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We study market-consistent valuation of liability cash flows motivated by current regulatory frameworks 
for the insurance industry. The value assigned to an insurance liability is the consequence of (1) 
considering a hypothetical transfer of an insurance company’s liabilities, and financial assets intended 
to hedge these liabilities, to an empty corporate entity, and (2) considering the circumstances under 
which a capital provider would want to achieve and maintain ownership of this corporate entity given 
limited liability for the owner and that capital requirements have to be met at any time for continued 
ownership.
We focus on the consequences of the capital provider assessing the value of continued ownership 
in terms of a least favorable expectation of future dividends, meaning that we consider expectations 
with respect to probability measures in a set of equivalent martingale measures. We show that natural 
conditions on the set of probability measures imply that the value of a liability cash flow is given in terms 
of a solution to a backward recursion. Through a life and a non-life insurance example we demonstrate 
how to make the valuation approach operational.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

We consider the valuation of an aggregate insurance liability 
cash flow in run-off. The valuation approach is a direct conse-
quence of considering a hypothetical transfer of the liability cash 
flow from an insurance company to an empty corporate entity 
set up with the sole purpose to manage the liability run-off. The 
owner of this entity needs to make sure at any time, in order to 
continue ownership of the entity, to pay claims and also to provide 
buffer capital according to the externally imposed solvency capital 
requirement (e.g. by a regulatory framework such as Solvency II).

The papers Möhr (2011) and Engsner et al. (2020, 2017) and 
the present paper approaches valuation of liabilities by consider-
ing a transfer of the liability to an empty corporate entity, called 
“reference undertaking” in the terminology of EIOPA (see European 
Commission, 2015, Article 38), and explores the consequence of 
the reference undertaking having to comply with repeated capital 
requirements throughout the run-off of the liability cash flow. A 
logical consequence of considering a capital provider/owner/share-
holder, that one period at a time provides capital in order to satisfy 
the current capital requirement, is that the owner can decide not 
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to provide further capital than what has already been provided. 
The owner who has made a net loss during the time of ownership 
can decide that enough is enough and simply give up the owner-
ship. This means that the owner has limited liability.

The paper Engsner et al. (2017) considers only non-hedgeable 
liability cash flows and valuation as a consequence of an external 
capital provider providing capital given a sufficiently high expected 
one-period return on the capital in terms of cost-of-capital rates. 
The cost-of-capital approach in Engsner et al. (2017) builds on the 
approach to valuation presented in Möhr (2011) aiming to clarify 
the principles of valuation consistent with modern solvency regu-
latory frameworks.

The paper Engsner et al. (2020) considers a setting that takes 
the dependence of a liability cash flow on a financial market’s 
price processes into account. In particular, Engsner et al. (2020)
emphasizes that the liability cash flow, the replicating portfolio in-
tended to hedge this cash flow, capital requirements, and a capital 
provider’s risk aversion all together need to be specified in order 
to determine the value of a liability. The possibility of default is 
also considered in Hieber et al. (2019) that studies valuation of 
life-insurance contracts with guarantees in an incomplete-market 
setting with a single equivalent martingale measure used for val-
uation. However, capital requirements do not enter in the setup 
in Hieber et al. (2019) and therefore the valuation operator differs 
from that in Engsner et al. (2020).
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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The setting and valuation approach we consider are similar to 
those considered in Engsner et al. (2020). An essential difference 
is that here we consider a capital provider who assigns a value 
to possible future dividends and capital injections in terms of a 
least favorable expected value, where the expectations correspond 
to different equivalent martingale measures in an incomplete mar-
ket setting. In a multiple-period setting, if we start with any such 
set Q of probability measures, then we may find that a probability 
measure that is the worst at a given time may not be the worst at 
a later time. We may think of cash flows from life insurance. If the 
capital provider at a given time financially benefits from survival of 
policyholders, then a conservative valuation from the risk-averse 
capital provider’s perspective corresponds to a probability mea-
sure Q that assigns higher probability to the occurrences of deaths 
compared to the “real-world” probability measure P . However, at 
a later time the composition of the portfolio may have changed 
so that the capital provider instead benefits from deaths of pol-
icyholders, and the Q considered earlier no longer corresponds 
to conservative valuation. In particular, we should consider opti-
mization over sets Q of probability measures that are closed under 
pasting together a high-mortality probability measure with a low-
mortality probability measure at stochastic times points. It turns 
out that this property of the set Q is not only a logical conse-
quence of model uncertainty in multiple-period models but also 
necessary in order for the liability value to be computable via a 
backward recursion.

Insurance liability cash flows may be partly defined in terms 
of financial asset prices, specific interest rates or inflations in-
dices. For liability cash flows where this is not the case, the cash 
flows may show significant correlation with market prices. There-
fore, any insurance liability valuation methodology must be such 
not to introduce arbitrage opportunities and must consider repli-
cating portfolios that hedge the financial component of a liabil-
ity cash flow, whenever that is relevant. Consequently, there is 
a vast literature on market-consistent insurance valuation cover-
ing single-period, multiple-period and continuous-time valuation 
problems with varying assumptions on the financial market form-
ing the basis for designing replicating portfolios of varying degrees 
of sophistication. We refer (in chronological order) to Grosen and 
Jørgensen (2002), Malamud et al. (2008), Wüthrich et al. (2011), 
Möhr (2011), Tsanakas et al. (2013), Wüthrich and Merz (2013), 
Pelsser and Stadje (2014), Engsner et al. (2017), Delong et al. 
(2019), Barigou and Dhaene (2019), Barigou et al. (2019), Engsner 
et al. (2020), and references therein.

A common theme in the literature on market-consistent insur-
ance valuation is that the value assigned to a liability cash flow 
can be expressed as the sum of a market price of a replicating 
portfolio and a value assigned to the replication error (notice that 
a substantial replication error is a common feature of insurance li-
abilities). The liability values in this paper are also of this kind. 
Rebalancing times of a dynamic replicating portfolio means that 
the replication error has to be reassessed over time and taking this 
into consideration leads to the notion of time-consistent valuation. 
Similarly, repeated capital requirements lead to capital costs that 
are not known at the initial valuation time and taking such costs 
into account appropriately also require time-consistent valuation. 
Time consistency is a key concept in the literature on dynamic risk 
measurement. We refer (in chronological order) to Riedel (2004), 
Detlefsen and Scandolo (2005), Rosazza Gianin (2006), Cheridito 
et al. (2006), Artzner et al. (2007), Bion-Nadal (2008), Cheridito 
and Kupper (2009), Cheridito and Kupper (2011), and references 
therein.

In Artzner et al. (2020) and Deelstra et al. (2020) it is argued 
that diversifiable insurance risk should only be assigned a value 
corresponding to the P -expectation of such risk since the law of 
large numbers applies if the insurance company may form arbitrar-
42
ily large portfolios. In our setting this argument is not valid since 
the corporate entity to which the insurance company’s aggregate 
liability is transferred is a separate entity that may not be merged 
with other corporate entities. In that sense the entity to which the 
liabilities are transferred may be seen as a special purpose vehicle. 
Although this entity benefits from diversification when capital re-
quirements are computed, it can not diversify the liability further.

Optimal stopping with multiple priors for agents assessing risk 
in terms of dynamic convex risk measures is analyzed in Cherid-
ito et al. (2006). Similar problems are analyzed in Engelage (2011), 
where the framework of optimal stopping with multiple priors in 
Riedel (2009) is extended to so-called dynamic variational prefer-
ences. From an applied perspective: whereas all priors/probability 
measures in a given set of priors are treated as equally likely 
in the framework in Riedel (2009), introducing (dynamic) penalty 
terms as in Cheridito et al. (2006) and Engelage (2011) means that 
the optimizing agent may assign different (dynamic) weights to 
the priors in the optimization problem. Solving optimal stopping 
problems with multiple priors numerically is a challenging com-
putational problem. A general method for solving such problems is 
developed in Krätschmer et al. (2018).

Optimal stopping is a key element in our approach to valuation 
since the owner of the entity managing the run-off of the liability, 
just as shareholders in general, has limited liability. At any time, 
taking the value of assets and future liability cash flows into ac-
count, if a capital injection is needed to meet capital requirements, 
the owner may choose between making a capital injection or not. 
Without such a capital injection, ownership is terminated and the 
remaining assets are transferred to policyholders. Therefore, the ra-
tional owner determines optimal stopping times.

The approach we present for valuation of an insurance liability 
cash flow is the logical consequence of (1) considering a hypo-
thetical transfer of an insurance company’s liabilities, and financial 
assets intended to hedge these liabilities, to an empty corporate 
entity, and (2) considering the circumstances under which a cap-
ital provider would want to achieve and maintain ownership of 
this corporate entity given limited liability for the owner and that 
capital requirements have to be met at any time for continued 
ownership. We do not specify how the replicating portfolio, in-
tended to hedge the liability cash flow, should be chosen. We do 
so because many possible static or dynamic hedging strategies may 
be considered and they all fit into the framework we present. We 
clarify under what fairly mild conditions the valuation operator is 
market consistent. In short, a sufficiently good hedging rule applied 
to the liability cash flow makes the valuation operator market con-
sistent, whereas poor hedging does not.

The paper is organized as follows. Section 2 presents the valu-
ation framework. Basic assumptions, notation and terminology are 
introduced in Subsection 2.1. Subsection 2.2 presents the valuation 
framework in the much simpler single-period setting in order to 
make key ideas and basic properties easily accessible. Subsection 
2.3 presents the multiple-period valuation framework in full gener-
ality and presents a key result establishing the connection between 
the valuation problem formulated as a multiple-prior optimal stop-
ping problem and as the solution to a backward recursion, with the 
valuation operator in the single-period setting appearing as a spe-
cial case. Definitions and results are presented in Subsection 2.3
for general capital requirements. Subsection 2.4 then specializes 
by considering capital requirements given in terms of conditional 
monetary risk measures, in line with current regulatory frame-
works. Conditions under which the valuation operator is market 
consistent are presented. These conditions are satisfied for a wide 
range of dynamic hedging strategies. Section 3 presents a general 
construction of parametric sets of probability measures that enable 
a wide range of insurance applications, and shows that the set of 
probability measures satisfies the properties making it suitable for 
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optimal stopping with multiple priors. Section 4 considers a simple 
life insurance example that illustrates key features of the valuation 
framework and how the value is computed by solving a backward 
recursion. Section 5 considers a non-life insurance example for a 
model of the kind commonly used for claims reserving. The ex-
amples in Sections 4 and 5 show the need for the general theory 
developed in Section 3.

2. The valuation framework

2.1. Preliminaries

We consider time periods 1, . . . , T , corresponding time points 
0, 1, . . . , T , and a filtered probability space (�, F , F, P ), where 
F = (Ft)

T
t=0 with {∅, �} = F0 ⊆ · · · ⊆ FT = F , and P denotes 

the real-world measure. For p ∈ [1, ∞), we write Lp(Ft , P ) for 
the normed linear space of Ft -measurable random variables X
with norm EP [|X |p]1/p . We write L∞(Ft , P ) for the normed lin-
ear space of Ft -measurable essentially bounded random variables. 
We write Pt(·) for P ( · | Ft) and EP

t [·] for EP [ · | Ft]. Equalities 
and inequalities between random variables should be interpreted 
in the P -almost sure sense. A stopping time is a function τ : � →
{0, 1, . . . , T } ∪ {+∞} such that {τ = t} ∈Ft for t = 0, 1, . . . , T .

For two probability measures Q(1), Q(2) equivalent to P and 
a stopping time τ ≤ T , the probability measure Q(3)(A) :=
EQ(1) [Q(2)(A | Fτ )], A ∈ FT , is called the pasting of Q(1) and 
Q(2) in τ . It is often convenient to express the pasting Q(3) of 
Q(1), Q(2) in τ in terms of the processes D(1), D(2) of Radon-
Nikodym derivatives with respect to P ,

D(1)
t = dQ(1)

dP

∣∣∣
Ft

, D(2)
t = dQ(2)

dP

∣∣∣
Ft

.

The pasting Q(3) of Q(1), Q(2) in τ corresponds to

D(3)
t = I{t ≤ τ }D(1)

t + I{t > τ } D(1)
τ D(2)

t

D(2)
τ

=
t∏

s=1

(
I{s ≤ τ } D(1)

s

D(1)
s−1

+ I{s > τ } D(2)
s

D(2)
s−1

)
.

A set Q of probability measures equivalent to P is called stable 
under pasting if for any Q(1), Q(2) ∈Q and any stopping time τ ≤
T , the pasting Q(3) of Q(1), Q(2) in τ is an element in Q. We call 
such a set stable under pasting. Such sets are also referred to as 
m-stable, time consistent or rectangular in the related literature.

We assume the existence of a financial market containing as-
sets for which F -adapted price processes (S0

t )T
t=0 and (Si

t)
T
t=0, 

i = 1, . . . , d, are available. (S0
t )T

t=0 is the price process of a (pre-
dictable) locally riskless bond. These price processes generate the 
filtration F S = (F S

t )T
t=0 ⊂ F . We assume that the financial mar-

ket generated by the basic price processes and trading using F S -
predictable trading strategies is arbitrage free and that any F S

T -
measurable contingent claim is attainable. In particular, any F S

T -
measurable contingent claim has a unique market price. We will 
also allow for F -adapted cash flows that depend on insurance 
events and we will allow for F -predictable trading strategies. With 
such cash flows added to the financial market we have an incom-
plete market setting.

We take the price process of the locally riskless bond as 
numéraire process and in what follows all financial values are dis-
counted by this numéraire. This saves us from having to explicitly 
take interest rates processes into account and makes the mathe-
matical expressions less involved.

We assume that the set P of equivalent martingale measures 
(for each Q ∈P , Q is equivalent to P and the (S0

t )T -discounted 
t=0

43
price processes are Q-martingales) is non-empty. By Proposition 
6.43 in Föllmer and Schied (2016) the set P is stable under past-
ing. We will consider a non-empty subset Q ⊂ P . We refer to 
Q ∈ Q as a market risk neutral probability measure. We empha-
size that EQ(1) [Z ] = EQ(2) [Z ] for any F S

T -measurable Z and any 
Q(1), Q(2) ∈Q.

We use the conventions 
∑k−1

l=k := 0 and inf∅ := +∞ for sums 
over an empty index set and the infimum of an empty set. We use 
the notation (x)+ := max(0, x) and x ∧ y := min(x, y), and note that 
r − (r − x)+ = r ∧ x.

2.2. Valuation in the single-period setting

In order to present the key ideas in an accessible way, without 
the mathematical details necessary for the general multiple-period 
setting presented in Section 2.3, we first focus on the single-period 
setting. We tacitly assume sufficient integrability of the relevant 
quantities appearing below.

We consider an insurance company with an aggregate insur-
ance liability corresponding to a liability cash flow Xo

1 at the end 
of the period. Regulation forces the insurance company to comply 
with externally imposed capital requirements. The requirements 
put restrictions on the asset portfolio of the insurance company. 
A portfolio of traded assets is called a replicating portfolio and 
generates cash flow Xr

1 at the end of the period. The replicating 
portfolio is intended to, to some extent, offset the liability cash 
flow. X1 := Xo

1 − Xr
1 is the residual liability cash flow. We will, 

in accordance with current solvency regulation (Möhr (2011) and 
prescribed by EIOPA, see European Commission, 2015, Article 38) 
define the value of the liability cash flow Xo by considering a hy-
pothetical transfer, at the beginning of the period, of the liability 
and the replicating portfolio to a separate entity referred to as a 
reference undertaking. The reference undertaking has initially nei-
ther assets nor liabilities and its sole purpose is to manage the 
run-off of the liability. The benefit of ownership of the reference 
undertaking is the right to receive possible surplus at the end of 
the period. The capital requirement forces the reference undertak-
ing to hold buffer capital R0 in order for the transfer to occur. 
The amount R0 should be financed jointly by the original insur-
ance company and an agent aspiring ownership of the reference 
undertaking - the capital provider. The amount C0 provided by the 
capital provider corresponds to the value the capital provider as-
signs at the beginning of the period to possible surplus at the end 
of the period. The remaining amount V 0 := R0 − C0 needs to be 
provided by the original insurance company. Given that the capital 
provider provides C0 so that the transfer occurs, at the end of the 
period the policyholders receive

Zph = (R0 + Xr
1) ∧ Xo

1 = R0 ∧ (Xo
1 − Xr

1) + Xr
1,

i.e. the policyholders receive the amount Xo
1 they are promised if 

there is sufficient capital available, otherwise the available capital 
R0 + Xr

1. The capital provider receives the surplus Zcp = (R0 + Xr
1 −

Xo
1)+ . Notice that the available capital at the end of the period 

R0 + Xr
1 = Zph + Zcp has an observable market price which we 

write R0 +EQ0 [Xr
1]. Suppose that the capital provider assigns the 

value

C0 = inf
Q∈Q

EQ[Zcp] = inf
Q∈Q

EQ[(R0 + Xr
1 − Xo

1)+]

to the possible surplus at the end of the period, where Q is 
such that infQ∈QEQ[Z ] equals the market price EQ0 [Z ] for any 
traded payoff Z . C0 is a market-consistent value of Zcp in the sense 
that, for any traded payoff Z ,
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inf
Q∈Q

EQ[Zcp + Z ] = inf
Q∈Q

EQ[Zcp] +EQ0 [Z ].

Consequently,

R0 − C0 +EQ0 [Xr
1] = sup

Q∈Q
EQ[Zph]

= sup
Q∈Q

EQ[R0 ∧ (Xo
1 − Xr

1)] +EQ0 [Xr
1]

is a market-consistent value of Zph. Is it also a market-consistent 
value of the cash flow Xo

1 promised to the policyholders? The an-
swer is “yes” if natural conditions are imposed. Suppose that the 
replication criterion used is such that if a traded payoff Z is added 
to Xo

1, then the replicating portfolio hedging the liability cash flow 
X̃o

1 := Xo
1 + Z generates the cash flow X̃r

1 = Xr
1 + Z . Suppose fur-

ther that there is some (risk measure) ρ with ρ(0) = 0 such that 
R0 = ρ(Xr

1 − Xo
1). Then

sup
Q∈Q

EQ[ρ( X̃r
1 − X̃o

1) ∧ ( X̃o
1 − X̃r

1)] +EQ0 [ X̃r
1]

= sup
Q∈Q

EQ[ρ(Xr
1 − Xo

1) ∧ (Xo
1 − Xr

1)] +EQ0 [Xr
1 + Z ]

verifying that

V 0 +EQ0 [Xr
1] = sup

Q∈Q
EQ[ρ(Xr

1 − Xo
1) ∧ (Xo

1 − Xr
1)] +EQ0 [Xr

1]

is a market-consistent value of the liability cash flow Xo
1 (cf. Defi-

nition 3.1 in Pelsser and Stadje (2014)).
In Section 2.3 below we will consider the general multiple-

period setting. That general setting is conceptually similar to the 
single-period setting but gives rise to various mathematical chal-
lenges. In particular, we need to pay careful attention to the choice 
of Q in the multiple-period setting. Theorem 1 below shows that, 
in the multiple-period setting, V 0 is given as the solution to a 
backward recursion:

Vt = ess sup
Q∈Q

EQ
t [Rt ∧ (Xo

t+1 − Xr
t+1 + Vt+1)], V T = 0.

Market consistency of the value V 0 + ∑T
t=1 E

Q0 [Xr
t ] assigned to 

the liability cash flow (Xo
t )T

t=1, that the original insurance company 
has promised its policyholders, holds under conditions similar to 
those presented above for the single-period setting, see Remark 3.

2.3. Valuation in the multiple-period setting

We consider an insurance company with an aggregate insur-
ance liability corresponding to a liability cash flow given by the 
F -adapted stochastic process Xo = (Xo

t )T
t=1, and a replicating port-

folio generating an F -adapted cash flow Xr = (Xr
t )

T
t=1. Depending 

on the degree of replicability of the liability cash flow, the repli-
cating portfolio could be anything from simply a position in the 
numéraire asset to a portfolio that is rebalanced dynamically ac-
cording to some strategy. X := Xo − Xr is the residual liability cash 
flow. Our approach to valuation is the logical consequence of con-
sidering a hypothetical transfer of the liability and the replicating 
portfolio to a separate entity referred to as a reference under-
taking. The reference undertaking has initially neither assets nor 
liabilities and its sole purpose is to manage the run-off of the 
liability. The benefit of ownership is the right to receive certain 
dividends/surplus, defined below, until either the run-off of the 
liability cash flow is complete or until letting the reference un-
dertaking default on its obligations to the policyholders. The term 
default means termination of ownership of the reference under-
taking. The owner can be thought of as a shareholder with limited 
44
liability. Default therefore means exercise of the so-called limited-
liability option. Regulation forces the owner of the reference un-
dertaking to comply with externally imposed capital requirements 
at any time given continued ownership. The decision to default at 
time t means to give up ownership and transfer the numéraire 
position Rt−1 and the remaining replicating portfolio cash flow ∑T

s=t Xr
s to the policyholders. The owner neither receives any div-

idend payment nor incurs any loss upon a decision to default, a 
consequence of limited liability. However, of course, it is possible 
that the owner has an accumulated loss at the time of default due 
to capital injected (in order to meet capital requirements) exceed-
ing the surplus gains. A key feature of the multiple-period setting 
which did not enter in the single-period setting is that the owner 
of the reference undertaking needs to decide on a decision rule 
defining under which circumstances default occurs.

The default time is a stopping time τ ∈ S1,T +1, where St,T +1

denotes the set of F stopping times taking values in {t, . . . , T + 1}. 
The event {τ = T + 1} is to be interpreted as a complete liability 
run-off without default at any time. Formally,

St,T +1 := {τ : τ is a stopping time with τ ≥ t} ∧ (T + 1). (1)

The cumulative cash flow to the owner can be written as

τ−1∑
t=1

(Rt−1 − Rt − Xt), Xt := Xo
t − Xr

t . (2)

For ease of notation, define the payoff process (Ht)
T
t=1 by

H1 := 0, Ht :=
t−1∑
s=1

(Rs−1 − Rs − Xs) for t > 1. (3)

Note that this payoff process is predictable. The conservative value 
of the cash flow (2) is

inf
Q∈Q

EQ
0 [Hτ ]. (4)

We assume that the owner of the reference undertaking chooses a 
default time τ maximizing the value (4). Consequently, the value 
at time 0 of the reference undertaking is

sup
τ∈S1,T +1

inf
Q∈Q

EQ
0 [Hτ ]. (5)

For t ∈ {1, . . . , T }, the value of the reference undertaking at time 
t , given no default at times ≤ t , is given by the completely analo-
gous expression upon replacing sup and inf in (5) by the essential 
supremum ess sup and essential infimum ess inf (see Appendix A.5 
in Föllmer and Schied (2016) for details) and conditioning on Ft

rather than F0. Notice that since no cash flows occur at times > T , 
the value of the reference undertaking is zero at time T . The value 
of the reference undertaking can thus be identified as the value 
of an American type derivative. Details on arbitrage-free pricing of 
American derivatives can be found in Section 6.3 in Föllmer and 
Schied (2016).

Since we are considering sets Q of probability measures we 
need the cash flows to be suitably integrable with respect to all 
Q ∈ Q. The following notion of uniform integrability, from Riedel 
(2009), will be used. The process (Ht)

T
t=1 in (3) is bounded by a Q-

uniformly integrable random variable in the sense that there exists 
Z ≥ 0 such that

sup
t∈{1,...,T }

|Ht | ≤ Z and lim
K→∞ sup

Q∈Q
EQ[ZI{Z≥K }] = 0. (6)

We now define the value of the reference undertaking, corre-
sponding to what an external party would pay to become owner 
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of the entity managing the run-off of the liability, and also the 
value of the residual liability. The sum of the latter and the market 
price of the replicating portfolio is the value of the original liability 
to policyholders and therefore is a theoretical aggregate premium.

Definition 1. Let Q be a set of market risk neutral probability mea-
sures. Consider sequences (Xt)

T
t=1 and (Rt)

T
t=0 with Xt ∈ L1(Ft , Q)

for t ∈ {1, . . . , T } for every Q ∈ Q, RT = 0 and Rt ∈ L1(Ft , Q)

for t ∈ {0, . . . , T − 1} for every Q ∈ Q. Define CT := 0 and, for 
t ∈ {0, . . . , T − 1},

Ct := ess sup
τ∈St+1,T +1

ess inf
Q∈Q

EQ
t

[ τ−1∑
s=t+1

(Rs−1 − Rs − Xs)

]
, (7)

where the set of stopping times St+1,T +1 is given in (1). Ct is the 
value of the reference undertaking at time t given no default at times 
≤ t . Vt := Rt − Ct is the value of the residual liability at time t given 
no default at times ≤ t .

Notice that

Vt := Rt − Ct

= Rt − ess sup
τ∈St+1,T +1

ess inf
Q∈Q

EQ
t

[ τ−1∑
s=t+1

(Rs−1 − Rs − Xs)

]

= ess inf
τ∈St+1,T +1

ess sup
Q∈Q

EQ
t

[
Rt −

τ−1∑
s=t+1

(Rs−1 − Rs − Xs)

]

= ess inf
τ∈St+1,T +1

ess sup
Q∈Q

EQ
t

[ τ−1∑
s=t+1

Xs + Rτ−1

]

≤ ess sup
Q∈Q

EQ
t

[ T∑
s=t+1

Xs

]
=: V t .

The general upper bound

V 0 := sup
Q∈Q

EQ
0

[ T∑
s=1

Xs

]
≥ V 0 (8)

does neither depend on the filtration nor on the capital require-
ments, and is typically much easier to compute than V 0. Therefore, 
this upper bound provides a useful conservative estimate of V 0. 
This statement is illustrated in the numerical example in Section 5. 
Notice that in general

Vt = ess inf
τ∈St+1,T +1

ess sup
Q∈Q

EQ
t

[ τ−1∑
s=t+1

Xs + Rτ−1

]

≥ ess sup
Q∈Q

ess inf
τ∈St+1,T +1

EQ
t

[ τ−1∑
s=t+1

Xs + Rτ−1

]
=: V t . (9)

In particular, the general lower bound

V 0 := sup
Q∈Q

inf
τ∈S1,T +1

EQ
0

[ τ−1∑
s=1

Xs + Rτ−1

]
≤ V 0 (10)

may be attractive since it is typically easier to compute than V 0, 
see Section 5 for an illustration. Computing V 0 means solving a 
standard optimal stopping problem for each Q ∈ Q followed by 
finding the maximum of the obtained values V Q

0 .
Notice that the value L0 of the original liability cash flow Xo

follows directly from the procedure for transferring the liabilities 
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and replicating portfolio to an external party (the new owner of 
the reference undertaking) accepting the transfer: L0 equals the 
sum of the market value of the replicating portfolio and the value 
V 0 of the residual liability:

L0 = EQ
0

[ T∑
s=1

Xr
s

]
+ V 0,

where Q is any market risk neutral probability measure making 
the expectation equal the market value of the replicating portfolio. 
For details on the market consistency of the value L0 we refer to 
Remark 3. Notice that the aggregate cash flow to the policyholders 
can be written

I{τ=T +1}
T∑

t=1

Xo
t + I{τ≤T }

( τ−1∑
t=1

Xo
t + Rτ−1 +

T∑
t=τ

Xr
t

)

In particular, if Q = {Q} and τ ∗ denotes an optimal default time 
(from the owner’s perspective), then

L0 = EQ
[
I{τ ∗=T +1}

T∑
t=1

Xo
t + I{τ ∗≤T }

( τ ∗−1∑
t=1

Xo
t

+ Rτ ∗−1 +
T∑

t=τ ∗
Xr

t

)]

= EQ
[
I{τ ∗=T +1}

T∑
t=1

Xo
t + I{τ ∗≤T }

( τ ∗−1∑
t=1

Xo
t

+ Rτ ∗−1 +EQ
τ ∗

[ T∑
t=τ ∗

Xr
t

])]
.

Writing the liability value as the above expression demonstrates 
close connections to other valuation approaches such as Hieber et 
al. (2019) that also consider the possibility of default (cf. Theorem 
3.3(a) in Hieber et al. (2019)).

We intend to build on the theory of multiple prior optimal 
stopping in Riedel (2009) where four assumptions on a set Q of 
probability measures are imposed in order for key results to hold. 
These assumptions are Q-uniform integrability together with prop-
erties (i)-(iii) of the following definition.

Definition 2. A set Q of probability measures is suitable for multi-
ple prior optimal stopping if the following properties hold. (i) Each 
Q ∈ Q is equivalent to P ; (ii) Q is stable under pasting; (iii) For 
each t ∈ {0, . . . , T },{

dQ

dP

∣∣∣∣
Ft

: Q ∈ Q
}

is weakly compact in L1(FT , P ).

Remark 1. If Q satisfies the properties (i)-(iii) in Definition 2, then 
it follows from Theorem 2 in Riedel (2009) that the lower bound 
V 0 in (10) equals V 0. This holds since for such Q the inequality in 
(9) is in fact a minimax identity. Notice also that for an arbitrary 
Q equivalent to P , {Q} satisfies properties (i)-(iii) in Definition 2.

As a basis for applying the theory to be presented, we will later 
in Section 3 explicitly construct a useful set Q satisfying the prop-
erties in Definition 2 and present a detailed numerical example in 
Section 5.

We are now ready to state a key result which shows that 
(Ct , Vt) defined in terms of a multiple prior optimal stopping prob-
lem may equivalently be defined as the solution to a backward 
recursion.
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Theorem 1. Let Q be a set of probability measures satisfying proper-
ties (i)-(iii) of Definition 2. Consider sequences (Xo

t )T
t=1 , (Xr

t )
T
t=1 , (Rt)

T
t=0

with Xo
t , Xr

t ∈ L1(Ft , Q) for t ∈ {1, . . . , T } for every Q ∈ Q, RT = 0
and Rt ∈ L1(Ft , Q) for t ∈ {0, . . . , T − 1} for every Q ∈ Q. Set Xt :=
Xo

t − Xr
t and assume that (Ht)

T
t=1 in (3) is bounded by a Q-uniformly 

integrable random variable. Then
(i) If the sequences (Ct)

T
t=0 and (Vt)

T
t=0 are given by Definition 1, 

then

Ct = ess inf
Q∈Q

EQ
t [(Rt − Xt+1 − Vt+1)

+], CT = 0, (11)

Vt = ess sup
Q∈Q

EQ
t [Rt ∧ (Xt+1 + Vt+1)], V T = 0. (12)

(ii) The stopping times (τ ∗
t )T −1

t=0 given by

τ ∗
t = inf{s ∈ {t + 1, . . . , T } : Rs−1 − Xs − V s < 0} ∧ (T + 1)

are optimal in (7).
(iii) If the sequences (Ct)

T
t=0 and (Vt)

T
t=0 are given by (11) and (12), 

then, for t ∈ {0, . . . , T − 1}, Ct is given by (7) and Vt = Rt − Ct .

We refer to Section 4 for a simple example illustrating how the 
backward recursion in Theorem 1 can be solved.

Remark 2. Stability under pasting of Q is a necessary requirement 
in Theorem 1. However, we show later in Theorem 6 that instead 
of the weak compactness property (iii) in Definition 2, which is 
assumed in Theorem 1, it is sufficient to verify weak relative com-
pactness together with some natural additional properties. Notice 
that a bounded and uniformly integrable subset of L1(Ft , P ) is 
weakly relatively compact in L1(Ft , P ) (Theorem A.70 in Föllmer 
and Schied (2016)). Without weak compactness we can however 
not guarantee that there exists a Q∗ ∈ Q which solves the opti-
mization problems (11) and (12).

Proof of Theorem 1. We will first consider the problem

ess sup
τ∈St,T +1

ess inf
Q∈Q

EQ
t [Hτ ]. (13)

We define the multiple prior Snell envelope of H with respect to 
Q as in Riedel (2009) by

UQ
T +1 := HT +1, UQ

t := max
{

Ht,ess inf
Q∈Q

EQ
t [UQ

t+1]
}

for t ≤ T .

(14)

We know from Theorem 1 in Riedel (2009) that

UQ
t = ess sup

τ∈St,T +1

ess inf
Q∈Q

EQ
t [Hτ ] (15)

and that τ ∗
t := inf{s ≥ t : UQ

s = Hs} is an optimal stopping time 
that solves (13). Define ŨQ by

ŨQ
t := ess sup

τ∈St+1,T +1

ess inf
Q∈Q

EQ
t [Hτ ].

We claim that the relation ŨQ
t = ess infQ∈QEQ

t [UQ
t+1] holds. In-

deed, from (15),

UQ
t = max

{
Ht, ess sup

τ∈St+1,T +1

ess inf
Q∈Q

EQ
t [Hτ ]} = max

{
Ht, ŨQ

t

}
.

Therefore, from (14), we have the relation

max
{

Ht,ess inf
Q∈Q

EQ
t [UQ

t+1]
} = max

{
Ht, ŨQ

t

}
.

46
Since this holds for arbitrary adapted H , the claim is proved and 
gives

Ct = ŨQ
t − Ht+1 = ess inf

Q∈Q
EQ

t [UQ
t+1] − Ht+1

= ess inf
Q∈Q

EQ
t [max{Ht+1,ess inf

Q∈Q
EQ

t+1[UQ
t+2]} − Ht+1]

= ess inf
Q∈Q

EQ
t [max{0,ess inf

Q∈Q
EQ

t+1[UQ
t+2] − Ht+1}]

= ess inf
Q∈Q

EQ
t [max{0, Ct+1 + Ht+2 − Ht+1}]

= ess inf
Q∈Q

EQ
t [(Rt − Xt+1 − Vt+1)

+].

Hence, we have shown (11) from which (12) is an immediate con-
sequence. This concludes the proof of statement (i). �
2.4. Valuation with capital requirements by conditional monetary risk 
measures

We now consider the valuation problem in the setting where 
the capital requirements are given in terms of conditional mone-
tary risk measures.

Definition 3. For p ∈ [0, ∞] and t ∈ {0, . . . , T − 1}, a conditional 
monetary risk measure is a mapping ρt : Lp(Ft+1, P ) → Lp(Ft , P )

satisfying

if λ ∈ Lp(Ft,P ) and Y ∈ Lp(Ft+1,P ),

then ρt(Y + λ) = ρt(Y ) − λ, (16)

if Y , Ỹ ∈ Lp(Ft+1,P ) and Y ≤ Ỹ , then ρt(Y ) ≥ ρt(Ỹ ), (17)

ρt(0) = 0. (18)

A sequence (ρt)
T −1
t=0 of conditional monetary risk measures is 

called a dynamic monetary risk measure.

The natural conditional monetary risk measures corresponding 
to current regulatory frameworks are defined in terms of condi-
tional quantile functions. For integer t ≥ 0, x ∈ R, u ∈ (0, 1) and 
Ft+1-measurable Z , let

Ft,−Z (x) := Pt(−Z ≤ x),

F −1
t,−Z (1 − u) := ess inf{m ∈ L0(Ft,P ) : Ft,−Z (m) ≥ 1 − u}

and define the conditional versions of value-at-risk and average 
value-at-risk as

V@Rt,u(Z) := F −1
t,−Z (1 − u), AV@Rt,u(Z) := 1

u

u∫
0

V@Rt,v(Z)dv.

Both V@Rt,u and AV@Rt,u are conditional monetary risk measures 
in the sense of Definition 3 for p ≥ 1. Given conditional monetary 
risk measures ρt : L1(Ft+1, P ) → L1(Ft , P ) we consider here

Rt := ρt(−Xt+1 − Vt+1), RT := 0. (19)

Notice that if Rt+1 is given and Ct+1 is given by Definition 1, then 
also Vt+1 := Rt+1 − Ct+1 is given and therefore Rt is well defined 
by setting Rt := ρt(−Xt+1 − Vt+1). Moreover, we may write

Vt := ϕt(Xt+1 + Vt+1), V T := 0, (20)

where ϕt(Y ) := ess supQ∈QEQ
t [ρt(−Y ) ∧ Y ].
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Theorem 2. Let ρt : L1(Ft+1, P ) → L1(Ft, P ) be a conditional mone-
tary risk measure in the sense of Definition 3 and let ϕt : L1(Ft+1, P ) →
L1(Ft , P ) be given by (20). Then

if λ ∈ Lp(Ft,P ) and Y ∈ Lp(Ft+1,P ),

then ϕt(Y + λ) = ϕt(Y ) + λ, (21)

if Y , Ỹ ∈ Lp(Ft+1,P ) and Y ≤ Ỹ , then ϕt(Y ) ≤ ϕt(Ỹ ), (22)

ϕt(0) = 0. (23)

Moreover, if ρ̃t : L1(Ft+1, P ) → L1(Ft , P ) is a conditional monetary 
risk measure in the sense of Definition 3 such that ρt ≤ ρ̃t , then

ϕt(Y ) ≤ ϕ̃t(Y ) := ess sup
Q∈Q

EQ
t [ρ̃t(−Y ) ∧ Y ].

Proof of Theorem 2. The properties (21), (22) and (23) follow im-
mediately by arguments similar to those in the proof of Proposition 
1 in Engsner et al. (2017). The final property follows immediately 
since x ∧ y is nondecreasing in x and y. �

Theorem 2 has consequences that should be seen as necessary 
requirements of any sound valuation method. If X1 + · · · + XT = c
for some constant c, then the corresponding value V 0 = c. If we 
consider two residual liability cash flows (Xt )

T
t=1 and ( X̃t)

T
t=1 such 

that Xt ≤ X̃t for every t , then the corresponding values satisfy 
V 0 ≤ Ṽ 0. Similarly, if the sequence of conditional monetary risk 
measures (ρt)

T −1
t=0 are replaced by a more prudent choice (ρ̃t)

T −1
t=0

such that ρt ≤ ρ̃t for every t , then the corresponding values satisfy 
V 0 ≤ Ṽ 0.

The following remark verifies market consistency of the valua-
tion operator.

Remark 3. Suppose the conditions in Theorem 1 hold and that 
capital requirements Rt are given in terms of conditional risk mea-
sures ρt satisfying the conditions in Definition 3. Then the value of 
a liability cash flow Xo to which a replicating portfolio generating 
the cash flow Xr is assigned is given by

V 0 +EQ0

[ T∑
t=1

Xr
t

]
= ϕ0 ◦ · · · ◦ ϕT −1

( T∑
t=1

(Xo
t − Xr

t )

)

+EQ0

[ T∑
t=1

Xr
t

]
, (24)

where the second term on both sides of the equality sign is simply 
the market price of the replicating portfolio expressed in terms of 
an equivalent martingale measure. Note that V 0 can be expressed 
as a composition of mappings ϕt due to the conditional cash addi-
tivity property (21). If the original liability cash flow Xo is replaced 
by X̃o = Xo + Z , where the cash flow 

∑T
t=1 Zt is fully replicable 

by hedging in the financial market, and if the replication criterion 
is such that 

∑T
t=1 X̃r

t = ∑T
t=1 Xr

t + ∑T
t=1 Zt , then it is clear that 

the expression in (24) defines a market-consistent valuation of the 
cash flow promised to the policyholders.

However, it should be emphasized that a regulator/financial 
supervisor may put restrictions on the complexity of replicating 
portfolios transferred along with the original liability of the insur-
ance company. Consequently, market consistency of the value of 
the original liability cash flow given by (24) depends on whether 
the original insurance company is allowed sufficient flexibility in 
designing suitable hedging strategies. It should be emphasized that 
this issue is not specific to the approach to valuation considered 
here but applies to market consistency of liability valuations in 
general.
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Let (V S
t )T

t=0 be given by V S
t = ∑t

u=1 Xu + Vt , where V T = 0,

Vt = ess sup
Q∈Q

EQ
t [Rt ∧ (Xt+1 + Vt+1)], Rt = ρt(−Xt+1 − Vt+1),

where ρt is a suitable conditional monetary risk measure such 
as V@Rt or AV@Rt . It is reasonable to require that V S is a P -
supermartingale which is equivalent to Vt ≥ EP

t [Xt+1 + Vt+1]
which implies Vt ≥ EP

t [Xt+1 + · · · + XT ]. In particular, the P -
supermartingale property guarantees the existence of a nonnega-
tive “risk margin” Vt −EP

t [Xt+1 + · · · + XT ] ≥ 0.

Theorem 3. Let Xt ∈ L1(Ft , P ) for t = 1, . . . , T . Let L1(Ft+1, P ) �
Yt+1 �→ ρt(−Yt+1) ∈ L1(Ft , P ), for t = 0, . . . , T − 1, be a conditional 
monetary risk measure such that

EP
t [ρt(−Yt+1) − Yt+1] > 0 or Pt(ρt(−Yt+1) − Yt+1 = 0) = 1.

(25)

Then there exists a set Q of probability measures such that (V S
t )T

t=0 is a 
P -supermartingale.

Proof of Theorem 3. Notice that the supermartingale requirement 
is equivalent to

ess inf
Q∈Q

EQ
t [(Rt − Xt+1 − Vt+1)

+] ≤ EP
t [Rt − Xt+1 − Vt+1] (26)

It is sufficient to find some Q such that the statement holds for 
Q = {Q}. We construct this Q by defining a suitable P -martingale 
(Dt)

T
t=0 corresponding to the change of measure from P to Q.

Let Wt+1 := Rt − Xt+1 − Vt+1, let Gt(x) := Pt(Wt+1 ≤ x) de-
note the Ft -conditional distribution function of Wt+1, and let 
pt := Gt(0). Let (Dt)

T
t=0, with D0 = 1, be a P -martingale satisfy-

ing

Dt+1

Dt
=

{
1 if pt ∈ {0,1},
exp

(
λt�

−1(Ut+1) − λ2
t /2

)
if pt ∈ (0,1),

where Ut+1 is independent of Ft and uniformly distributed on 
(0, 1) and, conditional of Ft , Ut+1 and Wt+1 are countermono-
tone. Let λt be some Ft -measurable random variable satisfying

exp
(
λt�

−1(1 − pt) − λ2
t /2

)
EP

t

[
W +

t+1

] ≤ EP
t

[
Wt+1

]
on {pt ∈ (0,1)}.

By construction,

EP
t

[
Dt+1

Dt
W +

t+1

]
= EP

t

[
Wt+1

]
on {pt ∈ {0,1}}.

Moreover, on {pt ∈ (0, 1)},

EP
t

[
Dt+1

Dt
W +

t+1

]

=
1−pt∫
0

exp
(
λt�

−1(u) − λ2
t /2

)
G−1

t (1 − u)du

≤ exp
(
λt�

−1(1 − pt) − λ2
t /2

) 1−pt∫
0

G−1
t (1 − u)du

= exp
(
λt�

−1(1 − pt) − λ2
t /2

)
EP

t

[
W +

t+1

]
≤EP

t

[
Wt+1

]
. �
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Property (25) in Theorem 3 is satisfied by AV@Rt,u which is an 
example of so-called strictly expectation bounded risk measures, 
see Definition 5 and Example 3 in Rockafellar et al. (2006).

The following lemma is useful for constructing a bounding Q-
uniformly integrable random variable.

Lemma 1. For any Q-uniformly integrable Z ≥ 0, ess supQ∈QEQ
t [Z ]

is a Q-uniformly integrable random variable.

Proof of Lemma 1. We need to show that

lim
K→∞ sup

Q∈Q
EQ

[
ess sup
Q∈Q

EQ
t [Z ]I{ess supQ∈QEQ

t [Z ]≥K }
]

= 0.

If we set X = ZI{ess supQ∈QEQ
t [Z ]≥K } , then X is Q-uniformly inte-

grable since it is of the form ZIA . Hence by the law of iterated ex-
pectations for Q-uniformly integrable random variables (Lemma 1 
in Riedel (2009)),

sup
Q∈Q

EQ
[

ess sup
Q∈Q

EQ
t [Z ]I{ess supQ∈QEQ

t [Z ]≥K }
]

= sup
Q∈Q

EQ
[

ess sup
Q∈Q

EQ
t [X]

]
= sup

Q∈Q
EQ[X].

Notice that supQ∈QEQ[Z ] < ∞ since for any r > 0,

sup
Q∈Q

EQ[Z ] ≤ r + sup
Q∈Q

EQ[|Z |I|Z |>r]

and, due to Q-uniformly integrability of Z , we may choose r to 
make the second term on the right-hand side sufficiently small. 
Since

sup
Q∈Q

EQ
[

ess sup
Q∈Q

EQ
t [Z ]

]
= sup

Q∈Q
EQ[Z ] < ∞,

the events An = {ess supQ∈QEQ
t [Z ] ≥ n} satisfy supQ∈QQ(An) →

0 as n → ∞. For any Q ∈Q and rn > 0,

sup
Q∈Q

EQ
[

ZIAn

]
≤ rn sup

Q∈Q
Q(An) + sup

Q∈Q
EQ

[
|Z |I{|Z |>rn}

]
. (27)

Consider a sequence (rn)∞n=1 such that rn → ∞ and
rn supQ∈QQ(An) → 0 as n → ∞. Applying this sequence to (27), 
taking the supremum over Q and letting n → ∞ proves the state-
ment of the lemma. �

The following theorem says that if the conditional monetary 
risk measures ρt defining Rt in (19) satisfy natural and verifiable 
bounds, then statements in Theorem 1 hold also in this setting.

Theorem 4. Let Q be a set of probability measures satisfying proper-
ties (i)-(iii) of Definition 2. Consider sequences (Xo

t )T
t=1 , (Xr

t )
T
t=1 , with 

Xo
t , Xr

t ∈ L1(Ft , Q) for t ∈ {1, . . . , T } for every Q ∈ Q, RT = 0 and 
Rt ∈ L1(Ft , Q) for t ∈ {0, . . . , T − 1} for every Q ∈ Q. Let Xt :=
Xo

t − Xr
t and let (Rt)

T
t=0 be defined by (19). Assume that 

∑T
t=1 |Xt | is 

Q-uniformly integrable. If the conditional monetary risk measures ρt in 
(19) satisfy either

|ρt(Z)| ≤ Kρ ess sup
Q∈Q

EQ
t [|Z |] for some Kρ ∈ (1,∞) (28)

or

P ∈ Q and |ρt(Z)| ≤ KρE
P
t [|Z |] for some Kρ ∈ (1,∞), (29)

then (Ht)
T
t=0 defined in (3) satisfies that ess supt=1,...T Ht is bounded by 

a Q-uniformly integrable random variable. In particular, the statements 
in Theorem 1 hold.
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Proof of Theorem 4. Set

ST := 0, St := ess sup
Q∈Q

EQ
t

[ T∑
u=t+1

|Xu|
]

for t = 0,1, . . . , T − 1.

By Lemma 1 all variables St are Q-uniformly integrable. We will 
show by induction that, for all t , there exist constants K V ,t, K R,t ∈
(1, ∞) such that

|Vt | ≤ K V ,t St, |Rt | ≤ K R,t St (30)

from which the statement of the theorem follows. Note that (30)
trivially holds for t = T . In order to show the induction step, as-
sume that (30) holds with t replaced by t + 1. If (29) holds, then

|Rt | = |ρt(−Xt+1 − Vt+1)|
≤ KρE

P
t [|Xt+1| + |Vt+1|]

≤ KρE
P
t [|Xt+1| + K V

t+1 St+1]
≤ Kρ K V ,t+1 ess sup

Q∈Q
EQ

t [|Xt+1| + St+1]

= Kρ K V ,t+1 St,

where the law of iterated expectations for Q-uniformly integrable 
random variables (Lemma 1 in Riedel (2009)) was used in the last 
step. If (28) holds, then similarly

|Rt | = |ρt(−Xt+1 − Vt+1)|
≤ KρE

Q
t [|Xt+1| + |Vt+1|]

≤ KρE
Q
t [|Xt+1| + K V ,t+1 St+1]

≤ Kρ K V ,t+1 ess sup
Q∈Q

EQ
t [|Xt+1| + St+1]

= Kρ K V ,t+1 St .

We also note that

Ct = ess sup
Q∈Q

EQ
t [(Rt − Xt+1 − Vt+1)

+]

≤ |Rt | + ess sup
Q∈Q

EQ
t [|Xt+1| + |Vt+1|]

≤ (Kρ + 1)K V ,t+1 St

which implies |Vt | ≤ |Rt | + Ct ≤ (2Kρ + 1)K V ,t+1 St . We have 
proved that (30) holds, i.e. the induction step. By the induction 
principle (30) holds for all t and the proof is complete. �
3. Construction of sets of probability measures for multiple prior 
optimal stopping

Our aim here is to define a useful set Q of parametric probabil-
ity measures that enables the analysis of a wide range of models 
and provides solutions to the multiple-prior optimization problem 
(7). In particular, the set Q constructed below will imply that op-
timization over Q can be reduced to optimization over the set of 
parameters, see Theorem 6 for the precise statement.

We will define a useful set of probability measures, satisfying 
all the requirements for applying key results on multiple prior 
optimal stopping, by defining the corresponding set of density pro-
cesses (Dλ,t)

T
t=0 of the form

Dλ,0 := 1, Dλ,t :=
t∏

s=1

∫
�

f s(θ)λs(dθ) for t ∈ {1, . . . , T },
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where � is a set of parameters and ( f s)
T
s=1 and (λs)

T
s=1 are defined 

below.
On (�, FT ), a probability measure Q absolutely continuous 

with respect to P corresponds to a Radon-Nikodym derivative 
DT ∈ L1(FT , P ) and together with the filtration (Ft)

T
t=0 give rise 

to the density process (Dt)
T
t=0 given by Dt = EP

t [DT ]. Similarly, 
a set Q of probability measures, absolutely continuous with re-
spect to P , corresponds to the set DT ⊂ L1(FT , P ) of Radon-
Nikodym derivatives. Write DT for the L1 closure of DT and let 
Q be the set of probability measures corresponding to the Radon-
Nikodym derivatives DT . For two probability measures Q(1), Q(2)

with Radon-Nikodym derivatives D(1)
T , D(2)

T the Radon-Nikodym 
derivative of the pasting of Q(1), Q(2) in τ is

D(1)
τ

D(2)
T

D(2)
τ

.

The following result is both of independent interest and will be 
relevant for constructing stable sets of probability measures, de-
pending on a parameter, that are useful for multiple prior optimal 
stopping problems.

Theorem 5. Given (�, F , (Ft)
T
t=0, P ), let Q be a set of probability 

measures equivalent to P that is convex and stable under pasting. Let 
DT be the corresponding set of Radon-Nikodym derivatives and let DT

be the L1 closure of DT . Let Dt := {Dt = EP
t [DT ] : DT ∈ DT } and 

Dt := {Dt =EP
t [DT ] : DT ∈DT }. Then

(i) The set Q corresponding to DT is convex and stable under pasting.
(ii) For each t, Dt is convex and closed in L1(FT , P ).
(iii) If DT is P -uniformly integrable, then for each t, Dt is weakly 

relatively compact in L1(FT , P ) and Dt is weakly compact in 
L1(FT , P ).

(iv) If DT is P -uniformly integrable, then, for any Ft+1-measurable Q-
uniformly integrable random variable Yt+1,

ess inf
Q∈Q

EQ
t

[
Yt+1

] = ess inf
Q∈Q

EQ
t

[
Yt+1

]
and similarly with ess inf replaced by ess sup.

Remark 4. Since EP [D] = 1 for D ∈DT (and similarly for DT ), by 
Lemma 4.10 in Kallenberg (2002), DT is uniformly integrable if

lim
P (A)→0

sup
Q∈Q

Q(A) = 0

(and similarly for DT ).

Proof of Theorem 5. For both statements (i) and (ii), it is straight-
forward to verify that convexity holds so we only prove the re-
maining claims.

To prove (i), consider any stopping time τ and D(1)
T , D(2)

T ∈
DT . Take (D(1)

n,T )n≥1, (D(2)
n,T )n≥1 ⊂ DT such that D(1)

n,T → D(1)
T and 

D(2)
n,T → D(2)

T in L1. Since D(1)
n,T , D(2)

n,T ∈ DT and Q is stable un-
der pasting, the Radon-Nikodym derivative of the pasting of 
D(1)

n,T , D(2)
n,T ∈ DT in τ is also an element in DT . Therefore, state-

ment (i) is proved if we show that there exists a subsequence (ni)

such that

D(1)
ni ,τ

D(2)
ni ,T

D(2)
ni ,τ

→ D(1)
τ

D(2)
T

D(2)
τ

in L1. (31)

Since, for k = 1, 2,
49
EP [|D(k)
n,T − D(k)

T |] = EP [EP
τ [|D(k)

n,T − D(k)
T |]]

≥ EP [|EP
τ [D(k)

n,T − D(k)
T ]|]

= EP [|D(k)
n,τ − D(k)

τ |],
we see that D(k)

n,τ → D(k)
τ in L1. Since convergence in L1 implies 

convergence in probability which in turn implies a.s. convergence 
along some subsequence (ni), we have

D(1)
ni ,τ

D(2)
ni ,T

D(2)
ni ,τ

→ D(1)
τ

D(2)
T

D(2)
τ

a.s.,

where we used the fact that D(2)
ni ,τ and D(2)

τ are strictly positive a.s. 
Since the terms of the sequence on the left-hand side are positive 
and all have expected values equal to 1, this sequence is uniformly 
integrable. Therefore, by Proposition 4.12 in Kallenberg (2002), the 
a.s. convergence can be replaced by convergence in L1, i.e. (31)
holds.

We now prove (ii). Consider an L1 convergent sequence 
(Dn,t)n≥1 ⊂ Dt with limit Dt . We will prove that Dt ∈ Dt . Take 
an arbitrary D ′

T ∈DT and let D ′
t :=EP

t [D ′
T ]. Set

Dn,T := Dn,t
D ′

T

D ′
t
, DT := Dt

D ′
T

D ′
t
.

By construction (Dn,T )n≥1 ⊂ DT and Dn,T → DT in L1. Hence, 
DT ∈ DT . Since Dt =EP [DT ] ∈ Dt and Dn,t → Dt in L1 the proof 
of (ii) is complete.

We now prove (iii). From (i) and (ii) follow that Q is convex 
and stable under pasting and, for each t , Dt is a convex and closed 
subset of L1(FT , P ). A convex and closed subset of L1(FT , P ) is 
weakly closed (Theorem A.63 in Föllmer and Schied (2016)). A 
bounded and uniformly integrable subset of L1(FT , P ) is weakly 
relatively compact (Theorem A.70 in Föllmer and Schied (2016)). 
Each Dt is a bounded subset of L1(FT , P ):

sup
Dt∈Dt

‖Dt‖L1 = sup
Dt∈Dt

EP [Dt] = 1.

Hence, weak relative compactness of Dt follows if Dt is uniformly 
integrable. Similarly for Dt . Moreover, Dt is uniformly integrable if 
DT is uniformly integrable, as the following argument shows. By 
Lemma 4.10 in Kallenberg (2002), since supD∈DT

EP [D] = 1, DT is 
P -uniformly integrable if and only if limP (A)→0 supD∈DT

EP [D; A]
= 0. If the latter holds, then in particular limr→∞ supD∈DT

EP [D;
EP

t [D] > r] = 0 which is equivalent to

lim
r→∞ sup

D∈DT

EP [EP
t [D];EP

t [D] > r] = 0.

Hence, Dt is P -uniformly integrable if DT is P -uniformly inte-
grable. By the same argument, Dt is uniformly integrable if DT

is uniformly integrable. However, DT is uniformly integrable since 
it is the closure of a uniformly integrable set in L1. Hence, Dt is 
weakly compact in L1(FT , P ) for every t . The proof of (iii) is com-
plete.

It remains to prove (iv). Notice first that

ess inf
Q∈Q

EQ
t [Yt+1] = ess inf

D∈DT

1

Dt
EP

t [DYt+1]

= ess inf
D∈DT

1

Dt
EP

t [Dt+1Yt+1].

Take D∗ ∈ DT and (Dn) ⊂ DT with Dn → D∗ in L1. Therefore, 
Dn

P→ D∗ which implies DnYt+1
P→ D∗Yt+1. Moreover, Dn,t

P→ D∗
t

since Dn,t =EP
t [Dn], D∗

t =EP
t [D∗] and
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EP [|EP
t [Dn] −EP

t [D∗]|] ≤EP [EP
t [|Dn − D∗|]]

=EP [|Dn − D∗|] → 0

and convergence in L1 implies convergence in probability. Since 
Yt+1 is Q-uniformly integrable, {DYt+1 : D ∈ DT } is P -uniformly 
integrable. Therefore, DnYt+1

P→ D∗Yt+1 implies DnYt+1 → D∗Yt+1

in L1. This further implies that EP
t [DnYt+1] →EP

t [D∗Yt+1] in L1

since

EP [|EP
t [DnYt+1] −EP

t [D∗Yt+1]|]
≤EP [EP

t [|DnYt+1 − D∗Yt+1|]]
= EP [|DnYt+1 − D∗Yt+1|] → 0.

In particular,

1

Dn,t
EP

t [DnYt+1] P→ 1

D∗
t
EP

t [D∗Yt+1]

which implies that there exists a subsequence (ni) such that

1

Dni ,t
EP

t [Dni Yt+1] a.s.→ 1

D∗
t
EP

t [D∗Yt+1].

Therefore, for any D∗ ∈DT ,

1

D∗
t
EP

t [D∗Yt+1] ≥ ess inf
D∈DT

1

Dt
EP

t [DYt+1].

The same argument shows the corresponding identity for ess sup. 
The proof is complete. �

Consider a parameter set � which is taken to be a subset of 
a complete and separable metric space. For each t ∈ {1, . . . , T }, let 
ft ≥ 0 be a measurable function on � × � such that ω �→ ft(ω, θ)

is Ft -measurable for each θ ∈ �. It is assumed that the Ft -
measurable random variables ft(θ) satisfy

ess inf
θ∈�

ft(θ) > 0 P -a.s. for t ∈ {1, . . . , T }, (32)

EP
t−1[ ft(θ)] = 1 for (t, θ) ∈ {1, . . . , T } × �. (33)

For each t ∈ {1, . . . , T }, let λt be an Ft−1-measurable random el-
ement in the space P(�) of probability measures on � equipped 
with the topology of weak convergence. Let �t be the set of all 
such random probability measures. For λt ∈ �t for all t , let

Dλ,T :=
T∏

t=1

∫
�

ft(θ)λt(dθ), Dλ,t := EP
t [Dλ,T ] for t < T . (34)

Notice that, due to properties (32) and (33), (Dλ,t)
T
t=0 is a positive 

P -martingale with EP [Dλ,t] = 1. Let

D f ,T :=
{ T∏

t=1

ft(θ) : θ ∈ �

}
, D̃ f ,T :=

{
Dλ,T : λt ∈ �t for all t

}

and let D f ,T be the L1-closure of D f ,T . For t = 0, 1, . . . , T − 1, let

D f ,t :=
{

Dt = EP
t [DT ] : DT ∈ D f ,T

}
and let D̃ f ,t and D f ,t be defined analogously.

Definition 4. Denote by Q�, Q̃�, Q� the sets of probability 
measures corresponding to the sets D f ,T , D̃ f ,T , D f ,T of Radon-
Nikodym derivatives with respect to P .

λt

th
re

Th
De

(
(i
(ii

(iv

Pr
an
Ra
pr
D̃

D

Co
c ∈
D

D

an

D

W
D
Th

D

an

I{
50
Notice that Q� corresponds to only considering measures 
(·) = 1{θ}(·) in (34). We will show in Theorem 6 that Q� has 
e properties assumed in Theorem 1. We also show that Theo-
m 1 holds also for Q̃� .

eorem 6. Consider the sets Q�, Q̃�, Q� and D f ,T , D̃ f ,T , D f ,T in 
finition 4.

i) The sets Q̃� and Q� are convex and stable under pasting.
i) For every t ∈ {1, . . . , T }, D f ,t is closed in L1(FT , P ).
i) If D̃ f ,T is P -uniformly integrable, then D̃ f ,t is weakly relatively 

compact in L1(FT , P ) and D f ,t is weakly compact in L1(FT , P )

for every t ∈ {0, . . . , T }.
) If D̃ f ,T is P -uniformly integrable, then, for any Ft+1-measurable 
Q̃�-uniformly integrable random variable Yt+1,

ess inf
Q∈Q�

EQ
t

[
Yt+1

] = ess inf
Q∈Q̃�

EQ
t

[
Yt+1

]
= ess inf

Q∈Q�

EQ
t

[
Yt+1

]
= ess inf

θ∈�
EP

t

[
Yt+1 ft+1(θ)

]
and similarly with ess inf replaced by ess sup.

oof of Theorem 6. We first prove (i). We first prove convexity 
d stability under pasting for the set of probability measures with 
don-Nikodym derivatives DT ∈ D̃ f ,T with respect to P . We first 
ove convexity. Note that for a density process (Dt)

T
t=0 with DT ∈

f ,T ,

t+1

Dt
=

∏t+1
s=1

∫
�

f s(θ)λs(dθ)∏t
s=1

∫
�

f s(θ)λs(dθ)
=

∫
�

ft+1(θ)λt+1(dθ).

nsider density processes D(1), D(2) with D(1)
T , D(2)

T ∈ D̃ f ,T , let 
(0, 1) and set D(3) := cD(1) + (1 − c)D(2) . Then

(3)
t+1
(3)
t

= 1

D(3)
t

(
cD(1)

t

∫
�

ft+1(θ)λ
(1)
t+1(dθ)

+ (1 − c)D(2)
t

∫
�

ft+1(θ)λ
(2)
t+1(dθ)

)

=
∫
�

ft+1(θ)

(
1

D(3)
t

(
cD(1)

t λ
(1)
t+1 + (1 − c)D(2)

t λ
(2)
t+1

)
(dθ)

)

d the convexity property follows since

1
(3)
t

(
cD(1)

t λ
(1)
t+1 + (1 − c)D(2)

t λ
(2)
t+1

)
∈ �t+1.

e now prove stability under pasting. Consider density processes 
(1), D(2) with D(1)

T , D(2)
T ∈ D̃ f ,T , and let τ be a stopping time. 

en

(3)
t :=

t∏
s=1

(
I{s ≤ τ } D(1)

s

D(1)
s−1

+ I{s > τ } D(2)
s

D(2)
s−1

)

=
t∏

s=1

∫
�

f s(θ)
(
I{s ≤ τ }λ(1)

s + I{s > τ }λ(2)
s

)
(dθ)

d since I{s ≤ τ }, I{s > τ } are Fs−1-measurable,

s ≤ τ }λ(1)
s + I{s > τ }λ(2)

s ∈ �s,
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which proves stability under pasting. Theorem 5(i) completes the 
proof of (i).

Notice that (ii) follows immediately from (i) together with The-
orem 5(ii). Similarly, (iii) follows immediately from (i) together 
with Theorem 5(iii).

It remains to prove (iv). The two last identities in (iv) follow 
from the definition of Q� and Q̃�:

ess inf
Q∈Q̃�

EQ
t

[
Yt+1

] = ess inf
λt+1∈�t+1

EP
t

[
Yt+1

∫
�

ft+1(θ)λt+1(dθ)

]

= ess inf
θ∈�

EP
t

[
Yt+1 ft+1

(
θ
)]

.

The first identity follows from Theorem 5(iv). The proof is com-
plete. �

As noted in Riedel (2009), if the sample space � is finite, weak 
compactness follows if the set of priors is weakly closed. This al-
lows us to find a simpler set of measures than Q� in Theorem 6.

Theorem 7. Consider a filtered probability space (�, (Ft)
T
t=0, P ), where 

� is finite. Let � be a compact set. For each t = 1, . . . , T , let ft ≥ 0
be a measurable function on � × � such that ω �→ ft(ω, θ) is Ft -
measurable for each θ ∈ �, such that θ �→ ft(ω, θ) is continuous for 
each ω ∈ �, and such that (32) and (33) hold. Then the set

Dα
f ,T :=

{ T∏
t=1

ft(αt) : (αt)
T
t=1 is �-valued and predictable

}

of Radon-Nikodym derivatives is uniformly bounded and weakly com-
pact in L1(FT , P ). The set of measures Qα

� corresponding to Dα
f ,T is 

stable under pasting.

Proof. Write � = {ω1, . . . , ωn}. Without loss of generality, assume 
that P (ωk) > 0 for all k. Consider any sequence (α(i))∞i=1 of pre-

dictable processes α(i) = (α
(i)
t )T

t=1. We may write α(i) : � → �T . 
Since �T is a compact set and � is finite, there exists some sub-
sequence α(ni) and some α : � → �T such that α(ni)(ωk) → α(ωk)

for each k = 1, . . . , n. α is also predictable since α(ni) → α a.s. 
Hence, by the continuity of ( ft)

T
t=1, for any sequence of the form 

(
∏T

t=1 ft(α
(i)
t ))i , there exists an almost surely convergent subse-

quence 
∏T

t=1 ft(α
(ni)
t ) → ∏T

t=1 ft(αt). This ensures almost sure clo-
sure of Dα

f ,T , which in turn implies weak closure. Hence the set 
is weakly compact. Uniform boundedness follows since, for each 
of the finitely many pairs (t, ωk), ft(ωk, ·) is a continuous func-
tion on a compact set and therefore bounded. Hence, there exists 
K ∈ (0, ∞) such that DT < K for all DT ∈ Dα

f ,T . It remains to ver-

ify stability under pasting. Consider D(1)
T , D(2)

T ∈ Dα
f ,T , defined by 

the processes α(1), α(2) . Then, for any stopping time τ , the pro-
cess α(3) := (I{τ>t}α(1)

t + I{τ≤t}α(2)
t )T

t=1 is a predictable process, 
and D(3)

T ∈ Dα
f ,T defined by α(3) is the pasting of D(1)

T and D(2)
T

in τ . �
Remark 5. We now explain how the objects ft(θ) relate to para-
metric models for stochastic processes. Consider a d-dimensional 
stochastic process (Xt)

T
t=1, and let Ft = σ(X1, . . . , Xt). Let

Ft(x) := P (Xt ≤ x | Ft−1) and Ft(x, θ) := Qθ (Xt ≤ x | Ft−1),

θ ∈ �.

Assume that P and Qθ are equivalent for all θ ∈ �. Let ft(θ) :=
dFt (·,θ)

dFt
(Xt), where dG

dH is interpreted as the Radon-Nikodym deriva-
tive (if it exists) between two distribution functions. Then
51
dQθ

dP
=

T∏
t=1

ft(θ).

If � = {ω1, . . . , ωn}, then the situation simplifies. Let {x1, . . . xn} be 
the set in which Xt takes values. If we define the probability mass 
functions

pt(xi) := P (Xt = xi | Ft−1) and pt(xi, θ) := Qθ (Xt = xi | Ft−1),

then ft(θ) = pt (Xt ,θ)
pt (Xt )

. Therefore, in order to use Theorem 7 we need 
only ensure equivalence between the measures for all parameters 
under consideration and to verify that θ �→ pt(xi, θ) is continuous 
on �. As we will see in Section 4, we need not necessarily concern 
ourselves with the exact form of ft(θ).

Remark 6. It might be useful to discuss the numerical procedure 
to calculate Vt in a Markovian setting. Consider a d-dimensional 
Markov chain (Xt)

T
t=1, i.e. a d-dimensional stochastic process satis-

fying the Markov property

P (Xt+1 ≤ x | Xt, . . . , X1) = P (Xt+1 ≤ x | Xt) =: F (x, Xt, t).

Let the filtration be generated by (Xt)
T
t=1, Ft = σ(X1, . . . , Xt) and, 

for simplicity, let the residual cash flow be given by (Xt,1)T
t=1, i.e. 

the first component of (Xt)
T
t=1. Assume also that (Xt)

T
t=1 has the 

Markov property with respect to all Qθ ∈Q�:

Qθ (Xt+1 ≤ x | Xt, . . . , X1) =Qθ (Xt+1 ≤ x | Xt) =: F (x, Xt, t, θ).

Assume that the conditions in Theorem 6 hold, and choose Q� as 
our set of priors. By Theorem 6, we have that

ess sup
Q∈Q�

EQ
t

[
g(Xt+1)

] = ess sup
θ∈�

EQθ
[

g(Xt+1)
]

= ess sup
θ∈�

∫
g(x)dF (x, Xt, t, θ)

for any Q�-uniformly integrable random variable of the form 
g(Xt+1), where g : Rd → R. It can be shown by induction that if 
the risk measure ρt depends only on the Ft -conditional law of the 
input, then Vt is some function of Xt . We write Vt =: vt(Xt). The 
setting in the example in Section 4 satisfies the above assump-
tions, with state space determined by (Nt)

2
t=0. The simplest case 

to explore is the one where the sample space is finite. Assume 
Xt can take values in {x1, . . . xn}. The recursion is then performed 
backwards in the following way. At time t , assume we have cal-
culated vt+1(xi) for each i = 1, . . . , n. Note that V T = 0, so we 
start this procedure at T − 1. We then calculate vt(xi) for each 
i = 1, . . . , n by performing the following calculations: We first cal-
culate R(i)

t = ρt(−Xt+1,1 − Vt+1) = ρt(−Xt+1,1 − vt+1(Xt+1)) with 
respect to the law of Xt+1,1 + vt+1(Xt+1) conditional on Xt = xi . 
We then solve the optimization problem

vt(xi) = ess sup
θ∈�

EQθ [R(i)
t ∧ (Xt+1,1 + vt+1(Xt+1)) | Xt = xi]

(35)

We continue with this recursion backward in time until we reach 
t = 0. The potential problems with this method are twofold. Firstly, 
solving (35) may be nontrivial. Secondly, even if the state space is 
finite, it tends to grow exponentially with the dimension d so the 
number of required calculations may become too large. To address 
the second problem, one may need to make approximations of the 
functions vt .
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4. Life insurance example

Consider a simple life insurance contract issued for a cohort 
of size N0 at time 0. Let the process (Nt)

2
t=0 describe the evolu-

tion of the cohort size at times 0, 1, 2. Suppose that each contract 
pays out 2 monetary units at the end of each year the policy-
holder is alive and 3 upon the death of the policyholder. The 
aggregate liability cash flow (Xo

1, Xo
2) is fully non-hedgeable so 

(Xr
1, X

r
2) = (0, 0), and (X1, X2) = (Xo

1, Xo
2) is given by

X1 = 2N1 + 3(N0 − N1) = 3N0 − N1,

X2 = 2N2 + 3(N1 − N2) = 3N1 − N2.

We assume that the probability of death for a member of the co-
hort is p ∈ (0, 1) for each of the two years, and that death events 
are independent. This means that LP (Nt | Nt−1) = Bin(Nt−1, 1 − p)

for t = 1, 2, where the superscript P means that the conditional 
distribution is with respect to P .

For the valuation procedure, we chose ρt = V@Rt,1−β . Since 
(Nt)

2
t=0 takes values in a finite set, (Nt)

2
t=0 can be defined on a fi-

nite filtered probability space with filtration generated by (Nt)
2
t=0. 

Consider probability measures Qθ such that LQθ (Nt | Nt−1) =
Bin(Nt−1, 1 − θ), for t = 1, 2, and consider the set Q[θ l,θu ] = {Qθ :
θ ∈ [θ l, θu]}, where 0 < θ l ≤ θu < 1. A natural interpretation could 
be that [θ l, θu] represents an uncertainty region for the probabil-
ity of death within the cohort, while p represents a point estimate 
of the same probability. Equivalence between measures in Q[θ l ,θu ]
and P is obvious. Furthermore, note that the probability mass 
function of Bin(n, θ) is continuous in the parameter θ . However, 
Q[θ l,θu ] is not stable under pasting. As shown in Theorem 7, a 
weakly compact set of probability measures that is stable under 
pasting is constructed as follows. Consider a predictable process 
α = (αt)

2
t=1 taking values in [θ l, θu]. Then define Qα by the fol-

lowing conditional laws of (Nt)
2
t=0:

LQα (Nt | Ft−1) = Bin(Nt−1,αt).

The set Qα of all such measures Qα is stable under pasting and 
weakly compact. Intuitively, instead of having a constant mortal-
ity probability, we have a variable one, selected randomly at the 
beginning of each year.

We now compute the residual liability value V 0 for the choice 
Q = Qα . Denote by qβ(n, r) the β-quantile of Bin(n, r). Using the 
fact that LP (N1 − N2 |F1) = Bin(N1, p),

(X2 + V 2) ∧ R1 = (3N1 − N2) ∧ R1

= (3N1 − N2) ∧ V@R1,1−β(N2 − 3N1)

= 2N1 + (N1 − N2) ∧ V@R1,1−β(N2 − N1)

= 2N1 + (N1 − N2) ∧ qβ(N1, p).

Note that LQθ (N1 − N2 |F1) = Bin(N1, θ), and V 1 is given by

V 1 = ess sup
Q∈Qα

EQ
1 [(X2 + V 2) ∧ R1]

= ess sup
θ∈[θ l,θu ]

EQθ

1 [(3N1 − N2) ∧ R1]

= 2N1 + ess sup
θ∈[θ l,θu ]

N1∑
n=0

(
N1

n

)
(1 − θ)N1−nθn(n ∧ qβ(N1, p))

(36)

= 2N1 +
N1∑

n=0

(
N1

n

)
(1 − θu)N1−n(θu)n(n ∧ qβ(N1, p)).
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The last equality follows from the fact that (36) is an increasing 
function of θ for any value of N1. Note that

X1 + V 1 = 3N0 + N1

+
N1∑

n=0

(
N1

n

)
(1 − θu)N1−n(θu)n(n ∧ qβ(N1, p))

=: y1(N1),

is increasing in N1. Completely analogously to the derivation of V 1,

V 0 = ess sup
Q∈Qα

EQ
0 [(X1 + V 1) ∧ R0] (37)

= ess sup
θ∈[θ l,θu ]

N0∑
n=0

(
N0

n

)
θ N0−n(1 − θ)n(y1(n)∧ y1(qβ(N0,1 − p)))

=
N0∑

n=0

(
N0

n

)
(θ l)N0−n(1 − θ l)n(y1(n) ∧ y1(qβ(N0,1 − p))).

Hence, the measure Q that solves the optimization problem in 
(37) corresponds to the (deterministic) process (αt)

2
t=1 given by 

α1 = θ l and α2 = θu .

5. Non-life insurance example

In this section we consider an application illustrating the gen-
eral theory presented up to this point, in particular we illustrate 
the need for the construction in Section 3. The model we consider 
is of the kind commonly used for non-life claims reserving with 
data in the form of claims triangles. The model is compatible with 
the classical chain-ladder method, see e.g. Mack (1993).

We consider a setting where the liability cash flow is Gaussian 
and independent of traded asset prices, both under P and under 
any Qθ ∈Q� . We consider two cases:

Case 1 In this case we assume that Q = Q� . Recall that Q�

is not stable under pasting: this decision maker does not 
consider probability measures corresponding to switching be-
tween probability measures in Q� depending on information 
revealed over time.

Case 2 In this case we assume that Q = Q̃� . This decision maker 
exhibits a behavior that is time consistent. Notice that Q̃� is 
considerably larger than Q� ⊂ Q̃� .

The liability cash flow is assumed to be fully non-hedgeable 
by financial assets and consequently we take Xr = 0 which means 
that X = Xo . In order to make the illustration clear, we choose 
T = 2. Let Ci,k := Corig

i,k /vi denote the exposure adjusted cumulative 
amount of payments to policyholders for accident year i, where vi

is a known exposure measure for accident year i. The evolution of 
the exposure adjusted cumulative amounts is assumed to satisfy

Ci,1 = βP
0 + σP

0√
vi

εi,1, Ci,2 = βP
1 Ci,1 + σP

1√
vi

εi,2,

where all εi,k are independent and N(0, 1) with respect to P . Sup-
pose that we are uncertain about the parameter values and want 
to consider probability measures Qθ , θ = (β0, σ0, β1, σ1), such that

Ci,1 = β0 + σ0√
vi

εθ
i,1, Ci,2 = β1Ci,1 + σ1√

vi
εθ

i,2,

where all εθ
i,k are independent and N(0, 1) with respect to Qθ . We 

choose a parameter set � ⊂ (0, ∞)4 that describes the uncertainty 
about the parameter values.
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Suppose that Ci,k with i + k ≤ 0 are observed at time 0 and 
that Ci,k with i + k = t , t = 1, 2, are observed at times t > 0 and 
therefore contain cash flows that are part of the outstanding li-
ability to the policyholders. The (incremental) liability cash flow 
X = (X1, X2) is given by

X =
(

v−1(C−1,2 − C−1,1) + v0C0,1, v0(C0,2 − C0,1)

)
.

Notice that C−1,1 is here considered to be a known constant. Direct 
computations give

EP [X1 + X2] = v−1(β
P
1 − 1)C−1,1 + v0β

P
0 βP

1 ,

EQθ [X1 + X2] = v−1(β1 − 1)C−1,1 + v0β0β1.

The filtration is given by the σ -algebras F0 = {∅, �}, F1 =
σ(ε−1,2, ε0,1) and F2 = σ(ε0,2) ∨ F1. In order to have the cor-
rect evolution with respect to Qθ of the cumulative amounts it is 
seen that we must require that

Qθ (ε−1,2 ∈ · | F0) ∼ N(μ−1,2,σ
2−1,2),

μ−1,2 = β1 − βP
1

σP
1 /

√
v−1

C−1,1, σ−1,2 = σ1

σP
1

,

Qθ (ε0,1 ∈ · | F0) ∼ N(μ0,1,σ
2
0,1),

μ0,1 = β0 − βP
0

σP
0 /

√
v0

, σ0,1 = σ0

σP
0

,

Qθ (ε0,2 ∈ · | F1) ∼ N(μ0,2,σ
2
0,2),

μ0,2 = β1 − βP
1

σP
1 /

√
v0

C0,1, σ0,2 = σ1

σP
1

.

This corresponds to, in the setting of Section 3, choosing

f1(θ) = ϕ(ε−1,2;μ−1,2,σ
2−1,2)ϕ(ε0,1;μ0,1,σ

2
0,1)

ϕ(ε−1,2;0,1)ϕ(ε0,1;0,1)
, (38)

f2(θ) = ϕ(ε0,2;μ0,2,σ
2
0,2)

ϕ(ε0,2;0,1)
,

where ϕ(x; μ, σ 2) denotes the density function of N(μ, σ 2). By 
Remark 4, the set D̃ f ,2 is P -uniformly integrable if

lim
P (A)→0

sup
Q∈Q̃�

Q(A) = 0

which holds here since σP
k /σk and |βk − βP

k | both take values in 
bounded intervals bounded away from 0. The sets A ∈ F2 are of 
type {(ε−1,2, ε0,1, ε0,2) ∈ B} for measurable sets B ⊂ R3 such that 
P ((ε−1,2, ε0,1, ε0,2) ∈ B) → 0. Therefore, it follows from Theorem 6
that the set Q̃� in Definition 4 satisfies the requirements for mul-
tiple prior optimal stopping. In particular, Theorem 1 holds with 
Q = Q̃� .

� can be chosen to reflect parameter uncertainty. To illustrate 
how such a choice may be implemented, consider the regression 
estimators from Lindholm et al. (2017) based on data from acci-
dent years i = i0, . . . , −1:

β̂P
0 =

∑−1
i=i0

vi Ci,1∑−1
i=i0

vi
,

̂

(σP
0 )2 = 1

−i0 − 1

−1∑
i=i0

vi(Ci,1 − β̂P
0 )2,

β̂P
1 =

∑−2
i=i0

vi Ci,1Ci,2∑−2
i=i0

viC2
i,1

,

̂

(σP
1 )2 = 1

−i0 − 2

−2∑
i=i0

vi(Ci,2 − β̂P
1 Ci,1)

2.
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Here i0 denotes the index of the first accident year observed. These 
estimators are unbiased and uncorrelated. We now proceed with a 
numerical illustration, with parameter values (βP

0 , σP
0 , βP

1 , σP
1 ) =

(2/3, 1/5, 3/2, 1/5), i0 = −10, and vi = 1 for i = −10, . . . , 0. 
Based on these parameter values and a large number n of sim-
ulated independent standard normal εi, j , leading to n iid copies of 
C−10,1, . . . , C−1,1, C−10,2, . . . , C−2,2, we estimate (βP

0 , σP
0 , βP

1 , σP
1 )

n times. Fig. 1 presents scatter plots, which suggests that the 
iid vectors of estimators are approximately N4(μ, �)-distributed, 
where μ and � are the sample mean and sample covariance ma-
trix. We can therefore shape an approximative confidence region 
with confidence level p of the parameter values by the squared 
Mahalanobis distance as

� =
{

z ∈R4 : (z − μ)T�−1(z − μ) ≤ F −1
χ2(4)

(p)
}

=
{
μ + rLs ∈R4 : r2 ≤ F −1

χ2(4)
(p), s ∈ S3

}
,

where L is the (lower triangular) Cholesky decomposition of LLT =
�, Fχ2(4) is the distribution function of the χ2(4) and S3 is the 
unit sphere in R4. For the evaluation at time 1, only (β1, σ1) needs 
to be considered, leading to a set �β1,σ1 ⊂R2 satisfying that

{(0,0, β1,σ1) : (β1,σ1) ∈ �β1,σ1}
is the orthogonal projection of � onto the (β1, σ1) coordinate 
plane: β0 = σ0 = 0. Explicitly,

�β1,σ1 =
{

z ∈R2 : (z − μβ1,σ1)
T�−1

β1,σ1
(z − μβ1,σ1) ≤ F −1

χ2(4)
(p)

}
=

{
μβ1,σ1 + rLβ1,σ1 s ∈R2 : r2 ≤ F −1

χ2(4)
(p), s ∈ S1

}
,

where S1 is the unit sphere in R2, μβ1,σ1 is the subvector of the 
last two entries of μ and Lβ1,σ1 is the Cholesky decomposition of 
the submatrix �β1,σ1 of �. Similarly, to compute the upper bound 
of V 0 in (39), only (β0, β1) need to be considered, leading to a 
similar set �β0,β1 ⊂R2.

The left plot in Fig. 1 shows a scatted plot of 1000 iid esti-
mates of (βP

0 , βP
1 ) together with boundaries ∂�β0,β1 for p = 0.1

(blue) and for p = 0.9 (red). The right plot in Fig. 1 shows a scatted 
plot of 1000 iid estimates of (βP

1 , σP
1 ) together with boundaries 

∂�β1,σ1 for p = 0.1 (blue) and for p = 0.9 (red).
Let ρ0, ρ1 be conditional monetary risk measures defined in 

terms of conditional quantiles with respect to P , such as, for 
t = 0, 1, ρt = V@Rt,p or ρt = AV@Rt,p . In both cases, c := ρ0(eP1 ) =
ρ1(eP2 ) is a constant for an Ft+1-measurable ePt ∼ N(0, 1) and in-
dependent of Ft with respect to P . Then

R1 = ρ1(−X2) = ρ1(−EP
1 [X2] + VarP1 (X2)

1/2eP2 )

=EP
1 [X2] + VarP1 (X2)

1/2c

= v0(β
P
1 − 1)C0,1 + √

v0σ
P
1 c.

5.1. Case 1: computing upper and lower bounds for V 0

In this case Q = Q� does not satisfy the conditions of The-
orem 1 and therefore we can not compute V 0 by backward re-
cursion. However, upper and lower bounds for V 0 are easily com-
puted. From (8) we have the upper bound

V 0 ≤ sup
Q∈Q�

EQ[X1 + X2]

= sup
{

v−1(β1 − 1)C−1,1 + v0β0β1 : (β0,σ0, β1,σ1) ∈ �
}

=: V 0. (39)
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Fig. 1. Scatter plots of 1000 iid estimates of (βP
0 , βP

1 ) (left) and of (βP
1 , σP

1 ) (right), together with boundaries of the parameter regions �β0,β1 (left) and �β1,σ1 (right) for 
p = 0.1 (blue) and for p = 0.9 (red).
From (10) we have the lower bound

V 0 ≥ sup
Q∈Q�

inf
τ∈S1,T +1

EQ
0

[ τ−1∑
s=1

Xs + Rτ−1

]
=: V 0.

In the setting of Section 3, for each θ ∈ �, with V θ
T = Rθ

T = 0, we 
solve the backward recursion

Rθ
t = ρt(−Xt+1 − V θ

t+1),

V θ
t = Rθ

t −EQθ
t [(Rθ

t − Xt+1 − V θ
t+1)

+],
and then compute

V 0 = sup
θ∈�

V θ
0 .

Notice that V θ
t , Rθ

t corresponds to the quantities Vt , Rt in the spe-
cial case Q = {Qθ }. Computing V 0 is simpler than computing V 0
since the former involves just one optimization over the parameter 
set � rather than T nested optimizations for the latter.

We now demonstrate how V 0 is computed in the current Gaus-
sian setting. As shown above Rθ

1 = v0(β
P
1 − 1)C0,1 + √

v0σ
P
1 c

(which does not depend on θ ) and

Cθ
1 = EQθ

1

[(
ρ1(−X2) − X2

)+] = EQθ

1 [(a(θ, C0,1) − b(θ)eθ
2

)+],
where eθ

2 ∼ N(0, 1) with respect to Qθ and independent of F1, 
and

a(θ, C0,1) = −EQθ

1 [X2] +EP
1 [X2] + VarP1 (X2)

1/2ρ1(eP2 )

= v0(β
P
1 − β1)C0,1 + √

v0σ
P
1 c,

b(θ) = VarQθ

1 (X2)
1/2 = √

v0σ1.

Straightforward calculations show that

EQθ

1 [(a(θ, C0,1) − b(θ)eθ
2

)+] = a(θ, C0,1)�

(
a(θ, C0,1)

b(θ)

)

+ b(θ)ϕ

(
a(θ, C0,1)

b(θ)

)
=: g(θ, C0,1).

Consequently,

X1 + V θ
1 = X1 + Rθ

1 − Cθ
1

= v−1(β1 − 1)C−1,1 + √
v−1σ1ε

θ + √
v0σ

P
1 c
−1,2
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+ βP
1

(
v0β0 + √

v0σ1ε
θ
0,1

)

− g

(
θ, v0β0 + √

v0σ1ε
θ
0,1

)
= v−1(β

P
1 − 1)C−1,1 + √

v−1σ
P
1 ε−1,2 + √

v0σ
P
1 c

+ βP
1

(
v0β

P
0 + √

v0σ
P
1 ε0,1

)

− g

(
θ, v0β

P
0 + √

v0σ
P
1 ε0,1

)

from which Rθ
0 = ρ0(−X1 − V θ

1 ) can be estimated with arbitrary 
accuracy by simulating iid copies of X1 + V θ

1 with respect to P and 
computing the empirical estimate, and Cθ

0 =EQθ [(Rθ
0 − X1 −V θ

1 )+]
can be estimated similarly by simulating iid copies with respect 
to Qθ and approximating the expectation by the empirical mean. 
Finally,

V 0 = sup
θ∈�

(
Rθ

0 − Cθ
0

) = sup
θ∈∂�

(
Rθ

0 − Cθ
0

)
.

Table 1 shows numerical values for lower bounds V 0 and for up-
per bounds V 0. These values are based on v−1 = v0 = 1, C−1,1 =
βP

0 , ρt = V@Rt,q with q = 0.005, 0.01, 0.05, 0.10 and parameters 
sets � of varying size corresponding to r2 ≤ F −1

χ2(4)
(p) with p =

0.1, 0.5, 0.9. The main message of Table 1 is that the intervals 
(V 0, V 0) are very narrow for q small and therefore the upper 
bound V 0 is an accurate estimate of V 0 when q is small. Notice 
that the upper bound is both easily computed and has attractive 
theoretical properties.

5.2. Case 2: computing V 0 and an upper bound for V 0

In this case Q = Q̃� and the general lower bound V 0 coin-
cides with V 0 and therefore its computation by backward recur-
sion is somewhat involved. However, the upper bound is still fairly 
straightforward to compute. Notice that the lower bound computed 
for Case 1 is a lower bound for V 0 in the current Case 2 since 
Q� ⊂ Q̃� .

We begin by computing the upper bound using the law of it-
erated expectations, extended to the multiple prior setting, and 
Theorem 6:

V 0 = sup˜ EQ
0 [X1 + X2]
Q∈Q�
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= sup
Q∈Q̃�

EQ
0 [X1 + ess sup

Q′∈Q̃�

EQ′
1 [X2]]

= sup
Q∈Q�

EQ
0 [X1 + ess sup

Q′∈Q�

EQ′
1 [X2]].

Notice that, with β1,min > 1,

ess sup
Q′∈Q�

EQ′
1 [X2] = v0(β1,max − 1)C0,1I{C0,1≥0}

+ v0(β1,min − 1)C0,1I{C0,1<0},

where β1,max := max{β1 : (β0, σ0, β1, σ1) ∈ �} and similarly for 
β1,min. Therefore,

V 0 = sup
(β0,σ0,β1,σ1)∈�

(
v−1(β1 − 1)C−1,1 + v0β0

+ v0(β1,max − 1)
(
β0 + σ0�(−β0/σ0)

)
− v0(β1,min − 1)σ0�(−β0/σ0)

)
R1 is calculated explicitly as above. Computing C1 means comput-
ing

C1 = ess sup
θ1∈∂�β1,σ1

g(θ1, C0,1),

where, with some abuse of notation, we consider g to be de-
fined for parameters θ1 ∈ �β1,σ1 rather than θ ∈ �. In practice, 
this means determining a function h : R → R such that h(Ck

0,1) =
maxθ1∈∂�β1,σ1

g(θ1, Ck
0,1) for suitably many simulated iid copies 

C1
0,1, . . . , C

n
0,1 of C0,1 and approximating C1 ≈ h(C0,1). Given the 

choice of h, R0 = ρ0(−X1 − R1 + C1) is approximated by its em-
pirical estimate based on simulated iid copies with respect to P
of

v−1(β
P
1 − 1)C−1,1 + √

v−1σ
P
1 ε−1,2 + √

v0σ
P
1 c

+ βP
1

(
v0β

P
0 + √

v0σ
P
1 ε0,1

)
− h

(
v0β

P
0 + √

v0σ
P
1 ε0,1

)

Similarly, C0 is approximated by, for each θ in a dense subset of 
∂�, simulating iid copies with respect to Qθ of

v−1(β1 − 1)C−1,1 + √
v−1σ1ε

θ
−1,2 + √

v0σ
P
1 c

+ βP
1

(
v0β0 + √

v0σ1ε
θ
0,1

)
− h

(
v0β0 + √

v0σ1ε
θ
0,1

)
,

estimating EQθ [(R0 − X1 − R1 + C1)
+] by the empirical mean, and 

computing the minimum of these expectations over the θ values. 
Finally, V 0 is estimated by the difference of the estimates of R0
and C0.

Table 1 shows numerical values for lower bounds V 0 and for 
upper bounds V 0 with the same parameter values as those con-
sidered for Case 1. Similarly to Case 1, the intervals (V 0, V 0) are 
very narrow for q small and therefore the upper bound V 0 is an 
accurate estimate of V 0 when q is small.

Declaration of competing interest

There are no competing interests.

Data availability

No data was used for the research described in the article.
55
Table 1
Case 1 and Case 2: lower and upper bounds (V 0, V 0) rounded to 
three decimals, where the size of the parameter uncertainty region 
is determined by r2 ≤ F −1

χ2(4)
(p) and ρt = V@Rt,q . Empirical esti-

mates were based on iid samples of size 105.

Case 1

p = 0.1 p = 0.5 p = 0.9

q = 0.10 (1.452,1.491) (1.562,1.624) (1.686,1.787)

q = 0.05 (1.473,1.491) (1.592,1.624) (1.730,1.787)

q = 0.01 (1.490,1.491) (1.618,1.624) (1.772,1.787)

q = 0.005 (1.491,1.491) (1.622,1.624) (1.780,1.787)

Case 2

p = 0.1 p = 0.5 p = 0.9

q = 0.10 (1.470,1.513) (1.595,1.666) (1.734,1.856)

q = 0.05 (1.491,1.513) (1.628,1.666) (1.786,1.856)

q = 0.01 (1.509,1.513) (1.656,1.666) (1.835,1.856)

q = 0.005 (1.511,1.513) (1.661,1.666) (1.845,1.856)
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