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This paper studies diversification effects resulting from pooling insurance losses according to the risk 
allocation rule proposed by Denuit and Dhaene (2012). General comparison results are established for 
conditional expectations given sums of independent random variables. It is shown that these expectations 
decrease in the number of terms comprised in the conditioning sums. Additional inequalities are obtained 
under regression dependence in the sum. These general results are used to derive the monotonicity of the 
respective contributions of the participants with respect to the convex order, showing that increasing the 
number of participants is always beneficial under conditional mean risk sharing. New convergence results 
are obtained, showing that the variance of individual contributions tends to zero in many interesting 
cases. This provides actuaries with conditions ensuring that the risk can be fully eliminated within the 
pool, at the limit.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction and motivation

In this paper, we consider the conditional mean risk allocation of losses, as defined by Denuit and Dhaene (2012). According to 
this rule, each participant to an insurance pool contributes the conditional expectation of the loss brought to the pool, given the total 
loss experienced by the entire pool. This risk sharing mechanism is regarded as beneficial by all risk-averse economic agents. If all the 
conditional expectations involved are non-decreasing functions of the total loss then the conditional mean risk sharing is Pareto-optimal 
and all participants have an interest to keep total losses as small as possible. Denuit and Robert (2020, 2021a, 2021b, 2021c, 2022a, 
2021d, 2021e) studied this risk sharing mechanism and established several attractive properties including linear approximations when 
total losses or the number of participants get large. In particular, Denuit and Robert (2021d) proved that the conditional expectation 
defining the conditional mean risk sharing is asymptotically increasing in the total loss (under mild technical assumptions).

This allocation rule turns out to possess many desirable properties, making it an attractive risk sharing mechanism within insurance 
pools. Further properties are derived here, as direct consequences of general results obtained for conditional expectations. Some results of 
independent interest are also derived for conditional tail expectations.

This paper concentrates on independent individual losses. The analysis conducted here applies in the context of peer-to-peer (P2P) 
insurance which refers to risk sharing networks where a group of individuals pool their resources together to insure against a given peril. 
See, e.g., Abdikerimova and Feng (2022) and the references therein. The independence assumption appears to be reasonable for many 
existing P2P insurance schemes. The next few examples help to figure out the context where the results derived in this paper apply:

Medishare is a non-profit health care sharing membership program offering an alternative to traditional health insurance. Administered 
on behalf of its members by Christian Care Ministry, it is the US largest health care sharing community, with more than 400 
thousands members. Medishare is built on pure risk sharing. Members remain responsible for a certain amount of medical care 
each year (out of pocket) and they contribute every month to a pool paying benefits to sick participants. Every member transfers 
his or her monthly share amount (replacing the insurance premium) to a credit union account and this money is used to cover 
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eligible medical expenses. Medishare is operated through an online platform coordinating the direct sharing of medical costs 
between members. We refer the reader to the website medishare.com for more details.

Eusoh is a P2P pet health plan, operated through an online community sharing platform. See the website eusoh.com for a thorough 
description. Members of the Eusoh community share costs after they happen. A monthly fee is charged and members are asked 
to put down an additional deposit to pay for the cost of treatments. Eusoh distributes the total veterinary costs among all 
members. Portions of the deposit are drawn when expenses are submitted and the deposit balance must be refilled back to its 
initial amount at the end of each month.

Laka (previously branded “Insure A Thing”) has developed a P2P insurance platform to insure bicycles and cycling equipment against 
theft or damage. It is presented as a “digital mutual” charging customers retrospectively according to claims experience. A 
thorough presentation can be found on laka.co. The monthly bill explains how many claims were paid in the previous month 
and sets the contribution accordingly. As Eusoh, Laka charges a fee on top of claims it pays. However, there is no deposit securing 
members’ contributions so that Laka is exposed to counterparty credit risk (i.e. the risk that customers do not pay at the end of 
the month). Claims are handled by a team of cyclists, ensuring that members are helped by peers.

For each scheme, aggregate losses must be distributed among participants in such a way that joining the pool is beneficial. There are 
many possible allocation rules. Some of them are documented in Denuit et al. (2022) where a list of properties is proposed. For instance, 
the willingness-to-join property formalizes the superiority of pooling over the stand-alone position. As it is commonly the case with 
traditional insurance products, a certain degree of standardization is required for managing large P2P insurance pools. Thus, individual 
preferences are only partially taken into account in the sense that, even if the proposed coverage is not optimal for each individual 
participant, given his or her particular preferences, it must be attractive to all members of a reasonable class (e.g. risk-averse) of economic 
agents. If willingness to join is expressed with the help of the stochastic dominance relations expressing the common preferences shared 
by all risk-averse economic agents in the expected utility setting for choice under risk then it turns out that only the conditional mean 
risk-sharing rule (or some variants of it) satisfies this requirement among the many rules considered in Denuit et al. (2022). This is why 
the present paper concentrates on that particular allocation rule. We come back to its practical applicability in the concluding section.

When the losses comprised in the pool are mutually independent, it is known from Denuit and Robert (2021c) that increasing the 
number of participants is always beneficial under conditional mean risk sharing. This comes from the fact that each participant’s contri-
bution forms a reverse martingale when the size of the pool increases. As a consequence, there exists a limiting contribution when the 
number of participants tends to infinity. The limit may be the pure premium or remains random in case risk cannot be fully diversified 
inside the pool. These results demonstrate that conditional mean risk sharing is tailored to insurance applications: provided losses are 
allocated accordingly, it is always beneficial to increase the size of the pool to ensure diversification. The limiting case also identifies 
residual risk.

Since increasing the number of participants to an insurance pool favors diversification benefits when individual losses are independent, 
it is therefore interesting to study the asymptotic behavior of individual contributions when the size of the pool tends to infinity. Zabell
(1980, 1993) studied the behavior of the conditional expectations defining the conditional mean risk sharing rule when the contribution 
of each individual loss to the aggregate loss of the entire pool is asymptotically negligible. These results have been extended by Denuit 
and Robert (2021a) who established the convergence of individual contributions to the corresponding pure premiums under appropriate 
technical conditions. In the present paper, we provide the reader with several criteria ensuring that the convergence to the expected value 
takes place. This helps to identify pools where the risk per participant can be fully eliminated at the limit. This approach is relevant for 
the P2P insurance schemes described earlier which purpose to gather large numbers of participants. It is shown that the conditional mean 
risk-sharing rule provides the actuary with a theoretically sound way to distribute losses among pool members. Additional comments on 
the practical applicability of this rule are given in the concluding section.

The remainder of this paper is organized as follows. Section 2 is devoted to general comparison results for expectations conditional 
on sums. Section 3 then applies the results to insurance risk pooling. The final Section 4 discusses the results and concludes. Mutual 
independence is assumed in the largest part of the paper. This is not problematic for the P2P insurance schemes described earlier but 
restricts the applicability of the results derived in the next sections. For instance, natural catastrophes or major industrial risks (e.g., 
induced by nuclear plants) are also typically covered by funds or pools where risk sharing operates. The Caribbean Catastrophe Risk 
Insurance Facility (CCRIF) or the Florida Hurricane Catastrophe Fund are two examples of catastrophe risk pools. The results derived in 
this paper do not apply to these risk-sharing schemes because losses cannot be considered as being mutually independent.

2. Ordering expectations conditional on sums

2.1. Convex orders

Given two random variables X and Y , X is said to be smaller than Y in the increasing convex order, henceforth denoted by X �ICX Y
if the inequality E[g(X)] ≤ E[g(Y )] holds for all non-decreasing and convex functions g for which the expectations exist. The convex order 
�CX is then defined as

X �CX Y ⇔ X �ICX Y and E[X] = E[Y ].
Thus, �CX only applies to random variables with the same expected value. The term “convex” is used since X �CX Y ⇔ E[g(X)] ≤ E[g(Y )]
for all convex functions g for which the expectations exist. The stochastic inequality X �CX Y intuitively means that X and Y have the 
same “size” (as E[X] = E[Y ] holds) but that Y is “more variable” than X . For instance, the variance of Y is larger than the variance of X .

The convex order expresses the common preferences for all risk-averse economic agents about losses with the same expected value. 
Formally, given two losses X and Y ,

X �CX Y ⇔ E[u(w − X)] ≥ E[u(w − Y )] for all concave utility function u and wealth level w,
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provided the expectations exist. Hence, �CX corresponds to the mean-preserving increase in risk in economics when gains are replaced 
with losses. The next property will be useful in the remainder of this text:

X �CX Y ⇔ aX + b �CX aY + b for all a, b ∈R. (2.1)

For a thorough description of the convex order and its applications in an actuarial context, we refer the reader to Denuit et al. (2005). A 
general treatment of this order relation can be found in Shaked and Shanthikumar (2007).

2.2. Risk reduction by conditioning on sums

In this section, we derive conditions on a triplet (U1, U2, W ) of random variables ensuring that E[U1|U2 + W ] is smaller than E[U1|U2]
in the convex order. This is not always true. For instance, with W = U1 − U2 we get E[U1|U2 + W ] = U1 which dominates E[U1|U2] in the 
convex order. The next result shows that “conditional mean independence” provides us with a condition ensuring that conditioning on a 
sum decreases the conditional expectation in the convex order. Recall that conditional mean independence of U1 given W conditioning 
on U2 holds if

E[U1|U2, W ] = E[U1|U2]. (2.2)

Here, and throughout this paper, all equalities between random variables are assumed to hold almost surely (that is, with probability 1). 
Concept (2.2) is used in econometrics to decide whether additional features are needed in a regression model. See for instance Shao and 
Zhang (2014) and Jin et al. (2018).

Proposition 2.1. Let (U1, U2, W ) be such that (2.2) holds true. Then,

E[U1|U2 + W ] �CX E[U1|U2].

Proof. The sigma-algebra σ(U2, W ) generated by U2 and W coincides with σ(U2, U2 + W ) generated by U2 and U2 + W because the 
two random pairs (U2, W ) and (U2, U2 + W ) are in linear one-to-one correspondence and thus measurable functions of each other. 
Considering (2.2), this allows us to write

E[U1|U2] = E[U1|U2, W ] = E[U1|U2, U2 + W ].
This implies that

E[U1|U2 + W ] = E
[

E
[
U1|U2, U2 + W

]∣∣U2 + W
]

= E
[

E
[
U1|U2

]∣∣U2 + W
]
.

Considering a convex function g , Jensen’s inequality then allows us to write

E
[

g
(
E[U1|U2]

)]= E
[

E
[

g
(
E[U1|U2]

)∣∣U2 + W
]]

≥ E
[

g
(
E
[
E[U1|U2]

∣∣U2 + W
])]

= E
[

g
(
E[U1|U2 + W ])],

which ends the proof. �
Clearly, (2.2) is valid when W is independent of (U1, U2). Adding an independent term to the conditioning variable thus always reduces 

the conditional expectation in the convex order. More generally, this remains true for dependent random variables fulfilling (2.2). Condition 
(2.2) holds when U1 and W are independent given U2. This is the case in particular if W = h(U2, Z) with Z independent of (U1, U2) and 
h a measurable function. Consider for instance a first-order autoregressive structure with Ui+1 = ρUi + Zi+1, i ∈ {2, 3}, starting from U1
with independent innovations Z2 and Z3. With W = (ρ − 1)U2 + Z3 we get U2 + W = U3 and E[U1|U3] �CX E[U1|U2].

2.3. Partial sums of independent random variables

We are now ready to state the following result, which shows that the conditional expectation of one term in a sum, given the sum, 
decreases with the number of terms in the convex order.

Proposition 2.2. Let U , V , and W be independent random variables. Then,

E[U |U + V + W ] �CX E[U |U + V ].

Proof. Since the random variables U , V , and W are mutually independent, we can write

E[U |U + V ] = E[U |U + V , W ]
so that (2.2) holds true with U1 = U and U2 = U + V . Proposition 2.1 then shows that the announced result holds true. �
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Proposition 2.2 can be extended to the bivariate case as follows.

Proposition 2.3. Let U , V , and W be independent random variables. Then,(
E[U |U + V + W ],E[V |U + V + W ])�CX

(
E[U |U + V ],E[V |U + V ]),

that is, E[g(E[U |U + V + W ], E[V |U + V + W ])] ≤ E[g(E[U |U + V ], E[V |U + V ])] for all convex functions g : R2 → R, provided that the 
expectations exist.

Proof. Proceeding as in the proof of Proposition 2.2, let us apply the bivariate version of Jensen inequality to the convex function g to 
obtain

E
[

g
(
E[U |U + V ],E[V |U + V ])]= E

[
E
[

g
(
E[U |U + V ],E[V |U + V ])∣∣U + V + W

]]
≥ E
[

g
(
E
[
E[U |U + V ]∣∣U + V + W

]
,E
[
E[V |U + V ]∣∣U + V + W

])]
= E
[

g
(
E[U |U + V + W ],E[V |U + V + W ])].

This ends the proof. �
2.4. Ordered sums

In this section, we aim to order the conditional expectation of one term in a sum, given the sum, with respect to the characteristics 
of the other terms entering the sum. Recall that V is smaller than W in the convolution order, which is denoted as V �CONV W , if W is 
distributed as V + Z for some non-negative random variable Z , independent of V . See Section 1.D in Shaked and Shanthikumar (2007)
for a discussion of the convolution order. In this case, it is easy to see that V �ICX W also holds true and that W is both “larger” and 
“more variable” compared to V . The next result shows that the conditional expectation of one term in a sum decreases in the convex 
order when the remaining terms increase in the convolution order.

Proposition 2.4. Let U , V , and W be independent random variables. Then,

V �CONV W ⇒ E[U |U + W ] �CX E[U |U + V ].

Proof. The announced result directly follows from Proposition 2.2. �
Remark 2.5. Proposition 2.4 still holds true when W

d= V + Z for some real-valued random variable Z , independent of V and W .

Proposition 2.4 does not hold in general with the convex order, as shown by the following counter-example. Consider a random variable 
V with a positive probability density function over the interval [0, 10] such that E[V ] = 5, a random variable

W =
{

0 with probability 0.5
10 with probability 0.5

and a random variable U uniformly distributed over the interval [4, 6]. The three random variables are assumed to be mutually indepen-
dent. Clearly, V �CX W . Since U + W ∈ [4, 6] ⇒ W = 0 and U + W ∈ [14, 16] ⇒ W = 10, the sum U + W reveals the value of W and thus 
also the value of U . Hence, E[U |U + W ] = U and E[U |U + V ] �CX E[U |U + W ] despite V �CX W .

However, when V �CX W , it is possible to identify a (centered) risk E (not independent on U and V ) such that U + V + E has the 
same distribution as U + W and

E[U |U + V + E] �CX E[U |U + V ].
More precisely, we have the following result.

Proposition 2.6. Let U , V , and W be independent random variables such that V �CX W . Then, there exists a random variable E such that E[ε|U +
V ] = 0, U + V + E d= U + W and

E[U |U + V + E] �CX E[U |U + V ].

Proof. Since U , V , and W are independent random variables, we have that U + V �CX U + W . Let us now show that there exists a 
Markov chain {Z1, Z2, Z3, . . .} with Z1 = U + V , Zn �CX Zn+1 for all n ≥ 1, E[Zn+1|Zn] = Zn for all n ≥ 1, and such that the limiting 
distribution of Zn is the distribution of U + W . Let πX (·) be the stop-loss transform of the random variable X , defined for any real 
t as πX (t) = E[(X − t)+]. The function πX (·) is known to be decreasing and convex. Now, U + V �CX U + W ⇔ πU+W (t) ≥ πU+V (t)
for any real t and πU+V is the supremum of countable set of affine functions l1(·), l2(·),... which can be chosen, for example, as the 
support functions of πU+V in all rational points. Define π1 = πU+V and recursively πn+1 = max{πn, ln}. We denote by Pn the distribution 
corresponding to πn . Assume that there is an interval (an, bn) such that
49



M. Denuit and C.Y. Robert Insurance: Mathematics and Economics 108 (2023) 46–59
πn+1 (t) =
{

ln (t) if t ∈ (an,bn)

πn (t) otherwise
.

Thus, Pn+1 is obtained from Pn by removing all mass from the interval (an,bn) and moving it to the endpoints in such a way that the 
mean is preserved. Now, define the kernel Q n as

Q n (x, ·) =
{

δx for x /∈ (an,bn)
x−an

bn−an
δbn + bn−x

bn−an
δan otherwise

,

where δx is the one-point distribution with mass in x. It is easy to see that Q n is a Markov kernel with 
∫

y Q n (x,dy) = x and∫
Q n (x, A) Pn (dx) = Pn+1 (A) , for all measurable A.

Let {U1, U2, U3, . . .} be a sequence of independent random variables uniformly distributed on the interval [0, 1], and independent on U
and V . We can then define the sequence {Z1, Z2, Z3, . . .} as

Zn+1 = Zn + hn (Zn, Un+1)

where the function hn is defined as

hn (Zn, Un+1) =
(

anI

[
Un+1 ≤ bn − Zn

bn − an

]
+ bnI

[
Un+1 >

bn − Zn

bn − an

]
− Zn

)
I[Zn ∈ (an,bn)].

Since Zn is a function of U , V , U1, . . . , Un , we have that U and hn (Zn, Un+1) are independent given Zn and therefore we can write

E[U |Zn] = E[U |Zn,hn (Zn, Un+1)].
The sigma-algebra σ(Zn, hn (Zn, Un+1)) generated by Zn and hn (Zn, Un+1) coincides with σ(Zn, Zn+1) generated by Zn and Zn+1 = Zn +
hn (Zn, Un+1). This allows us to write

E[U |Zn] = E[U |Zn, Zn+1].
This implies that

E[U |Zn+1] = E
[

E
[
U |Zn, Zn+1

]∣∣Zn+1

]
= E
[

E
[
U |Zn

]∣∣Zn+1

]
.

Considering a convex function g , Jensen’s inequality then allows us to write

E
[

g
(
E[U |Zn]

)]= E
[

E
[

g
(
E[U |Zn])∣∣Zn+1

]]
≥ E
[

g
(
E
[
E[U |Zn]∣∣Zn+1

])]
= E
[

g
(
E[U |Zn+1]

)]
.

We therefore deduce that

E[U |Zn+1] �CX E[U |Zn].
Moreover Pn weakly converges to the distribution of U + W , and it follows that E[U |Z ] �CX E[U |U + V ] where Z = limn→∞ Zn . To end 
the proof, it suffices to let E =∑∞

n=2 hn (Zn, Un+1). �
2.5. Regression dependence and large pools

Often, the monotonicity of E[X |S] in the conditioning variable S is imposed as a condition or established to allow for further develop-
ments. The increasingness of E[X |S] in the conditioning variable S is referred to as (positive) regression dependence in the literature. This 
can be related to a problem investigated by Efron (1965) who established that log-concavity is a sufficient condition for one term to be 
stochastically increasing in a sum of independent random variables. This problem has attracted a lot of attention and we refer the reader 
to Saumard and Wellner (2018) and Denuit and Robert (2021d) for a detailed treatment. In this section, we assume regression dependence 
in the sum.

Under regression dependence, Mizuno (2006) derived a result similar to Proposition 2.4 with the dispersive order. Recall that V is 
smaller than W in the dispersive order, which is denoted as V �DISP W , if the difference F −1

W − F −1
V of their respective quantile functions 

F −1
W and F −1

V is non-decreasing. Precisely, Remark 3 in Mizuno (2006) ensures that

V �DISP W ⇒ E[U |U + W ] �CX E[U |U + V ] under regression dependence.

In this section, we consider large pools so that total losses can be modeled by continuous random variables with positive probability 
density functions, neglecting the probability masses at 0. As shown by Denuit and Robert (2021d), regression dependence is generally 
fulfilled within large pools of independent losses. Throughout this section, individual losses are still allowed to have a probability mass 
at zero, as it is generally the case in insurance studies. It is interesting to notice that when V and W are continuous random variables, 
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(3.B.14) in Shaked and Shanthikumar (2007) ensures that V �DISP W ⇔ W
d= V + ψ(V ) for some non-decreasing function ψ . This shows 

that Proposition 2.2 remains true when V and W are comonotonic. Specifically, let (V , W ) be a pair of continuous comonotonic random 
variables independent of U , that is, V and W are non-decreasing functions of some random variable Z , independent of U . Then, E[U |U +
V + W ] �CX E[U |U + V ] holds true under regression dependence. This shows that despite V and W are comonotonic and thus cannot 
serve as a hedge against each other, the conditional expectation of U gets smaller when W is added to V because U + W gets more 
variable (in the dispersive order). If U + V and U + W are continuous random variables both possessing positive probability density 
functions, their respective distribution functions are one-to-one and we have

E[U |U + V ] = E[U |FU+V (U + V )] and E[U |U + W ] = E[U |FU+W (U + W )].
We then deduce from Denuit (2010) that under regression dependence, E[U |FU+V (U + V ) ≥ p] ≤ E[U |FU+W (U + W ) ≥ p] for all prob-
ability levels p implies E[U |U + V ] �CX E[U |U + W ]. These results suggest that regression dependence is the key assumption to derive 
comparison results for conditional expectations.

We need to recall the following concepts used below for comparing conditional expectations. Given a non-negative random variable X , 
any random variable X̃ with distribution function

P[ X̃ ≤ t] = 1

E[X]
t∫

0

xdF X (x), t ≥ 0,

is called a size-biased version of X . We refer the reader to Arratia et al. (2019) for a general presentation of this concept and a survey 
of its application in probability. In the next result, we also need the usual stochastic order. Given two random variables X and Y , X is 
said to be smaller than Y in the usual stochastic order, henceforth denoted by X �ST Y if the inequality E[g(X)] ≤ E[g(Y )] holds for all 
non-decreasing functions g for which the expectations exist.

We are now ready to state the main result of this section. Here, U and V represent individual losses. As it is often the case in insurance 
studies, U and V have a probability mass at 0 and a positive probability density function over (0, ∞). The random variable W stands for 
the total losses of some large insurance pool. Hence, the probability mass at zero can be neglected and we assume that W possesses a 
positive probability density function over (0, ∞).

Proposition 2.7. Let U , V , and W be non-negative, independent random variables having a positive probability density function over (0, ∞). Random 
variables U and V may have a positive probability mass at 0. Assume that the functions t 
→ E[U |U + V + W = t] and t 
→ E[V |U + V + W = t]
are both continuous and (strictly) increasing. Let Ũ and Ṽ denote size-biased versions of U and V , respectively, assumed to be independent of U , V
and W . Then,

E[U ] ≤ E[V ] and Ũ + V �ST U + Ṽ ⇒ E[U |U + V + W ] �ICX E[V |U + V + W ].

Proof. Considering Theorem 4.A.3 in Shaked and Shanthikumar (2007), Y �ICX Z if, and only if,

1∫
p

F −1
Y (u)du ≤

1∫
p

F −1
Z (u)du for all p ∈ [0,1].

⇔ E[Y |Y ≥ F −1
Y (p)] ≤ E[Z |Z ≥ F −1

Z (p)] for all p ∈ (0,1).

Since the function t 
→ E[U |U + V + W = t] is continuous and (strictly) increasing, we have

E
[

E[U |U + V + W ]
∣∣∣E[U |U + V + W ] ≥ F −1

E[U |U+V +W ](p)
]

= E
[

E[U |U + V + W ]
∣∣∣U + V + W ≥ F −1

U+V +W (p)
]

= 1

1 − p
E
[

E[U |U + V + W ]I[U + V + W ≥ F −1
U+V +W (p)

]]
= 1

1 − p
E
[

E
[

U I
[
U + V + W ≥ F −1

U+V +W (p)
]∣∣U + V + W

]]
= E[U |U + V + W ≥ F −1

U+V +W (p)].
This shows that E[U |U + V + W ] �ICX E[V |U + V + W ] holds true if, and only if, the inequality

E[U |U + V + W ≥ F −1
U+V +W (p)] ≤ E[V |U + V + W ≥ F −1

U+V +W (p)] is valid for all p ∈ (0,1),

or

E[U |U + V + W ≥ t] ≤ E[V |U + V + W ≥ t] is valid for all t ≥ 0.

Since

E[U |U + V + W > t] = E[U ]P[Ũ + V + W > t]
, (2.3)
P[U + V + W > t]
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we see that E[U |U + V + W ] �ICX E[V |U + V + W ] holds true if E[U ] ≤ E[V ] and

Ũ + V + W �ST U + Ṽ + W .

The latter stochastic inequality is valid if Ũ + V �ST U + Ṽ , as announced. �
Remark 2.8. Compared to previous results, the random variables U , V , and W are assumed to be non-negative in Proposition 2.7. This 
requirement is necessary to use the size-biased transform which is only defined for non-negative random variables.

The next result shows that under the conditions of Proposition 2.7, we can find a sequence of functions allowing us to move from 
t 
→ E[U |U + V + W = t] to t 
→ E[V |U + V + W = t], each of them crossing the preceding one only once.

Property 2.9. Let U , V , and W be random variables satisfying the assumptions of Proposition 2.7. Let hU (t) = E[U |U + V + W = t] and hV (t) =
E[V |U + V + W = t]. Then, there exists a sequence of continuous and (strictly) increasing function 

(
h j
)

j≥0 and a sequence of positive constants (
t j
)

j≥0 such that h0 = hU , lim j→∞ h j (t) = hV (t) for any t ≥ 0, E[h j (U + V + W )] ≤ E[V ], lim j→∞ E[h j (U + V + W )] = E[V ] and, for j =
0, 1, . . ., h j (t) ≥ h j+1 (t) for 0 ≤ t ≤ t j and h j (t) ≤ h j+1 (t) for t ≥ t j .

Proof. Let X = E[U |U + V + W ] and Y = E[V |U + V + W ]. By Proposition 2.7, X �ICX Y . We know from Theorem 4.A.23 in Shaked 
and Shanthikumar (2007) that there exist random variables Z0, Z1, . . . with continuous and (strictly) increasing distribution functions 
F0, F1, . . . such that Z0

d= X , E[Z j] ≤ E[Y ], j = 0, 1, . . ., Z j
d→ Y as j → ∞, E[Z j] → E[Y ] as j → ∞, and the number of sign changes of 

F j − F j+1 is equal to 1 and the sign sequence is +, −. It suffices to choose h j = F −1
j ◦ FU+V +W and t j such that F −1

j

(
FU+V +W

(
t j
))=

F −1
j+1

(
FU+V +W

(
t j
))

to conclude. �
Proposition 2.2 allows us to derive new results about individual contributions to conditional tail expectation under regression depen-

dence. This is formally stated next. Recall that the conditional tail expectation of a random variable Z is defined as E[Z |Z ≥ F −1
Z (p)]

where F −1
Z (p) is the quantile of Z at probability level p. If Z = Z1 + Z2 then individual contributions of each term to the conditional tail 

expectation of Z are given by E[Z1|Z ≥ F −1
Z (p)] and E[Z2|Z ≥ F −1

Z (p)], respectively.

Property 2.10. Let U , V , and W be non-negative, independent random variables having a positive probability density function over (0, ∞). Random 
variables U and V may have a positive probability mass at 0. Assume that the functions t 
→ E[U |U + V + W = t] and t 
→ E[V |U + V + W = t]
are both continuous and (strictly) increasing. Then,

E[U |U + V + W ≥ F −1
U+V +W (p)] ≤ E[U |U + V ≥ F −1

U+V (p)] for all p ∈ (0,1).

Proof. We know from Proposition 2.2 that the conditional expectations of U given U + V dominate the conditional expectation of U given 
U + V + W . Now, since the functions t 
→ E[U |U + V = t] and t 
→ E[U |U + V + W = t] are both continuous and (strictly) increasing, we 
obtain from (3.A.41) in Shaked and Shanthikumar (2007), following the lines of the proof of Proposition 2.7 that

E[U |U + V + W ] �CX E[U |U + V ] ⇔ E[U |U + V + W ≥ F −1
U+V +W (p)] ≤ E[U |U + V ≥ F −1

U+V (p)] for all p ∈ (0,1),

as announced. �
Translated to an insurance risk management context, where U , V and W are monetary losses, Property 2.10 shows that conditional 

tail expectation always rewards diversification of independent losses under positive regression dependence: the contribution of U to the 
conditional tail expectation decreases when the pool made of independent losses U and V is supplemented with a third independent loss 
W .

Under regression dependence, we also have a bivariate comparison complementing Proposition 2.3, in terms of directionally convex 
order whose definition is recalled next. Supermodular functions are often used in applied probability in order to express the fact that the 
components of one random vector are “more positively dependent” than those of another random vector. Precisely, a function g :Rd →R
is said to be supermodular if the inequality

g(x1, . . . , xi + ε, . . . , x j + δ, . . . , xd) − g(x1, . . . , xi + ε, . . . , x j, . . . , xd)

≥ g(x1, . . . , xi, . . . , x j + δ, . . . , xd) − g(x1, . . . , xi, . . . , x j, . . . , xd)

holds for all x ∈ Rd , 1 ≤ i < j ≤ d and all ε, δ > 0. If the function is regular enough then supermodularity corresponds to ∂2

∂xi∂x j
g ≥ 0 for 

every i �= j ∈ {1, . . . , d}. To account for positive dependence and different marginal behavior, we need to restrict the class of supermodular 
functions to the subset of directionally convex ones. Recall that the function g is said to be directionally convex if it is supermodular and 
coordinatewise convex. If g is twice differentiable then it is directionally convex if, and only if, ∂2

∂xi∂x j
g ≥ 0 for all i, j ∈ {1, . . . , d}. Now, 

the d-dimensional random vectors Y and Z are said to be ordered in the directionally convex order, which is denoted by Y �DIR−CX Z , 
if E[g(Y )] ≤ E[g(Z)] for all directionally convex functions g : Rd → R, provided the expectations exist. The directionally convex order is 
closely related to the supermodular order with main difference that supermodular order compares only dependence structures of random 
vectors with fixed marginals, whereas the directionally convex order additionally takes into account the variability of the marginals, which 
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may then be different (and ordered in the univariate �CX-sense). A ranking in the �DIR−CX-sense is useful in applications since Theorem 
7.A.30 from Shaked and Shanthikumar (2007) ensures that

Y �DIR−CX Z ⇒ 
(Y ) �ICX 
(Z) for all 
 :Rd → R non-decreasing (2.4)

and directionally convex.

We are now ready to state the bivariate extension of Proposition 2.2 under positive regression dependence.

Proposition 2.11. Let U , V , and W be non-negative, independent random variables such that the functions t 
→ E[U |U +V = t], t 
→ E[V |U +V = t], 
t 
→ E[U |U + V + W = t] and t 
→ E[V |U + V + W = t] are all non-decreasing. Then,(

E[U |U + V + W ],E[V |U + V + W ])�DIR−CX
(
E[U |U + V ],E[V |U + V ]).

Proof. The components of the random vector (E[U |U + V + W ], E[V |U + V + W ]) are non-decreasing functions of the random variable 
U + V + W . Those of (E[U |U + V ], E[V |U + V ]) are non-decreasing functions of the random variable U + V . Hence, they have a common 
conditionally increasing copula and Theorem 7.A.38 in Shaked and Shanthikumar (2007) ensures that the announced �DIR−CX-ranking 
holds true. �
3. Application to pooling insurance losses

3.1. Conditional mean risk sharing rule

Consider n individuals, numbered i = 1, 2, . . . , n. Each of them faces a risk Xi . By risk, we mean a non-negative random variable 
representing the monetary loss caused by some insurable peril over one period. The losses X1, X2, . . . , Xn are assumed to be independent, 
with finite mean and variance.

A risk sharing rule is a way to distribute the total losses among participants. According to the conditional mean risk sharing rule 
proposed by Denuit and Dhaene (2012), participant i contributes E[Xi |Sn] to the total loss Sn =∑n

i=1 Xi . In words, each participant 
contributes the expected value of the risk he or she brings to the pool, given the total loss experienced by the entire group. Stated 
differently, the contribution paid by each participant is the average part of the total loss that can be attributed to the risk he or she 
brings to the pool. Notice that participants can be informed when they enter the pool about the amount they will have to contribute 
as a function of the total realized loss, that is, the function s 
→ E[Xi|Sn = s] can be communicated to participant i beforehand. The 
calculation of E[Xi |Sn = s] can be performed in a direct way or by exploiting representations in terms of size-biasing derived by Denuit 
(2019). Numerical approximations using orthogonal polynomials have been derived by Denuit and Robert (2022a). These properties make 
conditional mean risk sharing attractive for peer-to-peer insurance models, as shown in Denuit (2020).

3.2. Risk reduction in the convex order

Recall that when risks Xi are independent and identically distributed, every participant contributes Xn = 1
n

∑n
i=1 Xi under the condi-

tional mean risk sharing rule. This is because

X1, X2, . . . , Xn independent and identically distributed ⇒ E[Xi|Sn] = Sn

n
(3.1)

for every i ∈ {1, . . . , n}. We know from Example 3.A.29 in Shaked and Shanthikumar (2007) that

Xn+1 �CX Xn (3.2)

holds for all n when risks Xi are independent and identically distributed. Thus, recruiting more members is always beneficial in that case. 
Denuit and Robert (2021c) established that a similar result holds true for independent but not identically distributed risks, replacing Xn

with E[X1|Sn]. The decreasingness of the individual contributions to the total loss Sn with the number n of participants, in the convex 
order �CX, is obtained here as a direct consequence of Proposition 2.2.

Proposition 3.1. Consider independent losses X1, X2, . . . with partial sums Sn = X1 + . . . + Xn. Then, the stochastic inequality

E[Xi |Sn+1] �CX E[Xi |Sn]
holds for every integer n and i ∈ {1, 2, . . . , n}.

Proof. It suffices to take U = Xi , V = Sn and W = Xn+1 in Proposition 2.2 to obtain the announced result. �
In the expected utility setting, Proposition 3.1 shows that increasing the number of participants is always regarded as beneficial by all 

risk-averse economic agents, whatever the distribution of the risks they bring to the pool as long as these risks are mutually independent 
and the sharing is operated according to the conditional mean risk allocation rule. The conditional mean risk sharing rule thus provides 
the appropriate extension to simple averaging in the homogeneous case.
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3.3. Residual risk

Proposition 3.1 shows that the variance of E[Xi |Sn] decreases with the number n of participants. The question is thus to check whether 
it tends to 0, under suitable conditions. In that respect, Proposition 3.1 shows that the sequence of conditional expectations forms a 
backward, or reverse martingale. Hence, E[X1|Sn] converges to the conditional expectation E[X1|T ] where T is the tail sigma-field

T = ∩∞
n=1σ(Sn, Sn+1, Sn+2, . . .).

If T is trivial, that is, T = {∅, �}, then all the conditional expectations E[Xi |Sn] tend to the corresponding expected values E[Xi]. However, 
if T is not trivial then limits E[Xi |T ] remain generally random (that is, with positive variance). Some of them may nevertheless reduce 
to E[Xi]. The next example illustrates the variety of situations encountered when T is not trivial (with some conditional expectations 
converging to the corresponding pure premiums and others not).

Example 3.2. Assume P[X1 = 0.5] = P[X1 = 1] = 0.5 and that X2, X3, X4, . . . are independent and identically distributed, all valued in 
{0, 1, 2, . . .}. In this artificial example, if Sn is not integer valued then X1 = 0.5 because X2, X3, X4, . . . are all integer valued. Thus, Sn

reveals the value of X1: if Sn is not integer valued then X1 = 0.5 and X1 = 1 otherwise. Hence, E[X1|Sn] = X1 for all n since X1 = 1 when 
Sn assumes an integer value and X1 = 0.5 otherwise. But all the remaining E[Xi |Sn], i = 2, 3, . . ., tend to E[X2]. This is because for any 
i ≥ 2,

E[Xi |Sn] = E[Xi |Sn − X1, X1] = E[Xi |Sn − X1] = X2 + . . . + Xn

n − 1

by (3.1) so that E[Xi |Sn] indeed tends to E[X2] by the Law of Large Numbers. Thus, all conditional expectations tend to the corresponding 
expected value except E[X1|Sn]. The tail sigma-field T is not trivial in that case.

In the next sections, we derive several sufficient conditions ensuring that individual contributions tend to the corresponding pure 
premiums so that the risk per participant can be fully eliminated at the limit, within an infinitely large pool.

3.4. Risk elimination within subsets

Proposition 3.1 allows us to derive several results about the variance of individual contributions. The next result considers pools with 
a subclass where risk can be fully eliminated at the limit. It states that this is still the case in any larger pool, for the losses within that 
subclass.

Proposition 3.3. Consider a sequence of random variables T1, T2, T3, . . . independent of the losses X1, X2, X3, . . .. Then,

Var
[
E[Xi |Sn]

]→ 0 as n → ∞ ⇒ Var
[
E[Xi|Sn + Tn]

]→ 0 as n → ∞.

Proof. Without loss of generality, let us establish the result for i = 1. Proposition 2.2 ensures that

E[X1|Sn + Tn] �CX E[X1|Sn] ⇒ Var
[
E[X1|Sn + Tn]

]≤ Var
[
E[X1|Sn]

]
for all n.

This ends the proof. �
Proposition 3.3 shows that if there is a subset of the pool where conditional mean risk allocations converge to the corresponding 

expected values, this remains true in the entire pool. Letting new participants bringing losses T j enter the pool does not impact on the 
risk elimination for individuals bringing losses Xi , whatever the losses T j . In particular, assume that the existing pool is homogeneous, 
that is, that X1, X2, . . . , Xn are independent and identically distributed. Considering (3.1), we have E[Xi |Sn] = Sn

n and it is then clear that 
Var
[
E[X1|Sn]]→ 0 as n → ∞. This leads to the following result.

Property 3.4. Assume that the pool is partitioned into p homogeneous classes of size n j = �α jn�, where �·� denotes the integer part, with α j ≥ 0 for 
all j and 

∑p
j=1 α j = 1. Then,

Var
[
E[Xi |Sn]

]→ 0 as n → ∞ for all i.

Proof. Let us denote respectively as μ j and σ 2
j the mean and variance common to all losses in class j. Also, denote as C(i) ∈ {1, 2, . . . , p}

the class to which participant i belongs. Proposition 3.3 allows us to write

E[Xi |Sn] �CX E

⎡
⎣Xi

∣∣∣ ∑
k∈C(i)

Xk

⎤
⎦= 1

nC(i)

∑
k∈C(i)

Xk

since (3.1) applies within each homogeneous class. Hence, we get

Var
[
E[Xi |Sn]

]≤ σ 2
C(i)

�αC(i)n� → 0 as n → ∞,

as announced. �
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3.5. Losses dominated within the pool

We know from Proposition 2.4 that combining a random variable with a larger one in the convolution order results in a smaller 
conditional expectation in the convex order. The next result exploits this fact, in pools containing infinitely many losses dominating the 
one under consideration, in the convolution order.

Property 3.5. Consider independent losses X1, X2, X3, . . . and denote as X1,1, X1,2, X1,3, . . . independent random variables, all distributed as X1. 
Define

νconv
1,n = sup

⎧⎨
⎩i ≥ 0

∣∣∣ i∑
j=1

X1, j�CONV

n∑
j=2

X j

⎫⎬
⎭

where 
∑0

j=1 ... = 0 by convention. Then,

lim
n→∞νconv

1,n = ∞ ⇒ Var
[
E[X1|Sn]

]→ 0 as n → ∞.

Proof. Let μi = E[Xi] and mn = E[Sn] =∑n
i=1 μi . Since the stochastic inequality

νconv
1,n∑
j=1

X1, j �CONV

n∑
j=2

X j

holds by definition, we have from Proposition 2.4 that

E[X1 − μ1|Sn − mn] �CX E

⎡
⎣X1 − μ1

∣∣∣X1 − μ1 +
νconv

1,n∑
j=1

(
X1, j − μ1

)⎤⎦
where

E

⎡
⎣X1 − μ1

∣∣∣X1 − μ1 +
νconv

1,n∑
j=1

(
X1, j − μ1

)⎤⎦= 1

1 + νconv
1,n

⎛
⎝X1 − μ1 +

νconv
1,n∑
j=1

(
X1, j − μ1

)⎞⎠
by (3.1). Finally, we have

Var
[
E[X1|Sn]

]= E
[(

E[X1 − μ1|Sn − mn]
)2]

≤ E

⎡
⎢⎣
⎛
⎝E

⎡
⎣X1 − μ1

∣∣∣X1 − μ1 +
νconv

1,n∑
j=1

(
X1, j − μ1

)⎤⎦
⎞
⎠

2⎤⎥⎦

= E

⎡
⎢⎣
⎛
⎝ 1

1 + νconv
1,n

⎛
⎝X1 − μ1 +

νconv
1,n∑
j=1

(
X1, j − μ1

)⎞⎠
⎞
⎠

2⎤⎥⎦
= 1

1 + νconv
1,n

Var[X1]

and the announced result follows. �
With the same approach we deduce the following property which ensures that provided there are infinitely many losses among 

X2, X3, . . . in the pool dominating X1 in the convolution order, the variance of the individual contribution E[X1|Sn] tends to 0 when the 
size n of the pool increases.

Property 3.6. Consider independent losses X1, X2, X3, . . . and define

ρconv
1,n = #

{
2 ≤ i ≤ n

∣∣X1 �CONV Xi
}
.

Then,

lim
n→∞ρconv

1,n = ∞ ⇒ Var
[
E[X1|Sn]

]→ 0 as n → ∞.

The next result provides us with a sufficient condition ensuring that variances of individual contributions tend to 0 for all participants 
when individual losses can be bounded from above and from below in the convolution order.
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Property 3.7. Consider independent losses X1, X2, X3, . . . and assume that there exist two random variables Y and Z such that

Y �CONV Xi�CONV Z for all i

where Z d=∑m
j=1 Y j for some integer m ≥ 2 and Y1, Y2, Y3, . . . are independent random variables, all distributed as Y . Then, Var

[
E[Xi|Sn]]→ 0 as 

n → ∞, for all i.

Proof. Let us consider the case i = 1. We have
n∑

j=2

Y j�CONV

n∑
j=2

X j.

Let pn = �(n − 1)/m�. We have

pn∑
j=1

Z j�CONV

n∑
j=2

Y j

where Z1, Z2, Z3, . . . are independent random variables, all distributed as Z . We also have

pn∑
j=1

X1, j�CONV

pn∑
j=1

Z j

where X1,1, X1,2, X1,3, . . . are independent random variables, all distributed as X1. The result follows from Property 3.6 since pn → ∞ as 
n → ∞. �
3.6. Losses in positive regression dependence with their sum

In this section, we assume that all individual contributions are positively regression dependent in the sum Sn , that is, every E[Xi|Sn]
is continuously increasing in Sn . As explained earlier, this assumption is generally valid provided the size n of the pool is large enough so 
that we neglect the probability mass of Sn at 0 and model it as a continuous random variable.

If E[Xi |Sn] �CX E[X j |Sn] holds for all n then the convergence of the latter to E[X j] implies the convergence for the former to E[Xi]. It 
is thus interesting to identify conditions under which this ranking holds. Interestingly, it only involves the characteristics of Xi and X j , 
without reference to the remaining Xk , k �= i, j. This is formally stated in the next result which directly follows from Proposition 2.7.

Property 3.8. Assume that Xi and X j have a positive probability density function over (0, ∞) with a non-negative probability mass at zero, and that 
Sn has a positive probability density function over (0, ∞). If the functions s 
→ E[Xk|Sn = s] are continuous and (strictly) increasing for k ∈ {i, j} then 
the stochastic inequality E[Xi|Sn] �ICX E[X j|Sn] holds true if E[Xi] ≤ E[X j] and ̃Xi + X j �ST Xi + X̃ j where the size-biased versions ̃Xi and ̃X j are 
assumed to be independent of Xi and X j .

Proof. It suffices to apply Proposition 2.7 with U = Xi , V = X j , and W = Sn − Xi − X j . �
Pakes et al. (1996, Theorem 2.1) established that the distributional equality

X̃
d= X + � for some random variable � ≥ 0, independent of X, (3.3)

is valid if, and only if, the distribution of X is infinitely divisible. When Xi and X j are infinitely divisible, X̃i + X j �ST Xi + X̃ j holds true 
when �i �ST � j . The condition involved in Proposition 3.8 is thus easy to check. For instance, consider individual losses X1, X2, . . . of the 
form

Xi =
Ni∑

k=1

Cik with Ni ∼ Poisson(λi), i = 1,2, . . . , (3.4)

where the claim severities Cik are independent, distributed as Ci , and independent of Ni . The size-biased version of the compound 
sum Xi in (3.4) is given by X̃i

d= Xi + C̃i where Xi and C̃i are mutually independent. See, e.g. Denuit and Robert (2020) for a proof. 
Hence, we see that X̃i + X j �ST Xi + X̃ j holds true if C̃i �ST C̃ j . With Gamma distributed severities, that is, if Ci ∼Gamma(αi, τ ) then 
C̃i ∼Gamma(αi + 1, τ ) and C̃i �ST C̃ j reduces to αi ≤ α j ⇔ Ci �ST C j .

The next result shows that under the conditions of Proposition 3.8, it is possible to move from the contribution of participant i to the 
contribution of participant j by a sequence of functions crossing only once with each other. It directly results from Property 2.9.

Property 3.9. Consider independent losses X1, . . . , Xn such that the functions s 
→ hk (s) = E[Xk|Sn = s] are continuous and strictly increasing for all 
k = 1, . . . , n. If E[Xi] ≤ E[X j] and ̃Xi + X j �ST Xi + X̃ j , then there exists a sequence of continuous and (strictly) increasing function (hi→ j

k )k≥0 and 
a sequence of positive constants (sk)k≥0 such that hi→ j

0 = hi , limk→∞ hi→ j
k (s) = h j (s) for any s ≥ 0, E[hi→ j

k (Sn)] ≤ E[X j], limk→∞ E[hi→ j
k (Sn)] =

E[X j] and, for k = 0, 1, . . ., hi→ j
k (s) ≥ hi→ j

k+1 (s) for 0 ≤ s ≤ sk and hi→ j
k (s) ≤ hi→ j

k+1 (s) for s ≥ s j .

Under regression dependence, we can also order the vector of individual contributions in the directionally convex order, as shown next.
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Property 3.10. Consider independent losses X1, X2, X3, . . . such that the functions s 
→ E[Xk|Sn = s] and s 
→ E[Xk|Sn+1 = s] are non-decreasing 
for all k ∈ {1, . . . , n}. Then(

E[X1|Sn+1],E[X2|Sn+1], . . . ,E[Xn|Sn+1]
)�DIR−CX

(
E[X1|Sn],E[X2|Sn], . . . ,E[Xn|Sn]

)
.

Proof. We know from Proposition 3.1 that E[Xi |Sn+1] �CX E[Xi |Sn] holds for i ∈ {1, . . . , n}. Since the components of the random vectors 
under consideration are non-decreasing functions of the same random variables Sn+1 and Sn , respectively, Theorem 7.A.38 in Shaked and 
Shanthikumar (2007) ensures that the announced �DIR−CX-ranking holds true. �

Under the assumptions of Property 3.10, we have that

Cov
[

E[Xi|Sn+1],E[X j|Sn+1]
]

≤ Cov
[

E[Xi |Sn],E[X j|Sn]
]

for all i �= j ∈ {1, . . . ,n}.
This illustrates the fact that the dependence between individual contributions tends to decrease with the size n of the pool. Also, (2.4)
shows that the stochastic inequality



(
E[X1|Sn+1],E[X2|Sn+1], . . . ,E[Xn|Sn+1]

)�ICX 

(
E[X1|Sn],E[X2|Sn], . . . ,E[Xn|Sn]

)
holds true for any non-decreasing and directionally convex function 
 :Rn →R.

4. Discussion

This paper considers risk sharing within insurance pools, where the respective losses X1, X2, . . ., Xn for the n participants to the pool 
are distributed ex post according to the conditional mean risk sharing rule proposed by Denuit and Dhaene (2012). Throughout the paper, 
losses X1, X2, . . . , Xn are assumed to be independent. Diversification effects are assessed with the help of general comparison results in 
terms of the convex order for conditional expectations given sums. Letting the pool size tend to infinity, the convergence of individual 
contributions to the corresponding pure premiums is established under various sets of conditions. This helps actuaries to identify pools 
where the risk can be fully eliminated at the limit.

As explained in the introduction, the analysis conducted in this paper mostly confines to independent losses Xi . Correlated losses are 
considered in Denuit and Dhaene (2012), Denuit and Robert (2022b) and Denuit et al. (2022). Willingness-to-join property remains valid 
with correlated losses as E[Xi |Sn] �CX Xi still holds true whatever the dependence structure of (X1, X2, . . . , Xn). Thus, joining the pool 
remains beneficial in the correlated case, as long as total losses Sn are distributed among participants according to the conditional mean 
risk-sharing rule. However, pooling may not reduce risk compared to the stand-alone position when the dependence becomes perfect. 
This is for instance the case with comonotonic losses Xi , that is, with losses that are all increasing functions of the same underlying risk 
factor Z . In this case, E[Xi |Sn] = Xi and pooling does not lead to risk reduction. In other cases, increasing the size of the pool may remain 
beneficial but individual risks cannot be fully diversified at the limit. This is for instance the case with exchangeable risks. Recall that the 
random vector (X1, X2, . . . , Xn) is called exchangeable if its joint distribution function is symmetric in its arguments. This means that for 
any permutation π of {1, . . . , n}, the random vector (Xπ(1), Xπ(2), . . . , Xπ(n)) is distributed as (X1, X2, . . . , Xn). In particular, X1, X2, . . ., 
Xn are identically distributed and the pool is homogeneous. If (X1, X2, . . . , Xn) is exchangeable then we have for any i �= j in {1, 2, . . . , n}
that

E[Xi |Sn] = E[X j|Sn] = 1

n

n∑
k=1

E[Xk|Sn] = Sn

n
.

The latter formula extends (3.1) to exchangeable risks. It can then be shown that E[Xi |Sn] decreases with n in the �CX-sense. Thus, joining 
the pool and welcoming new participants are beneficial when losses are exchangeable, as it is the case for independent losses. However, 
there remains some residual risk that cannot be diversified within the pool. Consider the typical construction leading to exchangeability: 
assume that individual losses Xi are independent and identically distributed given a risk factor Z . The conditional Law of Large Num-
bers then shows that E[Xi |Sn] tends to E[Xi |Z ] in this case. These two simple examples illustrate the variety of situations when the 
independence assumption is relaxed.

Under pure P2P insurance, participants’ contributions are theoretically unlimited. To avoid counterparty risk and to be able to deal 
with larger sums insured, Denuit (2020) replaced unlimited ex-post contributions with a deposit paid in advance combined with a bonus 
mechanism restoring fairness in arrear, with the guarantee that the final amount due never exceeds this down payment. Part of the 
deposit feeds a common fund, while the remaining part is paid to a partnering insurance or reinsurance company. If the common fund is 
insufficient to pay for the claims then the (re-)insurance carrier pays the excess. Conversely, if the pool has few claims then the surplus 
is given back to the participants or to a cause the pool members care about. Denuit (2020) designed this scheme under the conditional 
mean risk-sharing rule. Some P2P insurance schemes specify such a maximum contribution per period. Either benefits are reduced when 
claims exceed the cap or the risk is transferred to a partnering insurance company. This is for instance the case for Laka insured by Zurich 
UK to cover the risk of claims exceeding the cap. Risk sharing is therefore limited to the lower layer. The analysis conducted in this paper 
still applies to this layer.

P2P insurance may appear to be too complex to engage the mass market. This is often cited as the main cause of failure of Guevara. 
After a promising start in 2013, this pioneering Insurtech had to close down in 2017. Guevara targeted motor insurance, where many 
customers still feel more comfortable with established business model. The schemes taken as examples in the introduction have never-
theless found market niches, offering simple and transparent (at least compared to their commercial insurance competitors) alternatives 
to the dominant insurance model. In that respect, there is thus no hope to implement the conditional mean risk-sharing rule within large 
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pools because conditional expectations are certainly regarded as obscure mathematical objects by the majority of participants. Fortunately, 
there are simple approximations to the conditional mean risk-sharing rule that are transparent enough for real-life applications. Within 
large pools, Denuit and Robert (2021a) established a simple linear rule based on means and variances that closely matches theoretical 
contributions resulting from the conditional mean risk-sharing rule. Precisely, define the linear regression rule as

hreg
i,n (Sn) = E[Xi] + Var[Xi]∑n

j=1 Var[X j]
(

Sn − E[Sn]
)
, i = 1,2, . . . ,n.

Both the linear regression rule and the conditional mean risk-sharing rule optimally approximate Xi as a function of Sn , with respect to 
mean squared error, but the linear regression rule restricts the search to linear functions of Sn while the conditional mean risk-sharing rule 
allows for all measurable functions of Sn . Subject to some technical conditions, hreg

i,n (Sn) accurately approximates E[Xi |Sn] in large pools 
of independent losses. The conditional mean risk-sharing rule also simplifies into the elementary proportional rule, allocating E[Xi ]

E[Sn] Sn

to participant i, in some particular cases (as the semi-homogeneous risk model, that is, compound Poisson losses with homogeneous 
severities but heterogeneous frequencies). See Section 2.4.2 in Denuit and Robert (2021c) for more details. These simplifications provide 
actuaries with practical solutions to make the distribution of total losses transparent.

The analysis conducted in this paper also appears to be relevant for the growing market of Islamic insurance. Takaful (translated as sol-
idarity or mutual guarantee) is the Sharia-compliant alternative to conventional insurance. We refer the reader to Malik and Ullah (2019)
or Billah (2019) for an introduction to the topic. In a nutshell, conventional insurance has elements of riba (usury), maysir (gambling) 
and gharar (excessive uncertainty), which make it non-permissible from the Shariah perspective. Risk transfer appears to be impossible 
and Islamic insurance is therefore characterized by risk sharing. Pure P2P insurance schemes generally comply with Takaful, which makes 
countries with significant Muslim populations an appealing area of expansion. The huge Takaful opportunity may significantly expand the 
scope of P2P insurance in the very near future. This development may also be boosted by the launch of decentralized insurance platforms. 
For instance, Nexus Mutual allows P2P insurance risk-sharing pools to be created in a cost-effective and scalable way, using blockchain 
technology. In the approach developed by Nexus Mutual, the insurance pool is decentralized and operates under a discretionary mutual 
structure (which means that all insurance claims are paid at the discretion of all other pool members). Other decentralized insurance 
providers include Risk Harbor and Unslashed Finance. P2P insurance technology is thus becoming available and the results derived in this 
paper can be considered as a proof that the P2P insurance concept effectively works, under some mild conditions.

Conditional expectations E[X1|Sn] also arise in a variety of other applications. For instance, Van Bochove (2011) derived the conditional 
expectation of a random variable X1 obeying a uniform distribution, given the sum Sn of this variable and of n − 1 independent variables 
with a second uniform distribution, and applied it to the selection of the most talented young researchers for tenure track. The results 
derived in the present paper also apply to this setting. Let us also mention the link with renewal processes. Considering X1, X2, . . . as 
steps in a random walk, the results derived in this paper apply to the conditional expectation of a previous step given the current position 
of the process. In that respect, we have established that this conditional expectation decreases in the convex order with the number 
of previous steps. Bar-Lev et al. (2013) derived limit theorems for the conditional distribution of X1 given Sn = sn when the random 
variables Xi are independent and identically distributed and sn/n converges or is constant. In renewal theory, this corresponds to studying 
the asymptotic behavior of the conditional interarrival time distribution given that the nth renewal takes place at time Sn = sn . In the 
present paper, we allow for random interarrival times Xi obeying different distributions, restricting our study to conditional expectations 
of the random variables Xi , given the time to the nth renewal.

Declaration of competing interest

None declared.

Acknowledgements

The authors are grateful to anonymous Referees who provided numerous helpful and constructive comments about an earlier version 
of this work, which greatly helped us to improve the text. Michel Denuit gratefully acknowledges funding from the FWO and F.R.S.-FNRS 
under the Excellence of Science (EOS) programme, project ASTeRISK (40007517).

References

Abdikerimova, S., Feng, R., 2022. Peer-to-Peer multi-risk insurance and mutual aid. European Journal of Operational Research 299, 735–749.
Arratia, R., Goldstein, L., Kochman, F., 2019. Size bias for one and all. Probability Surveys 16, 1–61.
Bar-Lev, S.K., Schulte-Geers, E., Stadje, W., 2013. Conditional limit theorems for the terms of a random walk revisited. Journal of Applied Probability 50, 871–882.
Billah, M.M.S., 2019. Islamic Insurance Products. Exploring Takaful Principles, Instruments and Structures. Palgrave Macmillan.
Denuit, M., 2010. Positive dependence of signals. Journal of Applied Probability 47, 893–897.
Denuit, M., 2019. Size-biased transform and conditional mean risk sharing, with application to P2P insurance and tontines. ASTIN Bulletin 49, 591–617.
Denuit, M., 2020. Investing in your own and peers’ risks: the simple analytics of P2P insurance. European Actuarial Journal 10, 335–359.
Denuit, M., Dhaene, J., 2012. Convex order and comonotonic conditional mean risk sharing. Insurance. Mathematics & Economics 51, 265–270.
Denuit, M., Dhaene, J., Goovaerts, M.J., Kaas, R., 2005. Actuarial Theory for Dependent Risks: Measures, Orders and Models. Wiley, New York.
Denuit, M., Dhaene, J., Robert, C.-Y., 2022. Risk-sharing rules and their properties, with applications to peer-to-peer insurance. Journal of Risk and Insurance 89, 615–667.
Denuit, M., Robert, C.Y., 2020. Large-loss behavior of conditional mean risk sharing. ASTIN Bulletin 50, 1093–1122.
Denuit, M., Robert, C.Y., 2021a. From risk sharing to pure premium for a large number of heterogeneous losses. Insurance. Mathematics & Economics 96, 116–126.
Denuit, M., Robert, C.Y., 2021b. Collaborative insurance with stop-loss protection and team partitioning. North American Actuarial Journal 26, 143–160.
Denuit, M., Robert, C.Y., 2021c. Risk sharing under the dominant peer-to-peer property and casualty insurance business models. Risk Management and Insurance Review 24, 

181–205.
Denuit, M., Robert, C.Y., 2021d. Efron’s asymptotic monotonicity property in the Gaussian stable domain of attraction. Journal of Multivariate Analysis 186, 104803.
Denuit, M., Robert, C.Y., 2021e. Corrigendum and addendum to “From risk sharing to pure premium for a large number of heterogeneous losses”. Insurance. Mathematics & 

Economics 101, 640–644.
58

http://refhub.elsevier.com/S0167-6687(22)00115-9/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib70EFDF2EC9B086079795C442636B55FBs1


M. Denuit and C.Y. Robert Insurance: Mathematics and Economics 108 (2023) 46–59
Denuit, M., Robert, C.Y., 2022a. Polynomial series expansions and moment approximations for conditional mean risk sharing of insurance losses. Methodology and Computing 
in Applied Probability 24, 693–711.

Denuit, M., Robert, C.Y., 2022b. Conditional tail expectation decomposition and conditional mean risk sharing for dependent and conditionally independent losses. Methodol-
ogy and Computing in Applied Probability 24, 1953–1985.

Efron, B., 1965. Increasing properties of Polya frequency function. The Annals of Mathematical Statistics 36, 272–279.
Jin, Z., Yan, X., Matteson, D.S., 2018. Testing for conditional mean independence with covariates through martingale difference divergence. In: Proceedings of the 34th 

Conference on Uncertainty in Artificial Intelligence (UAI 2018), pp. 2–12.
Malik, A., Ullah, K., 2019. Introduction to Takaful. Springer.
Mizuno, T., 2006. A relation between positive dependence of signal and variability of conditional expectation given signal. Journal of Applied Probability 43, 1181–1185.
Pakes, A.G., Sapatinas, T., Fosam, E.B., 1996. Characterizations, length-biasing, and infinite divisibility. Statistical Papers 37, 53–69.
Saumard, A., Wellner, J.A., 2018. Efron’s monotonicity property for measures on R2. Journal of Multivariate Analysis 166, 212–224.
Shaked, M., Shanthikumar, J.G., 2007. Stochastic Orders. Springer, New York.
Shao, X., Zhang, J., 2014. Martingale difference correlation and its use in high-dimensional variable screening. Journal of the American Statistical Association 109, 1302–1318.
Van Bochove, C.A., 2011. Expectation of a uniform random variable with uniform observation errors after selection of the highest observations. Statistical Papers 52, 971–977.
Zabell, S.L., 1980. Rates of convergence for conditional expectations. Annals of Probability 8, 928–941.
Zabell, S.L., 1993. A limit theorem for expectations conditional on a sum. Journal of Theoretical Probability 6, 267–283.
59

http://refhub.elsevier.com/S0167-6687(22)00115-9/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib02E74F10E0327AD868D138F2B4FDD6F0s1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S0167-6687(22)00115-9/bib34173CB38F07F89DDBEBC2AC9128303Fs1

	From risk reduction to risk elimination by conditional mean risk sharing of independent losses
	1 Introduction and motivation
	2 Ordering expectations conditional on sums
	2.1 Convex orders
	2.2 Risk reduction by conditioning on sums
	2.3 Partial sums of independent random variables
	2.4 Ordered sums
	2.5 Regression dependence and large pools

	3 Application to pooling insurance losses
	3.1 Conditional mean risk sharing rule
	3.2 Risk reduction in the convex order
	3.3 Residual risk
	3.4 Risk elimination within subsets
	3.5 Losses dominated within the pool
	3.6 Losses in positive regression dependence with their sum

	4 Discussion
	Declaration of competing interest
	Acknowledgements
	References


