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1. Introduction

Let (�, F , P) be an atomless probability space, and X be a convex cone of random variables defined on (�, F , P). A risk measure is 
a functional ρ : X → [−∞,+∞) (Artzner et al., 1999; Föllmer and Schied, 2016). In a risk sharing problem, there are n agents equipped 
with respective risk measures ρ1, . . . , ρn . Let X ∈ X denote the total risk, which is shared by n agents. X is splitted into an allocation 
(X1, . . . , Xn) ∈An(X) among n agents, where An(X) is the set of all possible allocation of X , defined as

An(X) =
{

(X1, . . . , Xn) ∈ X n :
n∑

i=1

Xi = X

}
.

We refer to 
∑n

i=1 ρi(Xi) as the aggregate risk value of n agents under the allocation (X1, . . . , Xn) of X . The inf-convolution of risk measures 
ρ1, . . . , ρn is the mapping �n

i=1ρi :X → [−∞,+∞), defined as

�n
i=1ρi(X) = inf

{
n∑

i=1

ρi(Xi) : (X1, . . . , Xn) ∈An(X)

}
, X ∈ X . (1.1)

An n-tuple (X1, . . . , Xn) ∈ An(X) is called an optimal allocation of X for (ρ1, . . . , ρn) if �n
i=1ρi(X) = ∑n

i=1 ρi(Xi). For more on inf-
convolution, see Barrieu and El Karoui (2005), Acciaio (2007), Jouini et al. (2008), Filipović and Svindland (2008) and Tsanakas (2009)
for the case of convex risk measures, Embrechts et al. (2018), Wang and Wei (2020) and Liu et al. (2022) for the non-convex case, and Liu 
et al. (2020) for conditions under which law invariance of inf-convolution holds.

Value-at-Risk (VaR) is the most common risk measure used in banking and finance. VaR is a non-convex risk measure and has two 
versions, the left- and right-quantiles. Let L0 be the set of all random variables on (�, F , P), and let Lr denote the set of all random 
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variables with finite rth moment, where r > 0. For any X ∈ L0, a positive (negative) value of X represents a financial loss (profit), and F X

represents the distribution function of X . The left-VaR of X at confidence level α ∈ (0, 1) is defined as

VaRL
α(X) := F −1

X (1 − α) = inf{x ∈R : F X (x) ≥ 1 − α}, X ∈ L0,

and the right-VaR of X at confidence level α ∈ (0, 1) is defined as

VaRR
α(X) = inf{x ∈R : F X (x) > 1 − α}, X ∈ L0.

In addition, let VaRL
0(X) = VaRR

0 (X) = ess-sup(X) = sup{x ∈ R : F X (x) < 1} and VaRL
1(X) = VaRR

1 (X) = ess-inf(X) = inf{x ∈ R : F X (x) > 0}. 
For the role of left-quantile (VaRL ) and right quantile (VaRR ) as risk measures, see the discussion in Acerbi and Tasche (2002) and Liu et 
al. (2022, Remark 5).

Embrechts et al. (2018) addressed the problem of risk sharing among n agents with a two-parameter class of quantile-based risk 
measure, the so-called Range-Value-at-Risk (RVaR). As a special consequence of the main result on RVaR, Corollary 2 in Embrechts et al. 
(2018) gives the VaR inf-convolution formula

VaRL
α1

�VaRL
α2

= VaRL
α1+α2

, (1.2)

where α1, α2 > 0 such that α1 + α2 < 1. Liu et al. (2022) extended (1.2) to the inf-convolution for the case of a mixed collection of VaRL

and VaRR , and the case of VaRL or VaRR and another tail risk measure, and obtain explicit forms of the inf-convolution as well as the 
corresponding optimal allocations. In particular, they obtain that

VaRL
α1

�VaRR
α2

= VaRR
α1

�VaRL
α2

= VaRR
α1

�VaRR
α2

= VaRR
α1+α2

(1.3)

with α1, α2 > 0 such that α1 + α2 < 1, and their optimal allocations are presented in (3.1) and (3.2).
The purpose of this paper is to investigate optimal allocations in a risk sharing problem (1.1) where the objectives of agents are 

mixed-VaRs. A mixed-VaR is also a two-parameter quantile-based risk measure, which is defined as

VaRλ
α(X) = (1 − λ)VaRL

α(X) + λVaRR
α(X), X ∈ L0,

where λ ∈ [0, 1]. In particular, when λ = 0, 1, VaR0
α = VaRL

α and VaR1
α = VaRR

α . For more on λ-quantile (mixed VaR) and its applications, 
see Dhaene et al. (2002) and Dhaene et al. (2012). For mixed-VaR, by monotonicity of inf-convolution and (1.3), we have

VaRλ
α1

�VaRR
α2

= VaRR
α1

�VaRλ
α2

= VaRR
α1+α2

, λ ∈ [0,1], (1.4)

with α1, α2 > 0 such that α1 + α2 < 1.
The rest of this paper is organized as follows. In Section 2, we obtain the following explicit form of the inf-convolution for mixed-VaRs 

(VaRλ1
α1 , . . . , VaRλn

αn ),

VaRλ1
α1

�VaRλ2
α2

� · · ·�VaRλn
αn

(X) = VaRλ
α(X), X ∈ L0, (1.5)

where λ1, . . . , λn ∈ [0, 1], α1 > 0, . . . , αn > 0 such that α := ∑n
i=1 αi < 1, and λ = min

{∑n
i=1 λi,1

}
. The (Pareto) optimal allocations of (1.5)

are constructed in Section 3. The worst-case mixed VaR under model uncertainty is presented in Section 4.
The motivation of such a study can be seen from Remark 5 in Liu et al. (2022). For X ∈ L0, the distinction of VaRL

α(X) and VaRR
α(X)

arises only when the distribution function F X of X is strictly flat on the interval {x : F X (x) = α}. Such a situation often occurs when F X

is the distribution function of a discrete random variable or F X is the empirical distribution of some random sample. In this case, VaRL
α

can be regarded as the left end-point of the confidence interval, whereas VaRR
α represents the right end-point. A strict risk regulator 

will choose VaRR
α , a lenient risk regulator will impose VaRL

α , whereas a moderate regulator might accept the mixed-VaR, VaRλ
α for some 

λ ∈ (0, 1). Here 1 − λ can be regarded as a moderate risk index. Eq. (1.5) can be interpreted as that, if all agents in a risk sharing problem 
are under a moderate regime, then the corresponding inf-convolution is also a mixed-VaR. On the other hand, although our results are of 
more theoretical than practical interest, they do have some impact on risk sharing and can give us some insight on the understanding of 
some known results in the recent literature.

2. Inf-convolution of mixed-VaRs

We first give the explicit form of the inf-convolution for two agents with respective risk measures VaRλ1
α1 and VaRλ2

α2 .

Lemma 2.1. For λ1, λ2 ∈ [0, 1], and α1 > 0, α2 > 0 such that α1 + α2 < 1, we have

VaRλ1
α1

�VaRλ2
α2

(X) = VaRλ
α1+α2

(X), X ∈ L0, (2.1)

where λ = min{λ1 + λ2, 1}.

Proof. In view of (1.2) and (1.4), we only consider the case λ1, λ2 ∈ [0, 1) and λ > 0. Denote α = α1 + α2. For any X ∈ L0, (2.1) holds 
trivially if VaRR

α(X) = VaRL
α(X). Thus, we assume that

VaRL
α(X) < VaRR

α(X), (2.2)
157



Z. Xia, Z. Zou and T. Hu Insurance: Mathematics and Economics 108 (2023) 156–164
which implies that P(A) = α, where A := {X ≥ VaRR
α(X)}. Let (X1, X2) ∈ A2(X). By translation invariance of VaR-type risk measures, we 

further assume without loss of generality that VaRL
α(X) = 0, VaRR

α2
(X2) = VaRR

α(X). Denote VaRL
α2

(X2) = t , where t will be regarded as a 
parameter in the following discussion. Then t ≤ VaRR

α(X). Therefore, we have

VaRλ1
α1

�VaRλ2
α2

(X) = inf
t≤VaRR

α(X)

⎧⎨
⎩VaRλ1

α1
(X1) + VaRλ2

α2
(X2)

∣∣∣∣∣∣
(X1, X2) ∈A2(X),

VaRR
α2

(X2) = VaRR
α(X),

VaRL
α2

(X2) = t

⎫⎬
⎭ . (2.3)

Under the aforementioned assumptions, from the definition of VaRR
α , it follows that P(X2 ≥ VaRR

α(X) + ε) < α2 for any ε > 0. Note that

A ⊂ {X2 ≥ VaRR
α(X) + ε} ∪ {X1 ≥ −ε}.

Then,

P(A) ≤ P
(

X2 ≥ VaRR
α(X) + ε

)
+ P(X1 ≥ −ε) < α2 + P(X1 ≥ −ε).

Thus, P(X1 ≥ −ε) > α − α2 = α1, which implies that

VaRL
α1

(X1) ≥ 0 (2.4)

since ε is arbitrary.
Below, we will discuss the lower bound of the right hand side of (2.3) according to three cases: t = VaRR

α(X), t ∈ [0, VaRR
α(X)) and 

t < 0.

(i) Suppose t = VaRR
α(X). In this case, whenever λ1 and λ2 take any values, we have

VaRλ1
α1

(X1) + VaRλ2
α2

(X2) ≥ 0 + VaRR
α(X) = VaRR

α(X) ≥ λVaRR
α(X). (2.5)

(ii) Suppose t ∈ [0, VaRR
α(X)). From (2.2) and the definition of VaRL , we get that P(X2 ≤ t) = 1 − α2. Then,

P
(

X1 ≥ VaRR
α(X) − t

)
≥ P(A ∩ {X2 ≤ t}) ≥ P(A) + P (X2 ≤ t) − 1 = α1, (2.6)

implying that VaRR
α1

(X1) ≥ VaRR
α(X) − t . Thus, using (2.4),

inf
t∈[0,VaRR

α(X))

{
VaRλ1

α1
(X1) + VaRλ2

α2
(X2)

}
≥ inf

t∈[0,VaRR
α(X))

{
λ1

(
VaRR

α(X) − t
)

+ (1 − λ2)t + λ2VaRR
α(X)

}
(2.7)

= inf
t∈[0,VaRR

α(X))

{
(λ1 + λ2)VaRR

α(X) + t(1 − λ1 − λ2)
}

= λ VaRR
α(X),

where λ = min{λ1 + λ2, 1}.
We now turn to prove that the strict equality holds in (2.7). For any ε > 0, we will construct two random variables X1,ε , X2,ε , which 
satisfy that

VaRL
α2

(X2,ε) = t, VaRR
α2

(X2,ε) = VaRR
α(X), (2.8)

and

VaRR
α1

(X1,ε) < VaRR
α(X) − t + ε, VaRL

α1
(X1,ε) = 0. (2.9)

To this end, define Bε = {
VaRR

α(X) ≤ X < VaRR
α(X) + ε

}
. Then P(Bε) > 0. Since the underlying probability space is atomless, we can 

choose a measurable set B∗
ε ⊂ Bε such that

P
(

B∗
ε

) = min

{
1

2
P(Bε), α1

}

and inf{X(w) : w ∈ B∗
ε} ≥ sup{X(w) : w ∈ Bε \ B∗

ε}. Additionally, define Cε = {
X ≥ VaRR

α(X) + ε
}

, and choose another measurable set 
C∗

ε ⊂ Cε such that P(C∗
ε ) = α1 − P 

(
B∗

ε

)
. Now construct two random variables

X1,ε = (X − t)(IC∗
ε
+ I B∗

ε
), X2,ε = X − X1,ε .

It is easy to check that

P
(

X2,ε ≥ VaRR
α(X)

)
= P(A \ (B∗

ε ∪ C∗
ε )) = P(A) − P(B∗

ε ∪ C∗
ε ) = α2,

VaRR
α (X2,ε) = VaRR

α(X), VaRL
α (X2,ε) = t.
2 2
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From the construction of X1,ε , we know that VaRL
α1

(X1,ε) = 0,

P
(

X1,ε ≥ VaRR
α(X) − t + ε

)
= P(C∗

ε ) < α1.

Then,

VaRR
α1

(X1,ε) < VaRR
α(X) − t + ε.

Therefore, X1,ε and X2,ε constructed above satisfy (2.8) and (2.9). The infimum lower bound in the left hand side of (2.7) is also 
bounded from above as follows:

inf
t∈[0,VaRR

α(X))

{
VaRλ1

α1
(X1) + VaRλ2

α2
(X2)

}
≤ inf

t∈[0,VaRR
α(X))

{
λ1

(
VaRR

α(X) − t + ε
)

+ (1 − λ2)t + λ2VaRR
α(X)

}

= inf
t∈[0,VaRR

α(X))

{
(λ1 + λ2)VaRR

α(X) + t(1 − λ1 − λ2) + ελ1

}
= λ VaRR

α(X) + ελ1.

Setting ε ↓ 0 yields that

inf
t∈[0,VaRR

α(X))

{
VaRλ1

α1
(X1) + VaRλ2

α2
(X2)

} = λ VaRR
α(X). (2.10)

(iii) Suppose t < 0. For this case, P(X2 ≤ t) = 1 − α2 and

P
(

X1 ≥ VaRR
α(X) − t

)
≥ P (A ∩ {X2 ≤ t}) ≥ P(A) + P(X2 ≤ t) − 1 = α1.

This implies that VaRR
α1

(X1) ≥ VaRR
α(X) − t . On the other hand, we have P(X ≥ −ε) > α since VaRL

α(X) = 0. Note that

P(X ≥ −ε) ≤ P({X2 > t} ∪ {X1 ≥ −t − ε})
≤ P(X2 > t) + P(X1 ≥ −t − ε) = α2 + P(X1 ≥ −t − ε),

which implies that P(X1 ≥ −t − ε) > α1. Thus, VaRL
α1

(X1) ≥ −t since ε is arbitrary. Therefore,

VaRλ1
α1

(X1) + VaRλ2
α2

(X2) ≥ −t(1 − λ1) + λ1

(
VaRR

α(X) − t
)

+ (1 − λ2)t + λ2VaRR
α(X)

= (λ1 + λ2)VaRR
α(X) − λ2t

> (λ1 + λ2)VaRR
α(X)

≥ λVaRR
α(X), (2.11)

where the last inequality follows from the fact that VaRL
α(X) = 0.

Based on the above discussions of three cases, it follows from (2.3), (2.5), (2.10) and (2.11) that

VaRλ1
α1

�VaRλ2
α2

(X) = λVaRR
α(X) = VaRλ

α(X).

This proves the lemma. �
Remark 2.2. Following the notation in Embrechts et al. (2018), the RVaR at level (α, β) ∈ [0, 1]2 with α + β ≤ 1 is defined by

RVaRα,β(X) = 1

β

α+β∫
α

VaRL
u(X)du, X ∈ L1,

for β > 0, and RVaRα,β(X) = VaRL
α(X) for β = 0. Since VaRL

α(X) is right continuous in α ∈ [0, 1) and, hence, we have

lim
β→0+ RVaRα,β(X) = VaRL

α(X), X ∈ L1,

and

lim
β→0+ RVaRα−λβ,β(X) = VaRλ

α(X), X ∈ L1, (2.12)

where 0 ≤ λ ≤ 1, α ≥ λβ and α + (1 − λ)β < 1. By Theorem 2 in Embrechts et al. (2018), we have

RVaRα1−λ1β,β� RVaRα2−λ2β,β(X) = RVaRα1+α2−(λ1+λ2)β,β(X), X ∈ L1, (2.13)
159
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for λi ∈ [0, 1], αi ≥ λiβ ≥ 0 (i = 1, 2) and α1 +α2 + (1 − λ1 − λ2)β < 1. One reviewer pointed out (2.12) to us and wondered whether (2.1)
in Lemma 2.1 can be deduced from (2.13) by setting β → 0+ for X ∈ L1 and λ1 + λ2 ≤ 1.

However, the above assertion is negative because the following equation does not hold in general:

lim
β→0+ RVaRk1(β),k2(β) � lim

β→0+ RVaRg1(β),g2(β)(X) = lim
β→0+ RVaRk1(β)+g1(β),k2(β)∨g2(β)(X), (2.14)

where k1(β), k2(β), g1(β), g2(β) are continuous functions, taking values in (0, 1), such that k1(β) + g1(β) + k2(β) ∨ g2(β) < 1. To see it, 
we give the following counterexample. Choose k1(β) = α1, k2(β) = β , g1(β) = α2 − cβ and g2(β) = cβ with c ∈ (0, 1). Then, by applying 
the property of RVaR, we have

lim
β→0+ RVaRk1(β),k2(β) = VaRL

α1
(X),

lim
β→0+ RVaRg1(β),g2(β) = lim

β→0+ RVaRα2−cβ,cβ(X) = VaRR
α2

(X)

and

lim
β→0+ RVaRk1(β)+g1(β),k2(β)∨g2(β)(X) = lim

β→0+ RVaRα1+α2−cβ,β(X) = VaRc
α1+α2

(X).

However,

lim
β→0+ RVaRk1(β),k2(β) � lim

β→0+ RVaRg1(β),g2(β)(X) = VaRL
α1

�VaRR
α2

(X) = VaRR
α1+α2

(X).

This means that (2.14) does not hold. �
Lemma 2 in Liu et al. (2020) states that for any risk measures ρ1, . . . , ρn , we have �n

i=1ρi = ρ1�ρ2� · · ·�ρn . As a direct consequence 
of this fact, together with Lemma 2.1, we conclude the following main result in this paper.

Theorem 2.3. For λ1, . . . , λn ∈ [0, 1], and α1 > 0, . . . , αn > 0 such that α := ∑n
i=1 αi < 1, we have

n�
i=1

VaRλi
αi (X) = VaRλ1

α1
�VaRλ2

α2
� · · ·�VaRλn

αn
(X) = VaRλ

α(X), X ∈ L0, (2.15)

where λ = min
{∑n

i=1 λi,1
}

.

It should be mentioned that for any finite-valued monetary risk measures ρ1, . . . , ρn , an allocation is optimal if and only if it is 
also Pareto optimal (see, for example, Embrechts et al., 2018, Proposition 1). An n-tuple (X1, . . . , Xn) ∈ An(X) is called a Pareto optimal 
allocation if for any (Y1, . . . , Yn) ∈An(X) satisfying ρi(Yi) ≤ ρi(Xi) for all i = 1, . . . , n, we have ρi(Xi) = ρi(Yi) for i = 1, . . . , n.

3. Optimal allocations for mixed-VaRs

For different parameters {λi} and {αi}, Theorem 2.3 in the above section gives the explicit form of the inf-convolution of X for risk 
measures (VaRλ1

α1 , . . . , VaRλn
αn ). A corresponding optimal allocation will be constructed explicitly in this section. Optimal allocations for 

some special cases of the parameters are available in the literature. To state these, denote λ = max{∑n
i=1 λi, 1} and α = ∑n

i=1 αi .

• For λ = 0 (that is, λi = 0 for all i), an optimal allocation of X for (VaRL
α1

, . . . , VaRL
αn

) has the form (see Embrechts et al., 2018, Corollary 
2):

Xk = (X − m)I{1−∑k
i=1 αi<U X ≤1−∑k−1

i=1 αi}, k = 1, . . . ,n − 1,

Xn = (X − m)I{U X ≤1−∑n−1
i=1 αi} + m,

(3.1)

where m ∈ (−∞,VaRL
α(X)

]
is a constant, and U X is a uniform random variable on (0, 1) such that F −1

X (U X ) = X , a.s..

• For λ = 1 and λi ∈ {0, 1} for each i, an optimal allocation of X for (VaRλ1
α1 , . . . , VaRλn

αn ) has the form (see Liu et al., 2022, Theorem 1):

Xk =
(

X − VaRR
α(X)

)
I Ak + 1

n
VaRR

α(X), k = 1, . . . ,n, (3.2)

where {A1, . . . , An} is a partition of � with P(Ak) = αk/α for each k. To see it, from the construction given in the proof of Theorem 
1 in Liu et al. (2022), we have

n∑
k=1

VaRλk
αk

(Xk) ≤
n∑

k=1

VaRR
αk

(Xk) ≤ VaRR
α(X). (3.3)

On the other hand, by Theorem 2.3,

n∑
k=1

VaRλk
αk

(Xk) ≥ VaRλ1
α1

�VaRλ2
α2

� · · ·�VaRλn
αn

(X) = VaRR
α(X).

Therefore, 
∑n

k=1 VaRλk
α (Xk) = VaRR

α(X).

k
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• When VaRL
α(X) = VaRR

α(X), (X1, . . . , Xn) define by (3.2) is also an optimal allocation of X for (VaRλ1
α1 , . . . , VaRλn

αn ), where parameters 
{λi} and {αi} are arbitrary. To see it, applying Theorem 2.3 yields that

n∑
k=1

VaRλk
αk

(Xk) ≥ VaRλ
α(X) = VaRR

α(X). (3.4)

Therefore, by (3.3) and (3.4), we have 
∑n

k=1 VaRλk
αk

(Xk) = VaRR
α(X).

Theorem 3.1. Suppose that λ := ∑n
i=1 λi < 1, α := ∑n

i=1 αi < 1, and VaRL
α(X) < VaRR

α(X). Then there exists an optimal allocation of X for 
(VaRλ1

α1 , VaRλ2
α2 , . . . , VaRλn

αn ), which has the form

Xk =
(

X − VaRL
α(X)

)
I Ak + 1

n
VaRL

α(X), k = 1, . . . ,n − 1, (3.5)

Xn =
(

X − VaRL
α(X)

)
(I Ac + I An) + 1

n
VaRL

α(X), (3.6)

where A = {
X ≥ VaRR

α(X)
}

, and {A1, . . . , An} is a partition of A with P(Ak) = αk for k = 1, . . . , n.

Proof. Obviously, {X1, . . . , Xn} defined by (3.5) and (3.6) is an allocation of X . In view of translation invariance of VaR, without loss 
of generality, assume that VaRL

α(X) = 0. In the sequel, it requires to consider the following two cases: P 
(

X = VaRR
α(X)

)
> 0 and 

P 
(

X = VaRR
α(X)

) = 0.
Case 1: Suppose that θ := P 

(
X = VaRR

α(X)
)
> 0. Denote K = {

X = VaRR
α(X)

}
. In the atomless probability space, there exists a partition 

{K1, . . . Kn} of K , satisfying that P(Ki) = θαi/α for i = 1, . . . , n. Similarly, there exists a partition { J1, . . . , Jn} of A \ K such that

P( J i) = (α − θ)
αi

α
, i = 1, . . . ,n.

Set Ai = Ki ∪ J i for i = 1, . . . , n. Then {A1, . . . , An} is a partition of A. Define n random variables

Xi = X I Ai , i = 1, . . . ,n − 1; (3.7)

Xn = X −
n−1∑
i=1

Xi = X I Ac + X I An . (3.8)

Note that VaRR
α(X) > 0. It is easy to check that, for any i = 1, . . . , n,

P
(

Xi ≥ VaRR
α(X)

)
= P(Ki ∪ J i) = θ

αi

α
+ (α − θ)

αi

α
= αi,

P
(

Xi > VaRR
α(X)

)
= P( J i) = (α − θ)

αi

α
< αi,

P(Xi ≤ 0) = 1 − αi,

P(Xn = 0) ≥ P(A\ (Kn ∪ Jn)) = α − α1 > 0.

Then, for each i, we have VaRL
αi

(Xi) = 0 and VaRR
αi

(Xi) = VaRR
α(X). Thus,

n∑
i=1

VaRλi
αi (Xi) = λVaRR

α(X) = VaRλ1
α1

�VaRλ2
α2

� · · · VaRλn
αn

(X), (3.9)

that is, (X1, . . . , Xn) is an optimal allocation of X for (VaRλ1
α1 , . . . , VaRλn

αn ).
Case 2: Suppose that P 

(
X = VaRR

α(X)
) = 0. Denote Bε = {

VaRR
α(X) ≤ X < VaRR

α(X) + ε
}

for any ε > 0. Then P(Bε) > 0. Note that 
P(Bε) → P 

(
X = VaRR

α(X)
) = 0 when ε ↓ 0. Thus, there exists a sequence {εk} such that εk ↓ 0, P(Bεk ) < P(Bεk−1 ), and {Bεk } is a deceasing 

sequence of sets, where ε0 = +∞. Denote τi = P 
(

Bεi−1 \ Bεi

) = P 
(

Bεi−1

) − P 
(

Bεi

)
. Obviously, we have 

∑∞
i=1 τi = P 

(
Bε0

) = α. In the 
atomless probability space, let {Ei

1, . . . , E
i
n} be a partition of the set

Bεi−1 \ Bεi =
{

VaRR
α(X) + εi ≤ X < VaRR

α(X) + εi−1

}
,

satisfying that P(Ei
k) = τiαk/α for k = 1, . . . , n. Define An = (∪i∈N Ei

n

) ∪ {
X = VaRR

α(X)
}

, and Ak = ∪i∈N Ei
k for k = 1, . . . , n − 1. Then 

{A1, . . . , An} is a partition of set A. According to (3.7) and (3.8), construct random variables X1, . . . , Xn . Clearly, (X1, . . . , Xn) ∈ An(X). 
Also, it is easy to check that, for k = 1, . . . , n,

P
(

Xk ≥ VaRR
α(X)

)
= P(Ak) =

n∑
i=1

τi
αk

α
= αk,

P(Xk ≤ 0) = 1 − αk,

P(Xn = 0) ≥ α − αn > 0.
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Moreover, for any η > 0, there exists εn such that εn < η and, thus,

P
(

Xk > VaRR
α(X) + η

)
≤ P

(
Xk ≥ VaRR

α(X) + εn

)
= αk

α

n∑
i=1

τi < αk.

Based on these observations, we conclude that VaRL
αk

(Xk) = 0 and VaRR
αk

(Xk) = VaRR
α(X) for each k. This implies that

VaRλk
αk

(Xk) = λkVaRR
α(X), k = 1, . . . ,n

Therefore, (3.9) holds, that is, (X1, . . . , Xn) is an optimal allocation of X for (VaRλ1
α1 , . . . , VaRλn

αn ). �
Remark 3.2. The optimal allocation (X1, . . . , Xn) ∈An(X) given by (3.5) and (3.6) has a similar form to that given by (3.1) or (3.2). How-
ever, the constructing methods of partition {Ak} are different. The construction of {Ak} in (3.5) and (3.6) is more technical. A significant 
feature of the {Xk} constructed in Theorem 3.1 is

VaRL
αk

(Xk) = 1

n
VaRL

α(X), VaRR
αk

(Xk) = VaRR
α(X) −

(
1 − 1

n

)
VaRL

α(X);
while the {Xk} in (3.2) has the following feature

VaRR
αk

(Xk) = 1

n
VaRR

α(X), k = 1, . . . ,n. �
It should be mentioned that when only one λi is non-zero, (X1, . . . , Xn) given by (3.1) is also an optimal allocation (see Example 3.4), 

while when two or more λi are non-zero, (X1, . . . , Xn) is in general not an optimal allocation (see Example 3.5). To see it, we need the 
following lemma, whose proof is straightforward and hence omitted.

Lemma 3.3. Let X = F −1
X (U X ), a.s.. For λ ∈ [0, 1], and α1 > 0, α2 > 0 such that α = α1 + α2 < 1, let m ∈ (−∞, VaRL

α(X)] and define a random 
variable Y = (X − m)I{U X ≤1−α1} . Then

VaRλ
α2

(Y ) = VaRλ
α(X) − m. (3.10)

In Lemma 3.3, the condition m ∈ (−∞,VaRL
α(X)

]
can not be replaced by m ∈ (−∞,VaRR

α(X)
]

because F (m + y) ≥ 1 −α does not imply 
y ≥ 0 when m = VaRR

α(X).

Example 3.4. [Optimal allocation for 
(
VaRL

α1
, . . . , VaRL

αn−1
, VaRλ

αn

)
] For λ ∈ [0, 1] and α1 > 0, . . . , αn > 0 such that α = ∑n

i=1 αi < 1, it 
follows from Theorem 2.3 that

VaRL
α1

� · · ·�VaRL
αn−1

�VaRλ
αn

(X) = VaRλ
α(X), X ∈ X . (3.11)

For any X ∈X , let (X1, . . . , Xn) be defined by (3.1). Obviously, (X1, . . . , Xn) ∈An(X). Observe the following facts:

• For any k = 1, . . . , n − 1, since Xk ≥ 0 and

P(Xk > 0) ≤ P

(
1 −

k∑
i=1

αi < U X < 1 −
k−1∑
i=1

αi

)
= αk,

we have VaRL
αk

(Xk) = 0.
• By Lemma 3.3,

VaRλ
αn

(
(X − m)I{U X ≤1−∑n−1

i=1 αi}
)

= VaRλ
αn

(X) − m,

which implies that VaRλ
αn

(Xn) = VaRλ
α(X) for λ ∈ [0, 1].

Thus, we have

VaRλ
αn

(Xn) +
n−1∑
k=1

VaRL
αk

(Xk) = VaRλ
α(X).

Therefore, (X1, . . . , Xn) is an optimal allocation of X for 
(
VaRL

α1
, . . . , VaRL

αn−1
, VaRλ

αn

)
. �

Example 3.5. Let α1 > 0, α2 > 0 such that α = α1 + α2 < 1, and let β ∈ (α1, α) be a constant. Define a random variable X and its one 
allocation (X1, X2) as follows,

X = I{1−β<U<1}, X1 = I{1−α1≤U<1}, X2 = I{1−β≤U<1−α1},
where U is a uniform random variable on [0, 1]. Obviously, VaRR

α(X) = VaRL
α(X) = 0, VaRR

α1
(X1) = 1, VaRL

α1
(X1) = 0 and VaRR

α2
(X2) =

VaRL
α2

(X2) = 0. Then for any λ1 > 0 and λ2 > 0, we have VaRλ1
α1 (X1) + VaRλ2

α2 (X2) = λ1 > VaRλ
α(X), where λ = min{λ1 + λ2, 1}. So (X1, X2)

given by (3.1) is not an optimal allocation of X for risk measures (VaRλ1
α , VaRλ2

α ). �
1 2
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4. Worst-case VaR under model uncertainty

Let P be the set of all probability measures that are absolutely continuous with respect to P, where P is a common benchmark for all 
agents. For any Q ∈P , let VaRL,Q

α , VaRR,Q
α and VaRλ,Q

α be the VaRL
α , VaRR

α and VaRλ
α evaluated under the probability measure Q instead of 

P. Model uncertainty is prevalent in risk management. In a risk sharing problem, model uncertainty means that the agents are uncertain 
about the distributions of the random losses allocated to them. A popular approach to incorporate model uncertainty into decision is 
through a worst-case approach (see Gilboa and Schmeidler, 1989; El Ghaoui et al., 2003; Zhu and Fukushima, 2009). We consider the 
worst-case mixed-VaR risk measure

VaR
λ,Q
α = sup

Q ∈Q
VaRλ,Q

α ,

where Q is the subset of P , describing model uncertainty. We call Q an uncertainty set of probability measures. A particular choice of Q
is the following set of probability measures whose Randon-Nikodym derivatives with respect to P do not exceed a constant, that is,

Pβ =
{

Q ∈ P : dQ

dP
≤ 1

β

}
for β ∈ (0,1].

The set Pβ was also used by Embrechts et al. (2020) and Liu et al. (2022) to describe model uncertainty. Pβ is also used in the charac-
terization of the Expected Shortfall at level β , ESβ , via the following dual representation (see, for example, Embrechts and Wang, 2018, 
Lemma 3.14):

ESβ(X) := RVaR0,β = sup
Q ∈Pβ

EQ [X], X ∈ L1.

Liu et al. (2022) considered the special cases VaRL
α and VaRR

α under uncertainty set Pβ , and obtained that

VaR
L,Pβ

α = VaRL
αβ, VaR

R,Pβ

α = VaRR
αβ. (4.1)

Proposition 4.1. For α ∈ (0, 1), λ ∈ [0, 1] and β ∈ (0, 1], we have

VaR
λ,Pβ

α (X) = VaRλ
αβ(X), X ∈ L0. (4.2)

Proof. Note that for any X ∈X ,

VaR
λ,Pβ

α (X) = sup
Q ∈Pβ

VaRλ,Q
α (X)

= sup
Q ∈Pβ

[
(1 − λ)VaRL,Q

α (X) + λVaRR,Q
α (X)

]
≤ (1 − λ) sup

Q ∈Pβ

VaRL,Q
α (X) + λ sup

Q ∈Pβ

VaRR,Q
α (X)

= (1 − λ)VaRL
αβ(X) + λVaRR

αβ(X)

= VaRλ
αβ(X), (4.3)

where the last but one equality follows from (4.1). To prove the inverse inequality of (4.3), we choose a special Q 0 ∈ Pβ such that 
dQ 0/ dP = (1/β)I{U X >1−β} . Then

VaRL,Q 0
α (X) = inf{x : Q 0(X ≤ x) ≥ 1 − α}

= inf{x : P(X ≤ x, U X > 1 − β) ≥ β(1 − α)}
= inf{x : P(1 − β < U X ≤ F X (x)) ≥ β(1 − α)}
= inf{x : F X (x) ≥ 1 − αβ} = VaRL

αβ(X),

VaRR,Q 0
α (X) = inf{x : Q 0(X ≤ x) > 1 − α}

= inf{x : P(1 − β < U X ≤ F X (x)) > β(1 − α)}
= inf{x : F X (x) > 1 − αβ} = VaRR

αβ(X).

Therefore,

VaR
λ,Pβ

α (X) ≥ VaRλ,Q 0
α (X) = (1 − λ)VaRL,Q 0

α (X) + λVaRR,Q 0
α (X)

= (1 − λ)VaRL
αβ(X) + λVaRR

αβ(X)

= VaRλ
αβ(X). (4.4)

The desired result now follows from (4.3) and (4.4). �
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By Proposition 4.1 and Theorem 2.3, we obtain the inf-convolution of X for mixed-VaRs in the setting of model uncertainty: For 
λi ∈ [0, 1], αi ∈ (0, 1), βi ∈ (0, 1] such that α∗ = ∑n

i=1 αiβi < 1, we have

n�
i=1

VaR
λi ,Pβi
αi

= n�
i=1

VaRλi
αiβi

= VaRλ
α∗(X), X ∈ L0,

where λ = min
{∑n

i=1 λi,1
}

.
A reasonable specification of the uncertainty structure (set) is the key issue for successful practical applications. The other most often 

used uncertainty structures are mixture distribution uncertainty, box uncertainty and ellipsoidal uncertainty in probability measures (see, 
for example, Goldfarb and Iyengar, 2003; El Ghaoui et al., 2003; Zhu and Fukushima, 2009). The uncertain structure induced by Wasserstein 
metrics can be found in Liu et al. (2022). Optimal allocations for mixed-VaRs or other risk measures under these uncertainty structures 
are left for further investigation.
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