dz)ds

⎞
⎠ .

A straightforward calculation shows that

d

dλ
H (r, λ)

∣∣∣∣
λ=0

= rψ ′(0+)2 + ψ ′′(0+)

2
+ ψ ′(0+)

r∫
0

∞∫
0

z

s
P (Xs ∈ dz)ds,

and

d2

dλ2
H (r, λ)

∣∣∣∣
λ=0

=ψ ′′′(0+)

3
+ rψ ′(0+)

(
rψ ′(0+)2 + 2ψ ′′(0+)

)

+
r∫

0

∞∫
0

(
ψ ′′(0+) + 2ψ ′(0+)2 (r − s)

) z

s
P (Xs ∈ dz)ds.
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Consequently,

Ex
[

Xκr 1{κr<∞}
]= d

dλ
Ex

[
eλXκr 1{κr<∞}

] ∣∣
λ=0

=ψ ′(0+)r + Z ′(x,0) − ψ ′(0+)

r∫
0

�(x, s)ds

− �(x, r)∫∞
0

z
r P (Xr ∈ dz)

⎛
⎝rψ ′(0+)2 + ψ ′′(0+)

2
+ ψ ′(0+)

r∫
0

∞∫
0

z

s
P (Xs ∈ dz)ds

⎞
⎠ , (53)

and

Ex

[
X2

κr
1{κr<∞}

]
= d2

dλ2
Ex

[
eλXκr 1{κr<∞}

] ∣∣
λ=0

=rψ ′′(0+) + (rψ ′(0+)
)2 + 2rψ ′(0+)Z ′(x,0) + Z ′′(x,0)

−
r∫

0

(
ψ ′′(0+) + 2ψ ′(0+)2(r − s)

)
�(x, s)ds

− �(x, r)∫∞
0

z
r P (Xr ∈ dz)

(
ψ ′′′(0+)

3
+ rψ ′(0+)

(
rψ ′(0+)2 + 2ψ ′′(0+)

)

+
r∫

0

∞∫
0

(
ψ ′′(0+) + 2ψ ′(0+)2(r − s)

) z

s
P (Xs ∈ dz)ds

)
. (54)

Substituting Eqs. (53) and (54) into Eq. (52) completes the proof of Eq. (19).
We only prove Eq. (20) for the case where X has paths of bounded variation. One can use similar arguments as in the proof of 

Theorem 5 for the unbounded variation case, and the details are thus omitted. For x ∈R, an application of the strong Markov property at 
τ−

0 and τ yields

Ex
[
Aτr

]= −Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xsds

⎤
⎥⎦1{τ−

0 <∞}
⎤
⎥⎦+Ex

[
PX

τ−
0

[
τ+

0 ≤ r
]

1{τ−
0 <∞}
]
E
[
Aτr

]

=
(

ψ ′′(0+)2

4ψ ′(0+)2
− ψ ′′′(0+)

6ψ ′(0+)

)
W (x) −R(x) +

⎛
⎝ ∞∫

0

(W (x + z) − W (x))
z

r
P (Xr ∈ dz)

⎞
⎠E [Aτr

]
, (55)

where the last equation follows from Eq. (11) and Eq. (22) in Lkabous et al. (2017). Solving Eq. (55) for x = 0 and then plugging the 
expression for E 

[
Aτr

]
into Eq. (55) completes the proof of Eq. (20). �

A.6. Proof of Proposition 9

Proof. By Eq. (27), we obtain

Ex
[
Iβ
]= −Ex

⎡
⎢⎣EX

κβ

⎡
⎢⎣

τ+
0∫

0

Xs ds

⎤
⎥⎦1{κβ<∞}

⎤
⎥⎦

= 1

2ψ ′(0+)
Ex

[
X2

κβ 1{τ−
0 <∞}
]
− ψ ′′(0+)

2ψ ′(0+)2
Ex

[
Xκβ 1{τ−

0 <∞}
]
, (56)

for x ∈R. From Eq. (14) in Albrecher et al. (2016), we have

Ex

[
eθ X

κβ 1{κr<∞}
]

= β

β − ψ(θ)

(
Z(x, θ) − Z(x,	β)

	βψ(θ)

βθ

)
.

Then, the first and second moments of Xκβ are given by

Ex

[
Xκβ 1{κβ<∞}

]
= d

dθ
Ex

[
eθ X

κβ 1{κr<∞}
] ∣∣∣∣

θ=0

= βψ ′(θ)

(β − ψ(θ))2

(
Z(x, θ) − Z(x,	β)

	βψ(θ)

βθ

)∣∣∣∣

θ=0
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+ β

β − ψ(θ)

(
Z ′(x, θ) − Z(x,	β)

	β

β

ψ ′(θ)θ − ψ(θ)

θ2

)∣∣∣∣
θ=0

=ψ ′(0+)

β

(
1 − Z(x,	β)

	βψ ′(0+)

β

)
+ Z ′(x,0) − ψ ′′(0+)

2

	β

β
Z(x,	β), (57)

and

Ex

[
X2

κβ 1{κβ<∞}
]

= d2

dθ2
Ex

[
eθ X

κβ 1{κβ<∞}
] ∣∣∣∣

θ=0

=βψ ′′(θ)(β − ψ(θ))2 + 2β(ψ ′(θ))2(β − ψ(θ))

(β − ψ(θ))4

(
Z(x, θ) − Z(x,	β)

	βψ(θ)

βθ

)∣∣∣∣
θ=0

+ 2βψ ′(θ)

(β − ψ(θ))2

(
Z ′(x, θ) − Z(x,	β)

	β

β

ψ ′(θ)θ − ψ(θ)

θ2

)∣∣∣∣
θ=0

+ β

β − ψ(θ)

(
Z ′′(x, θ) − Z(x,	β)

	β

β

θ2ψ ′′(θ) − 2(ψ ′(θ)θ − ψ(θ))

θ3

)∣∣∣∣
θ=0

=βψ ′′(0+) + 2ψ ′(0+)2

β2

(
1 − Z(x,	β)

	βψ ′(0+)

β

)

+ 2ψ ′(0+)

β

(
Z ′(x,0) − Z(x,	β)

	β

β

ψ ′′(0+)

2

)
+ Z ′′(x,0) − Z(x,	β)

	β

β

ψ ′′′(0+)

3
. (58)

Substituting Eqs. (57) and (58) into Eq. (56) leads to Eq. (21).
Once again, we only provide the proof of Eqs. (22) and (23) for the bounded variation case. For x ∈R, by the strong Markov property 

and Eqs. (8) and (11),

Ex
[
Aτβ

]= −Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xsds

⎤
⎥⎦1{τ−

0 <∞}
⎤
⎥⎦+Ex

[
PX

τ−
0

[
τ+

0 ≤ eβ

]
1{τ−

0 <∞}
]
E
[
Aτβ

]

=
(

ψ ′′(0+)2

4ψ ′(0+)2
− ψ ′′′(0+)

6ψ ′(0+)

)
W (x) −R(x) +

(
Z(x,	β) − β

	β

W (x)

)
E
[
Aτβ

]
.

Eq. (22) then follows immediately.
To prove Eq. (23), note that

Ex

[
Aκβ 1{κβ<∞}

]
= Ex

[
Aτβ 1{κβ<∞}

]
−Ex
[
Iβ

]
, (59)

where

Ex

[
Aτβ 1{κβ<∞}

]
= −Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xsds1{κβ<∞}
⎤
⎥⎦1{τ−

0 <∞}
⎤
⎥⎦

+
(

Z(x,	β) − β

	β

W (x)

)
E
[
Aτβ 1{κβ<∞}

]
, (60)

for x ∈R. By Eq. (27) and Theorem 1 of Landriault et al. (2011), one derives that

Ex

⎡
⎢⎣

τ+
0∫

0

Xsds1{κβ<∞}
⎤
⎥⎦= Ex

⎡
⎢⎣

τ+
0∫

0

Xsds

⎤
⎥⎦−Ex

⎡
⎢⎣

τ+
0∫

0

Xsds1{κβ=∞}
⎤
⎥⎦

= Ex

⎡
⎢⎣

τ+
0∫

0

Xsds

⎤
⎥⎦−Ex

⎡
⎢⎣

τ+
0∫

0

Xsds1{τ+
0 ≤eβ

}P [κβ = ∞]
⎤
⎥⎦

= − x

2

(
x

ψ ′(0+)
− ψ ′′(0+)

ψ ′(0+)2

)
− ψ ′(0+)

	β

β
Ex

⎡
⎢⎣

τ+
0∫

0

Xsds1{τ+
0 ≤eβ

}
⎤
⎥⎦ , (61)

for x < 0. Using Eq. (34), it follows that
276



M.A. Lkabous and Z. Wang Insurance: Mathematics and Economics 111 (2023) 257–278
Ex

⎡
⎢⎣

τ+
0∫

0

Xsds1{τ+
0 <eβ

}
⎤
⎥⎦= lim

q→0

1

q
Ex

[
e−βτ+

0 Xeq 1{eq<τ+
0

}]

= lim
q→0

1

q

{
d

dθ
Ex

[
e−βτ+

0 eθ Xeq 1{eq<τ+
0

}] ∣∣∣∣
θ=0

}

= lim
q→0

d

dθ

(
e
(
θ+	β

)
x − e	q+β x

)
q + β − ψ

(
θ + 	β

) ∣∣∣∣
θ=0

= lim
q→0

xe	β xq + (e	β x − e	q+β x
)
ψ ′(	β)

q2

= −xe	β x

(
	′′

β

2	′
β

+ x	′
β

2

)
, (62)

for x < 0. Combining Eqs. (61) and (62) yields

Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xsds1{κβ<∞}
⎤
⎥⎦1{τ−

0 <∞}
⎤
⎥⎦= − 1

2ψ ′(0+)
Ex

[
X2

τ−
0

1{τ−
0 <∞}
]
+ ψ ′′(0+)

2ψ ′(0+)2
Ex

[
Xτ−

0
1{τ−

0 <∞}
]

+ 	β	′
βψ ′(0+)

2β
Ex

[
X2

τ−
0

e
	β X

τ−
0 1{τ−

0 <∞}
]

+ 	β	′′
βψ ′(0+)

2β	′
β

Ex

[
Xτ−

0
e
	β X

τ−
0 1{τ−

0 <∞}
]

. (63)

By taking derivatives of Eq. (8), we obtain

Ex

[
Xτ−

0
e
	β X

τ−
0 1{τ−

0 <∞}
]

= Z ′(x,	β) − 	β/	′
β − β

	2
β

W (x), (64)

and

Ex

[
X2

τ−
0

e
	β X

τ−
0 1{τ−

0 <∞}
]

= Z ′′(x,	β) +
	′′

β	2
β/
(
	′

β

)3 + 2	β/	′
β − 2β

	3
β

W (x). (65)

Substituting Eqs. (28), (29), (64), and (65) into Eq. (63), it follows that

Ex

⎡
⎢⎣EX

τ−
0

⎡
⎢⎣

τ+
0∫

0

Xsds1{κβ<∞}
⎤
⎥⎦1{τ−

0 <∞}
⎤
⎥⎦=
(

1

β	β

− 	′
β

	2
β

+ 	′′
β

2	′
β	β

+ ψ ′′′(0+)

6ψ ′(0+)2
− ψ ′′(0+)2

4ψ ′(0+)3

)
ψ ′(0+)W (x)

+ 	βψ ′(0+)

2β

(
	′

β Z ′′(x,	β) + 	′′
β

	′
β

Z ′(x,	β)

)
+R(x). (66)

Substituting Eq. (66) into Eq. (60) yields

Ex

[
Aτβ 1{κβ<∞}

]
=
(

ψ ′′(0+)2

4ψ ′(0+)3
− 1

β	β

+ 	′
β

	2
β

− 	′′
β

2	′
β	β

− ψ ′′′(0+)

6ψ ′(0+)2

)
ψ ′(0+)	β Z

(
x,	β

)
β

− 	βψ ′(0+)

2β

(
	′

β Z ′′(x,	β) + 	′′
β

	′
β

Z ′(x,	β)

)
−R(x). (67)

The proof of Eq. (23) is then completed by substituting Eqs. (67) and (21) into Eq. (59). Finally, we note that a straightforward calculation 
leads to

	′
β Z ′′ (x,	β

)+ 	′′
β

	′
β

Z ′ (x,	β

)=
(

	′
β x2 + 	′′

β

	′
β

x

)
Z(x,	β) − 2xe	β x

x∫
0

e−	β y W (y)dy

+ e	β x

x∫
e−	β y

(
β	′

β

(
2xy − y2

)
+
(

2 + β	′′
β

	′
β

)
y

)
W (y)dy. �
0
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