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In this paper, we consider the optimal per-claim reinsurance problem for an insurer who designs a 
reinsurance contract with multiple reinsurance participants. In contrast to using the value-at-risk as a 
short-term risk measure, we take the Lundberg exponent in risk theory as a risk measure for the insurer 
over a long-term horizon because the Lundberg upper bound performs better in measuring the infinite-
time ruin probability. To reflect various risk preferences of the reinsurance participants, we adopt a type 
of combined premium principle in which the expected premium principle, variance premium principle, 
and exponential premium principle are all special cases. Based on maximization of the insurer’s Lundberg 
exponent, the optimal reinsurance is formulated within a static setting, and we derive optimal multiple 
reinsurance strategies within a general admissible policies set. In general, these optimal strategies are 
shown to have non-piecewise linear structures, differing from conventional reinsurance strategies such as 
quota-share, excess-of-loss, or linear layer reinsurance arrangements. In some special cases, the optimal 
reinsurance strategies reduce to classical results.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Optimal risk control is a classical problem in economics and in-
surance. An early contribution to this problem can be traced back 
to the pioneering work by Borch in the 1960s (see Borch, 1962). 
In recent years, this problem has received increasing interest in 
the field of risk theory and insurance mathematics. For individ-
uals and institutes, there are a few methods for performing risk 
management in the financial market in practice. Insurance or rein-
surance is one of the most common and effective approaches. For 
example, individuals buy various insurance contracts to cede part 
or all of those risks expected to occur in their lifetime, and an in-
surer designs reinsurance contracts to cede business risks to one or 
several reinsurance companies. Because individuals and institutes 
may have different risk preferences (different risk measures), the 
optimal risk control (insurance or reinsurance) problem has been 
studied in many situations.

From the perspective of a single insurance company, risks are 
collected from policyholders. Because the risks are not perfectly 
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homogeneous and the number of policyholders might not be suf-
ficiently large, the insurer still has certain large aggregated risks 
in operations. To maintain a required solvency status for either a 
short-term or long-term horizon, the insurer usually takes rein-
surance contracts to cede part of their business risk to reinsur-
ance companies. The form of reinsurance usually depends on the 
reinsurance premium principle and the insurer’s risk metrics. For 
a short-term period (usually one year), the value-at-risk (VaR) 
is an important risk measure, and insurance regulators in many 
countries require this measure to calculate the solvency capital. 
Therefore, many researchers have studied optimal reinsurance ar-
rangements with VaR objectives or VaR constraints. For example, 
Cai and Tan (2007) considered optimal retention in stop-loss rein-
surance by minimizing the VaR. Cai et al. (2008) further derived 
the optimal ceded loss functions for a class of increasing convex 
ceded loss functions and found that the optimal risk-sharing strat-
egy can be in the form of stop-loss, quota-share, or change-loss 
arrangements under different cases. From a long-term viewpoint, a 
one-period model using VaR cannot reflect the dynamic process of 
a company’s surplus. Correspondingly, in dynamic models, the ruin 
probability is usually taken as an objective function for optimiza-
tion. For example, see Schmidli (2002) and Liang and Young (2018). 
However, in contrast to VaR, it is difficult to obtain an explicit ex-
pression for the ruin probability, even for classical risk models such 
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as the Cramér-Lundberg model. Fortunately, ruin theory tells us 
that for the Cramér-Lundberg risk model, the ruin probability has 
a very simple exponential upper bound, called the Lundberg upper 
bound. Therefore, the Lundberg exponent serves as an alternative 
risk measure of ruin probability to determine a company’s solvency 
capability over a long-term horizon. For details regarding ruin the-
ory and the Lundberg exponent, we refer the readers to Albrecher 
et al. (2020), Asmussen and Albrecher (2010), Asmussen and Rol-
ski (1994), Boxma and Mandjes (2021), Gerber (1979), Meilijson 
(2009), Liang and Young (2018), Rolski et al. (1999), and Schmidli 
(2002).

The optimal reinsurance problem is not usually approached by 
directly minimizing the ruin probability itself, because the ruin 
probability does not have an explicit expression in most situa-
tions, even in the classical risk model. Therefore, some scholars 
choose to minimize the Lundberg upper bound of the ruin prob-
ability as an alternative value function. In such cases, the Lund-
berg exponent is maximized by a possible reinsurance arrange-
ment. The optimal reinsurance problem has been studied in terms 
of Lundberg exponent maximization over the past few decades. 
For example, Centeno (1986) studied optimal proportional rein-
surance, excess-of-loss reinsurance, and their combination. Hipp 
and Schmidli (2004) and Centeno (2002) investigated the optimal 
proportional reinsurance problem for an insurer under the Cramér-
Lundberg model and a general renewal risk model, respectively. 
Hald and Schmidli (2004) studied optimal proportional reinsur-
ance under both the expected value and variance premium princi-
ples. Schmidli (2004) considered optimal excess-of-loss reinsurance 
under the Cramér-Lundberg model. Liang and Guo (2008) investi-
gated the proportional reinsurance and investment strategy under 
a jump-diffusion model. Thus far, most authors have focused on 
special types of reinsurance, such as quota-share, excess-of-loss, or 
layer reinsurance arrangements, i.e., reinsurance policies belong-
ing to a finite-dimensional reinsurance space. The optimal form 
of reinsurance based on Lundberg exponent maximization within 
a general infinite-dimensional admissible set has not been deter-
mined. To the best of our knowledge, only Gerber (1979) and Liang 
et al. (2020) have studied optimal risk-sharing among the class of 
plausible reinsurance treaties. Gerber (1979) showed that the op-
timal policy has the excess-of-loss form if the reinsurer takes the 
expected value premium principle. Liang et al. (2020) obtained the 
optimal reinsurance form (see Theorem 4.1) for the case in which 
the reinsurance company takes the mean-variance premium prin-
ciple.

Optimal reinsurance problems are primarily studied between 
two parties, for example, one insurer and one reinsurance com-
pany. However, to effectively disperse risk, it is common and nec-
essary to adopt multiple participants to share the whole risk. 
For an optimal insurance problem among multiple agents, Gerber 
(1979) considered the minimum premium problem under the ex-
ponential premium principle and showed that proportional insur-
ance is the optimal form. Ludkovski and Young (2009) investigated 
distortion risk measures and showed that stop-loss risk-sharing is 
optimal in some special cases. Embrechts et al. (2018) considered a 
two-parameter class of quantile-based risk measures, and Chen et 
al. (2021) studied a dynamic Pareto optimal risk-sharing problem 
for a group of insurers under the mean-variance criterion. Bernard 
et al. (2020) investigated the optimal insurance design for an in-
surer with multiple policyholders in terms of the utility indiffer-
ence premium principle and the objective of maximizing the insur-
er’s utility. However, thus far, few studies have considered multiple 
reinsurance companies involved in a single reinsurance contract; 
for example, see Chen and Yuen (2016), Meng et al. (2016a), and 
Meng et al. (2016b, 2017) for a continuous time model and Boonen 
and Ghossoub (2021), Boonen et al. (2021), and Cai et al. (2017)
for a static model. In these papers, it is assumed that one insurer 
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faces two or multiple reinsurance companies. Considering the dif-
ferent risk preferences of participants and the nonlinearity of risk 
measures, the optimal multiple reinsurance for a single contract 
remains an interesting but unsolved problem.

In this paper, we consider one insurer and any number of rein-
surance companies in a reinsurance contract. Meanwhile, we adopt 
a general premium principle with a combinational form, which 
was first introduced by Meng et al. (2019). Some classic principles, 
such as the expected value, variance, and exponential premium 
principles, can be applied as a special case of the general prin-
ciple. In this manner, we can allow different risk preferences for 
the insurer and each reinsurer. With the objective of maximizing 
the insurer’s Lundberg exponent, we study the optimal forms of 
risk shared by each participant, which exhibit non-piecewise lin-
ear structures. For all of the special cases considered, the optimal 
risk control policies can reduce to the classical results.

The remainder of this paper is organized as follows. We formu-
late the risk model and specify the multiple risk control optimiza-
tion problem in Section 2. Section 3 presents the optimal multiple 
reinsurance policy, which is shown to exhibit non-piecewise linear 
structures. In Section 4, we study the optimal reinsurance policy 
under a few classic premium principles. Finally, a numerical anal-
ysis and economic explanations are given in Section 5.

2. Model formulation

We start with a complete probability space (�, F , P ). Let E
and V denote the expectation and variance operations, respec-
tively, under the probability measure P .

For insurers, reinsurance is one of the most effective ways to 
perform risk management. In practice, the insurer usually trans-
fers the risks of a business line to one or multiple reinsurance 
companies. In this paper, we assume that there exist m reinsur-
ance companies to take the business risks ceded from the insurer 
in the market. For a risk Zi with a specific reinsurance arrange-
ment g = {g0(Zi), g1(Zi), · · · , gm(Zi)}, the insurer retains g0(Zi), 
and g j(Zi) is taken by the reinsurer j such that 0 ≤ gi(x) ≤ x, 
i = 0, 1, · · · , m and

Zi − g0(Zi) =
m∑

j=1

g j(Zi).

Now, we define a specific reinsurance strategy g as admissible for 
z ∈ [0, ∞) if it satisfies the following:

(i) g j(z) ≥ 0 and z = ∑m
j=0 g j(z).

(ii) g j(z) is increasing in z for all j = 0, 1, · · · , m.

We denote by G the set of all admissible multiple reinsurance 
strategies. Note that the condition (ii) excludes some possible 
moral hazards, for example, the motivation of misrepresentation 
claims. In addition, for z2 ≥ z1 ≥ 0, it follows that

0 ≤ g j(z2) − g j(z1) = z2 −
m∑

i �= j

gi(z2) −
⎛
⎝z1 −

m∑
i �= j

gi(z1)

⎞
⎠

≤ z2 − z1,

which implies that each g j(z) is a continuous function with re-
spect to z for j = 0, 1, · · · , m.

To determine how much risk should be ceded to the reinsurer, 
the insurer must consider the risk measure taken by the rein-
surer. In previous studies, some popular premium principles, such 
as the expected value principle, variance principle, and exponen-
tial principle, have been considered. Different premium principles 
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generally lead to different optimal reinsurance structures. To in-
vestigate the impact of the premium principle on the reinsurance 
structure, we introduce a type of combined premium principle 
πθ,a,γ (Y ) that can cover several commonly used principles.1 Given 
a positive risk Y , the premium principle πθ,a,γ (Y ) is defined as

πθ,a,γ (Y ) = 1 + θ

a
lnE[eaY ] + γV [Y ], (2.1)

where θ ≥ 0, γ ≥ 0, and a ≥ 02 and θ2 + γ 2 + a2 �= 0. Clearly, this 
definition includes the following special premium principles:

• Expected value principle: If γ = 0 and a → 0+, then
πθ,0,0(Y ) = (1 + θ)E[Y ].

• Mean-variance principle: If a → 0+, then πθ,0,γ (Y ) = (1 +
θ)E[Y ] + γV [Y ]. Furthermore, if θ = 0, then π0,0,γ (Y ) =
E[Y ] + γV [Y ], which leads to the variance principle.

• Exponential principle: If θ = γ = 0, then π0,a,0(Y ) =
1
a lnE[eaY ].

In risk theory, an insurer’s original surplus process {Xt , t ≥ 0}
can be described by the classic Cramér-Lundberg risk model, i.e.,

Xt = x + ct −
Nt∑

i=1

Zi,

where x ≥ 0 is the initial capital; c ≥ 0 is the premium rate; the 
claims {Zi, i = 1, 2, · · · } are independent and identically distributed 
positive random variables; and {Nt , t ≥ 0} is a homogeneous Pois-
son process with intensity rate λ, independent of {Zi, i = 1, 2, · · · }. 
Without a loss of generality, we assume that λ = 1 and Z has the 
same distribution as the claims Zi . Throughout this paper, it is 
assumed that the random variable Z has an unbounded support 
[0, ∞).3 In addition, we assume that the distribution of Z has a 
light tail, i.e., there exists a constant ε > 0 such that E[eε Z ] < ∞. 
We denote ς = sup{y :E[e y Z ] < ∞}.

With a specific reinsurance arrangement g = {g0(z), g1(z), · · · ,

gm(z)}, the total risk up to time t ceded from the insurer to the 
jth reinsurer is 

∑Nt
i=1 g j(Zi). Thus, the reinsurance premium up to 

time t that the insurer must pay to the jth reinsurer is

π
θ j ,a j ,γ j
t � πθ j ,a j ,γ j

(
Nt∑

i=1

g j(Zi)

)

= 1 + θ j

a j

(
E[ea j g j(Z)] − 1

)
t + γ jE[g2

j (Z)]t
(2.2)

for 0 ≤ a j < ς . For convenience of the following analysis but with-
out loss of generality, we here rank m reinsurance companies such 
that

θ1 ≤ θ2 ≤ · · · ≤ θm.

If θi = θi+1, we assume ai ≤ ai+1. Furthermore, if θi = θi+1 and 
ai = ai+1, we take γi ≤ γi+1.

Correspondingly, the insurer’s surplus process with the reinsur-
ance strategy g can be rewritten as

Xg
t = x + ct −

m∑
j=1

π
θ j ,a j ,γ j
t −

Nt∑
i=1

g0(Zi)

1 The advantage of this setting is that it allows us to investigate the optimal rein-
surance under a unified framework for reinsurers with different premium principles.

2 Here, a = 0 means lima→0+ .
3 The results obtained in this paper are also applicable for the case of Z with a 

bounded support after some minor changes.
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= x +
⎧⎨
⎩c −

m∑
j=1

[
1 + θ j

a j

(
E[ea j g j(Z)] − 1

)
+ γ jE[g2

j (Z)]
]⎫⎬
⎭ t

−
Nt∑

i=1

g0(Zi). (2.3)

In risk theory, the ruin probability over an infinite-time hori-
zon plays an important role in measuring the long-term solvency. 
Mathematically, we respectively define the ruin time and ruin 
probability as follows:

τ g = inf{t > 0 : Xg
t < 0} (2.4)

and

V g(x) = P {τ g < ∞|Xg
0 = x}, x ≥ 0. (2.5)

It is known that the ruin probability for the classic Cramér-
Lundberg risk model rarely has explicit expressions, except for 
a class of phase-type claims, see also Asmussen and Albrecher 
(2010). To ensure that the ruin probability is tractable for all claims 
with light tails, we employ the results of the Cramér-Lundberg ap-
proximation:

lim
x→∞ V g(x)eRgx = Cg, x ≥ 0 (2.6)

and the exponential upper bound:

V g(x) ≤ e−Rgx, x ≥ 0, (2.7)

where Cg is a constant and Rg is the so-called adjustment coeffi-
cient or Lundberg exponent. Therefore, we can control the upper 
bound of the ruin probability in terms of the Lundberg exponent. 
In general, a larger Rg corresponds to a smaller ruin probability. 
Now, we can define the optimization problem4:

V (x) = inf
g∈G e−Rgx, x ≥ 0.

Our aim is to find an optimal multiple reinsurance strategy g∗ ∈ G
such that

R∗ := Rg∗ = sup
g∈G

Rg. (2.8)

It is worth mentioning that claims with light-tailed distributions 
guarantee the existence of the Lundberg exponent.

To avoid trivial cases, we include a no-arbitrage assumption for 
the premium rate c:

E[Z ] < c < Am(Z), (2.9)

where Am(Z) := min∑m
j=1 g j(Z)=Z

∑m
j=1

[
1+θ j

a j

(
E[ea j g j(Z)] − 1

) +
γ jE[g2

j (Z)]
]

denotes the minimum reinsurance premium rate paid 
by the insurers when all risks are ceded to m reinsurance compa-
nies.

On one hand, if the left side of (2.9) does not follow, i.e., c ≤
E[Z ], then we have

4 The Lundberg upper bound of the ruin probability e−Rg x resembles an expo-
nential utility function, but the optimization problem of Lundberg exponent maxi-
mization (sup Rg

)
is essentially different from the expected utility maximization of 

terminal wealth 
(

supE
[

e−Xg
T

])
.
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c −
m∑

j=1

[
1 + θ j

a j

(
E[ea j g j(Z)] − 1

)
+ γ jE[g2

j (Z)]
]

≤E[Z ] −
m∑

j=1

Eg j(Z) = E(g0(Z))

(2.10)

because ex ≥ 1 + x. Thus, for any g ∈ G , the surplus process (2.3)
has a non-positive drift, and consequently, V g(x) = 1 for any x ≥ 0. 
On the other hand, if the right side of (2.9) does not hold, then 
c ≥ Am(z), which means that there exists a reinsurance strategy 
g = (0, g1, g2, · · · , gm) with

∑m
j=1 g j(Z) = Z , such that

c ≥
m∑

j=1

[
1 + θ j

a j

(
E[ea j g j(Z)] − 1

)
+ γ jE[g j(Z)]2

]
.

With this special reinsurance strategy, the insurer cedes all of the 
risks, but the total reinsurance premium rate is less than the pre-
mium rate c. Thus, we have V g(x) = 0 for any x ≥ 0.

3. Optimal multiple reinsurance strategy

In this section, we obtain the optimal reinsurance strategy for 
the optimization problem (2.8). Initially, we transfer the problem 
to a tractable form similar to an Hamilton-Jacobi-Bellman(HJB) 
equation for a dynamic control problem. We first define the fol-
lowing function:

Kθ,a,γθ,a,γθ,a,γ (g, r) =
m∑

j=1

[
1 + θ j

a j

(
ea j g j − 1

)+ γ j g2
j

]
+ 1

r

[
erg0 − 1

]
,

(3.1)

where r > 0 and vectors θθθ = (θ1, · · · , θm), aaa = (a1, · · · , am), γγγ =
(γ1, · · · , γm).

Lemma 3.1. For a given admissible strategy g0(Z) such that P {g0(Z) >
0} > 0, the function 1

r E 
[
erg0(Z) − 1

]
is strictly increasing with respect 

to r > 0.

Proof. Firstly, we can easily know that the function erξ −1
r is 

strictly increasing with respect to r > 0 for any fixed constant 
ξ > 0.

Note that the function g0(·) is continuously increasing. Then, 
there exists a constant z0 ≥ 0 such that

A =: {w : g0(Z(w)) > 0} = {w : Z(w) > z0}
and P {A} > 0. Furthermore, there exists a large enough k > 0 such 
that g0(z0 + 1

k ) > 0 and P {Ak} > 0, where

Ak =
{

w : Z(w) > z0 + 1

k

}
.

Therefore, for any r1 > r2, we have

1

r1
E
[

er1 g0(Z) − 1
]
− 1

r2
E
[

er2 g0(Z) − 1
]

=
∫
A

(
1

r1

[
er1 g0(Z(w)) − 1

]
− 1

r2

[
er2 g0(Z(w)) − 1

])
P (dw)

≥
∫
Ak

(
1

r1

[
er1 g0(Z(w)) − 1

]
− 1

r2

[
er2 g0(Z(w)) − 1

])
P (dw)

≥
(

1

r1

[
er1 g0(z0+ 1

k ) − 1
]
− 1

r2

[
er2 g0(z0+ 1

k ) − 1
])

P {Ak}
> 0
36
where the second inequality follows because 1
r1

(er1 y − 1) −
1
r2

(er2 y − 1) is strictly increasing with respect to y > 0 for any 
fixed constants r1 > r2 > 0. Thus, it implies that 1

r E 
[
erg0(Z) − 1

]
is 

strictly increasing with respect to r > 0. �
Lemma 3.2. If there exists g∗ ∈ G such that R∗ := Rg∗ = supg∈G Rg , 
then R∗ > 0 satisfies the following equation:

E(Kθ,a,γθ,a,γθ,a,γ (g∗(Z), R∗)) = inf
g∈G

{
E(Kθ,a,γθ,a,γθ,a,γ (g(Z), R∗))

} = c. (3.2)

Conversely, if g∗ and R∗ > 0 satisfy (3.2), then R∗ = Rg∗ ≥ Rg for any 
admissible strategy g.

Proof. For any given admissible strategy g ∈ G , if

c ≤
m∑

j=1

[
1 + θ j

a j

(
E[ea j g j(Z)] − 1

)
+ γ jE[g2

j (Z)]
]

+E[g0(Z)],

then we know that the surplus process (2.3) has a non-positive 
drift, which implies that V g(x) = 1 for any x ≥ 0. Therefore, Rg = 0. 
Otherwise, we have

c >

m∑
j=1

[
1 + θ j

a j

(
E[ea j g j(Z)] − 1

)
+ γ jE[g2

j (Z)]
]

+E[g0(Z)],

which implies P {g0(Z) > 0} > 05 from (2.9) and the associated 
Lundberg exponent Rg is the unique positive root of the following 
equation of r (see page 7 of Grandell, 1991 for the solution of 
Lundberg exponent):

c −E[Kθ,a,γθ,a,γθ,a,γ (g, r)] = 0. (3.3)

Because R∗ ≥ Rg , it follows from Lemma 3.1 that

c −E[Kθ,a,γθ,a,γθ,a,γ (g, R∗)] ≤ 0 (3.4)

for any given admissible strategy g ∈ G . Thus, taking the supre-
mum on both sides of the above inequality, we obtain that R∗
satisfies

sup
g∈G

[
c −E[Kθ,a,γθ,a,γθ,a,γ (g, R∗)]] ≤ 0.

Further, noting that c−E[Kθ,a,γθ,a,γθ,a,γ (g∗, R∗)] = 0, we can conclude that 
(3.2) holds true.

Conversely, if g∗ and R∗ > 0 satisfy (3.2), then we have

E[Kθ,a,γθ,a,γθ,a,γ (g∗(Z)), R∗] = inf
g∈GE[Kθ,a,γθ,a,γθ,a,γ (g(Z), R∗)] = c and

E[Kθ,a,γθ,a,γθ,a,γ (g(Z), Rg)] = c
(3.5)

for any admissible strategy g ∈ G . Then, we can conclude that

E[Kθ,a,γθ,a,γθ,a,γ (g(Z), R∗)] ≥E[Kθ,a,γθ,a,γθ,a,γ (g(Z), Rg)]. (3.6)

If P {g0(Z) = 0} = 1, then we know from (2.9) that the surplus 
process (2.3) has a non-positive drift, which implies that V g(x) = 1
for any x ≥ 0. Therefore, Rg = 0 and then R∗ ≥ Rg . If P {g0(Z) >
0} > 0, then from (3.6) we have

1

R∗E
[

eR∗ g0(Z) − 1
]

≥ 1

Rg
E
[

eRg g0(Z) − 1
]
,

which also implies that R∗ ≥ Rg according to Lemma 3.1. Thus, we 
can conclude that R∗ = Rg∗ = supg∈G Rg . �

5 In fact, if P {g0(Z) > 0} = 0, we have g0(Z) = 0 a.s. and E[g0(Z)] = 0. Noting 
g = {g0(z), g1(z), · · · , gm(z)} ∈ G , we have Z = ∑m

j=0 g j(Z) = ∑m
j=1 g j(Z), that is 

c >
∑m

j=1

[
1+θ j

a j

(
E[ea j g j (Z)] − 1

)+ γ jE[g2
j (Z)]

]
with Z = ∑m

j=1 g j(Z), which is in 
contradiction with (2.9).
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Next, we will solve (3.2) to determine the optimal multiple 
reinsurance in terms of a point-wise optimization approach. Let 
us define a Lagrange function:

Hr,�
θ,a,γθ,a,γθ,a,γ (z,g) = Kθ,a,γθ,a,γθ,a,γ (g, r) − �

⎛
⎝ m∑

j=0

g j − z

⎞
⎠

=
m∑

j=1

[
1 + θ j

a j

(
ea j g j − 1

)+ γ j g2
j

]
+ 1

r

[
erg0 − 1

]

− �

⎛
⎝ m∑

j=0

g j − z

⎞
⎠ , (3.7)

where � > 0 is a Lagrange multiplier. Note that the function 
Hr,�

θ,a,γθ,a,γθ,a,γ (z, g) is concave with respect to g j for j = 0, 1, 2, · · · , m. 
Thus, we can adopt the first optimality condition for the derivation 
of the solution. Taking the derivative of the function Hr,�

θ,a,γθ,a,γθ,a,γ (z, g)

with respect to g j , we derive the first-order conditions:

erg0 − � = 0, (3.8)

(1 + θ j)ea j g j + 2γ j g j − � = 0, (3.9)

for j = 1, 2, · · · , m.
Below, we analyze the solutions to the first-order condition sys-

tem. Firstly, define functions hr,�(g0) := erg0 −� and h�
θ j ,a j ,γ j

(g j) :=
(1 + θ j)ea j g j + 2γ j g j − � for j = 1, 2, · · · , m, then we have the fol-
lowing lemma:

Lemma 3.3. For j = 1, 2, · · · , m, if a j �= 0 or γ j �= 0 and � satisfies

(1 + θ j) < � < (1 + θ j)ea j z + 2γ j z, (3.10)

then there always exists a unique positive root g�
θ j,a j ,γ j

∈ (0, z) such that

h�
θ j ,a j ,γ j

(g�
θ j ,a j ,γ j

) = 0. (3.11)

Furthermore, the function g�
θ j,a j ,γ j

is continuous and strictly increasing 
with respect to � with the following boundary conditions:

g�
θ j ,a j ,γ j

∣∣∣
�=1+θ j

= 0 and g�
θ j ,a j ,γ j

∣∣∣
�=(1+θ j)ea j z+2γ j z

= z.

Proof. From the definition of (3.9), we can easily find that the 
function h�

θ j ,a j ,γ j
(g j) is strictly increasing with respect to g j ∈

[0, z]. Furthermore, we have

h�
θ j ,a j ,γ j

(0) = (1 + θ j) − � < 0

h�
θ j ,a j ,γ j

(z) = (1 + θ j)ea j z + 2γ j z − � > 0

according to condition (3.10). Thus, the equation h�
θ j ,a j ,γ j

(g j) = 0

uniquely determines a positive root in (0, z), which is denoted by 
g�
θ j ,a j ,γ j

∈ (0, z).

In addition, (3.11) implies

� = (1 + θ j)e
a j g�

θ j ,a j ,γ j + 2γ j g�
θ j ,a j ,γ j

.

Define � j(g) := (1 + θ j)ea j g + 2γ j g . The function � j(g) is con-
tinuous and strictly increasing with respect to g , so is the in-
verse function �−1

j . Thus g�
θ j ,a j ,γ j

= �−1
j (�) is continuous and 

strictly increasing with respect to �. Note that � j(0) = 1 + θ j and 
� j(z) = (1 + θ j)ea j z + 2γ j z, then the two boundary conditions fol-
low immediately. �
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Now, we define the following function:

ĝr,�
j (z) := arg inf0≤g j≤z Hr,�

θ,a,γθ,a,γθ,a,γ (z,g)

for j = 0, 1, 2, · · · , m. Then, the minimum point of the Lagrange 
function (3.7) is given as follows:

ĝr,�
0 (z) =

{
0, 0 < � ≤ 1,

min{z, 1
r ln(�)}, � > 1.

(3.12)

For j = 1, 2, · · · , m, if a j �= 0 or γ j �= 0, then

ĝr,�
j (z) =

⎧⎨
⎩

0, 0 < � ≤ 1 + θ j,

g�
θ j ,a j ,γ j

, 1 + θ j < � < (1 + θ j)ea j z + 2γ j z,

z, � ≥ (1 + θ j)ea j z + 2γ j z,
(3.13)

where g�
θ j ,a j ,γ j

is obtained in Lemma 3.3, by which the function 

ĝr,�
j (z) is continuous with respect to �. If a j = γ j = 0, then

ĝr,�
j (z) =

⎧⎨
⎩

0, 0 < � < 1 + θ j,

any value in [0, z], � = 1 + θ j,

z, � > 1 + θ j .

(3.14)

Next, we will determine the optimal Lagrange multiplier.

Proposition 3.1. For any fixed r > 0 and z ∈ [0, ∞), there uniquely ex-
ists a bounded root, denoted by �r(z), such that

m∑
j=0

ĝr,�r(z)
j (z) = z.

More specifically,

(I) �r(z) ≡ 1 + θ1 for z ∈ [0, 1r ln(1 + θ1));

(II) For z ∈ [ 1
r ln(1 + θ1), ∞), there are following two cases.

If a j �= 0 or γ j �= 0 for all j = 1, 2, · · · , m, we have �r(z) = �̃r(z)
such that

1 + θ1 ≤ �r(z) < (1 + θ j)ea j z + 2γ j z, for any j = 1,2, · · · ,m,

(3.15)

where �̃r(z) is determined by 
∑m

j=0 ĝr,�̃r(z)
j (z) = z.

If a j = 0 and γ j = 0 for some j = i1, i2, · · · , in(1 ≤ i1 < · · · < in ≤
m), we have

�r(z) =
{

�̂r(z), z ∈ [ 1
r ln(1 + θ1), żi1

)
,

1 + θi1 , z ∈ [żi1 ,∞),
(3.16)

such that 1 + θ1 ≤ �r(z) ≤ 1 + θi1 , where �̂r(z) and żi1 are uniquely 
determined by 

∑i1−1
j=0,

ĝr,�̂r(z)
j (z) = z and �̂r(żi1 ) = 1 + θi1 respec-

tively.

Proof. (I) For any fixed r > 0, z ∈ [0, 1r ln(1 + θ1)) implies erz <

1 + θ1. Then we can take �r(z) ≡ 1 + θ1. From (3.12)-(3.14), we 
have ĝr,�r(z)

0 (z) = z and ĝr,�r(z)
j (z) = 0 for j = 1, 2, · · · , m, so that ∑m

j=0 ĝr,�r(z)
j (z) = z is satisfied.

(II) For any fixed 0 < r < ∞, z ∈ [ 1
r ln(1 + θ1), ∞) implies erz ≥

1 + θ1. From (3.12) we know that ĝr,�
0 (z) = 1

r ln(�) for � ∈ [1 +
θ1, erz], which is continuous and strictly increasing with respect 
to �. In addition, for j = 1, 2, · · · , m, we consider ĝr,�

j (z) in two 
situations.

(II-1) Firstly, let us consider the case in which a j �= 0 or γ j �= 0
for all j = 1, 2, · · · , m. According to Lemma 3.3, we know that 
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ĝr,�
j (z) defined by (3.13) is also continuously increasing with re-

spect to �, where j = 1, 2, · · · , m. Thus, 
∑m

j=0 ĝr,�
j (z) is continuous 

and strictly increasing with respect to � ∈ [1 + θ1, erz]. In addition, 
it follows that

lim
�→1+θ1

m∑
j=0

ĝr,�
j (z) =

m∑
j=0

ĝr,1+θ1
j (z) = 1

r
ln(1 + θ1) ≤ z, (3.17)

lim
�→erz

m∑
j=0

ĝr,�
j (z) = z + lim

�→erz

m∑
j=1

ĝr,�
j (z) ≥ z, (3.18)

which implies that there exists a unique root, denoted by �̃r(z) ∈
[1 + θ1, erz], such that

m∑
j=0

ĝr,�̃r(z)
j (z) = z. (3.19)

In addition, we show that the bound (3.15) holds true. If �̃r(z) >
(1 +θi)eai z +2γi z for some i, then, from (3.12) and (3.13), it follows 
that

ĝr,�̃r(z)
i (z) = z and ĝr,�̃r(z)

0 (z) = 1

r
ln(�̃r(z)) > 0,

which lead to a contradiction with 
∑m

j=0 ĝr,�̃r(z)
j (z) = z.

(II-2) Secondly, we consider the case in which there exist n(1 ≤
n ≤ m) reinsurers such that a j = 0 and γ j = 0 for j = i1, i2, · · · , in , 
which implies that the n reinsurers take the expected value pre-
mium principle with safety loading θk, k = i1, i2, · · · , in , respec-
tively. Note that

θi1 ≤ θi2 ≤ · · · ≤ θin . (3.20)

For fixed r and z ∈ [ 1
r ln(1 + θ1), ∞), define a critical level

Az := min{erz, (1 + θ j)ea j z + 2γ j z, j = 1,2, · · · , i1 − 1}.
From (3.12) and (3.13), we know that, for � ∈ [1 + θ1, Az], the func-
tion 

∑i1−1
j=0 ĝr,�

j (z) can be written as

i1−1∑
j=0

ĝr,�
j (z) = 1

r
ln(�) +

i1−1∑
j=1

g�
θ j ,a j ,γ j

I{�>1+θ j} =: 
r(�)

where I{.} denotes the indicator function. Note that the function 
1
r ln(�) is continuous and strictly increasing with respect to �. And, 
from Lemma 3.3, we know that each g�

θ j ,a j ,γ j
I{�>1+θ j} is continu-

ous and increasing with respect to � for j = 1, 2, · · · , i1 − 1. Thus, 
the function 
r(�) given above is continuous and strictly increas-
ing with respect to �. In addition, it follows that

lim
�→1+θ1


r(�) = lim
�→1+θ1

i1−1∑
j=0

ĝr,�
j (z) =

i1−1∑
j=0

ĝr,1+θ1
j (z)

= 1

r
ln(1 + θ1) ≤ z

(3.21)

lim
�→Az


r(�) = lim
�→Az

i1−1∑
j=0

ĝr,�
j (z)

= lim
�→Az

1

r
ln(�) + lim

�→Az

i1−1∑
j=1

ĝr,�
j (z) ≥ z.

(3.22)

Thus, we can conclude that there exists a unique root, denoted by 
�̂r(z) ∈ [1 + θ1, Az], such that
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r(�̂
r(z)) =

i1−1∑
j=0

ĝr,�̂r(z)
j (z) = z, (3.23)

and �̂r(z) = 
r
−1(z) is also continuous and strictly increasing with 

respect to z.
In addition, for z → 1

r ln(1 + θ1)+, it follows that Az → 1 + θ1

and then �̂r(z) → 1 + θ1. On the other hand, for z → ∞, it follows 
that �̂r(z) → ∞. Then, there uniquely exists a point, żi1 ∈ [ 1

r ln(1 +
θ1), ∞), such that

�̂r(żi1) = 1 + θi1 . (3.24)

Now define �r(z) by (3.16), then it follows that �r(z) is uniquely 
determined such that �r(z) ≤ 1 + θi1 .

Furthermore, from (3.13) and (3.14), we have6

ĝr,�r(z)
j (z) ≡ 0, for j = i1 + 1, i1 + 2, · · · ,m (3.25)

and

m∑
j=0, j �=i1

ĝr,�r(z)
j (z) =

{
z, 0 ≤ z ≤ żi1 ,

żi1 , z ≥ żi1 .

For j = i1, we know from (3.14) that ĝ
r,1+θi1
i1

(z) can choose any 

value in [0, z]. However, in order to satisfy 
∑m

j=0 ĝr,�r(z)
j (z) =

z for all z ≥ 0, we must have

ĝr,�r(z)
i1

(z) =
{

0, 0 ≤ z ≤ żi1 ,

z − żi1 , z ≥ żi1 .
(3.26)

This completes the proof. �
Based on the above analysis, we now can construct a reinsur-

ance arrangement with

ĝr,�r(z)(z) =
(

ĝr,�r(z)
0 (z), · · · , ĝr,�r(z)

m (z)
)

. (3.27)

Clearly, these expressions satisfy the first-order optimality condi-
tion system (3.8) and (3.9). In addition, with respect to variable z, 
we know that �r(z) is increasing function. And, for j = 0, 1, · · · , m, 
ĝr,�

j (z) is an increasing function with respect to both � and z. 

Therefore, we can conclude that ĝr,�r(z)
j (z) is increasing with re-

spect to variable z, so it belongs to the admissible set, that is, 
ĝr,�r(z)(z) ∈ G .

Then, for any g = (g0, g1, · · ·, gm) ∈ G , we must have

Kθ,a,γθ,a,γθ,a,γ

(
ĝr,�r(z)(z), r

)
≤ Kθ,a,γθ,a,γθ,a,γ (g, r). (3.28)

By replacing z with a random variable Z and taking the expec-
tation, we have

E[Kθ,a,γθ,a,γθ,a,γ (ĝr,�r(Z)(Z), r)] ≤ E[Kθ,a,γθ,a,γθ,a,γ (g(Z), r)]. (3.29)

Therefore, we can conclude from (3.2) that, for any fixed r > 0, 
the optimal multiple reinsurance strategy has the same form with 
ĝr,�r(z)(z) given by (3.27).

Finally, we need to determine the optimal Lundberg exponent 
R∗ via the following lemma.

6 Note that �r(z) ≤ 1 + θi1 . If θ j = θi1 for j > i1 and j �= ik, k = 2, 3, · · · , n, then 
we always have ĝr,�r (z)

j (z) = 0 by (3.13); If θik > θi1 for some 2 ≤ k ≤ n, then we 
also have ĝr,�r (z)

j (ik) = 0 by (3.14); In addition, if θi1 = θik for some 2 ≤ k ≤ n, which 
means some reinsurers take the expected value premium principle with the same 
safety loading θi1 , then we can arbitrarily divide the given risk Z − zi1 between 
them without changing reinsurance premium. Specifically, we can set ĝr,�r (z)

ik
(z) = 0. 

Therefore, for the sake of formal unity, we here can take (3.25).
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Lemma 3.4. (Existence and uniqueness of R∗.) The optimal Lundberg ex-
ponent, given as R∗ , is uniquely determined by the positive root of the 
equation with respect to r:

E[Kθ,a,γθ,a,γθ,a,γ (ĝr,�r(Z)(Z), r)] = c. (3.30)

Proof. First, let us show that E 
[

Kθ,a,γθ,a,γθ,a,γ (ĝr,�r(Z)(Z), r)
]

is a con-

tinuous and strictly increasing function with respect to r. Ob-

viously, E 
[

Kθ,a,γθ,a,γθ,a,γ (ĝr,�r(Z)(Z), r)
]

is continuous with respect to r. 

From the definition of ĝr,�r(z)(z) and (3.28), we know that, for 
g = (g0, g1, · · ·, gm) ∈ G ,

Kθ,a,γθ,a,γθ,a,γ

(
ĝr,�r(z)(z), r

)
≤ Kθ,a,γθ,a,γθ,a,γ (g, r).

For any 0 < r1 < r2, with g = ĝr2,�r2 (z)(z), we have

E
[

Kθ,a,γθ,a,γθ,a,γ (ĝr1,�r1 (Z)(Z), r1)
]

≤ E
[

Kθ,a,γθ,a,γθ,a,γ (ĝr2,�r2 (Z)(Z), r1)
]

=
m∑

j=1

E

[
1 + θ j

a j

(
ea j ĝ

r2,�r2 (Z)

j (Z) − 1

)
+ γ j

(
ĝr2,�r2 (Z)

j (Z)
)2

]

+ 1

r1
E

[
er1 ĝ

r2,�r2 (Z)

0 (Z) − 1

]

<

m∑
j=1

E

[
1 + θ j

a j

(
ea j ĝ

r2,�r2 (Z)

j (Z) − 1

)
+ γ j

(
ĝr2,�r2 (Z)

j (Z)
)2

]

+ 1

r2
E

[
er2 ĝ

r2,�r2 (Z)

0 (Z) − 1

]

= E
[

Kθ,a,γθ,a,γθ,a,γ (ĝr2,�r2 (Z)(Z), r2)
]
,

where the inequality above follows by Lemma 3.1. This result im-
plies that E[Kθ,a,γθ,a,γθ,a,γ (ĝr,�r(Z)(Z), r)] is a continuous and strictly in-
creasing function with respect to r.

Furthermore, from the proof of Proposition 3.1, we know that

ĝr,�r(z)
0 (z) = z, ĝr,�r(z)

j (z) = 0, z ∈ [0,
1

r
ln(1 + θ1)),

which results in

lim
r→0+ ĝr,�r(z)

0 (z) = z, lim
r→0+ ĝr,�r(z)

j (z) = 0, z ∈ [0,∞)

for j = 1, 2, · · · , m. Note that the function erξ −1
r is strictly increas-

ing with respect to r > 0 for any fixed constant ξ > 0, and there 
exists a constant ε > 0 such that E[eε Z ] < ∞. Therefore, we have

lim
r→0+E[Kθ,a,γθ,a,γθ,a,γ (ĝr,�r(Z)(Z), r)] = E

[
lim

r→0+
1

r
(er ĝr,�r (Z)

0 (Z) − 1)

]
= E[Z ] < c,

in which we exchange the order of expectation and limit according 
to Lebesgue dominated convergence theorem and the last equality 
holds by ĝr,�r (Z)

0 (Z) ≤ 1
r (er ĝr,�r (Z)

0 (Z) − 1) ≤ 1
r (er Z − 1) with r > 0.7

On the other hand, from (3.12), we know that r ĝr,�r(z)

0 (z) =
ln(�r(z)) is bounded when r is large enough, because �r(z) is 
bounded according to Proposition 3.1. Therefore, we have

lim
r→∞ ĝr,�r(z)

0 (z) = lim
r→∞

1

r
ln(�r(z)) = 0 and

lim
r→∞

1

r
E

[
er ĝr,�r(z)

0 (z) − 1

]
= 0.

7 The left inequality follows due to erx ≥ 1 + rx.
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Denote g∞
j (z) := limr→∞ ĝr,�r(z)

j (z), j = 1, 2, · · · , m, then we have

m∑
j=1

g∞
j (z) = lim

r→∞

m∑
j=0

ĝr,�r(z)
j (z) = z.

Thus, by taking r → ∞, it follows

lim
r→∞E[Kθ,a,γθ,a,γθ,a,γ (ĝr,�r(Z)

(Z), r)]

= lim
r→∞

{
m∑

j=1

[
1 + θ j

a j
E

[
ea j ĝr,�r (Z)

j (Z) − 1

]

+ γ jE

[(
ĝr,�r(Z)

j (Z)
)2

]]}

=
m∑

j=1

[
1 + θ j

a j
E
[

ea j g∞
j (Z) − 1

]
+ γ jE

[(
g∞

j (Z)
)2

]]

≥ min∑m
j=1 g j(Z)=Z

m∑
j=1

[
1 + θ j

a j

(
E
[

ea j g j(Z)
]
− 1

)
+ γ jE[g2

j (Z)]
]

> c,

where we exchange the order of expectation and limit according 
to Lebesgue dominated convergence theorem again and the last 
step follows from the no-arbitrage assumption (2.9). So far, we can 
conclude that equation (3.30) determines a unique positive root, 
denoted by R∗ . �

In conclusion, based on the above analysis, we can obtain the 
main theorem as follows:

Theorem 3.1. For the optimization problem (3.2), the optimal reinsur-
ance strategies are

g∗
j (z) = ĝ R∗,�R∗

(z)
j (z), j = 0,1, · · · ,m,

where ĝr,�r(z)
0 (z) is given by (3.12), R∗ is determined by (3.30), and the 

following are satisfied:

1. If a j �= 0 or γ j �= 0 follows for all j = 1, 2, · · · , m, then ĝr,�r(z)
j (z)

and �r(z) are given by (3.13) and Proposition 3.1, respectively.
2. If there exist n(1 ≤ n ≤ m) reinsurance companies such that a j = 0

and γ j = 0 for j = i1, i2, · · · , in, then

ĝr,�r(z)
k (z) ≡ 0, k = i1 + 1, i1 + 2, · · · ,m.

For k = 1, 2, · · · , i1 − 1, ĝr,�r(z)
k (z), ĝr,�r(z)

i1
(z), and �r(z) are given 

by (3.13), (3.26), and Proposition 3.1, respectively.

4. Some explicit cases

In the above section, we established the optimal form of mul-
tiple reinsurance strategy and obtained the maximized Lundberg 
exponent for a general setting. These results are exciting, but the 
optimal forms are very abstract. To clarify our results, we present 
the optimal reinsurance strategy for some special cases in this sec-
tion. For example, we give the explicit optimal reinsurance policy 
for the case in which there exists only one reinsurance company 
with the general reinsurance premium principle (2.1), the opti-
mal reinsurance policy for two reinsurance companies with general 
principles but different parameters, and the optimal reinsurance 
policy for a finite number of reinsurance companies with expo-
nential premium principles. Although these results are for special 
cases of the general setting, this is the first report for some of 
these results.
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4.1. The case of m = 1

In this subsection, we consider that there exists only one rein-
surer, i.e., m = 1. First, we have the following general proposition.

Proposition 4.1. (General premium principle) If the reinsurer takes the 
general reinsurance premium principle given by (2.1) with a1 �= 0 or 
γ1 �= 0, then the optimal reinsurance strategy is

g∗
0(Z) =

{
Z , 0 ≤ Z ≤ ln(1+θ1)

R∗
g̃∗

0(Z), Z ≥ ln(1+θ1)
R∗

(4.1)

and g∗
1(Z) = Z − g∗

0(Z), where g̃∗
0(z) satisfies the following equation:

(1 + θ1)ea1(z−g̃∗
0(z)) + 2γ1(z − g̃∗

0(z)) − eR∗ g̃∗
0(z) = 0, (4.2)

and R∗ is the solution to
1 + θ1

a1
E
[

ea1(Z−g̃∗
0(Z)) − 1

]
+ γ1E

[
Z − g̃∗

0(Z)
]2

+ 1

R∗E
[

eR∗ g̃∗
0(Z) − 1

]
= c.

(4.3)

Proof. Recall (3.14) and (3.19). For z ≤ ln(1+θ1)
R∗ , the optimal multi-

plier �R∗
(z) = 1 + θ1 and

g∗
0(z) = ĝ R∗,1+θ1

0 (z) = min

{
z,

ln(1 + θ1)

R∗

}
= z.

In contrast, when z ≥ ln(1+θ1)
R∗ , we know from (3.8) and (3.9) that 

the functions g∗
0(z) and g∗

1(z) satisfy

eR∗ g∗
0(z) − �R∗

(z) = 0

(1 + θ1)ea1 g∗
1(z) + 2γ1 g∗

1(z) − �R∗
(z) = 0,

respectively. Note that g∗
1(z) = z − g∗

0(z). Consequently, we find 
that g∗

0(z) is the solution of the following equation:

(1 + θ1)ea1(z−x) + 2γ1(z − x) − eR∗x = 0. (4.4)

The left-hand side of the above equation is a strictly decreasing 
function with respect to x. The value is positive for x = 0 and is 
negative for x = z because z ≥ ln(1+θ1)

R∗ . Therefore, equation (4.2) or 
(4.4) uniquely determines g∗

0(z) ∈ (0, z). This ends the proof. �
The following corollary presents the optimal reinsurance policy 

for a reinsurance company with the mean-variance premium prin-
ciple, including the expected value principle and variance principle 
as special cases.

Corollary 4.1. (Mean-variance premium principle) If the reinsurer 
takes the mean-variance premium principle, i.e., πθ1,0,γ1 (Y ) = (1 +
θ1)E[Y ] + γ1V [Y ] (a → 0, θ = θ1 and γ = γ1 in (2.1)), then the opti-
mal reinsurance strategy is given by

g∗
0(Z) = min{Z , f −1

θ1
(Z)} =

{
Z , 0 ≤ Z ≤ ln(1+θ1)

R∗
f −1
θ1

(Z), Z ≥ ln(1+θ1)
R∗

(4.5)

and g∗
1(Z) = Z − g∗

0(Z) = max{0, Z − f −1
θ1

(Z)}, where

fθ1(y) = 1

2γ1

(
eR∗ y − (1 + θ1)

)
+ y. (4.6)

More specifically, if the expected value premium principle is taken (i.e., 
γ1 = 0), then

g∗
0(Z) = min

{
Z ,

ln(1 + θ1)

∗

}
,

R
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which implies a stop-loss reinsurance. If the variance premium principle 
is taken (i.e., θ1 = 0), then the optimal reinsurance policy reduces to

g∗
0(Z) = f −1

0 (Z), (4.7)

which has a non-piecewise linear structure.

Proof. Because these results can be directly obtained from Propo-
sition 4.1, we omit the proof here. �
Corollary 4.2. (Exponential premium principle) If the reinsurer takes the 
exponential premium principle (i.e., θ1 = 0 and γ1 = 0), then the opti-
mal reinsurance policy reduces to

g∗
0(Z) = a1

a1 + R∗ Z ,

which implies a quota-share reinsurance.

Proof. This result can also be directly obtained from Proposi-
tion 4.1, and thus, we omit the proof here. �
Remark 4.1. From the above two corollaries, we observe the fol-
lowing. By maximizing the Lundberg exponent, we obtain an opti-
mal reinsurance policy that corresponds to an excess-of-loss rein-
surance under the expected value premium principle, which is 
consistent with the findings of Gerber (1979) and many current 
studies, even those with different value functions (see Asmussen 
et al. (2000), Meng and Zhang (2010), Hipp and Taksar (2010), 
Zhou and Cai (2014), and Liang and Young (2018)). In addition, 
the quota-share reinsurance is shown to be the optimal form un-
der the exponential premium principle, which is a novel result. 
However, for the general combined premium principle πθ,a,γ (Y )

in (2.1) and even a simple variance premium principle, the optimal 
reinsurance policy has a non-piecewise linear structure (see (4.1), 
(4.5), and (4.7)), which strongly differs from some results reported 
in the literature. For example, Hipp and Taksar (2010), Meng et al. 
(2016b), and Zhang et al. (2016) showed that quota-share reinsur-
ance is the optimal form under the variance premium principle.

4.2. The case of m = 2

In this subsection, we assume that there exist two reinsurance 
companies to share the ceded risks from the insurer, i.e., m = 2. 
Recall the assumption θ1 ≤ θ2. Here, we explore how the optimal 
reinsurance strategy changes with the different premium princi-
ples of the two reinsurance companies. Recall the definition of 
ż j ∈ [ 1

r ln(1 + θ1), ∞) in (3.24), that is, �R∗
(ż j) = 1 + θ j . First, we 

give the result for a general case.

Proposition 4.2. (Two general premium principles) We assume that 
a j �= 0 or γ j �= 0 for j = 1, 2. Then, the optimal reinsurance strategy 
is

g∗
0(Z) =

⎧⎨
⎩

Z , 0 ≤ Z ≤ ln(1+θ1)
R∗ ,

g̃∗
0(Z),

ln(1+θ1)
R∗ ≤ Z ≤ ż2,

ḡ∗
0(Z), Z ≥ ż2,

(4.8)

g∗
1(Z) =

⎧⎨
⎩

0, 0 ≤ Z ≤ ln(1+θ1)
R∗ ,

Z − g̃∗
0(Z),

ln(1+θ1)
R∗ ≤ Z ≤ ż2,

ḡ∗
1(Z), Z ≥ ż2,

(4.9)

and

g∗
2(Z) =

{
0, 0 ≤ Z ≤ ż2,

Z − ḡ∗
0(Z) − ḡ∗

1(Z), Z ≥ ż2,
(4.10)

where the function g̃∗(z) satisfies the following equations:
0
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(1 + θ1)ea1(z−g̃∗
0(z)) + 2γ1(z − g̃∗

0(z)) − eR∗ g̃∗
0(z) = 0 (4.11)

and ḡ∗
0(z) and ḡ∗

1(z) satisfy the following equations:

(1 + θ1)ea1 ḡ∗
1(z) + 2γ1 ḡ∗

1(z) − eR∗ ḡ∗
0(z) = 0,

(4.12)

(1 + θ2)ea2(z−ḡ∗
0(z)−ḡ∗

1(z)) + 2γ2(z − ḡ∗
0(z) − ḡ∗

1(z)) − eR∗ ḡ∗
0(z)

= 0. (4.13)

Proof. Noting the assumption a j �= 0 or γ j �= 0 for j = 1, 2, the 
result corresponds to the first case in Theorem 3.1. Let us recall 
(3.14) and (3.19). For z ≤ ln(1+θ1)

R∗ , we know that �R∗
(z) = 1 + θ1, 

and then

g∗
0(z) = ĝ R∗,�R∗

(z)
0 (z) = ĝ R∗,1+θ1

0 (z) = min

{
z,

1

R∗ ln(1 + θ1)

}
= z.

For z >
ln(1+θ1)

R∗ , we know, from (3.19), that �R∗
(z) = �̃R∗

(z) > 1 +θ1

and g∗
0(z) = ĝ R∗,�R∗

(z)
0 (z) = 1

R∗ ln(�R∗
(z)) or, equivalently,

eR∗ g∗
0(z) = �R∗

(z).

From the definition of ż2 and noting that �̃R∗
(z) is continuous and 

strictly increasing with respect to z, we have ż2 ≥ ln(1+θ1)
R∗ . Thus, 

for ln(1+θ1)
R∗ ≤ z ≤ ż2, we have 1 + θ1 ≤ �R∗

(z) ≤ 1 + θ2, and then

g∗
2(z) = ĝ R∗,�R∗

(z)
2 (z) = 0,

g∗
1(z) = ĝ R∗,�R∗

(z)
1 (z) = z − g∗

0(z).

At the same time, g∗
1(z) satisfies

(1 + θ1)ea1(g∗
1(z)) + 2γ1(g∗

1(z)) − �R∗
(z) = 0,

and we then obtain (4.11).
Furthermore, if z > ż2, we have �R∗

(z) > 1 + θ2, and then 
g∗

2(z) = z − g∗
0(z) − g∗

1(z). At the same time, we know that g∗
0(z), 

g∗
1(z), and g∗

2(z) satisfy

eR∗ g∗
0(z) − �R∗

(z) = 0,

(1 + θ1)ea1 g∗
1(z) + 2γ1 g∗

1(z) − �R∗
(z) = 0,

(1 + θ2)ea2 g∗
2(z) + 2γ2 g∗

2(z) − �R∗
(z) = 0.

Thus, we obtain (4.12) and (4.13). �
Roughly speaking, Proposition 4.2 indicates that the insurer 

would like to retain all of the small part of the loss (0 ≤ Z ≤
ln(1+θ1)

R∗ ), share a large part of the loss (Z ≥ ż2) with the two 
reinsurance companies, and share a medium part of the loss 
( ln(1+θ1)

R∗ ≤ Z ≤ ż2) with only the first reinsurance company, be-
cause the first reinsurance company has a lower loading on the 
expected value of loss than the second company (θ1 ≤ θ2).

Now consider θ1 = θ2. Note that

g̃∗
0

(
ln(1 + θ1)

R∗

)
= ln(1 + θ1)

R∗ .

Thus, ż2 = ln(1+θ1)
R∗ when θ1 = θ2. From Proposition 4.2, we can see 

that the insurer keeps all of the small part of the loss (Z ≤ ż2) and 
shares the remaining loss (Z ≥ ż2) with both reinsurance compa-
nies. Furthermore, if a1 = a2 and γ1 = γ2, then the corresponding 
parameters of equation (4.12) and equation (4.13) are consistent. 
Thus, ḡ∗

1(z) = z− ḡ∗
0(z) − ḡ∗

1(z), which results in g∗
1(z) = g∗

2(z) with 
ż2 = ln(1+θ1)

∗ . Hence, we have
R

41
g∗
1(Z) = g∗

2(Z) = 1

2
(Z − g∗

0(Z)).

Now, let us consider the case in which one of the two reinsur-
ers takes the expected value premium principle.

Proposition 4.3. (One expected value principle) Here, we assume that 
one reinsurer takes the expected value premium principle while the other 
takes the general form. First, we assume that a2 = 0 and γ2 = 0, indi-
cating that the second reinsurer takes the expected value principle with 
safety loading θ2(θ2 > θ1). Then, the optimal reinsurance strategy is

g∗
0(Z) =

⎧⎪⎨
⎪⎩

Z , 0 ≤ Z ≤ ln(1+θ1)
R∗ ,

g̃∗
0(Z),

ln(1+θ1)
R∗ ≤ Z ≤ ż2,

ln(1+θ2)
R∗ , Z ≥ ż2,

(4.14)

g∗
1(Z) =

⎧⎪⎨
⎪⎩

0, 0 ≤ Z ≤ ln(1+θ1)
R∗ ,

Z − g̃∗
0(Z),

ln(1+θ1)
R∗ ≤ Z ≤ ż2,

ż2 − ln(1+θ2)
R∗ , Z ≥ ż2,

(4.15)

and

g∗
2(Z) =

{
0, 0 ≤ Z ≤ ż2,

Z − ż2, Z ≥ ż2,
(4.16)

where the function g̃∗
0(z) is still given by (4.11). Second, if a1 = 0 and 

γ1 = 0, indicating that the first reinsurer takes the expected value prin-
ciple with safety loading θ1 > 0, then the optimal reinsurance strategy 
is

g∗
0(Z) = min

{
Z ,

ln(1 + θ1)

R∗

}
, g∗

1(Z) =
(

Z − ln(1 + θ1)

R∗

)
+

and g∗
2(Z) = 0.

Proof. Noting that a j = 0 and γ j = 0 for j = 1, 2, this result cor-
responds to the second case of Theorem 3.1. If a2 = 0 and γ2 = 0, 
then the result implies that i1 = 2. For 0 < z < ż2, the proof is 
similar to that for Proposition (4.2); thus, we omit this part of 
the proof here. For z ≥ ż2, we have from (3.23) and (3.26) that 
�R∗

(z) ≡ 1 + θ2 and (4.16) follows.
If a1 = 0 and γ1 = 0, then i1 = 1 from (3.20). According to 

(3.23), we have �R∗
(z) ≡ 1 + θ1 for all z ≥ 0. Then, from (3.14) and 

(3.26), we can obtain

g∗
0(Z) = min

{
Z ,

ln(1 + θ1)

R∗

}
, g∗

1(Z) =
(

Z − ln(1 + θ1)

R∗

)
+

and g∗
2(Z) = 0. �

Below, we consider some additional special cases.

Corollary 4.3. (Exponential premium principle + Expected value princi-
ple) Consider the case in which the first reinsurance company takes the 
exponential premium principle (θ1 = γ1 = 0) and the second company 
takes the expected value principle (a2 = γ2 = 0). The optimal reinsur-
ance strategy is

g∗
0(Z) =

⎧⎨
⎩

a1
a1+R∗ Z , 0 ≤ Z ≤

(
1

a1
+ 1

R∗
)

ln(1 + θ2),

ln(1+θ2)
R∗ , Z ≥

(
1

a1
+ 1

R∗
)

ln(1 + θ2),
(4.17)

g∗
1(Z) =

⎧⎨
⎩

R∗
a1+R∗ Z , 0 ≤ Z ≤

(
1

a1
+ 1

R∗
)

ln(1 + θ2),

ln(1+θ2)
a1

, Z ≥
(

1
a1

+ 1
R∗
)

ln(1 + θ2),
(4.18)

and
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g∗
2(Z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ Z ≤
(

1
a1

+ 1
R∗
)

ln(1 + θ2),

Z −
(

1
a1

+ 1
R∗
)

ln(1 + θ2),

Z ≥
(

1
a1

+ 1
R∗
)

ln(1 + θ2),

(4.19)

which implies that the optimal reinsurance arrangement for the insurer 
is excess-of-loss after quota-share reinsurance.

Proof. The results can be directly obtained from Proposition 4.3; 
thus, we omit the proof here. �
Corollary 4.4. (Variance premium principle + Variance premium prin-
ciple) Consider the case in which both reinsurance companies take the 
variance premium principle (a j = 0 and θ j = 0 for j = 1, 2). Then, the 
optimal reinsurance strategy is

g∗
0(Z) = h−1

0 (Z), g∗
1(Z) = h−1

1 (Z),

g∗
2(Z) = Z − h−1

0 (Z) − h−1
1 (Z),

(4.20)

where

h0(y) =
(

1

2γ1
+ 1

2γ2

)
(eR∗ y − 1) + y, (4.21)

h1(y) = (1 + γ1/γ2)y + ln(1 + 2γ1 y)

R∗ . (4.22)

Specifically, if γ1 = γ2 , then

g∗
1(Z) = g∗

2(Z) = 1

2
(Z − h−1

0 (Z)).

Proof. Because θ1 = θ2 = 0, we know that ln(1+θ1)
R∗ = ż2 = 0. Ac-

cording to Proposition 4.2, we know that ḡ∗
1(z) and ḡ∗

2(z) satisfy 
the following equations:

1 + 2γ1 ḡ∗
1(z) − eR∗ ḡ∗

0(z) = 0, (4.23)

1 + 2γ2(z − ḡ∗
0(z) − ḡ∗

1(z)) − eR∗ ḡ∗
0(z) = 0. (4.24)

From direct calculations, we find that

h0(ḡ∗
0(z)) = z, h1(ḡ∗

1(z)) = z, (4.25)

where the two functions h0(y) and h1(y) are given by (4.21)
and (4.22), respectively. Noting the monotonic property of the two 
functions h0(y) and h1(y), we have

g∗
0(z) = ḡ∗

0(z) = h−1
0 (z) and g∗

1(z) = ḡ∗
1(z) = h−1

1 (z). (4.26)

Specifically, if γ1 = γ2, we can easily determine from (4.23) and 
(4.24) that

ḡ∗
1(z) = z − ḡ∗

0(z) − ḡ∗
1(z) = ḡ∗

2(z).

Thus, the proof is completed. �
For the case in which both reinsurers take the exponential pre-

mium principle, we will give a more general result for any m
reinsurers in the next subsection (see Proposition 4.4 below). Of 
course, there still remain other interesting premium combinations 
for two reinsurers, such as the combination of the exponential 
principle and variance principle. With similar arguments, the cor-
responding results can be directly obtained from Proposition 4.2 or 
Proposition 4.3; thus, we do not present a further analysis here.
42
4.3. The general case of m

In this subsection, we consider the general case in which there 
exist any number m of reinsurance companies. From Theorem 3.1, 
we know that the optimal reinsurance strategy has a complex 
structure when all reinsurance companies apply the general pre-
mium principle. Here, we consider some special cases in which 
the optimal reinsurance has a simple structure.

First, let us assume that all of the reinsurance companies take 
the exponential premium principle.

Proposition 4.4. (Exponential premium principle) Consider the case in 
which all reinsurers take the exponential premium principle with differ-
ent parameters (θ j = 0 and γ j = 0 for all j = 1, 2, · · · , m). Then, the 
optimal reinsurance strategy is

g∗
0(Z) =

1
R∗

1
R∗ +∑m

j=1
1
a j

Z and

g∗
j (Z) =

1
a j

1
R∗ +∑m

j=1
1
a j

Z , j = 1, · · · ,m,

(4.27)

which suggests that the risk is proportionally shared among the insurer 
and m reinsurance companies.

Proof. According to (3.9) and (3.8), we know that g∗
0(z) and g∗

j (z)
( j = 1, 2, · · · , m) satisfy

eR∗ g∗
0(z) − �R∗

(z) = 0,

ea j g∗
j (z) − �R∗

(z) = 0.

With some direct calculations, we have

g∗
0(z) = 1

R∗ ln(�R∗
(z)) and

g∗
j (z) = 1

a j
ln(�R∗

(z)), j = 1,2, · · · ,m.

Moreover, according to

m∑
j=0

g∗
j (z) = 1

R∗ ln(�R∗
(z)) +

m∑
j=1

1

a j
ln(�R∗

(z)) = z,

it follows that

ln(�R∗
(z)) = 1

1
R∗ +∑m

j=1
1
a j

z.

Then, (4.27) follows, and the proof is completed. �
In addition, we evaluate the case in which the first reinsurance 

company takes the expected value principle with the minimum 
loading factor, and m reinsurers take the same premium principle.

Corollary 4.5. Consider that the first reinsurer takes the expected value 
premium principle (a1 = 0 and γ1 = 0). Then, the optimal reinsurance 
strategy is

g∗
0(Z) = min

{
Z ,

ln(1 + θ1)

R∗

}
, g∗

1(Z) =
(

Z − ln(1 + θ1)

R∗

)
+

,

g∗
j (Z) = 0, j = 2,3, · · · ,m. (4.28)

In other words, the insurer will only cede risk to the first reinsurance 
company in terms of stop-loss reinsurance.
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Proof. Recall our assumption that θ1 ≤ θ2 ≤ · · · ≤ θm . Hence, this 
result can be immediately obtained from the second case of Theo-
rem 3.1 by noting that i1 = 1 and ż1 = ln(1+θ1)

R∗ . �
Corollary 4.6. Let us assume that all m reinsurers take the same pre-
mium principle, i.e., θ j = θ , γ j = γ , and a j = a for j = 1, 2, · · · , m, and 
γ �= 0 or a �= 0 follows. Then, the optimal reinsurance strategy is

g∗
0(Z) =

{
Z , 0 ≤ Z ≤ ln(1+θ)

R∗
g̃∗

0(Z), Z ≥ ln(1+θ)
R∗

(4.29)

and

g∗
j (Z) =

{
0, 0 ≤ Z ≤ ln(1+θ)

R∗ ,
1
m (Z − g̃∗

0(Z)), Z ≥ ln(1+θ)
R∗ ,

(4.30)

where g̃∗
0(z) satisfies the following equation:

(1 + θ)e
a
m (z−g̃∗

0(z)) + 2
γ

m
(z − g̃∗

0(z)) − eR∗ g̃∗
0(z) = 0. (4.31)

Proof. These results can be directly obtained from the first case of 
Theorem 3.1, and thus, we omit the proof here. �

Finally, let us consider the case of m → ∞ when all reinsur-
ance companies take the same principle. Recall the no-arbitrage 
assumption (2.9). Noting that Am(Z) is a decreasing function, we 
define

A(Z) = lim
m→∞ Am(Z). (4.32)

We can show that it is possible for c > A(Z) in some cases. For 
example, if all reinsurers take the same premium principle with 
θ j = 0, γ j = γ , and a j = a for j = 1, 2, · · · , m, we have, from (2.9),

1

a

(
E
[

eaZ
]
− 1

)
+ γE[Z 2] > c. (4.33)

By taking g j(Z) = 1
m Z , j = 1, 2, · · · , m, it follows that

Am(Z) ≤ m

[
1

a

(
E
[

ea Z
m

]
− 1

)
+ 1

m2
γE[Z 2]

]
. (4.34)

As m → ∞, we obtain A(Z) ≤E[Z ] < c. According to this observa-
tion, we have the following corollary.

Corollary 4.7. Assume that all reinsurers take the same premium princi-
ple and

c > (1 + θ)E[Z ].
Then, there uniquely exists m̄ > 1 such that

(1 + θ)
m̄

a

(
E
[

ea Z
m̄

]
− 1

)
+ 1

m̄
γE[Z 2] = c (4.35)

and

(1 + θ)
m

a

(
E
[

ea Z
m

]
− 1

)
+ 1

m
γE[Z 2] < c, m > m̄. (4.36)

In other words, if there exist m(m ≥ �m̄�) participants in the reinsur-
ance market, then the insurer can equally cede all of the risk Z to the m
reinsurers at a cost lower than the received premium rate c. Therefore, 
the optimal Lundberg exponent R∗ = ∞ and V (x) = 0 for all x ≥ 0.

Proof. Note that, for any fixed z > 0, the function eaz−1
a is strictly 

increasing with respect to a for a > 0. Thus, the function (1 +
43
θ)m
a

(
E
[

ea Z
m

]
− 1

)
+ 1

m γE[Z 2] is strictly decreasing with respect 
to m such that

lim
m→∞(1 + θ)

m

a

(
E
[

ea Z
m

]
− 1

)
+ 1

m
γE[Z 2] = (1 + θ)E[Z ] < c,

and at m = 1, the function equals 1+θ
a

(
E
[
eaZ

]− 1
) + γE[Z 2] >

c. Therefore, we can uniquely determine m̄ such that (4.35) and 
(4.36). �
Remark 4.1. Let us suppose that m reinsurance companies enter 
into a reinsurance treaty with an insurance company. Similar to 
Proposition 4.2 and Proposition 4.3 for m = 2, the optimal rein-
surance strategies also maintain a multi-layer nonlinear structure. 
Specifically, the optimal reinsurance policies have at most m + 1
layers. The first layered point is ln(1+θ1)

R∗ , and the subsequent lay-
ered points are żk , where żk can be determined by

�̃R∗
(żk) = 1 + θk, k = 2,3, · · · ,m, or

�̂R∗
(żh) = 1 + θh, h = 2, · · · , i1.

�̃R∗
(z) and �̂R∗

(z) are defined by (3.19) and (3.24), respectively.

5. Numerical analysis

In the previous section, we derived the optimal multiple rein-
surance strategy and optimal Lundberg exponent for a general case 
and presented results for some special cases. In this section, we 
perform a sensitivity analysis for the optimal reinsurance strategy 
and the optimal Lundberg exponent.

For this purpose, we first assume that the claim Zi follows a 
gamma(α, β) distribution with the following probability density 
function:

f (x,α,β) = βαxα−1e−βx

�(α)
, x ≥ 0,

where α > 0 is the shape parameter, β > 0 is the inverse scale pa-
rameter, and � is the gamma function with the following formula:

�(α) =
∞∫

0

tα−1e−tdt.

Then, we determine the parameter setting for the base scenario: 
α = 3 and β = 1

2 in the density function, and the mean of each 
claim is α

β
= 6. The premium rate c = 9. We assume that there 

exist two reinsurance companies (m = 2) and that they take vari-
ance premium principles with different safety loading parameters 
γ1 = 0.5, γ2 = 0.3, and θ1 = θ2 = a1 = a2 = 0, that is,

π0,0,γi (Y ) = E[Y ] + γiV [Y ], i = 1,2.

Now, we first conduct a sensitivity analysis for the premium 
rate c and safety loadings of the reinsurance premium γ1 and γ2

on the optimal Lundberg exponent. When we change one param-
eter, the remaining parameters are assumed to be unchanged in 
the base scenario. Recalling Theorem 3.1, we know that the opti-
mal Lundberg exponent R∗ is determined by (3.30). In this case, 
the Lundberg exponent satisfies

2∑
j=1

(
E[g∗

j (Z)] + γ jE[(g∗
j (Z))2]

)
+ 1

R∗ [E[eR∗ g0(Z)] − 1] − c = 0,

(5.1)
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Table 1
Impact of the premium rate c on the Lundberg exponent R∗ .

c 6.5 7 7.5 8 8.5 9 9.5 10

R∗ 0.0189 0.0386 0.0597 0.0816 0.1051 0.1315 0.1609 0.1948
Table 2
Impact of the safety loading γ2 on the Lundberg exponent R∗ .

γ2 0.3 0.4 0.5 0.6 0.7 0.8

R∗ 0.1315 0.1219 0.1168 0.1137 0.1114 0.1099

where g∗
j (Z), j = 0, 1, 2 are given by Corollary 4.4. Note that each 

g∗
j (Z) is also related to R∗; thus, it is very difficult to solve for R∗

from (5.1) explicitly. To give a numerical solution to R∗ , we employ 
Monte Carlo simulations to calculate the expectations in (5.1). And 
then R∗ can be obtained in terms of one iterative algorithm, for 
example the Bisection method8:

Step 1 Simulate scenarios of the claim Z .
Step 2 Give initial values: Rdown = 0 and a large enough Rup such 

that the left side of (5.1) is positive for R∗ = Rup .

Step 3 Set R∗ = Rdown+Rup
2 .

Step 4 Solve g0(Z), g1(Z), and g2(Z) according to Corollary 4.4.
Step 5 If (5.1) follows (within an acceptable error, for example 

0.01%), then we obtain R∗ and stop here.
Step 6 Otherwise, if the left side of equation (5.1) is positive, we 

set Rup = R∗ and then go back to Step 3; if the left side of 
equation (5.1) is negative, we set Rdown = R∗ and go back 
to Step 3.

The impacts of the premium rate c and safety loading γ2 on 
the optimal Lundberg exponent R∗ are displayed in Tables 1 and 
2, respectively. As shown in these tables, the optimal Lundberg 
exponent R∗ increases with respect to the premium rate c, indi-
cating that the upper bound of the ruin probability of the insurer 
decreases with increasing premium rate. In contrast, the optimal 
Lundberg exponent R∗ decreases with respect to the safety loading 
of the reinsurance γ2, implying that the upper bound of the ruin 
probability of the insurer increases with increasing safety loading. 
For a given risk, as the insurer charges a higher premium or as the 
reinsurance becomes cheaper, the ruin probability of the insurer 
decreases. These findings are fairly consistent with our intuition.

Once R∗ is obtained, the optimal reinsurance arrangements 
g∗

j (Z), j = 0, 1, 2 are then clear according to Corollary 4.4. Below, 
we proceed to analyze the impacts of the premium rate and safety 
loading of reinsurance on the optimal reinsurance strategy. Fig. 1
displays the optimal reinsurance arrangement (retained risk g∗

0(z)
and two ceded risks g∗

1(z) and g∗
2(z)) for the base scenario. The re-

sults show that all three functions g∗
0(z), g∗

1(z), and g∗
2(z) increase 

with respect to the claim amount z. As the total loss increases, 
the losses taken by the insurer and the reinsurers also increase. 
In addition, all of the optimal risk functions g∗

i (z), i = 0, 1, 2, are 
general curves, which differ from some common optimal reinsur-
ance polices, such as quota-share, excess-of-loss, and piecewise 
linear optimal structures. Furthermore, because the second rein-
surer charges less than the first reinsurer (γ1 = 0.5, γ2 = 0.3), the 
risk ceded to the second reinsurer is higher than that of the first 

8 It is worth to point that the numerical iterative algorithm for solving R∗ given 
here has some limitations. In step 4, g j(Z), j = 1, 2 can be numerically obtained 
because they are uniquely determined by equations with analytical form. If the 
equations are not analytic or the number of equations m is very large, then it will 
be very challenging to obtain the numerical solutions. At that time, we will need to 
analyze specific issues on a case-by-case basis.
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Fig. 1. Optimal risk-sharing policies g j(z).

Fig. 2. Impact of the premium rate c on the retained risk g0(z).

reinsurer (g∗
2(z) > g∗

1(z)). All of these findings are also consistent 
with our intuition.

Figs. 2–4 display optimal multiple reinsurance strategies for dif-
ferent premium rates (c = 7, 9, 11). The results show that the re-
tained risk of the insurer decreases and both risks ceded to the 
two reinsurers increase as the premium rate increases. This trend 
is due to our optimization objective of maximizing the Lundberg 
exponent, which controls the ruin probability. For a given risk, if 
the insurer can charge a higher premium, then the insurer can af-
ford to cede more risks in order to reduce the ruin probability. 
Correspondingly, the risks ceded to the reinsurers increase if the 
reinsurance premium principles are unchanged.

Figs. 5–9 present the impact of the safety loading of the rein-
surance premium on the retained risk of the insurer and the 
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Fig. 3. Impact of the premium rate c on the risk-sharing policy g1(z).

Fig. 4. Impact of the premium rate c on the risk-sharing policy g2(z).

Fig. 5. Impact of the safety loading γ2 on the retained risk g0(z).

Fig. 6. Impact of the safety loading γ2 on the risk-sharing policy g1(z).

Fig. 7. Impact of the safety loading γ2 on the risk-sharing policy g1(z): small claims.

Fig. 8. Impact of the safety loading γ2 on the risk-sharing policy g1(z): large claims.
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Fig. 9. Impact of the safety loading γ2 on the risk-sharing policy g2(z).

risks ceded to the two reinsurers. The figures show the follow-
ing phenomena. First, as the safety loading γ2 increases, the pre-
mium charged by the second reinsurer for the same risk increases, 
whereas the premium charged by the first reinsurer does not 
change. Thus, the risk ceded to the second reinsurer decreases (see 
Fig. 9), and the risk retained by the insurer increases (see Fig. 5). 
However, the risk ceded to the first reinsurer does not show a 
significant change. We can conclude that if one of the reinsurers 
increases the price of its own undertaken risk, then the insurer 
will reduce the risk ceded to that reinsurer, but may not obviously 
increase the risk ceded to the other reinsurers. Basically, almost 
all of the reduced risk from the reinsurer will be retained by the 
insurer. To clearly show the impact on the risk ceded to the first 
reinsurer, we enlarged the results from Fig. 6 in Figs. 7 and 8 for 
small claims and large claims, respectively. Here, we can see that 
for small claims, the risk ceded to the first reinsurer is slightly 
reduced, whereas for large claims, the risk ceded to the first rein-
surer increases slightly. From the perspective of the insurer, this 
result is easy to understand because the insurer would prefer small 
claims over large claims.

Finally, we further investigated the optimal reinsurance policy. 
In this paper, we obtained the optimal reinsurance policy by max-
imizing the Lundberg exponent or, equivalently, by minimizing the 
Lundberg bound of the ruin probability in terms of the optimal 
reinsurance policy. However, we note that the results may be dif-
ferent from the optimal reinsurance policy obtained by minimizing 
the ruin probability directly. The left graph of Fig. 10 displays the 
Lundberg bounds of the ruin probability without reinsurance and 
with the optimal reinsurance policy. We can see that the opti-
mal reinsurance policy can significantly reduce the Lundberg upper 
bound. For the same optimal reinsurance policy, we also examine 
the impact on the ruin probability itself. It is almost impossible 
to give an explicit expression for the ruin probability because the 
retained risk g∗

0(Z) may not have a simple distribution. Thus, we 
employ the De Vylder approximation (see Rolski et al., 1999) to cal-
culate the ruin probability. The right graph in Fig. 10 shows that 
the obtained optimal reinsurance policy also greatly reduces the 
ruin probability, and the percentage reduction of the ruin proba-
bility is better than that for the Lundberg upper bound. This result 
suggests that the optimal reinsurance policy obtained by maximiz-
ing the Lundberg exponent also works well for controlling the ruin 
probability, to a certain extent.
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6. Concluding remarks

Based on the objective of maximizing the Lundberg exponent, 
we have studied the optimal multiple reinsurance arrangement 
problem for an insurer with a general admissible policies set. Us-
ing a point-wise optimization approach for a type of combined 
premium principle, we showed that optimal multiple reinsurance 
strategies have non-piecewise linear structures, which differ from 
conventional reinsurance strategies such as quota-share, excess-
of-loss, and layer reinsurance arrangements. In general, it seems 
that only claims Zi with light-tailed distributions are formulated 
in the model setting in order to guarantee the existence of the 
Lundberg exponent and the risk measure of the exponential pre-
mium principle. In fact, our results can also be applied for claims 
Zi with heavy-tailed distributions, as long as the risk retained by 
the insurer g0(Zi) is light-tailed and the reinsurer undertaking the 
heavy-tailed part does not take the exponential premium principle, 
for example, when one reinsurance company takes the expected 
value principle.
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