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Continuous data such as losses are often summarized by means of histograms or displayed in tabular 
format: the range of data is partitioned into consecutive interval classes and the number of observations 
falling within each class is provided to the analyst. This paper investigates how the additional report 
of sample moments within each class can be integrated to obtain a smooth nonparametric estimate of 
the density and credible intervals for the loss quantiles. Extensive simulations confirm the merits of 
the proposed methodology with correctly estimated densities based on tabulated sample moments of 
increasing orders and effective coverages of credible intervals close to their nominal values, even when 
the number of classes is small. An application on motor insurance data further illustrates the usefulness 
of the method with an estimation of the loss density and of Value-at-Risk.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction and motivation

In risk analysis, monetary losses are generally modelled as non-negative random variables entering aggregate definition of the under-
lying risks, see e.g. Bolancé et al. (2003) and Klugman et al. (2019) for an in-depth treatment in an actuarial framework. Analysts often 
need easy-to-compute approximations of quantities relating to the risks they consider. Several methods based on two to four moments of 
the underlying loss distribution have been proposed in the literature: it includes the classical Central Limit theorem, the Normal Power 
approximation (Pentikäinen, 1987) based on Edgeworth expansion, the shifted-Gamma approximation (Hardy, 2006), the maximum en-
tropy principle (Brockett et al., 1995), mixed Erlang distributions (Cossette et al., 2016) or generalized Gamma convolutions (Laverny et al., 
2021; Furman et al., 2021) with the references therein, to cite a few. Numerous moment bounds have also been developed in probability 
and actuarial science, originating in the analytic problem of moments. Actuaries and quantitative risk managers indeed sometimes act in 
a conservative way by basing their decisions on the least attractive risk that is consistent with the incomplete available information (here, 
the range and the first moments). Since Markov fundamental inequality, a number of improvements have been obtained under additional 
assumptions on the underlying distribution function. Bernard et al. (2018) recently provided a new derivation of moment bounds on dis-
tribution functions and Value-at-Risk (VaR) measures, revisiting previous contributions to the literature. Besides distribution functions and 
VaR measures, bounds have also been derived on stop-loss premiums and Tail-VaR, for instance. Hürlimann (2008) provides a useful review 
of the available results. Notice that these bounds are also related to local moment matching methods, see Courtois and Denuit (2007).

Density estimation from grouped data has been studied in multiple publications with applications in e.g. actuarial science, biology, 
demography, economy, environmental science or epidemiology. Most of them use the bin limits and the associated data frequencies to 
produce an estimate of the underlying density. It is relatively straightforward using likelihood-based techniques when the latter is assumed 
to belong to a known parametric class, see e.g. Hasselblad et al. (1980) with the Lognormal distribution and the expectation-maximization 
(EM) algorithm (Dempster et al., 1977) in an epidemiological context. Local likelihood methods based on kernels with coefficients of the 
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polynomials selected using the EM-algorithm have been studied by Braun et al. (2005) to estimate a density from interval-censored or ag-
gregated data. When the density is just assumed to be smooth without any additional restrictive parametric assumption, the combination 
of P-splines (Eilers and Marx, 1996) and of the composite link model (Thompson and Baker, 1981) was successfully used in a frequentist 
(Eilers, 2007; Rizzi et al., 2015) or in a Bayesian framework (Lambert and Eilers, 2009; Jaspers et al., 2016). Papkov and Scott (2010)
directly smooth a histogram using splines with penalized least-squares and account for unconditional bin moments.

In the present paper, we propose an efficient nonparametric estimation procedure for the loss density based on histograms or grouped 
data, with additional information about class-specific sample moments. Specifically, the analyst has access to a set of observed losses, 
grouped into consecutive classes. Graphically, this corresponds to an histogram. In addition to these grouped data, the average value 
of the observations in each class is provided, as well as the corresponding local variance, skewness and kurtosis. This format is often 
encountered in practice. For instance, in banking and insurance contexts, operational risk loss data in the ORX annual report (published 
by the operational risk management association) are tranched and the total number of loss events as well as the total gross loss falling 
within loss size boundaries are provided. Reinsurers also often display the information about insurance losses in this way. Confidentiality 
issues may sometimes justify this grouping procedure. We show how to obtain a smooth, nonparametric density estimate based on this 
information, while taking into account the observed moments and their joint sampling distribution. The simulation study reported in 
Section 4 suggests that the additional information contained in class-specific moments greatly improves the accuracy of the estimation. 
Of course, the proposed method can also be applied to individual data. It suffices to group them in an arbitrary number of classes and to 
compute the corresponding sample moments.

The remainder of this paper is organized as follows. Section 2 formally describes the problem under investigation. In Section 3, we 
explain how to get a smooth estimate of the density based on tabulated summary data including frequencies and up to four class-specific 
sample moments. As intermediate statistical goals, we also aim to quantify uncertainty for the density estimate and derived quantities 
and to evaluate the contribution of the different descriptive measures on the density estimate (to issue recommendations for future 
reporting). Section 4 is devoted to a simulation study assessing the performances of the proposed approach. In Section 5, we analyze a 
set of insurance losses and we illustrate the added value of our new method. The final Section 6 discusses the results and proposes some
research perspectives.

2. Problem under investigation

Consider a univariate random variable X with values in a bounded interval X , distribution function (c.d.f.) F and continuous density 
function f . Our starting point is a set of n independent observations x1, x2, . . . , xn of X summarized in a tabular form. More specifically, 
X = [a, b] has been partitioned into consecutive class intervals C j = (a j−1, a j], j = 1, . . . , J , where the cut points a0, a1, . . . , a J satisfy

−∞ < a = a0 < min xi < a1 < . . . < a J−1 < max xi < a J = b < +∞.

In addition to the number n j of observations belonging to C j , we also have summary statistics about observations in each class. Specifically, 
we assume that we know the class-specific means

x j = 1

n j

∑
xi∈C j

xi, j = 1, . . . , J ,

as well as sample centered moments mkj , k = 2, 3, 4, defined as

mkj = 1

n j

∑
xi∈C j

(
xi − x j

)k
, j = 1, . . . , J .

Here, we consider the cases where variances, s2
j = m2 j , skewness coefficients, g1 j = m3 j/m3/2

2 j , and kurtosis, g2 j = m4 j/m4/2
2 j − 3, are 

available in addition to the means x j .
Nonparametric computations are often carried out using the empirical distribution function, assuming a uniform distribution of the 

class relative frequencies n j/n over C j , see e.g. Klugman et al. (2019, Chap. 14). This allows the risk analyst, for a given real function g
integrable on the domain of X , to estimate E[g(X)] by

J∑
j=1

n j

n(a j − a j−1)

a j∫
a j−1

g(t)dt.

This standard approach does not use any information about the structure of the observed data inside each class. Arbitrarily assuming a 
uniform distribution of the losses in each risk class C j is contradicted by data for instance if x j significantly differs from (a j−1 + a j)/2. 
The approach proposed in the present paper integrates the information about class-specific sample moments of order 1 to k (k ≤ 4) in the 
smooth density estimate under the assumption that X has finite moments of order 1 to 2k in any subset of the partition of X defined by 
C j , j = 1, . . . , J . Using that estimate, expectations of functions of the real random variable X can be computed, as well as risk measures 
defined from the quantile function (Embrechts and Hofert, 2013), Q (p) = inf{x ∈ R : F (x) ≥ p} for 0 ≤ p ≤ 1, such as the Value-at-Risk 
(Jorion, 2006) at probability level p, VaRp(X) = Q (p).

3. Methodology

3.1. Density estimation for given class frequencies using the EM algorithm

The starting point of the proposed approach, summarized in this subsection, is based on Lambert and Eilers (2009), but with the EM 
algorithm substituted to the modified Langevin-Hastings algorithm for parameter estimation. Estimation could also be performed using the 
178
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Fig. 1. Density f (continuous, red curve), latent distribution π (thin rectangles) and observed histogram (gray blocks). (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

strategy described in Eilers (2007) based on the composite link model (Thompson and Baker, 1981), but the complete likelihood coupled 
with the EM algorithm turns out to be ideally suited to integrate information based on tabulated sample moments, see Section 3.2.

Assume that the support X of the density f is partitioned into I narrow bins Ii = (bi−1, bi] with midpoint ui (i = 1, . . . , I) and 
with equal width � taken small enough to give an accurate description of f for computing quantiles or other indices accurately. The 
relationship between class C j and the narrow bins Ii is quantified by means of the J × I matrix C = (c ji) where c ji is the proportion of 
Ii included in C j . In particular, it implies that c ji = 1 if Ii ⊂ C j , while c ji = 0 if Ii ∩ C j = ∅. Let πi = ∫ bi

bi−1
f (t)dt = f (ui)� +O(�2) and 

π = (πi)
I
i=1 denote the probability masses associated to the partition of the support. Fig. 1 illustrates the construction (for a value of �

much larger than what we use in practice). Consider a cubic B-spline basis {bk(·)}K
k=1 associated to a large number of equidistant knots on 

X . Given the multinomial sampling distribution of the frequencies, we model the probabilities in π using multinomial logistic regression 
(also called polytomous logistic regression) (see e.g. Hosmer and Lemeshow, 2000),

πi = πi(θ) = exp(ηi)

exp(η1) + . . . + exp(ηI )
; ηi = ηi(θ) =

K∑
k=1

bk(ui)θk = [Bθ ]i , (1)

with each column of the matrix [B]ik = bk(ui) containing one of the K B-splines in the basis evaluated at the small bin midpoints. In this 
setting, one does not observe empirical counterparts to π itself, but only sums over the J < I classes C j , j = 1, . . . , J . The probability 
mass associated to C j is γ j =∑I

i=1 c jiπi , or in matrix form, γ = Cπ .
We propose to use the EM algorithm to estimate the probabilities π from the latent (unobserved) small bin frequencies k = (k1, . . . , kI )

for given observed class frequencies D0 = {n} where n = (n1, . . . , n J ). Given that X1, . . . , Xn are independent and identically distributed, 
the small bin frequencies k1, . . . , kI can be handled as the realization of a Multinomial random vector with the sample size n as exponent 
and probability vector π . While the observed likelihood is �(θ |D0) =∑ J

j=1 n j logγ j(θ), the complete log-likelihood is given by �c(θ |Dc
0) =∑I

i=1 ki logπi(θ) where Dc
0 = {k}. A discrete roughness penalty is put on rth differences of consecutive B-splines coefficients to force 

smoothness on the density estimate (Eilers and Marx, 1996). Then, the penalized log-likelihood is

�p(θ |D0, λ) = �(θ |D0) − λ

2
‖Dθ‖2 ,

when using the observed class frequencies and

�c
p(θ |Dc

0, λ) = �c(θ |Dc
0) − λ

2
‖Dθ‖2 ,

when using the complete frequency data, where λ > 0 is a penalty parameter tuning the smoothness of the density estimate and D the 
rth order differencing matrix of size (K − r) × K . For instance, with 2nd order differences (r = 2), we have

D =

⎛
⎜⎜⎜⎜⎝

1 −2 1 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 1 −2 1

⎞
⎟⎟⎟⎟⎠ .

We propose to use Algorithm 1 to perform estimation in the described context.

Algorithm 1 (Density estimation for given class frequencies). The following EM algorithm alternates the update of the estimates for the latent 
frequencies k, θ and, possibly, λ using the following steps till convergence:

1. E-step: ki ← E (ki |θ,D0) =∑ J
j=1 n jc jiπi(θ)/γ j(θ).

2. M-step: θ = arg maxθ �c
p(θ |Dc

0, λ). This can be done using penalized iteratively weighted least squares (P-IWLS) or a Newton-Raphson 
(N-R) algorithm. Let us detail the last algorithm. Based on the following explicit forms for the gradient ∇θ �c

p and the Hessian matrix 
Hc

p = ∇2
θ �c

p ,

∇θ �
c
p(θ |Dc

0, λ) = B
(k − nπ) − λPθ ; − Hc
p = −∇2

θ �c
p(θ |Dc

0, λ) = B
WB + λP , (2)
179
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where P = D
D is the K × K penalty matrix and (W)ii′ = n(πiδii′ − πiπi′ ), the N-R algorithm repeats, till convergence, the following 
substitution: θ ←− θ + (−Hc

p + ε IK
)−1 ∇θ �

c
p . The addition of a small multiple of the identity matrix to the Hessian before inversion 

in the N-R step is a ridge penalty that conveniently handles the identification problem in (1), as πi(θ) = πi(θ + c) for any constant c.
3. Penalty update: λ ← (edf − r)/‖Dθ‖2 where the effective number of spline parameters is given by the trace of a matrix, edf(λ) =

Tr
(
(−Hc

p + ε IK )−1(−Hc
p − λP)

)
.

The last step is optional as one might prefer to perform the estimation procedure for a given value of the penalty parameter and rely 
on an external ad-hoc strategy to select λ. At convergence, one obtains the penalized MLE θ̂λ (given the selected value for the penalty 
parameter λ). �
3.2. Moment-based extensions

3.2.1. Density estimation for given class-specific sample means and frequencies
Let us now further assume that, together with the frequencies n j , the sample means x j within C j ( j = 1, . . . , J ) are also reported. Then, 

the likelihood based on the observed data, D1 =D0 ∪ {x̄ j : j = 1, . . . , J }, becomes

L(θ |D1) = Pr
(
N1 = n1, . . . , N J = n J

) J∏
j=1

f X j
(x j|n j) ∝

J∏
j=1

(
γ

n j

j f X j
(x j|n j)

)
,

where f X j
(·|n j) is the conditional density of X j given the class frequency N j = n j . The central limit theorem provides the asymptotic 

distribution of the sampling distribution of X̄ j that will be used here to approximate f X j
(·|n j) for given finite class frequency n j . Formally, 

denote the class-specific population moments as

μ1 j = 1

γ j

a j∫
a j−1

xf (x) dx and σ 2
j = 1

γ j

a j∫
a j−1

(x − μ1 j)
2 f (x)dx.

Then,

f X j
(x j|n j) ≈

√
n j

2πσ 2
j

exp

(
− n j

2σ 2
j

(x j − μ1 j)
2

)
.

Given the preceding spline approximation to the (log-)density using polytomous logistic regression for the probabilities to be in the small 
bins partitioning the support, see (1), one has

μ1 j(θ) = E[X |X ∈ C j] =
I∑

i=1

ui
c jiπi(θ)

γ j(θ)
+O(�2),

σ 2
j (θ) = Var[X |X ∈ C j] =

I∑
i=1

(
ui − μ1 j(θ)

)2 c jiπi(θ)

γ j(θ)
+O(�2). (3)

Then, for given roughness penalty parameter λ, the penalized log-likelihood based on D1 becomes

�p(θ |D1, λ) = �p(θ |D0, λ) − 1

2

J∑
j=1

(
logσ 2

j (θ) + n j

σ 2
j (θ)

(
x j − μ1 j(θ)

)2)
,

while its counterpart based on latent small bins frequencies, Dc
1 =Dc

0 ∪ {x̄ j : j = 1, . . . , J }, is

�c
p(θ |Dc

1, λ) = �c
p(θ |Dc

0, λ) − 1

2

J∑
j=1

(
logσ 2

j (θ) + n j

σ 2
j (θ)

(
x j − μ1 j(θ)

)2)
. (4)

It leads to Algorithm 2 for an estimation of the density using the EM algorithm.

Algorithm 2 (Density estimation given class-specific sample means and frequencies). The following EM algorithm alternates the update of the 
estimates for the latent frequencies k, θ and, possibly, λ. Denote by B̃ the I × K matrix such that (B̃)ik = b̃ik = bk(ui) −∑I

t=1 bk(ut)πt .
Repeat the following steps till convergence:

1. E-step: ki ← E (ki |θ,D0) =∑ J
j=1 n jc jiπi(θ)/γ j(θ).

2. M-step: compute θ = arg maxθ �c
p(θ |Dc

1, λ). This can be done using a Newton-Raphson (N-R) algorithm with the iterative substitution, 
θ ←− θ +(−Hc

p + ε IK
)−1 ∇θ �

c
p , till convergence. Explicit forms for the gradient and the Hessian matrix are available after conditioning 

on the value σ̃ 2 of σ 2(θ) in (3) at the start of the iteration:
j j
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∇θ �
c
p(θ |Dc

1, λ) = ∇θ �
c
p(θ |Dc

0, λ) +
J∑

j=1

n j

σ̃ 2
j

(
x j − μ1 j

)∂μ1 j

∂θ
;

− Hc
p = −∇2

θ �c
p(θ |Dc

1, λ) ≈ −∇2
θ �c

p(θ |Dc
0, λ) +

J∑
j=1

n j

σ̃ 2
j

∂μ1 j

∂θ

∂μ1 j

∂θ
 ,

(5)

where ∂μ1 j/∂θk = 1
γ j

∑I
i=1 c jiπi(ui − μ1 j)bik , with the approximation to Hc

p coming from the neglect of zero expectation terms.

3. Penalty update: λ ← (edf − r)/‖Dθ‖2 where the effective number of spline parameters is given by the trace of a matrix, edf(λ) =
Tr
(
(−Hc

p + ε IK )−1(−Hc
p − λP)

)
.

At convergence, one obtains the penalized MLE θ̂λ (given the selected value for λ). �
3.2.2. Density estimation given class-specific sample central moments and frequencies

Assume now that, together with the frequencies, the sample mean X j , variance S2
j , skewness G1 j and kurtosis G2 j within C j are 

reported. If Mrj denotes the rth sample central moment in C j , we have

X j = M1 j ; S2
j = M2 j ; G1 j = M3 j/M3/2

2 j ; G2 j = M4 j/M4/2
2 j − 3.

Denote by M j = (M1 j, M2 j, M3 j, M4 j) the random vector of sample central moments in C j and by m j its observed counterpart. Assume 
that moments of order p (p ≤ 8) for X exist when X is restricted to take values in any of the classes C j ( j = 1, . . . , J ). The central limit 

theorem provides the asymptotic distribution of M j , M j
d−→N4

(
μμμ j,
 j

)
, where μμμ j = (μ1 j, . . . , μ4 j) with μ1 j = μ j and

μr j = μr j(θ) = E
[
(X − μ1 j(θ))r |X ∈ C j

]
, r = 2,3, . . .

= 1

γ j(θ)

J∑
j=1

c jiπi(θ)
(
ui − μ1 j(θ)

)r +O(�2).

It is used here as an approximation to the sampling distribution of M j for finite n j . Using the Generalized Method of Moments (GMM) 
(Hansen, 1982), one can show that


 j = 1

n j

⎛
⎜⎜⎝

μ2 j μ3 j μ4 j μ5 j

μ3 j μ4 j − μ2
2 j μ5 j − μ2 jμ3 j μ6 j − μ2 jμ4 j

μ4 j μ5 j − μ2 jμ3 j μ6 j − μ2
3 j μ7 j − μ3 jμ4 j

μ5 j μ6 j − μ2 jμ4 j μ7 j − μ3 jμ4 j μ8 j − μ2
4 j

⎞
⎟⎟⎠ , (6)

see Arellano-Valle et al. (2021) for a similar argumentation. Based on the observed data D = D0 ∪ {m j : j = 1, . . . , J } and for a given 
roughness penalty parameter λ, the penalized log-likelihood becomes

�p(θ |D, λ) = �p(θ |D0, λ) − 1

2

J∑
j=1

{
log |
 j| + (m j −μμμ j)



−1
j (m j −μμμ j)

}
, (7)

comparable to (4) when only the tabulated sample means were available. When, in addition, the latent small bins frequencies are given, 
Dc =Dc

0 ∪ {m j : j = 1, . . . , J }, inference is based on the penalized complete log-likelihood,

�c
p(θ |Dc, λ) = �c

p(θ |Dc
0, λ) − 1

2

J∑
j=1

{
log |
 j| + (m j −μμμ j)



−1
j (m j −μμμ j)

}
. (8)

The maximization of the penalized log-likelihood (8) and the selection of λ can be made using Algorithm 3. A Laplace approximation to 
the joint posterior of θ for the selected λ value can be obtained using the Hessian calculated from the observed penalized log-likelihood 
(7) evaluated at convergence, see Section 3.3 and the precision matrix obtained by combining (11) and (12).

Algorithm 3 (Density estimation given class-specific sample central moments and frequencies). The following EM algorithm alternates the update 
of the estimates for the latent frequencies k, θ and, possibly, λ using the following steps till convergence:

1. E-step: ki ← E (ki |θ,D0) =∑ J
j=1 n jc jiπi(θ)/γ j(θ).

2. M-step: compute θ = arg maxθ �c
p(θ |Dc, λ). This can be done using a Newton-Raphson (N-R) algorithm with the iterative substitution, 

θ ←− θ +(−Hc
p + ε IK

)−1 ∇θ �
c
p , till convergence. Explicit forms for the gradient and the Hessian matrix are available after conditioning 

on the value 
̃ j of 
 j(θ) in (8) at the start of the iteration:
181
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(∇θ �
c
p

)
k = (∇θ �

c
p(θ |Dc

0, λ)
)

k +
J∑

j=1

(m j −μμμ j)


̃−1

j

∂μμμ j

∂θk
;

−(Hc
p

)
ks ≈ −(∇2

θ �c
p(θ |Dc

0, λ)
)

ks +
J∑

j=1

∂μμμ

j

∂θs

̃−1

j

∂μμμ j

∂θk

(9)

with

∂μr j

∂θk
= 1

γ j

I∑
i=1

c jiπibik
{
(ui − μ1 j)

r − μr j
}− rμr−1, j

∂μ1 j

∂θk

= 1

γ j

I∑
i=1

c jiπibik
{
(ui − μ1 j)

r − μr j − rμr−1, j(ui − μ1 j)
}

(10)

for 1 ≤ k, s ≤ K and 2 ≤ r ≤ 4.
3. Penalty update: λ ← (edf − r)/‖Dθ‖2 where the effective number of spline parameters is given by the trace of a matrix, edf(λ) =

Tr
(
(−Hc

p + ε IK )−1(−Hc
p − λP)

)
.

At convergence, one obtains the penalized MLE θ̂λ (given the selected value for λ). �
3.3. Quantile estimation

Consider the following shorthand notation for the conditional posterior mode of the vector of spline parameters underlying the density 
estimate, θ̂ = θ̂λ − max{θ̂k}K

k=1, with a subtraction of the largest estimated component to handle the identification issue following from 
π(θ + c) = π(θ) for any real number c. Denote by k̂ the component for which (θ̂)k̂ = 0 and by θ−k̂ the vector of spline parameters where 
the k̂th component of θ is omitted. Quantile estimates can be derived using the fitted density estimate,

f (x|θ̂) = exp{η(x|θ̂)}/
∫
X

exp{η(t|θ̂)}dt ,

where η(x|θ) =∑K
k=1 bk(x)θk and X = (a0, a J ) denotes the support of the density. Indeed, as the associated estimate for the c.d.f., F̂ (x) =

F (x|θ̂) = ∫ x
a0

f (t|θ̂) dt , is monotone, it can be inverted to provide an estimate of the quantile function,

Q̂ (p) = Q (p|θ̂) = inf{x ∈ R : F (x|θ̂) ≥ p}.
Practically, starting for the fitted probability, π̂i = Pr(X ∈ Ii |θ̂), to have an observation in the small bin Ii = (bi−1, bi] (i = 1, . . . , I), see 
Section 3.1, and with F̂ (b0) = 0, F̂ (bi) = π̂1 + . . . + π̂i , a first guess for Q̂ (p) is given by

x0 = max
0≤i≤I

{
bi : F̂ (bi) ≤ p

}
.

This first approximation can be improved in an iterative way with, at iteration t ,

xt ←− xt−1 + (p − F (xt−1|θ̂)
)
/ f (xt−1|θ̂) ,

yielding at convergence Q (p|θ̂) = x∞ . The uncertainty in that estimation directly follows from the uncertainty in the choice of θ . The 
latter is quantified by the conditional posterior distribution of θ−k̂ with Laplace approximation 

(
θ−k̂|D, λ

) ·∼N
(
θ̂−k̂, (J−k̂,−k̂)

−1
)

where

Jks = −(∇2
θ �p(θ |D0, λ)

)
ks +

J∑
j=1

∂μμμ

j

∂θs

̃−1

j

∂μμμ j

∂θk
, (11)

with the partial derivatives of the theoretical central moments μμμ j in the jth class given in (10). Thanks to the Gaussian Markov field 
(GMRF) prior (Rue and Held, 2005) induced by the penalty on θ , p(θ |λ) ∝ exp{− λ

2 ‖Dθ‖2}, the preceding Laplace approximation to the 
conditional posterior is usually excellent, see Rue et al. (2009) for the same argument in latent Gaussian models. The second derivatives 
of the log-likelihood based on the observed class frequencies D0 in the first term of (11) have an explicit form given by

−(∇2
θ �p(θ |D0, λ)

)
ks = n

I∑
i=1

bikπi b̃is +
J∑

j=1

n j

γ 2
j

I∑
�=1

c j�π�b̃�s

I∑
i=1

c jiπi b̃ik −
J∑

j=1

n j

γ j

I∑
i=1

c jiπi b̃isb̃ik

= (B
WB)ks −
J∑

j=1

n j

γ j

I∑
i=1

c jiπibik

(
bis − 1

γ j

I∑
�=1

c j�π�b�s

)
. (12)
182



P. Lambert Insurance: Mathematics and Economics 108 (2023) 177–189
Fig. 2. Simulation study (n = 1000, J = 3) – Density estimates from tabulated summary statistics D1 (dotted), D2 (dot-dashed) and D4 (dashed) averaged over the S = 500
replicates, with the ‘true’ underlying density (solid curve).

The first term in the last expression, where (W)ii′ = n(πiδii′ − πiπi′ ), corresponds to the information available on θ based on data fre-
quencies in the absence of class tabulation. The information reduction due to tabulation is quantified by the second term. Based on the 
following first-order expansion,

Q (p|θ) ≈ Q (p|θ̂) + ∂ Q (p|θ̂)

∂θ

−k̂

(θ − θ̂)−k̂ ,

the conditional posterior distribution of Q (p|θ) can be approximated by(
Q (p|θ)|D, λ

) ·∼ N
(

Q (p|θ̂), s2
Q (p)

)
, (13)

with

∂ Q (p|θ̂)

∂θk
= 1

f
(

Q (p|θ̂)|θ̂)
⎧⎪⎨
⎪⎩

Q (p|θ̂)∫
−∞

bk(x) f (x|θ̂)dx − p

∫
R

bk(x) f (x|θ̂)dx

⎫⎪⎬
⎪⎭ ,

s2
Q (p) = ∂ Q (p|θ̂)

∂θ

−k̂

(J−k̂,−k̂)
−1 ∂ Q (p|θ̂)

∂θ−k̂

.

Therefore, an approximate 100(1 − α)% credible interval for Q (p) is given by

Q (p|θ̂) ± �−1(1 − α/2) sQ (p) , (14)

with �−1(·) denoting the quantile function of the standard Normal distribution.

4. Simulation study

In this section, we evaluate the performances of the estimation method proposed in Section 3 by means of extensive simulations. 
Independent and identically distributed data were generated from a mixture density,

f (x) = w1 f1(x) + w2 f2(5.6 − x)

where f1(·) corresponds to a Normal density with mean 1.0 and variance 9.0−1, f2(·) to a Gamma density with mean 11/6 and variance 
11/62, weighted respectively by w1 = .20 and w2 = .80. It corresponds to the solid red curve in Figs. 2 and 3 that could be viewed 
as the underlying distribution of log transformed positive data. Datasets of size n = 250, 1 000 or 3 000 were generated S = 500 times 
and grouped into either J = 3 or J = 5 partitioning classes {C j : j = 1, . . . , J } with interval extremities given by {−1.0, 1.0, 3.5, 6.0}
and {−1.0, 1.0, 2.2, 3.5, 4.8, 6.0}, respectively. Tabulated frequencies (n j)

J
J=1 and the associated local central moments (mrj)

J
j=1 of order 

r = 1 up to 4 were computed and used with the methodology of Section 3 to produce an estimate f̂ (·|Dr) of the underlying density on 
(−1.0, 6.0), with Dr =⋃ J

j=1{n j, m1 j, . . . , mrj} denoting the available data. Selected quantile estimates Q̂ (p|Dr) were computed using that 
density and compared to the ‘true’ quantile values associated to f (·). Biases, standard deviations (SD), root mean squared errors (RMSE) 
and effective coverages of 95% and 90% credible intervals are given in Tables 1, 2 and 3 for different samples sizes and number of classes. 
As expected, biases for the point estimator of a given quantile tend to decrease with the sample size and the number of classes for which 
tabulated summary statistics are observed. They are already very small when n = 250 with r = 4 moments reported in only J = 3 classes, 
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Fig. 3. Simulation study – Connected pointwise intervals containing 95% of the estimated densities over the S = 500 datasets and obtained using tabulated summary statistics 
D4 over J = 3 classes. Left panel: n = 250; Right panel: n = 1 000.

Table 1
Simulation study (n = 250) – Selected p-quantile estimates using tabulated summary statistics in Dr with r = 1, 2, 4: bias, standard deviation, root mean squared error 
(RMSE) and effective coverages of 95% and 90% credible intervals (based on S = 500 replicates).

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Q (p) 1.000 1.793 3.122 3.430 3.643 3.822 3.989 4.163 4.375

J = 3 (classes)
Q̂ (p|D1) 1.084 2.071 3.081 3.421 3.630 3.801 3.965 4.144 4.383
Bias 0.084 0.278 -0.041 -0.009 -0.014 -0.021 -0.024 -0.019 0.007
SD 0.121 0.401 0.154 0.074 0.054 0.045 0.040 0.038 0.048
RMSE 0.147 0.488 0.160 0.075 0.056 0.050 0.046 0.043 0.049
95% CI 0.950 0.694 0.930 0.964 0.958 0.964 0.968 0.934 0.926
90% CI 0.904 0.622 0.880 0.922 0.924 0.926 0.920 0.870 0.866

Q̂ (p|D2) 1.016 2.003 3.166 3.466 3.663 3.830 3.988 4.155 4.363
Bias 0.016 0.210 0.045 0.036 0.020 0.008 -0.001 -0.009 -0.013
SD 0.082 0.493 0.124 0.064 0.050 0.044 0.040 0.039 0.040
RMSE 0.084 0.536 0.132 0.073 0.054 0.044 0.040 0.040 0.042
95% CI 0.950 0.656 0.860 0.886 0.908 0.932 0.934 0.896 0.840
90% CI 0.906 0.586 0.778 0.830 0.842 0.878 0.876 0.848 0.762

Q̂ (p|D4) 1.007 2.004 3.121 3.435 3.646 3.823 3.988 4.160 4.369
Bias 0.007 0.211 -0.001 0.005 0.003 0.001 -0.001 -0.004 -0.006
SD 0.081 0.480 0.121 0.068 0.053 0.046 0.041 0.040 0.041
RMSE 0.082 0.525 0.121 0.068 0.054 0.046 0.041 0.040 0.041
95% CI 0.948 0.740 0.946 0.954 0.950 0.948 0.962 0.950 0.948
90% CI 0.910 0.694 0.918 0.912 0.908 0.912 0.924 0.904 0.880

J = 5 (classes)
Q̂ (p|D1) 0.986 1.920 3.104 3.429 3.648 3.827 3.992 4.159 4.364
Bias -0.014 0.127 -0.018 -0.001 0.005 0.006 0.002 -0.004 -0.011
SD 0.081 0.532 0.129 0.074 0.057 0.048 0.042 0.041 0.044
RMSE 0.082 0.547 0.131 0.074 0.058 0.048 0.043 0.042 0.046
95% CI 0.910 0.650 0.938 0.930 0.936 0.932 0.912 0.882 0.898
90% CI 0.866 0.598 0.900 0.894 0.892 0.892 0.864 0.818 0.838

Q̂ (p|D2) 0.998 1.914 3.100 3.423 3.640 3.820 3.988 4.162 4.373
Bias -0.002 0.121 -0.022 -0.007 -0.003 -0.002 -0.001 -0.002 -0.002
SD 0.081 0.532 0.132 0.073 0.056 0.048 0.043 0.043 0.047
RMSE 0.081 0.545 0.134 0.073 0.056 0.048 0.043 0.043 0.047
95% CI 0.920 0.608 0.948 0.934 0.934 0.924 0.910 0.842 0.732
90% CI 0.878 0.548 0.904 0.880 0.884 0.878 0.860 0.792 0.654

Q̂ (p|D4) 1.012 2.001 3.120 3.435 3.646 3.822 3.987 4.157 4.368
Bias 0.012 0.208 -0.002 0.005 0.002 0.000 -0.003 -0.006 -0.008
SD 0.091 0.480 0.120 0.068 0.054 0.046 0.041 0.039 0.040
RMSE 0.092 0.523 0.120 0.068 0.054 0.046 0.041 0.040 0.041
95% CI 0.952 0.728 0.946 0.952 0.950 0.948 0.960 0.952 0.940
90% CI 0.914 0.680 0.928 0.906 0.910 0.906 0.922 0.910 0.874

see Fig. 3 for a graphical illustration at the density level when n = 250 and n = 1000. An exception concerns the 20% quantile (= 1.793) 
that is not so well estimated whatever the simulation setting: it corresponds to the region surrounding the local minimum of the mixture 
density between the two modes. Increasing the number of reported central moments tends to improve the estimation of density and 
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Table 2
Simulation study (n = 1000) – Selected p-quantile estimates using tabulated summary statistics in Dr with r = 1, 2, 4: bias, standard deviation, root mean squared error 
(RMSE) and effective coverages of 95% and 90% credible intervals (based on S = 500 replicates).

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
Q (p) 1.000 1.793 3.122 3.430 3.643 3.822 3.989 4.163 4.375 4.530

J = 3 (classes)
Q̂ (p|D1) 1.026 1.940 3.121 3.436 3.634 3.800 3.960 4.138 4.381 4.586
Bias 0.027 0.147 -0.001 0.005 -0.009 -0.022 -0.029 -0.025 0.006 0.056
SD 0.047 0.257 0.069 0.037 0.028 0.024 0.021 0.020 0.025 0.033
RMSE 0.054 0.297 0.069 0.037 0.030 0.032 0.036 0.032 0.025 0.065
95% CI 0.944 0.836 0.954 0.930 0.954 0.972 0.980 0.948 0.960 0.998
90% CI 0.878 0.786 0.910 0.894 0.916 0.920 0.920 0.892 0.918 0.978

Q̂ (p|D2) 1.005 1.867 3.159 3.452 3.653 3.826 3.989 4.159 4.369 4.527
Bias 0.006 0.074 0.037 0.022 0.010 0.004 0.000 -0.005 -0.007 -0.003
SD 0.040 0.302 0.058 0.035 0.028 0.025 0.023 0.021 0.021 0.023
RMSE 0.040 0.311 0.068 0.042 0.030 0.025 0.023 0.022 0.022 0.023
95% CI 0.960 0.752 0.834 0.880 0.918 0.916 0.910 0.886 0.874 0.816
90% CI 0.902 0.698 0.768 0.812 0.844 0.866 0.844 0.820 0.788 0.728

Q̂ (p|D4) 0.993 1.904 3.125 3.429 3.642 3.822 3.991 4.165 4.376 4.530
Bias -0.006 0.111 0.003 -0.001 -0.001 0.000 0.002 0.002 0.001 0.001
SD 0.037 0.331 0.058 0.037 0.029 0.025 0.023 0.021 0.021 0.023
RMSE 0.037 0.349 0.058 0.037 0.029 0.025 0.023 0.022 0.021 0.023
95% CI 0.950 0.816 0.938 0.942 0.940 0.946 0.948 0.956 0.952 0.958
90% CI 0.904 0.776 0.892 0.898 0.890 0.904 0.898 0.896 0.904 0.908

J = 5 (classes)
Q̂ (p|D1) 0.989 1.864 3.108 3.427 3.648 3.828 3.992 4.161 4.367 4.522
Bias -0.010 0.071 -0.014 -0.003 0.005 0.006 0.003 -0.003 -0.009 -0.008
SD 0.034 0.370 0.061 0.039 0.032 0.026 0.023 0.022 0.023 0.025
RMSE 0.036 0.377 0.063 0.040 0.032 0.027 0.023 0.022 0.024 0.027
95% CI 0.950 0.734 0.920 0.928 0.936 0.930 0.916 0.858 0.934 0.966
90% CI 0.900 0.686 0.848 0.894 0.884 0.880 0.830 0.786 0.882 0.928

Q̂ (p|D2) 0.992 1.836 3.106 3.426 3.642 3.821 3.989 4.164 4.378 4.536
Bias -0.008 0.043 -0.016 -0.004 -0.001 -0.001 -0.001 0.001 0.003 0.006
SD 0.036 0.357 0.064 0.038 0.030 0.026 0.024 0.023 0.024 0.026
RMSE 0.037 0.360 0.066 0.038 0.030 0.026 0.024 0.023 0.024 0.026
95% CI 0.942 0.730 0.912 0.938 0.932 0.924 0.890 0.816 0.692 0.808
90% CI 0.874 0.690 0.842 0.890 0.892 0.866 0.820 0.744 0.592 0.734

Q̂ (p|D4) 0.995 1.914 3.121 3.429 3.643 3.823 3.990 4.164 4.374 4.530
Bias -0.005 0.121 -0.001 -0.001 0.000 0.001 0.001 0.000 -0.002 0.000
SD 0.037 0.342 0.059 0.037 0.029 0.025 0.023 0.022 0.022 0.023
RMSE 0.037 0.363 0.059 0.037 0.029 0.025 0.023 0.022 0.022 0.023
95% CI 0.954 0.804 0.936 0.942 0.940 0.940 0.946 0.956 0.944 0.956
90% CI 0.910 0.754 0.890 0.900 0.896 0.904 0.900 0.880 0.892 0.914

quantiles, with 4 moments being preferable, see Fig. 2 for an evolution of the averaged density estimates (over the S = 500 replicates) 
starting with D1 (dotted curve) to D4 (dashed curve) when n = 1 000. This is a remarkable improvement over the estimate that would 
be obtained using only observed frequencies. Whatever the sample size, the effective coverages of 90% and 95% credible intervals for the 
reported quantiles (except the 20% one) are in agreement with their nominal values when 4 central moments (D4) are reported. Moderate 
undercoverages can be observed with D2, while the effective coverages can be larger than expected when just the means are reported in 
addition to frequencies (D1). Global metrics were also calculated to compare the true and estimated quantile functions,

�1(Q , Q̂ ) =
1∫

0

∣∣Q (p|θ̂) − Q (p)
∣∣dp

as well the true and estimated densities,

RIMSE( f , f̂ ) =
∫
R

(
f (x|θ̂) − f (x)

)2
f (x)dx ; KL( f , f̂ ) =

∫
R

f (x) log

(
f (x)

f̂ (x)

)
dx ,

see Table 4 for their median values over the S = 500 simulated datasets with tabulated summary statistics Dr (r = 1, 2, 4) in 3 or 5 
classes. This suggests that the extra information provided by additional central moments for quantile or density estimation is even more 
valuable when the number of classes is small.

In summary, this simulation study confirms the added value of central moments over isolated frequencies for density estimation. With 
only 15 numbers (the frequency and the 4 central moments in each of the J = 3 classes), an accurate and precise density estimate could 
be obtained from summary statistics in just 3 classes, see Fig. 3 for a graphical representation. The simulation study also suggests that 
this method can be used to estimate quantiles and, consequently, values at risk (VaR) in a reliable way.
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Table 3
Simulation study (n = 3000) – Selected p-quantile estimates using tabulated summary statistics in Dr with r = 1, 2, 4: bias, standard deviation, root mean squared error 
(RMSE) and effective coverages of 95% and 90% credible intervals (based on S = 500 replicates).

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
Q (p) 1.000 1.793 3.122 3.430 3.643 3.822 3.989 4.163 4.375 4.530 4.778

J = 3 (classes)
Q̂ (p|D1) 1.013 1.897 3.127 3.438 3.634 3.796 3.954 4.131 4.376 4.591 5.052
Bias 0.013 0.104 0.005 0.008 -0.010 -0.025 -0.035 -0.033 0.000 0.061 0.274
SD 0.025 0.145 0.038 0.021 0.016 0.013 0.011 0.010 0.013 0.020 0.045
RMSE 0.029 0.179 0.038 0.023 0.019 0.029 0.037 0.034 0.013 0.064 0.278
95% CI 0.948 0.934 0.990 0.928 0.960 0.992 0.996 0.994 0.996 1.000 1.000
90% CI 0.886 0.874 0.972 0.866 0.916 0.944 0.974 0.968 0.996 0.996 1.000

Q̂ (p|D2) 1.004 1.810 3.153 3.444 3.649 3.825 3.990 4.160 4.368 4.524 4.797
Bias 0.005 0.017 0.032 0.014 0.005 0.003 0.001 -0.003 -0.007 -0.006 0.019
SD 0.023 0.170 0.032 0.021 0.017 0.014 0.013 0.012 0.011 0.012 0.021
RMSE 0.023 0.171 0.045 0.025 0.018 0.014 0.013 0.013 0.014 0.013 0.028
95% CI 0.954 0.828 0.762 0.868 0.936 0.942 0.904 0.932 0.886 0.818 0.942
90% CI 0.910 0.762 0.686 0.794 0.866 0.876 0.840 0.832 0.810 0.750 0.866

Q̂ (p|D4) 0.994 1.868 3.126 3.429 3.643 3.822 3.991 4.165 4.376 4.528 4.782
Bias -0.006 0.075 0.004 -0.001 -0.000 0.001 0.001 0.002 0.000 -0.002 0.004
SD 0.021 0.223 0.033 0.021 0.017 0.014 0.013 0.012 0.012 0.012 0.018
RMSE 0.022 0.235 0.033 0.022 0.017 0.014 0.013 0.012 0.012 0.013 0.018
95% CI 0.948 0.904 0.946 0.948 0.956 0.956 0.954 0.946 0.966 0.964 0.968
90% CI 0.902 0.850 0.894 0.880 0.894 0.914 0.906 0.910 0.914 0.918 0.918

J = 5 (classes)
Q̂ (p|D1) 0.999 1.864 3.115 3.430 3.644 3.820 3.986 4.161 4.376 4.530 4.771
Bias -0.001 0.071 -0.007 0.000 0.001 -0.002 -0.004 -0.002 0.001 0.000 -0.007
SD 0.020 0.258 0.034 0.023 0.018 0.015 0.014 0.013 0.017 0.019 0.019
RMSE 0.020 0.268 0.035 0.023 0.018 0.015 0.014 0.013 0.017 0.019 0.020
95% CI 0.958 0.846 0.944 0.952 0.976 0.982 0.938 0.908 0.974 0.976 0.984
90% CI 0.920 0.772 0.882 0.880 0.922 0.946 0.858 0.826 0.926 0.932 0.934

Q̂ (p|D2) 0.997 1.831 3.114 3.433 3.646 3.822 3.987 4.161 4.375 4.530 4.777
Bias -0.003 0.038 -0.008 0.003 0.003 0.000 -0.002 -0.002 -0.001 0.000 -0.001
SD 0.021 0.252 0.035 0.022 0.017 0.014 0.013 0.013 0.013 0.013 0.018
RMSE 0.022 0.255 0.036 0.022 0.017 0.014 0.014 0.013 0.013 0.013 0.018
95% CI 0.942 0.814 0.934 0.932 0.938 0.910 0.896 0.852 0.746 0.894 0.972
90% CI 0.902 0.750 0.860 0.882 0.876 0.858 0.800 0.788 0.668 0.824 0.924

Q̂ (p|D4) 0.996 1.875 3.123 3.430 3.644 3.823 3.990 4.164 4.375 4.527 4.778
Bias -0.004 0.082 0.001 0.000 0.000 0.001 0.001 0.001 -0.001 -0.003 0.000
SD 0.021 0.241 0.033 0.021 0.017 0.014 0.013 0.012 0.012 0.013 0.016
RMSE 0.021 0.255 0.033 0.021 0.017 0.014 0.013 0.012 0.012 0.013 0.016
95% CI 0.958 0.860 0.958 0.946 0.954 0.960 0.948 0.942 0.962 0.958 0.982
90% CI 0.902 0.820 0.896 0.884 0.892 0.910 0.904 0.904 0.904 0.928 0.952

Table 4
Simulation study – L1-distance, �1(Q , Q̂ ), between the true and the estimated quantile functions; Root integrated mean 
squared error (RIMSE) and Kullback-Liebler divergence (K-L) comparing the true and estimated density functions. Median 
values of these metrics (over S = 500 simulated datasets of size n) are reported with estimation performed from tabulated 
summary statistics Dr (with r = 1, 2, 4) in J classes.

J = 3 (classes) J = 5 (classes)

n Metric D1 D2 D4 D1 D2 D4

250 �1(Q , Q̂ ) 0.087 0.072 0.067 0.072 0.071 0.068
RIMSE 0.048 0.044 0.037 0.043 0.043 0.037
K-L 0.034 0.022 0.016 0.018 0.019 0.016

1 000 �1(Q , Q̂ ) 0.051 0.038 0.034 0.037 0.036 0.034
RIMSE 0.041 0.025 0.020 0.025 0.024 0.020
K-L 0.025 0.011 0.006 0.006 0.006 0.005

3 000 �1(Q , Q̂ ) 0.044 0.025 0.021 0.023 0.021 0.021
RIMSE 0.044 0.018 0.014 0.018 0.016 0.013
K-L 0.026 0.008 0.003 0.003 0.002 0.002

5. Application

Table 5 provides summary statistics on insurance claim amount data (in euros). For confidentiality reasons, the 3 518 data were rescaled 
and gathered in J = 3 classes of increasing width. Besides the class frequencies n j , the sample mean, standard deviation, skewness 
and kurtosis of the log10 transformed claims within each class are also provided. Fig. 4 displays the histogram corresponding to the 
grouped data frequencies. The thick solid (red) line corresponds to the ‘target’ density estimated from the precise individual (log10) 
claims shared with us in confidentiality by the insurance company. Estimation of the density using the grouped summary statistics 
in Table 5 was performed using the methods described in Sections 3.1 and 3.2 with K = 25 B-splines associated to equidistant knots 
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Table 5
Car insurance data: summary statistics for n = 3518 grouped claim data (in euros).

log10 (Claim)

Claim Freq. Class Mean Std. dev. Skewness Kurtosis
Interval n j C j x j s j g1 j g2 j

(1; 1 000] 1168 (0.00; 3.00] 2.462 0.580 -1.793 2.401
(1 000; 20 000] 2234 (3.00; 4.30] 3.529 0.336 0.375 -0.836
(20 000; 1 500 000] 116 (4.30; 6.18] 4.556 0.275 2.603 9.416

Table 6
Car insurance data: numerical comparison of density and Value-at-Risk estimates obtained using tabulated sample mo-
ments of increasing orders.

VaR95% VaR99%

Data D edf RIMSE K-L Est. 95% cred. int. Est. 95% cred. int.

D0 6.2 0.069 0.042 16 250 (14 795, 17 848) 34 764 (29 724, 40 658)
D1 6.7 0.030 0.029 15 885 (14 617, 17 263) 41 502 (37 064, 46 472)
D2 9.0 0.027 0.019 16 641 (15 355, 17 647) 40 766 (35 261, 47 131)
D4 11.7 0.012 0.001 16 106 (14 896, 17 413) 38 988 (33 504, 45 371)

Table 7
Car insurance data: observed and fitted central moments within classes using a model based on D4.

Central moments for log10 (Claim)

Class Freq. M1 M2 M3 M4

C j n j Obs. Fitted Obs. Fitted Obs. Fitted Obs. Fitted

(0.00; 3.00] 1168 2.462 2.472 0.336 0.336 -0.350 -0.351 0.611 0.619
(3.00; 4.30] 2234 3.529 3.532 0.113 0.111 0.014 0.013 0.028 0.026
(4.30; 6.18] 116 4.556 4.549 0.075 0.073 0.054 0.051 0.071 0.064

on (0.0, 6.18). Computation was performed in less than one second using the R-package degross (Density Estimation from GRouped 
Summary Statistics) developed and maintained by the author. The top graph in the figure compares the ‘target’ density with the density 
estimates obtained from the grouped data frequencies (D0, dotted line) and from the addition of the grouped sample means (D1, dashed 
line). The bottom graph further considers the cumulative addition of the grouped sample standard deviations (D2, dotted line), skewness 
and kurtosis (D4, dashed line) to perform density estimation. An important improvement is observed with the addition of the standard 
deviations in the dataset. This is confirmed numerically by inspecting the evolution of the root integrated mean squared error (RIMSE) 
and of the Kullback-Leibler (K-L) divergence between the ‘target’ density and the estimate obtained using sample moments of increasing 
orders, see Table 6. When all the tabulated sample moments are used (with D4), one can see (from the dashed curve in the bottom of 
Fig. 4 and from the K-L divergence in Table 6) that the target density is nearly perfectly reconstructed. The table also provides information 
on the effective number of spline parameters edf(λ̂) for the roughness penalty parameter λ̂ selected using Algorithm 3 and quantifying 
the complexity of the density estimate. The fitted central moments can be compared to their observed counterparts within each of 
the 3 classes, see Table 7. The observed differences are within the sampling tolerances tuned by the variance-covariance matrix 
 j of 
the moment estimators, see (6), with a larger tolerance for class C3 as it is associated to the smallest frequency, n3 = 116. Value-at-
Risk measures corresponding to 95% and 99% quantile estimates were also computed using the theory of Section 3.3 with 95% credible 
intervals first evaluated on the log10-scale using (14) and transformed back to the original scale (in euros) for reporting purposes. These 
can be compared with the actual values that were calculated from the confidential raw data, VaR95% = 16 125 and VaR99% = 38 099 euros, 
respectively.

6. Discussion

We have shown how to combine tabulated summary statistics involving moments of order one to four with the observed frequencies to 
obtain a smooth estimate of a density with compact support. The proposed inference strategy, implemented in the R-package degross, 
relies on an EM algorithm with uncertainty measures computed in a final step from the observed penalized log-likelihood. The penalty not 
only encourages smoothing of the resulting density estimate, but also ensures agreement up to sampling errors between the underlying 
theoretical moments and their observed values in each class. Simple parametric alternatives might be considered for the density model in 
specific settings. The nonparametric estimation studied here could then be used to validate or select such proposals, or to point out their 
possible shortcomings.

Although the transmission of data using tabulated summary statistics may not be fully compliant with the European General Data 
Protection Regulation (GDPR, EU 2016/679) guidelines, it enables to mask data details by summarizing them with a couple of technical 
numbers besides the class frequencies, see e.g. Table 5. This is a convenient method to communicate in a fairly accurate and compact way 
on the distribution of the underlying raw data with a limited loss of information.

That methodology might be combined with regression models where information on the distribution of the response is provided 
in such a summarized way conditionally on a selected and limited number of subject characteristics (such as the age category in the 
car insurance example). At the individual level, besides covariates values, the reported loss would take the form of a class indicator. 
The challenge would be to make inference on the regression model components from such imprecise information on the response data. 
Flexible forms for the error distribution and for the quantification of covariate effect on the response conditional distribution should be 
compatible with the available information at the aggregate level.
187



P. Lambert Insurance: Mathematics and Economics 108 (2023) 177–189
Fig. 4. Car insurance data: observed frequencies and density estimates (on the log10-scale) using tabulated sample moments.

An extension of the methodology to estimate a density with a non-compact support could also be studied. A splicing model (Reynkens 
et al., 2017) could e.g. be used to combine an estimate of the density of X , obtained using the proposed strategy based on the observed 
tabulated summary statistics below some threshold, with an extreme value distribution fitted to the right tail.
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