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We study equilibria in a reinsurance market with multiple reinsurers that are endowed with heteroge-
neous beliefs, where preferences are given by distortion risk measures, and pricing is done via Choquet 
integrals. We construct a model in the form of a sequential economic game, where the reinsurers have 
the first-mover advantage over the insurer, as in the Stackelberg setting. However, unlike the Stackel-
berg setting, which assumes a single monopolistic reinsurer on the supply side, our model accounts for 
strategic price competition between reinsurers. We argue that the notion of a Subgame Perfect Nash 
Equilibrium (SPNE) is the appropriate solution concept for analyzing equilibria in the reinsurance market, 
and we characterize SPNEs using a set of sufficient conditions. We then examine efficiency properties of 
the contracts induced by an SPNE, and show that these contracts result in Pareto-efficient allocations. Ad-
ditionally, we show that under mild conditions, the insurer realizes a strict welfare gain, which addresses 
the concerns of Boonen and Ghossoub (2022) with the Stackelberg model and thereby ultimately reflects 
the benefit to the insurer of competition on the supply side. We illustrate this point with a numerical 
example.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Reinsurance is an important risk management tool for insurance companies. An insurer, subject to a state-contingent risk at the end of 
a given time horizon, can enter into a reinsurance contractual agreement whereby it can cede part of its future liabilities to a reinsurer, 
in exchange for a premium payment. The problem faced by the insurer is straightforward: the insurance company wishes to choose the 
level of reinsurance that minimizes their ultimate, end-of-period risk exposure. On the other hand, the reinsurer wishes to maximize its 
own profit from the sale of reinsurance. These two questions lie at the heart of the optimal (re)insurance literature, and their study has 
been extensive and thorough.

The underlying approach to problems of optimal (re)insurance can be broadly classified into two main categories: (i) those that study 
Pareto efficiency of contractual agreements, and (ii) those that study equilibria in the (re)insurance market. The literature examining ef-
ficiency focuses on the properties of each agent’s welfare, after the terms of the contract have been specified (i.e., the indemnification 
function and the pricing functional). The primary solution concept in this setting is that of Pareto efficiency (PE). That is, one seeks those 
allocations in which no one agent can strictly improve their welfare without negatively affecting the welfare of another. On the other hand, 
the literature on equilibria takes a different approach: market mechanisms are specified a priori, and the focus is on identifying allocations 
that result from this underlying structure. The primary solution concept of interest is that of a market equilibrium, which in general does 
not have to be Pareto efficient. While the literature on PE in reinsurance markets is vast, market equilibria have been comparatively less 
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studied. We note that the term “equilibria” is sometimes invoked in the cooperative sense to refer to the study of efficient allocations. For 
the sake of expositional clarity, the terms “equilibrium” and “equilibria” refer only to market equilibria in the remainder of this paper.

The theory of efficient optimal (re)insurance has its roots in seminal work by Borch (1960) and Arrow (1974), who showed that stop-
loss contracts are efficient when both the insurer’s and reinsurer’s preferences admit an Expected-Utility (EU) representation, the insurer 
is risk-averse, and the reinsurer is risk neutral. It is shown in this case that premia are priced via the equivalence principle. That is, 
premia are determined by the expected indemnified loss (e.g., as in Arrow, 1974), sometimes multiplied by a loading factor to represent 
variable costs to the reinsurer (e.g., as in Raviv, 1979). The preferences of the risk-neutral reinsurer imply that in a PE allocation, the 
premium is a function of the indemnified risk (henceforth referred to as a premium principle). Under this premium principle, the efficient 
indemnification is obtained by solving a problem of demand for the insurer. This problem has been extensively studied in the two-agent 
case, and we refer to Gollier (2013) and Schlesinger (2000), for instance, for a review of the literature on optimal insurance with EU 
preferences. Of the numerous generalizations of the original EU model, we highlight the two that are most relevant to the present project: 
the use of distortion risk measures (DRMs) or Rank-Dependent Utility (RDU) preferences, and the consideration of heterogeneous beliefs.

In contrast to the literature on efficiency in reinsurance, the literature on market equilibria in reinsurance contracting is fairly sparse. 
This approach has been fruitful in broader problems of risk sharing, due to the close link with the classical literature on competitive 
equilibria. Each agent participates in a reinsurance market by buying or selling reinsurance with the objective of minimizing a measure 
of their end-of-period risk exposure, where the price of reinsurance is itself endogenously determined at an equilibrium. Competitive 
equilibria have been characterized in the case of EU (Aase, 1993), the case of VaR and ES (Embrechts et al., 2020, 2018), the case of 
convex DRMs (Boonen, 2015), and the case of general DRMs for comonotonic indemnities (Boonen et al., 2021a).

However, the problem of reinsurance contracting (i.e., between an insurer subject to risk and its reinsurer counterparties) has been 
comparatively less studied from a competitive perspective. The closest example is the Stackelberg setting,1 an example of a sequential 
economic model first examined by Chan and Gerber (1985) in a reinsurance context. This setting returns to the case where there is only 
one counterparty (the reinsurer), but this counterparty now has the first-mover advantage: the reinsurer is able to fix a premium principle 
before reinsurance is purchased, which allows the reinsurer to profit if they correctly anticipate the actions of the insurer. Chan and Gerber 
(1985) formulate this problem for EU preferences, and they characterize solutions under the special case of exponential utility. Cheung et 
al. (2019) solve for Stackelberg equilibria when both the insurer and the reinsurer have DRM preferences, and some recent papers examine 
the dynamic context of reinsurance in continuous time (e.g., Chen and Shen, 2018 and Cao et al., 2022). The link between Stackelberg 
equilibria and PE is first examined by Boonen and Ghossoub (2022) for the DRM case, where Stackelberg equilibria are shown to be a strict 
subset of all PE allocations. However, they highlight a caveat in the Stackelberg setting: in equilibrium, the insurer has no incentive to 
purchase insurance, which suggests a shortcoming of the Stackelberg framework and its applications to optimal reinsurance. Furthermore, 
the Stackelberg model assumes monopolistic control of the reinsurance market by one entity, and it does not generalize directly to the 
case of multiple reinsurers. While the interaction between insurer and reinsurer can be interpreted as a form of competition, it is difficult 
to argue that this model reflects a truly competitive setting under the shadow of a monopolistic reinsurer.

In the present paper, we seek to address these latter issues by formulating a sequential model of a reinsurance market with multiple 
reinsurers. Similar to the Stackelberg model, the reinsurers collectively have the first-mover advantage, and they can choose their premium 
principles in anticipation of the insurer’s behaviour. However, the reinsurers are in strategic competition when it comes to setting the price 
of reinsurance. This model is, to the best of our knowledge, the first model that examines reinsurance contracting between an insurer and 
multiple reinsurers from the perspective of market equilibrium. We assume that the preferences of each agent are given by DRMs under 
heterogeneous beliefs, which allows for a high level of flexibility. Furthermore, we allow the premium principles posted by each reinsurer 
to be fully general. In particular, a reinsurer’s premium principle is not required to be related to their true preferences, thereby reflecting 
the strategic nature of interaction on the supply side of the market. This is a significant departure from the efficiency literature. In our 
market model, we propose the notion of a Subgame Perfect Nash Equilibrium (SPNE), a refinement of the Nash Equilibrium (NE), as the 
primary solution concept. These concepts emphasize competition within the reinsurance market. We assume that each reinsurer acts in 
order to maximize their own welfare, which is in line with the literature on competitive equilibria (notably, this is in contrast to the 
cooperative model proposed by Asimit and Boonen, 2018). We argue in this paper that our model, as well as our suggested solution 
concept, acts as a natural extension of the Stackelberg setting to multiple reinsurers. In particular, we show that if we consider a special 
case of our model in which there is only one reinsurer (n = 1), we can recover the Stackelberg model as a special case, in which all 
Stackelberg equilibria are SPNEs.

A standard result allows us to characterize SPNEs through the process of backward induction, which splits the problem into two steps: 
(i) the decision problem of the insurer, and (ii) that of the reinsurers. The insurer’s decision problem reduces to a demand problem 
under fixed premium principles, and indemnities are fully characterized through the Marginal Indemnity Function (MIF) approach, as in 
Assa (2015) or Zhuang et al. (2016), for instance. To address the reinsurers’ decision problem, we provide a set of sufficient conditions 
that explicitly characterize a class of SPNEs. In these equilibria, the insurer is subject to prices corresponding to the second-lowest true 
preferences of the reinsurers as measured by distorted subjective survival probabilities, similarly to the premium principle suggested by 
Boonen et al. (2021b) to represent the maximum possible premium that preserves coalitional stability. Our results expand on this by 
showing that this premium principle plays a central role in determining stability of SPNEs as well.

We then use our characterization to examine efficiency properties of the resulting equilibrium contracts. Since SPNEs are market 
equilibria by definition, it is not true in general that these coincide with PE allocations. However, we show that all allocations resulting 
from our class of SPNEs are indeed PE, thereby providing a link to the literature on efficient reinsurance contracting. We emphasize that 
PE in our setting results from the structure of the reinsurance market, and it is not assumed a priori. Furthermore, it is also important to 
examine allocations in terms of their relationship to the status quo – market participants can only be incentivised to enter into contracts 
that induce a welfare gain, which is not true in the Stackelberg model (as concluded by Boonen and Ghossoub, 2022). We find that within 
our class of SPNEs, each agent is able to realize a welfare gain under mild conditions, a consequence of both the competition in the 

1 Some authors refer to this setting as the Bowley setting, and to their solutions as Bowley optima. We use the Stackelberg terminology; solutions are referred to as 
Stackelberg equilibria.
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reinsurance market and of the heterogeneity of beliefs. Moreover, one would expect that the welfare gain of the insurer increases as the 
level of competition in the market increases. We formalize this notion by showing that the insurer experiences an improvement in welfare 
if an additional reinsurer is added to the market. A consequence is that the presence of just two reinsurers is enough to realize a strict 
gain for the insurer compared to the Stackelberg case. This point is illustrated by a numerical example.

The remainder of this paper is organized as follows. Section 2 presents our sequential model for the reinsurance market, and it 
introduces SPNEs in this context. Section 3 provides a characterization of SPNEs and specific examples thereof. An analysis of SPNE 
contracts is given in Section 4, in which we examine efficiency of these contracts, as well as the relationship between SPNE contracts and 
the status quo. We also provide a numeral example, exhibiting an SPNE that achieves a welfare gain for all agents. Section 5 concludes. 
The proofs of most of this paper’s results are given in Appendix A. Additional illustrative constructions of equilibria are presented in 
Appendix B.

2. Setup and definitions

We examine a model of optimal reinsurance, in a market represented by a measurable space (S, �). Let X denote the collection of all 
measurable real-valued functions on (S, �). An insurer is subject to a random insurable loss X , which is represented by a non-negative 
random variable X ∈X . Throughout this paper, the principal method for evaluating the risk of positions Y ∈X is the Choquet expectation, 
which rigorously defines integration with respect to general set functions.

Definition 2.1. A (finite, non-negative) set function ν : � → [0, M], for some M ∈R+ , is called a capacity if:

(1) ν(∅) = 0 and ν(S) = M; and,
(2) If A, B ∈ � such that A ⊆ B , then ν(A) � ν(B).

We denote the set of all capacities by C .

Definition 2.2. The Choquet expectation of Y ∈X with respect to ν ∈ C is defined as

ρν(Y ) =
∫

Y dν :=
+∞∫
0

ν(Y > t)dt +
0∫

−∞
[ν(Y > t) − ν(S)] dt . (2.1)

For a detailed treatment of capacities and Choquet integration, we refer to Denneberg (1994) and Marinacci and Montrucchio (2004). 
A special case of a capacity is a distorted probability measure; if T is a monotone function on [0, 1] such that T (0) = 0 and T (1) = 1, and 
μ is a probability measure, then T ◦ μ is a capacity. In this case, ρT ◦μ is called a distortion risk measure (DRM), a general class of risk 
measures that satisfy several desirable properties (e.g., Wang et al., 1997). One such property is comonotonic additivity – distortion risk 
measures are additive over comonotonic random variables.

Definition 2.3. Two random variables X1, X2 ∈X are comonotonic if for all s1, s2 ∈ S ,

(X1(s1) − X1(s2)) (X2(s1) − X2(s2)) � 0 .

It follows directly from Definition 2.3 that if X ∈ X and I : R → R is a non-decreasing function, then X and I(X) are comonotonic 
and ρT ◦μ(X + I(X)) = ρT ◦μ(X) + ρT ◦μ(I(X)), for any DRM ρT ◦μ . We refer to Denneberg (1994) for an extended characterization of 
comonotonicity.

2.1. The market participants’ preferences

The insurer is imbued with beliefs on the space (S, �), represented by a probability measure P . We assume that the insurer’s prefer-
ences are represented by a DRM consisting of the measure P distorted by a distortion function g . That is, for every risk Y ∈ X , the risk 
measure of the insurer is given by

ρI N(Y ) := ρ g◦P (Y ) =
∫

Y dg ◦ P . (2.2)

We assume that there are n reinsurers in this market, denoted by the set N := {1, . . . , n}. Each reinsurer has heterogeneous beliefs 
on the states of nature, represented by probability measures Q1, . . . , Qn for reinsurers 1, . . . , n respectively. We do not assume any 
relationship between P , Q1, . . . , Qn , allowing for a flexible setup such as that in Boonen and Ghossoub (2021). Like the insurer, each 
reinsurer evaluates risk according to a DRM. For each i ∈ N , denote by gi the distortion function of reinsurer i. Then the preference of 
reinsurer i is represented by the risk measure

ρi(Y ) := ρ gi◦Qi (Y ) =
∫

Y dgi ◦Qi . (2.3)

To avoid pathological cases, we impose the restriction that all agents attribute finite risk to the initial position. Namely, for all i ∈ N ,

ρi(X) < ∞ and ρI N(X) < ∞ , (2.4)

which can be interpreted as an assumption of well-posedness of the problem. Under this restriction, all admissible premia are finite.
26
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2.2. Reinsurance contracts

We assume that the premium principles charged by each reinsurer also follow a Choquet expectation. That is, the premium charged by 
reinsurer i to ensure a risk Y is

πi(Y ) :=
∫

Y dνi , (2.5)

where νi ∈ C . Similar to (2.1), we also use the notation

πνi (Y ) :=
∫

Y dνi . (2.6)

Here, we use π to refer to premia and ρ to refer to risk measures. Note here that we do not further restrict the set of possible premium 
principles in C . In particular, we do not require ν ∈ C to be normalized such that ν(S) = 1. Hence, the reinsurer is free to introduce a 
loading factor if they so choose, to represent any frictional cost of reinsurance.

In this market, the insurer may cede a portion of risk Ii(X) to reinsurer i by paying the premium πi(Ii(X)). Let the vector �I :=
(I1, . . . , In) denote the indemnity schedule chosen by the insurer. We impose the following assumption, which restricts the available 
indemnities to those that satisfy the so-called no-sabotage condition (e.g., Carlier and Dana, 2003):

Assumption 2.4. Ii ∈ I for each i ∈N , and 
∑

i∈N Ii ∈ I , where

I := {
f : R+ → R+

∣∣ f (0) = 0, f is absolutely continuous, 0 � f ′(x) � 1 for a.e. x ∈ R+
}
.

That is, each indemnity function, as well as the aggregate indemnity, is monotone and 1-Lipschitz. We refer to the class of indemnity 
schedules �I satisfying Assumption 2.4 as

�I ⊂ In.

Restricting the set of admissible indemnities a priori to those in the above class rules out any potential moral hazard that might arise from 
the insurer’s misreporting of the true value of the loss in a given state of the world.

2.3. A sequential game framework

We model this reinsurance market as a sequential game. First, all reinsurers simultaneously select pricing capacities νi ∈ C . The 
insurer then views these pricing rules and selects an indemnity vector (I1, . . . , In). The remaining random loss of the insurer is 
X − ∑

i∈N Ii(X) and the insurer pays the premium πi(Ii(X)) = πνi (Ii(X)) to reinsurer i. Hence, the resulting risk exposure of the in-
surer is X − ∑

i∈N Ii(X) + ∑
i∈N πi(Ii(X)), and the insurer evaluates this end-of-period risk exposure via

ρI N

(
X −

∑
i∈N

Ii(X) +
∑
i∈N

πi(Ii(X))

)
= ρI N(X) − ρI N

(∑
i∈N

Ii(X)

)
+

∑
i∈N

πνi (Ii(X)) , (2.7)

where the simplification follows from comonotonicity, and comonotonic additivity and translation invariance of the risk measure ρI N . Each 
reinsurer i will have assumed the risk Ii(X) upon payment of the premium πi(Ii(X)). Their resulting risk exposure is Ii(X) − πi(Ii(X)), 
and they evaluate it via

ρi (Ii(X) − πi(Ii(X))) = ρi(Ii(X)) − πνi (Ii(X)) . (2.8)

The goal of each agent is to minimize their risk exposure – as such, (2.7) and (2.8) represent the payoffs of the game to the insurer and 
reinsurers respectively. We note that as a consequence of (2.4), the expressions (2.7) and (2.8) are always well-defined and finite.

Similar to the Stackelberg setting, reinsurers have the first-mover advantage, and their strategy is determined by their collective si-
multaneous choice of premium principles (which, by (2.6), depends only on pricing capacities). Therefore, the reinsurers’ strategy can 
be identified by the choice of a vector of capacities (ν1, . . . , νn) ∈ Cn . Here, the strategy of reinsurer i is denoted by νi ∈ C . The insurer’s 
strategy is determined by its choice of indemnity schedule, after viewing the pricing rules selected by the reinsurers. This can be identified 
by a function

I : Cn → �I
(ν1, . . . , νn) �→ I (ν1, . . . , νn) ,

(2.9)

which maps the observed pricing capacities to a feasible indemnity schedule. A strategy (in the formal game-theoretical sense) is therefore 
represented by the tuple (ν1, . . . , νn, I) ∈ Cn × (�I)C

n
.

2.4. Additional notational conventions

We use the following conventions in the remainder of this paper. Recall that N = {1, . . . , n} denotes the set of reinsurers. For each 
reinsurer i ∈N , we define the capacity

τi := gi ◦Qi (2.10)
27
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to represent the true preferences of the reinsurer. For ease of notation, we use the index 0 to represent the insurance company. Hence, all 
agents in the reinsurance market are given by N ∪ {0}. Following this convention, we define

ρ0 := ρI N (2.11)

to represent the risk measure of the insurer, and

I0(X) := X −
∑
i∈N

Ii(X) (2.12)

to represent the retained loss of the insurer. Note that as a consequence of Assumption 2.4, we have I0 ∈ I . Additionally, we define

τ0 := g ◦ P (2.13)

as the true preferences of the insurer. It will also be convenient to define

ν0 := g ◦ P (2.14)

as the “pricing rule” used by the insurer in the reinsurance market. While (2.13) and (2.14) are different notational conventions for the 
same capacity, this will be convenient for the exposition of our main results. Note that we use the letter τ to represent true preferences 
of market agents, and we use the letter ν to represent pricing rules in the market. The interpretation for the insurer is as follows: the 
insurer uses their own true preferences as a premium principle when deciding which contracts to participate in (and which contracts to 
decline).

We use the unstyled capital letter I to refer to indemnity functions, i.e., elements of I . Vectors of indemnities are notated with the 
vector symbol. For example, �I is an element of �I .

In the context of the economic game, the notation I denotes a strategy, and it is therefore a map from Cn to �I , as defined in (2.9). 
Hence, for any fixed reinsurance strategies (ν1, . . . , νn) ∈ Cn , the choice of indemnities I(ν1, . . . , νn) is a vector in �I . For a reinsurer i ∈N , 
we use the notation Ii(ν1, . . . , νn) to refer to the i-th component of I(ν1, . . . , νn). That is, Ii(ν1, . . . , νn) is the indemnity ceded to the i-th 
insurer under the strategy I, when the pricing capacities of the reinsurers are given by (ν1, . . . , νn). When pricing capacities (ν1, . . . , νn)

are fixed in context and we are only concerned with the indemnities I(ν1, . . . , νn), we drop the capacities from the argument of the 
function and write Ii = Ii(ν1, . . . , νn).

2.5. Equilibria in sequential games

A common solution concept for sequential games is that of the Subgame Perfect Nash Equilibrium (SPNE), which is given in the following 
definitions.

Definition 2.5. A strategy (ν∗
1 , . . . , ν∗

n , I∗) is a Nash Equilibrium (NE) if:

(1) There does not exist a capacity ν̃ and i ∈N such that

ρi(I
∗
i (ν̃, ν∗

−i)(X)) − πν̃(I∗
i (ν̃, ν∗

−i)(X))) < ρi(I
∗
i (ν

∗
1 , . . . , ν∗

n )(X)) − πν∗
i (I∗

i (ν
∗
1 , . . . , ν∗

n )(X)),

where (ν̃, ν∗
−i) denotes the vector (ν∗

1 , . . . , ν∗
n ) with the i-th component replaced by ν̃ .

(2) There does not exist an indemnity selection Ĩ such that

ρI N(X)−
∑
i∈N

ρI N

(
Ĩi(ν

∗
1 , . . . , ν∗

n )(X)
)

+
∑
i∈N

πν∗
i (Ĩi(ν

∗
1 , . . . , ν∗

n )(X))

< ρI N(X) − ρI N(I∗
i (ν

∗
1 , . . . , ν∗

n )(X)) +
∑
i∈N

πν∗
i (I∗

i (ν
∗
1 , . . . , ν∗

n )(X)) .

Definition 2.6. In our setting, a strategy (ν∗
1 , . . . , ν∗

n , I∗) is a Subgame Perfect Nash Equilibrium (SPNE) if:

(1) It is an NE.
(2) For any choice of capacities (ν1, . . . , νn) ∈ Cn , there does not exist an indemnity selection Ĩ such that

ρI N(X)−
∑
i∈N

ρI N

(
Ĩi(ν1, . . . , νn)(X)

)
+

∑
i∈N

πνi (Ĩi(ν1, . . . , νn)(X))

< ρI N(X) −
∑
i∈N

ρI N(I∗
i (ν1, . . . , νn)(X)) +

∑
i∈N

πνi (I∗
i (ν1, . . . , νn)(X)) .

A subgame is defined as a subset of a sequential game that is induced by viewing previous decisions as fixed. A strategy is an SPNE if 
it induces a NE in every subgame. In the context of the present paper, each strict subgame consists of the insurer’s decision problem after 
observing the premium principles of the reinsurers. The main difference is that in an SPNE, the insurer behaves optimally for any choice 
of capacities (ν1, . . . , νn) ∈ Cn . For the strategy to be an NE, it is only required that the insurer behaves optimally for the specific choice 
of capacities (ν∗

1 , . . . , ν∗
n ). For a formal definition of subgames and SPNEs and an extensive discussion thereof, we refer to Osborne and 

Rubinstein (1994).
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While it is clear that every SPNE is an NE, the converse does not hold: in general, there exist NEs that are not SPNEs. This is true 
even in our setting, where the structure of the game is simple. We provide an example in Appendix B.2, and we briefly comment on the 
advantages of SPNEs over NEs.

3. A characterization of SPNEs

In this section, we provide sufficient conditions to characterize SPNEs in the sequential market outlined in Section 2. It is well known 
that all SPNEs can be found via the process backward induction (see, e.g., Osborne and Rubinstein, 1994, Proposition 99.2). We restate this 
result in our setting in the following proposition.

Proposition 3.1. A strategy (ν∗
1 , . . . , ν∗

n , I∗) is an SPNE if and only if it can be found through backward induction. In other words, for any choice of 
pricing capacities (ν1, . . . , νn) ∈ Cn, the indemnity structure I∗(ν1, . . . , νn) solves

min
I∈�I

{
ρI N(X) −

∑
i∈N

ρI N (Ii(X)) +
∑
i∈N

πνi (Ii(X))

}
, (3.1)

and (ν∗
1 , . . . , ν∗

n ) is a NE for the reduced game formed by fixing the insurer’s strategy I∗. That is, there does not exist i ∈N and ν̃ ∈ C such that

ρi(I
∗
i (ν̃, ν∗

−i)(X)) − πν̃(I∗
i (ν̃, ν∗

−i)(X)) < ρi(I
∗
i (ν

∗
1 , . . . , ν∗

n )(X)) − πν∗
i (I∗

i (ν
∗
1 , . . . , ν∗

n )(X)) . (3.2)

We will see from the result of Proposition 3.3 that Problem (3.1) always has a solution. Therefore, by Proposition 3.1, to characterize an 
SPNE, we will:

(1) Find Nash Equilibria in the subgames where the insurer selects reinsurance. That is, for any pricing capacities (ν1, . . . , νn) ∈ Cn , we 
will determine the optimal strategy I∗ of the insurer. This reduces to a demand problem for the insurer, and we can characterize 
solutions via the MIF approach, as in Boonen and Ghossoub (2021). This is outlined in Subsection 3.1.

(2) For the selected indemnity strategy I∗ , we will find Nash Equilibria for the simultaneous selection of pricing capacities. We provide 
sufficient conditions in Subsection 3.2.

Remark 3.2. In the special case when n = 1, we have only one reinsurer. Then Proposition 3.1 implies that a strategy (ν∗
1 , I∗) is an SPNE 

if and only if (3.1) and (3.2) hold. The condition for the reduced game (3.1) simplifies to

I∗(ν∗
1 ) = min

I∈�I

{
ρI N(X) − ρI N (I(X)) + πν∗

1 (I(X))
}

.

Furthermore, the second condition (3.2) implies that

ρ1(I
∗(ν∗

1 )(X)) − πν∗
1 (I∗(ν∗

1 )(X)) = min
ν̃∈C

{
ρ1(I

∗(ν̃)(X)) − πν̃(I∗(ν̃)(X))
}

.

It follows directly from the definition of Stackelberg equilibria (e.g., Definition 2.7 of Boonen and Ghossoub, 2022) that every Stackelberg 
equilibrium is an SPNE. Therefore, it is natural to interpret the SPNE in our model as a generalization of the Stackelberg setting to multiple 
reinsurers. We elaborate on this special case in Subsection 4.1.1.

3.1. Backward induction step one – an optimal reinsurance problem

In the first step of the backwards induction, we solve Problem (3.1) given any fixed strategy of the reinsurers (ν1, . . . , νn) ∈ Cn . A char-
acterization is given in the following proposition, which can be found in Boonen and Ghossoub (2021). We provide a slightly condensed 
proof in Appendix A.1.

Proposition 3.3. Define the capacity

ν(X > z) := min
j∈N

ν j(X > z) ,

and define the set

Nz := {
i ∈ N : νi(X > z) = ν(X > z)

}
. (3.3)

The selection of indemnities �I∗ = (I∗1, . . . , I∗n) is optimal for Problem (3.1) if and only if for each i ∈ N and all x ∈ R+ , there exists [0, 1]-valued 
measurable functions h, hi such that for almost all z ∈R+ ,

I∗i (x) =
x∫

0

γ ∗
i (z)dz ,

γ ∗
i (z) = hi(z)1{i∈Nz} ,∑

γ ∗
i (z) = 1{g(P (X>z))>ν(X>z)} + h(z)1{g(P (X>z))=ν(X>z)} .
i∈N
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We see that Proposition 3.3 gives a full characterization of optimal solutions to Problem (3.1). However, optimal indemnities are not 
unique in general: from the statement of Proposition 3.3, there is some flexibility in choosing the functions hi when i ∈ Nz . That is, the 
insurer has many decisions that are optimal in the sense of Problem (3.1) when they are indifferent between their choice of reinsurer. We 
narrow the set of optimal solutions by imposing the following condition.

Definition 3.4. For each z ∈R+ , let Nz be as defined in (3.3). An optimal indemnity �I∗ distributes generously if for almost all z ∈ R+ , we 
have:

(1) If g(P (X > z)) = ν(X > z), and there exist j ∈Nz such that τ j(X > z) < g(P (X > z)), then∑
i∈N

γ ∗
i (z) = 1 .

(2) If i ∈Nz and either:
• there exist k ∈Nz \ {i} such that τk(X > z) < τi(X > z); or,
• g(P (X > z)) = ν(X > z) and g(P (X > z)) < τi(X > z),
then

γ ∗
i (z) = 0 .

Recall from (2.13) and (2.14) the conventions τ0 = g ◦P and ν0 = g ◦P . Additionally, we may define γ ∗
0 such that for all z ∈R+ ,

γ ∗
0 (z) := 1 −

∑
i∈N

γ ∗
i (z) . (3.4)

Under these conventions, Definition 3.4 can be stated more succinctly. An optimal indemnity �I∗ distributes generously if for almost all 
z ∈R+ and all i ∈N ∪ {0} we have γ ∗

i (z) = 0 if both of the following conditions hold:

• νi(X > z) = min j∈N∪{0}{ν j(X > z)}; and,
• there exist k ∈ (N ∪ {0}) \ {i} such that νk(X > z) = νi(X > z) but τk(X > z) < τi(X > z).

These conditions state that when the insurer is indifferent between reinsurers, it chooses the reinsurer that has the most to gain from 
the contract. This is interpreted as an act of good faith – it is in the insurer’s best interest to maintain good business relationships with 
its counterparties. For a fixed set of pricing capacities (ν1, . . . , νn), we denote the set of generously distributed optimal indemnities in the 
sense of Definition 3.4 by I(ν1, . . . , νn). In the following, we assume that the insurer always selects an optimal indemnity that distributes 
generously. We denote the set of such strategies by

ℵ :=
{
I ∈ (Cn)

�I : I(ν1, . . . , νn) ∈ I(ν1, . . . , νn), ∀ (ν1, . . . , νn) ∈ Cn
}

. (3.5)

In Section 3.2, we address the decision problem for the reinsurers, while fixing the insurer’s strategy I ∈ ℵ. In doing so, we show that 
generous distribution is sufficient to guarantee the existence of an SPNE.

Remark 3.5. The notion of generous distribution outlined in Definition 3.4 is, to the best of our knowledge, a new concept. However, 
we note that a similar assumption has been applied in the Stackelberg setting by Cheung et al. (2019). They assume that the marginal 
indemnity function h(z) ≡ 1 in order to reduce the set of optimal insurer strategies to a singleton. It can be verified that in the Stackelberg 
case, their assumption is stronger than ours, in the sense that h(z) ≡ 1 implies generous distribution, but that the converse does not hold.

Remark 3.6. Note that the set ℵ is in general a strict subset of the optimal solutions given by Proposition 3.3. Hence, maximizing coverage 
and generous distribution are not necessary conditions for the existence of SPNE, since there may exist SPNEs when the insurer chooses a 
strategy in the solution set of Proposition 3.3 but not in ℵ.

3.2. Backward induction step two – the reinsurers’ strategies

We now exhibit a characterization of SPNEs by completing the second step of the backward induction in Proposition 3.1. We begin 
by fixing an optimal strategy for the insurer I∗ ∈ ℵ. Then, we characterize capacities (ν∗

1 , . . . , ν∗
n ) such that there does not exist ν̂ that 

satisfies, for some i ∈ N ,

ρi(I
∗
i (ν̂, ν∗

−i)(X)) − πν̂(I∗
i (ν̂, ν∗

−i)(X)) < ρi(I
∗
i (ν

∗
1 , . . . , ν∗

n )(X)) − πνi (I∗
i (ν

∗
1 , . . . , ν∗

n )(X)) .

We show that capacities satisfying certain conditions constitute an SPNE strategy. These conditions are closely related to the second-lowest 
true preferences of all n +1 agents in the reinsurance market model. The second-lowest preferences are suggested by Boonen et al. (2021b)
as an upper bound on premium principles that are coalitionally stable. In this paper, SPNEs can be interpreted as an alternate notion of 
stability, in which the second-lowest preferences again play an important role.

Definition 3.7. Let τ̄ be constructed as the pointwise second-lowest function of the set of capacities {τ0, . . . , τn}. Hence, for all z ∈ R+ , 
there exist i, j ∈ N ∪ {0} such that i �= j, τ̄ (X > z) = τ j(X > z), τi(X > z) � τ j(X > z), and τk(X > z) � τ j(X > z) for all k �= i, j. We refer 
to τ̄ as the second-lowest true preferences.
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Definition 3.8. For each z ∈ R+ , let Nz be as defined in (3.3). Define the class of reinsurer strategies ג ⊆ Cn as the set of all (ν1, . . . , νn)

such that for almost all z ∈R+:

(a) We have

min
j∈N

ν j(X > z) = τ̄ (X > z) . (3.6)

(b) There exist i, k ∈N ∪ {0}, i �= k such that

min
j∈N

ν j(X > z) = νi(X > z) = νk(X > z) . (3.7)

Recall from (2.14) that we use the convention ν0 = g ◦P .
(c) We have

Tz �= ∅ =⇒ Tz ∩Nz �= ∅, (3.8)

where

Tz :=
{

i ∈ N : τi(X > z) = min
j∈N∪{0}

τ j(X > z)

}
.

That is, Tz are the indices in N that minimize τ j(X > z) for j ∈N ∪ {0}.

The first condition states that the lowest price for the loss layer X > z is equal to the second-lowest true preferences τ̄ . The second 
condition guarantees that there are always at least two agents charging this price. Finally, the third condition states that out of the 
reinsurers who have the lowest true preferences, at least one is posting the price based on τ̄ .

We now provide the first main result of this paper: if I∗ ∈ ℵ and (ν∗
1 , . . . , ν∗

n ) ∈ ∗then the strategy (ν ,ג
1 , . . . , ν∗

n , I∗) is an SPNE. 
We begin with the following two results, whose proofs can be found in Appendix A.1. Proposition 3.9 states that any such strategy 
(ν∗

1 , . . . , ν∗
n , I∗) achieves the same risk for each reinsurer. The following result, Proposition 3.10, completes the second step of backward 

induction, by showing that every reinsurer strategy (ν∗
1 , . . . , ν∗

n ) ∈ ג satisfies (3.2).

Proposition 3.9. Let I∗ ∈ ℵ and (ν∗
1 , . . . , ν∗

n ) ∈ Then for all i ∈N .ג ,

ρi(I∗i (X) − πi) =
∫
Zi

τi(X > z) − τ̄ (X > z)dz ,

where

Zi := {z ∈R+ : τi(X > z) < τ̄ (X > z)} .

Proposition 3.10. Let ν̂ ∈ C be any pricing capacity, and let I∗ ∈ ℵ and (ν∗
1 , . . . , ν∗

n ) ∈ Then for each i ∈N .ג , we have

ρi(I
∗
i (ν̂, ν∗

−i)(X)) − πν̂(I∗
i (ν̂, ν∗

−i)(X)) � ρi(I
∗
i (ν

∗
1 , . . . , ν∗

n )(X)) − πν∗
i (I∗

i (ν
∗
1 , . . . , ν∗

n )(X)) .

That is, when the strategies (ν∗
1 , . . . , ν∗

n ) are chosen by the reinsurers, no reinsurer has an incentive to deviate.

As a direct corollary of Propositions 3.1, 3.3, and 3.10, we obtain the following.

Theorem 3.11. Let I∗ ∈ ℵ and (ν∗
1 , . . . , ν∗

n ) ∈ ∗Then the strategy (ν .ג
1 , . . . , ν∗

n , I∗) is an SPNE.

We provide a few examples of such strategies in the following subsection. Note that while Theorem 3.11 provides sufficient conditions 
for a strategy to be an SPNE, these conditions are not necessary. An example of an SPNE not characterized by Theorem 3.11 is provided in 
Appendix B.1.

3.2.1. Some examples of SPNEs characterized by Theorem 3.11
We now provide explicit constructions of reinsurer strategies (ν∗

1 , . . . , ν∗
n ) ∈  This results in an SPNE when combined with any insurer .ג

strategy I∗ ∈ ℵ, as a consequence of Theorem 3.11. First, recall that

Tz :=
{

i ∈ N : τi(X > z) = min
j∈N∪{0}

τ j(X > z)

}
.

Definition 3.12. For each i ∈N , define ν∗
i by

ν∗
i (X > z) :=

{
τ̄ (X > z), i ∈ Tz

τi(X > z) otherwise
.

31



M.B. Zhu, M. Ghossoub and T.J. Boonen Insurance: Mathematics and Economics 113 (2023) 24–49
In the strategy, the reinsurer with the lowest true preferences for every layer X > z chooses the second-lowest true preferences as 
their premium principle. Otherwise, the reinsurer quotes a price consistent with its underlying risk measure. The following result shows 
that this strategy is an SPNE, and its proof is given in Appendix A.1.

Proposition 3.13. The capacities (ν∗
1 , . . . , ν∗

n ) given in Definition 3.12 are in ג.

Therefore by Theorem 3.11, for any I∗ ∈ ℵ, the strategy (ν∗
1 , . . . , ν∗

n , I∗) is an SPNE. By increasing prices to match the preferences of 
their nearest competitors, reinsurers are able to profit if they are able to correctly identify the heterogeneous beliefs of the agents in the 
market. Note that in this case, each reinsurer quotes prices that is at least as high as their true preferences. However, this is not necessary 
for all SPNEs, as shown by the following example.

Remark 3.14. It follows easily from the definition of ג that (τ̄ , τ̄ , . . . , τ̄ ) ∈ .ג

Again by Theorem 3.11, for any I∗ ∈ ℵ, (τ̄ , τ̄ , . . . , τ̄ , I∗) is an SPNE. This shows that there exists a pricing mechanism that every 
reinsurer can adopt for the market to achieve stability. That is, there is no incentive for any reinsurer to deviate from the pricing capacity 
τ̄ , if every other reinsurer is also using the same premium principle.

However, this requires some reinsurers to quote prices that are below their true risk preference. The reinsurers do not experience a 
loss, since even when their price is too low, the insurer cedes this portion of the risk to another reinsurer. This perhaps places too much 
hope in the insurer’s strategy, which is assumed to distribute generously. Nevertheless, the special form of this SPNE is worth mentioning, 
and further emphasizes the important role of the “second-lowest” pricing capacity τ̄ .

This example is also an illustration of the wide range of pricing capacities that can yield an SPNE. On the levels X > z that the reinsurer 
does not expect to receive any business, pricing can be fairly arbitrary. In this sense, ג is a non-trivial class that allows for many different 
selections of pricing capacities.

4. Welfare analysis of SPNEs

It is clear that every strategy (ν1, . . . , νn, I) in this economic game determines a unique premium principle for each reinsurer and a 
unique indemnity structure demanded by the insurer. This therefore determines the premia that the insurer pays to each reinsurer, which 
determines the allocation of wealth (or risk) to each agent. In this section, we examine efficiency properties of the contracts induced by 
SPNEs. We consider both individual rationality (IR) and PE.

Definition 4.1. An allocation is a pair (�I, �π) ∈ �I×Rn , where �I denotes the structure of the indemnities and π denotes the vector of premia 
paid by the insurer. The resulting risk measures under this allocation are

ρI N

(
X −

∑
i∈N

Ii(X) + πi

)
and ρi(Ii(X) − πi), ∀i ∈ N .

We say that an allocation (�I, �π) results from (or is induced by) a strategy (ν1, . . . , νn, I) if for all i ∈ N , Ii = Ii(ν1, . . . , νn) and 

πi = π
νi
i (Ii(X)) =

∫
Ii(X) dνi .

4.1. Individual rationality of SPNEs

Definition 4.2. An allocation (�I, �π) ∈ �I ×Rn is IR if

ρI N

(
X −

∑
i∈N

Ii(X) +
∑
i∈N

πi

)
� ρI N(X) and ρi(Ii(X) − πi) � ρi(0) = 0, ∀i ∈ N .

That is, the allocation (�I, �π) is not worse than the status quo for any agent – hence, the insurer and all reinsurers are willing to 
participate with these transactions. Note that if an allocation is IR, then each premium is non-negative, since by translation invariance the 
condition ρi(Ii(X) − πi) � ρi(0) = 0 yields

πi � ρi(Ii(X)),

and by monotonicity ρi(Ii(X)) � 0 since Ii(X) � 0 and τi is non-negative. We show that for every I∗ ∈ ℵ and (ν∗
1 , . . . , ν∗

n ) ∈  the strategy ,ג
(ν∗

1 , . . . , ν∗
n , I∗) induces an IR allocation. The result follows readily from Proposition 3.9 and the following lemma.

Lemma 4.3. Suppose I∗ ∈ ℵ and (ν∗
1 , . . . , ν∗

n ) ∈ Then .ג

ρI N

(
X −

∑
i∈N

I∗i (X) +
∑
i∈N

πν∗
i (I∗i (X))

)
=

∫
ZI N

g(P (X > z))dz +
∫

ZC
I N

τ̄ (X > z)dz ,

where

ZI N := {z ∈R+ : g(P (X > z)) < τ̄ (X > z)} .
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Theorem 4.4. Suppose I∗ ∈ ℵ and (ν∗
1 , . . . , ν∗

n ) ∈ ∗Then the strategy (ν .ג
1 , . . . , ν∗

n , I∗) induces an IR allocation.

Proof. By Lemma 4.3,

ρI N

(
X −

∑
i∈N

I∗i (X) +
∑
i∈N

πνi (I∗i (X))

)
=

∫
ZI N

g(P (X > z))dz +
∫

ZC
I N

τ̄ (X > z)dz

�
∫

ZI N

g(P (X > z))dz +
∫

ZC
I N

g(P (X > z))dz

=
∞∫

0

g(P (X > z))dz = ρI N(X) .

Also, by Proposition 3.9, we have for each i ∈N ,

ρi(I∗i (X) − πi) =
∫
Zi

τi(X > z) − τ̄ (X > z)dz �
∫
Zi

0 dz = 0. �

4.1.1. Market competition and the insurer’s welfare
Within the literature on Stackelberg equilibria (i.e., n = 1), solutions to the Stackelberg problem imply that the insurer has no incentive 

to purchase insurance – that is, the insurer is indifferent between reinsurance and the status quo. This argument is emphasized in 
Boonen and Ghossoub (2022), which concludes that the Stackelberg setting is problematic in problems of optimal reinsurance. It is also 
straightforward to confirm that the optimal indemnification proposed in Cheung et al. (2019) does not provide a welfare gain for the 
insurer. The following result shows that in our setting, the same conclusion applies: if there is only one reinsurer, then the insurer does 
not improve upon the status quo.

Proposition 4.5. Let n = 1, and suppose I∗ ∈ ℵ and ν∗
1 ∈ Then .ג

ρI N

(
X − I1(X) + πν∗

1 (I1(X))
)

= ρI N(X) .

However, as the number of reinsurers increases, the resulting risk measure for the insurer decreases, with the decrease being strict 
under some mild conditions. This result is intuitive from an economic perspective: increased competition in the market lowers prices and 
benefits the consumer. Hence, by extending the Stackelberg model to include multiple reinsurers, we address an apparent weakness of the 
Stackelberg setting by capturing value for the insurer.

Fix a value of n, and suppose that the (n + 1)-st reinsurer has preferences given by the capacity gn+1 ◦ Qn+1 := τn+1. We wish 
to compare the SPNEs in the market with n reinsurers to that with n +1 reinsurers. Let ℵn and ℵn+1 denote the sets of generously 
distributing optimal strategies for the market with n and n + 1 reinsurers, respectively. Similarly, let גn and גn+1 be the sets of reinsurer 
strategies satisfying the properties of Definition 3.8 for the market with n and n +1 reinsurers, respectively.

Proposition 4.6. Let I∗,n ∈ ℵn, I∗,n+1 ∈ ℵn+1 , (ν∗,n
1 , . . . , ν∗,n

n ) ∈ n, and (ν∗,n+1ג
1 , . . . , ν∗,n+1

n+1 ) ∈ n+1ג . We use the convention that (I∗,n
1 , . . . , I∗,n

n ) :=
I∗,n(ν∗,n

1 , . . . , ν∗,n
n ), and similarly for n + 1. Then

ρI N

(
X −

n+1∑
i=1

I∗,n+1
i (X) +

n+1∑
i=1

πν∗,n+1
i (I∗,n+1

i (X))

)
� ρI N

(
X −

n∑
i=1

I∗,n
i (X) +

n∑
i=1

πν∗,n
i (I∗,n

i (X))

)
.

That is, when a reinsurer is added to the market, the welfare of the insurer can only increase.

We can see that the inequality of Proposition 4.6 can be strict when, for example, τ̄n+1 < τ̄n . Hence, when a reinsurer joins the market 
by offering a cheaper or differentiated product, the insurer can realize a strict welfare gain. This point is explicitly demonstrated by a 
numerical example in Subsection 4.4.

4.2. Pareto efficiency of SPNEs

We now show that allocations that result from the SPNE characterized in Section 3 are PE. In this section, we use the conventions ρ0 =
ρI N and I0(X) = X − ∑

i∈N Ii(X) as defined in (2.11) and (2.12). As a direct consequence, X = ∑n
i=0 Ii(X). Recall that by Assumption 2.4, 

I0 ∈ I .

Definition 4.7. An allocation (�I, �π) ∈ �I ×Rn is PE if there does not exist another allocation ( Ĩ, π̃ ) ∈ �I ×Rn such that

ρI N

(
X −

∑
i∈N

Ĩ i(X) +
∑
i∈N

π̃i

)
� ρI N

(
X −

∑
i∈N

Ii(X) +
∑
i∈N

πi

)
,

ρi( Ĩ i(X) − π̃i) � ρi(Ii(X) − πi), i ∈ N ,
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with at least one of these inequalities being strict.

It is well-known that when all risk measures are translation invariant, PE is related to the inf-convolution (e.g., Asimit and Boonen, 
2018). For the sake of completeness, we provide a proof in Appendix A.2.

Definition 4.8. The inf-convolution of risk measures ρi , i ∈N ∪ {0} with respect to a random variable X is defined as

�n
i=0 ρi(X) := inf

{
n∑

i=0

ρi(Ii(X)), I ∈ �I
}

.

Proposition 4.9. An allocation (�I, �π) is PE if and only if 
∑n

i=0 ρi(Ii(X)) = �n
i=0 ρi(X).

In our case, we can obtain an explicit characterization of the indemnities structures that attain the inf-convolution.

Proposition 4.10. For each z ∈R+ , let

Lz := {i ∈ N ∪ {0} : τi(X > z) = min
j∈N∪{0}

{τ j(X > z)}},

and LC
z := (N ∪ {0}) \Lz . For each i ∈N ∪ {0}, let γi take values in [0, 1] such that for almost every z,∑
i∈Lz

γi(z) = 1,
∑
i∈LC

z

γi(z) = 0 ,

and define Ii(z) :=
z∫

0

γi(z) dz. Then

n∑
i=0

ρi(Ii(X)) = �n
i=0 ρi(X) .

That is, �I achieves the inf-convolution. Furthermore, any indemnity schedule that achieves the inf-convolution is of this form.

We now provide the main result of this section: the SPNEs from Theorem 3.11 induce PE allocations. First, we show that for any I∗ ∈ ℵ, 
the reinsurer strategy (τ̄ , . . . , τ̄ ) given in Remark 3.14 induces a PE allocation. We then extend this result to all reinsurer strategies in ג
by applying Proposition 3.9 and Lemma 4.3.

Lemma 4.11. The strategy (τ̄ , τ̄ , . . . , τ̄ , I∗) from Remark 3.14 induces an IR and PE allocation. That is, (�I∗, �π∗) is IR and PE in the sense of Defini-
tions 4.2 and 4.7, where �I∗ is an element of I(τ̄ , τ̄ , . . . , τ̄ ) and π∗

i = ρτ̄ (I∗i (X)).

Theorem 4.12. Let I∗ ∈ ℵ and (ν∗
1 , . . . , ν∗

n ) ∈ ∗Then the strategy (ν .ג
1 , . . . , ν∗

n , I∗) induces an IR and PE allocation.

As a direct corollary of Theorem 4.12, we obtain the following.

Corollary 4.13. The strategy (ν∗
1 , . . . , ν∗

n , I∗) with I∗ ∈ ℵ and ν∗
1 , . . . , ν∗

n as in Definition 3.12 is IR and PE.

4.3. Decentralization of Pareto-efficient allocations via an SPNE

We now provide a partial converse to Theorem 4.12. That is, given a PE allocation (�I∗, �π∗), we show that this can be generated by an 
SPNE as characterized in Theorem 3.11.

However, by Proposition 3.9 and Lemma 4.3, we see that every allocation induced by such an SPNE has the same resulting risk measure 
for each agent. Therefore, we must first impose the following assumption on the allocations.

Assumption 4.14. The allocation (�I∗, �π∗) satisfies

ρi(I∗i (X) − π∗
i ) =

∫
Zi

τi(X > z) − τ̄ (X > z)dz ,

ρI N

(
X −

∑
i∈N

I∗i (X) +
∑
i∈N

π∗
i

)
=

∫
ZI N

g(P (X > z))dz +
∫

ZC
I N

τ̄ (X > z)dz .

We show that if (�I∗, �π∗) is an allocation satisfying Assumption 4.14, then it is induced by the choice of reinsurer strategies (ν∗
1 , . . . , ν∗

n )

given in Definition 3.12. This result follows from the following propositions.
34



M.B. Zhu, M. Ghossoub and T.J. Boonen Insurance: Mathematics and Economics 113 (2023) 24–49
Proposition 4.15. Let (�I∗, �π∗) be an allocation satisfying Assumption 4.14, and (ν∗
1 , . . . , ν∗

n ) be as in Definition 3.12. Then for each i ∈N ,

π∗
i =

∫
I∗i (X)dν∗

i .

Proposition 4.16. Let (�I∗, �π∗) be an allocation satisfying Assumption 4.14, and (ν∗
1 , . . . , ν∗

n ) be the insurer strategies from Definition 3.12. Then the 
indemnity profile �I∗ is optimal in the sense of Proposition 3.3. That is, the profile �I∗ solves

min
I∈�I

{
ρI N

(
X −

∑
i∈N

Ii(X) +
∑
i∈N

πν∗
i (Ii(X))

)}
.

Proposition 4.17. Let (�I∗, �π∗) be an allocation satisfying Assumption 4.14. Then for any choice of reinsurer strategies (ν∗
1 , . . . , ν∗

n ) ∈  the indemnities ,ג
�I∗ distribute generously the sense of Definition 3.4.

Theorem 4.18. Suppose (�I∗, �π∗) is an allocation satisfying Assumption 4.14. Then this allocation results from an SPNE with capacities (ν∗
1 , . . . , ν∗

n )

as given in Definition 3.12. That is, there exists an I∗ ∈ ℵ such that �I∗ = I∗(ν∗
1 , . . . , ν∗

n ), and for all i ∈N ,

π∗
i =

∫
I∗i (X)dν∗

i .

Proof. By Propositions 4.16 and 4.17, we see that �I∗ is optimal and distributes generously, if reinsurer strategies are fixed to be those in 
Definition 3.12. Hence, there exists a strategy I∗ ∈ ℵ such that �I∗ = I∗(ν∗

1 , . . . , ν∗
n ). The rest follows directly from Proposition 4.15. �

4.4. A numerical example

We now illustrate our main results with a numerical example, where the insurer is subject to a risk X distributed according to a 
censored exponential distribution. By applying Theorem 3.11, we explicitly characterize an SPNE in this market. We also show that in 
this SPNE, each agent realizes a strict welfare gain, which implies that each agent has an incentive to participate in this contract. This 
illustrates the result of Proposition 4.6, by showing that introducing competition on the supply side benefits the insurer. Furthermore, by 
Theorems 4.4 and 4.12, the allocation resulting from the SPNE is IR and PE.

We assume that the insurer’s beliefs of the risk X are represented by the survival function

P (X > z) =
{

exp(−β0 · z) , 0 � z � 5 ,

0 , z � 5 .

Here, we take β0 = 2.5. We assume that there are two reinsurers in the market: i.e. n = 2. For i = 1, 2, let

Qi(X > z) =
{

exp(−βi · z) , 0 � z � 5 ,

0 , z � 5 ,

with β1 = 2 and β2 = 1.7. These different parameters are due to the heterogeneity in beliefs among agents: while the reinsurers agree 
with the insurer that X is distributed according to a censored exponential distribution and that this distribution is censored at 5, they 
differ in their belief of the parameter of the distribution.

We also assume that each agent measures risk according to the Tail Value-at-Risk (TVaR). That is, we have

g(t) = min

{
t

1 − α0
,1

}
, gi(t) = min

{
t

1 − αi
,1

}
, i = 1,2,

where α0 = 0.99, α1 = 0.95 and α2 = 0.90.
By the results of Section 3, we are primarily interested in the distorted subjective survival probabilities τi(X > z). These probabilities 

for τi (where i = 0, 1, 2) are displayed in Fig. 1a. The second-lowest capacity τ̄ , as given in Definition 3.7, is displayed in Fig. 1b.
Let ν∗

1 , ν∗
2 be as in Definition 3.12. Then, the indemnity structure for an optimal insurer strategy I∗ ∈ ℵ is shown in Fig. 2. It can be 

seen that the indemnity function for reinsurer i is strictly increasing only if τi(X > z) = min j=0,1,2 τ j(X > z).
Based on the reinsurers’ strategies ν∗

1 * and ν∗
2 , numerical calculation yields the following premia:

π∗
1 (I∗1(X)) = πν∗

1 (I∗1(X)) = 1.4433 and π∗
2 (I∗2(X)) = 0.5450.

The risk measures for the agents resulting from these strategies are,

ρI N

(
X −

2∑
i=1

I∗i (X) +
2∑

i=1

π∗
i

)
= 2.001, ρ1(I∗1(X) − π∗

1 ) = −0.0065, ρ2(I∗2(X) − π∗
2 ) = −0.0725.

From the calculations, it is evident that ρI N (X) ≈ 2.2419, indicating that the insurer realizes a strict welfare gain from this allocation. 
Additionally, the initial risk of both reinsurers is 0, whereas the risk of both reinsurers are negative under the SPNE contracts. Therefore, 
both reinsurers also decrease their risk as a result of this allocation.
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Fig. 1. Survival functions of true preferences.

Fig. 2. Optimal indemnity structure �I∗ .

5. Conclusion

In this paper, we provide a novel reinsurance market mechanism with multiple reinsurers, in which the reinsurers have the first-mover 
advantage. We assume distortion risk measure preferences for each agent and allow for heterogeneity in beliefs. Premium principles are 
nonlinear and are taken as Choquet expectations with respect to general capacities. Within this general setup, we argue that the notion 
of a Subgame Perfect Nash Equilibrium (SPNE) is the appropriate solution concept. Our main results characterize SPNEs, identify their 
properties, and provide a welfare analysis of resulting equilibrium allocations.

We first provide sufficient conditions which lead to an SPNE in Theorem 3.11. By applying backward induction, we isolate the decision 
problem of the insurer and the decision problem of the reinsurers. The former is addressed by applying the so-called marginal indem-
nification function approach to the case of heterogeneous beliefs, as done in Boonen and Ghossoub (2021). The latter is addressed by 
constructing strategies satisfying the conditions of Definition 3.8. In these equilibria, the insurer faces prices induced by the second-lowest 
true preferences as measured by distorted subjective survival probabilities.

Additionally, we examine the Pareto efficiency properties of contracts resulting from SPNEs in Section 4. Since market equilibria are 
not efficient in general, we separately analyze the welfare of each agent. In Theorem 4.12, we demonstrate that such equilibria result in 
Pareto-efficient contracts in our market model Conversely, we show in Theorem 4.18 that certain efficient allocations can be decentralized: 
that is, they can be induced by market forces. Since we identify market equilibria before considering efficiency, we do not need to assume 
that the agents in the market cooperate with each other, or that there exists a central planner influencing decisions.

Finally, our setting and results could be extended in several potential directions. For example, we consider a market with only one 
(representative) insurer, whereas typically multiple insurers, with heterogeneous risk preferences and risk exposures, participate in rein-
surance markets. Moreover, reinsurers often operate with a background risk arising from other operational and financial decisions (e.g., 
Dana and Scarsini, 2007, Balbás et al., 2022). Another interesting extension would be to examine the effect of information asymmetry 
between the insurer and the reinsurer. For instance, in markets with multiple insurers with hidden types, a reinsurer can offer a menu of 
different premia to the insurers. We refer to Liang et al. Liang et al. (2022) for a recent discussion of this topic.
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Appendix A. Proofs of main results

A.1. Characterization of SPNEs

Proof. Suppose first that the strategy (ν∗
1 , . . . , ν∗

n , I∗) was found through backward induction. Then it satisfies condition (2) of Defini-
tion 2.6. It remains to check that this is an NE. For the sake of contradiction, suppose (ν∗

1 , . . . , ν∗
n , I∗) is not an NE. By (3.1), there does 

not exist a strategy Ĩ such that

ρI N(X)−
∑
i∈N

ρI N

(
Ĩi(ν

∗
1 , . . . , ν∗

n )(X)
)

+
∑
i∈N

πν∗
i (Ĩi(ν

∗
1 , . . . , ν∗

n )(X))

< ρI N(X) −
∑
i∈N

ρI N(I∗
i (ν

∗
1 , . . . , ν∗

n )(X)) +
∑
i∈N

πνi (I∗
i (ν

∗
1 , . . . , ν∗

n )(X)) .

Furthermore, by (3.2), there does not exist i ∈N and ν̃ ∈ C such that

ρi(I
∗
i (ν̃, ν∗

−i)(X)) − πν̃(I∗
i (ν̃, ν∗

−i)(X)) < ρi(I
∗
i (ν

∗
1 , . . . , ν∗

n )(X)) − πν∗
i (I∗

i (ν
∗
1 , . . . , ν∗

n )(X)) .

Therefore, 
(
ν∗

1 , . . . , ν∗
n ,I∗) is an NE.

Conversely, suppose that (ν∗
1 , . . . , ν∗

n , I∗) is an SPNE. Then by condition (2) of Definition 2.6, for any choice of capacities (ν1, . . . , νn) ∈
Cn , the indemnity structure I∗(ν1, . . . , νn) solves (3.1). It remains to show that (ν∗

1 , . . . , ν∗
n ) is a Nash Equilibrium in the reduced game. 

Since the strategy (ν∗
1 , . . . , ν∗

n , I∗) is an NE, there does not exist i ∈ N and ν̃ ∈ C such that

ρi(I
∗
i (ν̃, ν∗

−i)(X)) − πν̃(I∗
i (ν̃, ν∗

−i)(X)) < ρi(I
∗
i (ν

∗
1 , . . . , ν∗

n )(X)) − πνi (I∗
i (ν

∗
1 , . . . , ν∗

n )(X)) .

Hence, 
(
ν∗

1 , . . . , ν∗
n

)
is an NE for the reduced game formed by fixing I∗ , which completes the proof. �

Proof of Proposition 3.3. First we check feasibility. Suppose (I∗1, . . . , I∗n) is of the given form – then I∗i = ∫ x
0 γ ∗

i (z) dz where 0 � γ ∗
i � 1. 

Then for all z, (I∗i )′(z) = γ ∗
i (z) � 0. Furthermore, 

∑
i∈N (I∗i )′(z) = ∑

i∈N γ ∗
i (z) � 1. Hence, (I∗1, . . . , I∗n) is a feasible choice of indemnities.

Let �I = (I1, . . . , In) be any feasible indemnity, and write Ii(x) =
x∫

0

γi(z) dz. Then,

ρI N

(
X −

∑
i∈N

Ii(X) +
∑
i∈N

πνi (Ii(X))

)
= ρI N

(
X −

∑
i∈N

Ii(X)

)
+

∑
i∈N

πνi (Ii(X))

= ρI N(X) − ρI N

(∑
i∈N

Ii(X)

)
+

∑
i∈N

πνi (Ii(X))

= ρI N(X) −
∑
i∈N

ρI N(Ii(X)) +
∑
i∈N

πνi (Ii(X))

= ρI N(X) +
∑
i∈N

∞∫
0

(νi(X > z) − g(P (X > z)))γi(z)dz

= ρI N(X) +
∞∫

0

∑
i∈N

(νi(X > z) − g(P (X > z)))γi(z)dz ,

where the second equality follows from comonotonic additivity of ρI N . First we show that (I∗1, . . . , I∗n) solves Problem (3.1). We have

ρI N

(
X −

∑
i∈N

I∗i (X) +
∑
i∈N

πνi (I∗i (X))

)
= ρI N(X) +

∞∫
0

∑
i∈N

(νi(X > z) − g(P (X > z)))γ ∗
i (z)dz

= ρI N(X) +
∞∫

0

∑
i∈Nz

(νi(X > z) − g(P (X > z)))γ ∗
i (z)dz

= ρI N(X) +
∞∫ ∑

i∈Nz

(ν(X > z) − g(P (X > z)))γ ∗
i (z)dz
0
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= ρI N(X) +
∞∫

0

(ν(X > z) − g(P (X > z)))
∑
i∈Nz

hi(z)dz

= ρI N(X) +
∫
A

(ν(X > z) − g(P (X > z)))dz ,

where we define

A := {z ∈R+ : g(P (X > z)) > ν(X > z)} .

Then we have

ρI N(X) +
∫
A

(ν(X > z) − g(P (X > z)))dz

� ρI N(X) +
∫
A

(ν(X > z) − g(P (X > z)))
∑
i∈N

γi(z)dz (A.1)

� ρI N(X) +
∫
A

(ν(X > z) − g(P (X > z)))
∑
i∈N

γi(z)dz (A.2)

+
∫
AC

(ν(X > z) − g(P (X > z)))
∑
i∈N

γi(z)dz

= ρI N(X) +
1∫

0

(ν(X > z) − g(P (X > z)))
∑
i∈N

γi(z)dz

� ρI N(X) +
1∫

0

∑
i∈N

(νi(X > z) − g(P (X > z)))γi(z)dz (A.3)

= ρI N

(
X −

∑
i∈N

Ĩ i(X) +
∑
i∈N

πνi ( Ĩ i(X))

)
,

and hence (I∗1, . . . , I∗n) is optimal. We now show the converse. Suppose that (I1, . . . , In) is an allocation that does not satisfy the above 
form. Then there are three possibilities:

i) There exists a set A1 of positive measure such that for each z ∈A1,

γi(z) > 0 for at least one i /∈ Nz .

ii) There exists a set A2 of positive measure such that for each z ∈A2,∑
i∈N

γi(z) < 1, g(P (X > t)) > ν(X > z) .

Note that A2 ⊆A.
iii) There exists a set A3 of positive measure such that for each z ∈A3,∑

i∈N
γi(z) > 0, g(P (X > t)) < ν(X > z) .

Note that A3 ⊆AC .

Suppose that we are in the first case. Then for each z ∈A1, we have∑
i∈N

ν(X > z)γi(z) <
∑
i∈N

νi(X > z)γi(z) .

Hence,∫
A1

∑
i∈N

(ν(X > z) − g(P (X > z)))γi(z)dz <

∫
A1

∑
i∈N

(νi(X > z) − g(P (X > z)))γi(z)dz ,

where this inequality is strict. Also, since ν � νi for all i, we have
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∫
AC

1

∑
i∈N

(ν(X > z) − g(P (X > z)))γi(z)dz �
∫
AC

1

∑
i∈N

(νi(X > z) − g(P (X > z)))γi(z)dz ,

where AC
1 =R+ \A1. Adding these inequalities gives

∞∫
0

∑
i∈N

(ν(X > z) − g(P (X > z)))γi(z)dz <

∞∫
0

∑
i∈N

(νi(X > z) − g(P (X > z)))γi(z)dz ,

and so inequality (A.3) is strict. Therefore, (I1, . . . , In) is not optimal.
The remaining two cases are similar. Suppose that (ii) is true. Then for each z ∈A2, we have

ν(X > z) − g(P (X > z)) <
(
ν(X > z) − g(P (X > z))

) ∑
i∈N

γi(z) .

Hence,∫
A2

ν(X > z) − g(P (X > z))dz <

∫
A2

(
ν(X > z) − g(P (X > z))

) ∑
i∈N

γi(z)dz .

Also, since g(P (X > z)) > ν(X > z) on A, and 
∑

i∈N γi(z) dz � 0, we have∫
A\A2

ν(X > z) − g(P (X > z))dz �
∫

A\A2

(
ν(X > z) − g(P (X > z))

) ∑
i∈N

γi(z)dz .

Adding these inequalities gives∫
A

ν(X > z) − g(P (X > z))dz <

∫
A

(
ν(X > z) − g(P (X > z))

) ∑
i∈N

γi(z)dz ,

and so inequality (A.1) is strict. Hence, (I1, . . . , In) is not optimal.
Finally, suppose that (iii) is true. Then for each z ∈A3, we have(

ν(X > z) − g(P (X > z))
) ∑

i∈N
γi(z) > 0 ,

so ∫
A3

(
ν(X > z) − g(P (X > z))

) ∑
i∈N

γi(z)dz > 0 .

Also, since g(P (X > z)) � ν(X > z) on AC and 
∑

i∈N γi(z) � 0,∫
AC \A3

(
ν(X > z) − g(P (X > z))

) ∑
i∈N

γi(z)dz > 0 .

Adding these inequalities gives∫
AC

(
ν(X > z) − g(P (X > z))

) ∑
i∈N

γi(z)dz > 0 ,

and therefore inequality (A.2) is strict. Thus, (I1, . . . , In) is not optimal. �
Proof of Proposition 3.9. Let i ∈N and I∗ ∈ ℵ. First, we have

ρi(I∗i (X) − πi) =
∞∫

0

τi(X > z)γ ∗
i (z)dz −

∞∫
0

ν∗
i (X > z)γ ∗

i (z)dz

=
∞∫

0

(τi(X > z) − ν∗
i (X > z))γ ∗

i (z)dz .

Let

A1 = {z : γ ∗
i (z) = 1} and A2 = {z : γ ∗

i (z) ∈ (0,1)},
so that
39



M.B. Zhu, M. Ghossoub and T.J. Boonen Insurance: Mathematics and Economics 113 (2023) 24–49
∞∫
0

(τi(X > z) − ν∗
i (X > z))γ ∗

i (z)dz =
∫
A1

τi(X > z) − ν∗
i (X > z)dz +

∫
A2

(τi(X > z) − ν∗
i (X > z))γ ∗

i (z)dz.

We first show that for almost all z ∈ A2, τi(X > z) = ν∗
i (X > z), so the second integral vanishes. We then identify the first integral 

with 
∫ ∞

0 (τi(X > z) − ν∗
i (X > z))γ ∗

i (z) dz as desired. Note that on A1 ∪A2, we have g(P (X > z)) � ν(X > z).
Suppose that z ∈A2, and z satisfies (3.6) and (3.8). Since 

∑n
j=0 γ ∗

j (z) = 1, there must exist k ∈ (N ∪ {0}) \ {i} for which γ ∗
k (z) ∈ (0, 1). 

This implies that ν∗
i (X > z) = ν∗

k (X > z) = ν(X > z) = τ̄ (X > z) by (3.6), where we use the convention that ν∗
0 = g ◦P . Since the indemnity 

distributes generously in the sense of Definition 3.4, there does not exist any j ∈ N ∪ {0} such that ν∗
j (X > z) = min{g(P (X > z), ν(X >

z)} = ν(X > z) and τ j(X > z) < τi(X > z). Therefore, it must be true that τk(X > z) � τi(X > z). A symmetric argument by switching the 
indices i, k implies τk(X > z) � τi(X > z). Hence, τk(X > z) = τi(X > z) for any k with γ ∗

k (z) ∈ (0, 1).
It remains to show that τ̄ (X > z) = τi(X > z), which combined with the above, imply that τi(X > z) = ν∗

i (X > z). Since τi(X > z) =
τk(X > z), it suffices to show that τi(X > z) = τk(X > z) = min j∈N τ j(X > z). To this end, note that γ ∗

i (z) > 0 implies g(P (X > z)) �
τ̄ (X > z). Hence, we must have g(P (X > z)) � min j∈N τ j(X > z), which implies that Tz �= ∅. Therefore (3.8) implies that there exists a 
k′ ∈ Tz ∩Nz: that is, τk′ (X > z) = min j∈N τ j(X > z) and ν∗

k′ (X > z) = τ̄ (X > z) = ν∗
i (X > z).

Assume for the sake of contradiction that τi(X > z) > min j∈N τ j(X > z). Then since τk′ = min j∈N τ j(X > z) < τi(X > z) and ν∗
k′ (X >

z) = τ̄ (X > z), generous distribution implies that γ ∗
i (z) = 0, a contradiction. Hence, τi(X > z) = min j∈N τ j(X > z), and so τ̄ (X > z) =

τi(X > z) = τk(X > z) as desired. Since τ̄ (X > z) = ν∗
i (X > z) by the above, we have τi(X > z) = ν∗

i (X > z) for almost all z ∈ A2, which 
implies that the integral 

∫
A2

(τi(X > z) − ν∗
i (X > z))γ ∗

i (z) dz vanishes.
Consider now the first integral 

∫
A1

τi(X > z) − ν∗
i (X > z) dz. Let z ∈ A1, and suppose z satisfies (3.6) and (3.8). Since γ ∗

i (z) = 1, we 
must have i ∈Nz , so ν∗

i (X > z) = ν(X > z) = τ̄ (X > z) by (3.6). Hence, we have∫
A1

τi(X > z) − ν∗
i (X > z)dz =

∫
A1

τi(X > z) − τ̄ (X > z)dz .

Note that on A1, we must have τi(X > z) � ν∗
i (X > z) = τ̄ (X > z). Suppose for the sake of contradiction that τi(X > z) > ν∗

i (X > z). Since 
γ ∗

i (z) = 1, we have g(P (X > z)) � τ̄ (X > z), so there must exist some reinsurer k ∈ N such that τk(X > z) = min j∈N∪{0} τ j(X > z). Then 
k ∈ Tz , so there exist k′ ∈ Tz ∩Nz by (3.8). Therefore τk′(X > z) � τ̄ (X > z) < τi(X > z), and ν∗

k′ (X > z) = τ̄ (X > z) = ν∗
i (X > z). However, 

since the indemnity distributes generously, this implies γ ∗
i (z) = 0, which contradicts z ∈A1.

Therefore τi(X > z) � ν∗
i (X > z), so the integrand is non-zero only when τi(X > z) < ν∗

i (X > z) = τ̄ (X > z). Let A3 := {z ∈R+ : τi(X >

z) < ν∗
i (X > z)}. Then the above simplifies to∫
A1

τi(X > z) − τ̄ (X > z)dz =
∫

A1∩A3

τi(X > z) − τ̄ (X > z)dz +
∫

A1\A3

τi(X > z) − τ̄ (X > z)dz

=
∫

A1∩A3

τi(X > z) − τ̄ (X > z)dz +
∫

A1\A3

0 dz

=
∫

A1∩A3

τi(X > z) − τ̄ (X > z)dz .

For z ∈A1 ∩A3, we have τi(X > z) < ν∗
i (X > z) = τ̄ (X > z), so A1 ∩A3 ⊆Zi . We now show that Zi ⊆A1. Let z ∈Zi , and suppose for 

the sake of contradiction that γ ∗
i (z) < 1. Then since 

∑n
j=0 γ ∗

j (z) = 1, we must have γ ∗
k (z) > 0 for some k ∈ (N ∪ {0}) \ {i}, which implies 

ν∗
k (X > z) = τ̄ (X > z). However, since z ∈ Zi , we have τi(X > z) < τ̄(X > z), which implies that Tz = {i}. Then by (3.8), i ∈ Nz , so ν∗

i (X >

z) = τ̄ (X > z) = ν∗
k (X > z). Since the indemnity distributes generously and τi(X > z) < τk(X > z), γ ∗

k (z) = 0, which is a contradiction – 
hence, Zi ⊆A1. Putting the above together, we have∫

A1

τi(X > z) − τ̄ (X > z)dz

=
∫

A1∩A3

τi(X > z) − τ̄ (X > z)dz

=
∫

A1∩A3

τi(X > z) − τ̄ (X > z)dz +
∫

Zi∩(A1\A3)

0 dz

=
∫

A1∩A3

τi(X > z) − τ̄ (X > z)dz +
∫

Zi∩(A1\A3)

τi(X > z) − τ̄ (X > z)dz

=
∫
Zi

τi(X > z) − τ̄ (X > z)dz ,

which completes the proof. �
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Proof of Proposition 3.10. Let i ∈ N . For notational convenience, we define γ̂i such that for each x ∈ R+ , we have I∗
i (ν̂, ν∗

−i)(x) =∫ x
0 γ̂i(z) dz. We now fix the pricing capacities (ν̂, ν∗

−i), and use our previous notation as introduced in Proposition 3.3. For example, 
Nz is the set of indices that minimize over the set {ν̂(X > z), ν∗

j (X > z)}, for j ∈N \ {i}. Then we can write

ρi(I
∗
i (ν̂, ν∗

−i)(X)) − πν̂(I∗
i (ν̂, ν∗

−i)(X)) =
∞∫

0

(τi(X > z) − ν̂(X > z))γ̂i(z)dz.

On the other hand, by Proposition 3.9, we have that

ρi(I
∗
i (ν

∗
1 , . . . , ν∗

n )(X)) − πνi (I∗
i (ν

∗
1 , . . . , ν∗

n )(X)) =
∫
Zi

τi(X > z) − τ̄ (X > z)dz ,

where

Zi := {z ∈R+ : τi(X > z) < τ̄ (X > z)} .

We first show that for all z ∈ Zi , (τi(X > z) − ν̂(X > z))γ̂i(z) � τi(X > z) − τ̄ (X > z). Then for all z ∈ ZC
i , we show that (τi(X >

z) − ν̂(X > z))γ̂i(z) � 0. Combining these equations yields the desired relation.

(1) First, suppose that z ∈Zi . Then τi(X > z) < τ̄(X > z), and we can distinguish three cases.
(a) ν̂(X > z) > τ̄(X > z): In this case, by (3.7), there exist some k �= i, k ∈ N ∪ {0} such that ν∗

k (X > z) = τ̄ (X > z), where we use the 
convention ν∗

0 (X > z) := g(P (X > z)). If there exists any such k �= 0, then i /∈ Nz , so γ̂i(z) = 0, so (τi(X > z) − ν̂(X > z))γ̂i(z) = 0. 
On the other hand, if the only k �= i such that ν∗

k (X > z) = τ̄ (X > z) is k = 0, then ν∗
0 (X > z) < ν∗

j (X > z) for all j �= i. This, along 
with the assumption ν̂(X > z) > τ̄(X > z) = ν∗

0 (X > z), implies that γ̂i(z) = 0, so again (τi(X > z) − ν̂(X > z))γ̂i(z) = 0. Note that 
0 � τi(X > z) − τ̄ (X > z) on Zi .

(b) ν̂(X > z) < τ̄(X > z): Recall that we have τ̄ (X > z) = min j∈N ν∗
j (X > z) by (3.6). Then by assumption, ν̂(X > z) < min j �=i ν

∗
j (X > z)

and ν̂(X > z) < g(P (X > z)), since g(P (X > z)) � τ̄ (X > z) whenever τi(X > z) < τ̄(X > z). This implies that Nz = {i} and ∑n
j=1 γ̂ j(z) = 1. This implies γ̂ j(z) = 0 for j �= i, so it must be true that γ̂i(z) = 1. Hence,

(τi(X > z) − ν̂(X > z))γ̂i(z) = τi(X > z) − ν̂(X > z) � τi(X > z) − τ̄ (X > z) .

(c) ν̂(X > z) = τ̄ (X > z): In this case, note that τi(X > z) − τ̄ (X > z) < 0, so τi(X > z) − ν̂(X > z) < 0. Since γ̂i(z) � 1,

(τi(X > z) − ν̂(X > z))γ̂i(z) � (τi(X > z) − ν̂(X > z)) · 1 = τi(X > z) − τ̄ (X > z) .

(2) Now, suppose that z ∈ZC
i . We distinguish two cases.

(a) ν̂(X > z) > τ̄(X > z): By the same logic as Case (1-a), we have (τi(X > z) − ν̂(X > z))γ̂i(z) = 0.
(b) ν̂(X > z) � τ̄ (X > z): In this case, since z ∈ZC

i , τ̄ (X > z) � τi(X > z). Therefore,

(
τi(X > z) − ν̂(X > z)

)
γ̂i(z) � 0 .

Hence, we have

ρi
(
I∗

i (ν̂, ν∗
−i)(X)

) − πν̂
(
I∗

i (ν̂, ν∗
−i)(X)

) =
∞∫

0

(τi(X > z) − ν̂(X > z))γ̂i(z)dz

=
∫
Zi

(τi(X > z) − ν̂(X > z))γ̂i(z)dz

+
∫
ZC

i

(τi(X > z) − ν̂(X > z))γ̂i(z)dz

�
∫
Zi

τi(X > z) − τ̄ (X > z)dz +
∫
ZC

i

0 dz

=
∫
Zi

τi(X > z) − τ̄ (X > z)dz

= ρi(I
∗
i (ν

∗
1 , . . . , ν∗

n )(X)) − πν∗
i (I∗

i (ν
∗
1 , . . . , ν∗

n )(X)) ,

as desired. �
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Proof of Proposition 3.13. We check properties (3.6), (3.7), and (3.8) respectively. First, let z ∈ R+ . Then by definition of τ̄ , there exist 
i, j ∈N ∪ {0}, i �= j such that

τi(X > z) � τ j(X > z) = τ̄ (X > z) � τk(X > z) ,

for all k ∈ N , k �= i, j. This implies that either i ∈ Ñz , or i = 0. In the first case, we have ν(X > z) � ν∗
i (X > z) = τ̄ (X > z). In the second 

case, j ∈ Ñz , so ν(X > z) = τ ∗
j (X > z) = τ̄ (X > z). Therefore ν(X > z) � τ̄ (X > z).

On the other hand, we have τ̄ (X > z) = τ j(X > z), and so for k �= i, j, k ∈N , τ̄ (X > z) � τk(X > z). Then we have τ̄ (X > z) = ν∗
j (X > z)

and τ̄ (X > z) � ν∗
k (X > z) by definition of ν∗

j , ν
∗
k . If i �= 0, then ν∗

i (X > z) = τ̄ (X > z) by the above. This gives τ̄ (X > z) � ν∗
l (X > z) for all 

l ∈N . That is, τ̄ (X > z) � ν(X > z). Therefore ν(X > z) = τ̄ (X > z) as desired, so (3.6) holds.
Next, we check (3.7). Fix a z ∈R+ . By definition of τ̄ , there exist i, j ∈N , i �= j such that τ̄ (X > z) = τ j(X > z), τi(X > z) � τ j(X > z), 

and τk(X > z) � τ j(X > z) for all k �= i, j. Then by construction of (ν∗
1 , . . . , ν∗

n ), ν∗
j (X > z) = τ̄ (X > z) = τ j(X > z), and τ̄ � ν∗

k (X > z) for 
all k �= i, j. Assume for the sake of contradiction that ν∗

i (X > z) < τ̄(X > z). Then by definition of ν∗
i , we must have ν∗

i (X > z) = τi(X > z), 
so τi(X > z) � τk(X > z) for all k �= i as above. But then i ∈ Ñz , so ν∗

i (X > z) = τ̄ (X > z) – a contradiction. Therefore ν∗
i (X > z) = τ̄ (X >

z) = ν∗
j (X > z) as desired, so (3.7) holds.

Finally, we check (3.8). For each z ∈ R+ , if Tz �= ∅, take i ∈ Tz . Then we have ν∗
i (X > z) = τ̄ (X > z) = min j∈N ν∗

j (X > z), so i ∈ Nz . 
Hence, Tz ∩Nz �= ∅, so (3.8) holds. �
A.2. Welfare analysis of SPNEs

Proof of Lemma 4.3. Note that for z ∈ZI N , we have 
∑

i∈N γ ∗
i (z) = 0, and so γ ∗

i (z) = 0 for all i ∈N . Then we have

ρI N

(
X −

∑
i∈N

I∗i (X) +
∑
i∈N

πν∗
i (I∗i (X))

)
=

∞∫
0

g(P (X > z))

(
1 −

∑
i∈N

γ ∗
i (z)

)
dz +

∑
i∈N

∞∫
0

ν∗
i (X > z)γ ∗

i (z)dz .

Define the sets

Z=
I N := {z ∈R+ : g(P (X > z)) = τ̄ (X > z)} , Z+

I N := {z ∈R+ : g(P (X > z)) > τ̄ (X > z)} .

Since �I∗ is optimal, the first term simplifies to

∞∫
0

g(P (X > z))

(
1 −

∑
i∈N

γ ∗
i (z)

)
dz =

∫
ZI N

g(P (X > z))dz +
∫

Z=
I N

g(P (X > z))γ ∗
0 (z)dz

=
∫

ZI N

g(P (X > z))dz +
∫

Z=
I N

τ̄ (X > z)γ ∗
0 (z)dz .

For second term, since γ ∗
i (z) > 0 implies ν∗

i (X > z) = τ̄ (X > z), we have

∑
i∈N

∞∫
0

ν∗
i (X > z)γ ∗

i (z)dz =
∑
i∈N

∫
ZC

I N

ν∗
i (X > z)γ ∗

i (z)dz

=
∫

ZC
I N

∑
i∈N

ν∗
i (X > z)γ ∗

i (z)dz =
∫

ZC
I N

τ̄ (X > z)
∑
i∈N

γ ∗
i (z)dz

=
∫

Z=
I N

τ̄ (X > z)
∑
i∈N

γ ∗
i (z)dz +

∫
Z−

I N

τ̄ (X > z)dz .

Adding this to the above, we have

∞∫
0

g(P (X > z))

(
1 −

∑
i∈N

γ ∗
i (z)

)
dz +

∑
i∈N

∞∫
0

ν∗
i (X > z)γ ∗

i (z)dz

=
∫

ZI N

g(P (X > z))dz +
∫

Z=
I N

τ̄ (X > z)γ ∗
0 (z)dz

+
∫

Z=
I N

τ̄ (X > z)
∑
i∈N

γ ∗
i (z)dz +

∫
Z−

τ̄ (X > z)dz
I N
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=
∫

ZI N

g(P (X > z))dz +
∫

Z=
I N

τ̄ (X > z)dz +
∫

Z−
I N

τ̄ (X > z)dz

=
∫

ZI N

g(P (X > z))dz +
∫

ZC
I N

τ̄ (X > z)dz . �

Proof of Proposition 4.5. Note that when n = 1, if g(P (X > z)) � τ̄ (X > z), then it must be true that g(P (X > z)) = τ̄ (X > z). Therefore 
by Lemma 4.3, we have

ρI N

(
X − I1(X) + πν∗

1 (I1(X))
)

=
∫

ZI N

g(P (X > z))dz +
∫

ZC
I N

τ̄ (X > z)dz

=
∫

ZI N

g(P (X > z))dz +
∫

ZC
I N

g(P (X > z))dz

=
∞∫

0

g(P (X > z))dz = ρI N(X) . �

Proof of Proposition 4.6. Let τ̄n be the second-lowest function of the set of capacities {τ0, . . . , τn}, and let τ̄n+1 be the second-lowest 
function of {τ0, . . . , τn+1}. Define

Zn
I N := {z ∈R+ : g(P (X > z)) < τ̄n(X > z)} ,

Zn+1
I N := {z ∈R+ : g(P (X > z)) < τ̄n+1(X > z)} .

Then τ̄n+1 � τ̄n , and so Zn+1
I N ⊆Zn

I N . By Lemma 4.3, we have

ρI N

(
X −

n∑
i=1

I∗,n
i (X) +

n∑
i=1

πν∗,n
i (I∗,n

i (X))

)

=
∫

Zn
I N

g(P (X > z))dz +
∫

(Zn
I N )C

τ̄n(X > z)dz

=
∫

Zn+1
I N

g(P (X > z))dz +
∫

Zn
I N\Zn+1

I N

g(P (X > z))dz +
∫

(
Zn

I N

)C

τ̄n(X > z)dz

�
∫

Zn+1
I N

g(P (X > z))dz +
∫

Zn
I N\Zn+1

I N

τ̄n+1(X > z)dz +
∫

(
Zn

I N

)C

τ̄n+1(X > z)dz

=
∫

Zn+1
I N

g(P (X > z))dz +
∫

(
Zn+1

I N

)C

τ̄n+1(X > z)dz

= ρI N

(
X −

n+1∑
i=1

I∗,n+1
i (X) +

n+1∑
i=1

πν∗,n+1
i (I∗,n+1

i (X))

)
. �

Proof of Proposition 4.9. Let (�I, �π) be an allocation, and suppose for the sake of contradiction that 
∑n

i=0 ρi(Ii(X)) > �n
i=0 ρi(X). Then 

there exist �̃I ∈ �I such that 
∑n

i=0 ρi( Ĩ i(X)) <
∑n

i=0 ρi(Ii(X)). For i ∈N , define π̃i by

π̃i := ρi( Ĩ i(X)) − ρi(Ii(X)) + πi .

Then we have

ρi(Ii(X)) − πi = ρi( Ĩ i(X)) − ρi( Ĩ i(X)) + ρi(Ii(X)) − πi = ρi( Ĩ i(X)) − π̃i .

On the other hand, we have

ρI N

(
X −

∑
Ii(X) +

∑
πi

)
= ρI N

(
X −

∑
Ii(X)

)
+

∑
πi
i∈N i∈N i∈N i∈N
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= ρI N

(
X −

∑
i∈N

Ii(X)

)
+

∑
i∈N

π̃i −
∑
i∈N

ρi( Ĩ i(X)) +
∑
i∈N

ρi(Ii(X))

=
n∑

i=0

ρi(Ii(X)) +
∑
i∈N

π̃i −
∑
i∈N

ρi( Ĩ i(X))

>

n∑
i=0

ρi( Ĩ i(X)) +
∑
i∈N

π̃i −
∑
i∈N

ρi( Ĩ i(X))

= ρI N

(
X −

∑
i∈N

Ĩ i(X)

)
+

∑
i∈N

ρi( Ĩ i(X)) +
∑
i∈N

π̃i −
∑
i∈N

ρi( Ĩ i(X))

= ρI N

(
X −

∑
i∈N

Ĩ i(X)

)
+

∑
i∈N

π̃i = ρI N

(
X −

∑
i∈N

Ĩ i(X) +
∑
i∈N

π̃i

)
,

implying that the allocation ( Ĩ, π̃ ) improves over (�I, �π), with a strict improvement for the insurer. Hence, (�I, �π) is not PE.

Conversely, if (�I, �π) is not PE, then there exist an allocation 
(

Ĩ i, π̃
)

such that

ρI N

(
X −

∑
i∈N

Ĩ i(X) +
∑
i∈N

π̃i

)
� ρI N

(
X −

∑
i∈N

Ii(X) +
∑
i∈N

πi

)
and ρi( Ĩ i(X) − π̃i) � ρi(Ii(X) − πi), ∀i ∈ N ,

with at least one strict inequality. Summing these inequalities gives

ρI N

(
X −

∑
i∈N

Ĩ i(X) +
∑
i∈N

π̃i

)
+

n∑
i∈N

ρi( Ĩ i(X) − π̃i) < ρI N

(
X −

∑
i∈N

Ii(X) +
∑
i∈N

πi

)
+

n∑
i∈N

ρi(Ii(X) − πi),

which, by translation invariance, yields

ρI N

(
X −

∑
i∈N

Ĩ i(X)

)
+

n∑
i∈N

ρi( Ĩ i(X)) < ρI N

(
X −

∑
i∈N

Ii(X)

)
+

∑
i∈N

ρi(Ii(X)),

and thus

n∑
i=0

ρi( Ĩ i(X)) <

n∑
i=0

ρi(Ii(X)) .

Therefore 
∑n

i=0 Ii(X) > �n
i=0 ρi(X), and hence this allocation does not achieve the inf-convolution. �

Proof of Proposition 4.10. First we check feasibility. We have

n∑
i=0

Ii(z) =
n∑

i=0

z∫
0

γi(z)dz =
z∫

0

n∑
i=0

γi(z)dz =
z∫

0

1 dz = z .

Therefore 
∑n

i=0 Xi = ∑n
i=0 Ii(X) = X . Also, since the derivative of Ii is non-negative, Ii is increasing, and so Ii(z) is comonotonic with X

– hence, �I ∈ �I , so it is feasible.

Next, we show that �I achieves the inf-convolution. Let �̃I be any other profile of indemnities in �I . We have

n∑
i=0

ρi( Ĩ i(z)) =
n∑

i=0

∞∫
0

τi(X > z) Ĩ ′i(z)dz =
∞∫

0

n∑
i=0

τi(X > z) Ĩ ′i(z)dz

�
∞∫

0

n∑
i=0

min
j∈N∪{0}{τ j(X > z)} Ĩ ′i(z)dz (A.4)

=
∞∫

0

min
j∈N∪{0}

{τ j(X > z)}
n∑

i=0

Ĩ ′i(z)dz

=
∞∫

min
j∈N∪{0}

{τ j(X > z)}dz (A.5)
0
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=
∞∫

0

⎡
⎣ min

j∈N∪{0}
{τ j(X > z)} · 1 +

∑
i∈LC

z

τi(X > z) · 0

⎤
⎦ dz

=
∞∫

0

⎡
⎣ min

j∈N∪{0}
{τ j(X > z)} ·

∑
i∈Lz

γi(z) +
∑
i∈LC

z

τi(X > z) · γi(z)

⎤
⎦ dz

=
∞∫

0

⎡
⎣∑

i∈Lz

min
j∈N∪{0}

{τ j(X > z)} · γi(z) +
∑
i∈LC

z

τi(X > z) · γi(z)

⎤
⎦ dz

=
∞∫

0

∑
i∈Lz

τi(X > z) · γi(z) +
∑
i∈LC

z

τi(X > z) · γi(z)dz

=
∞∫

0

n∑
i=0

τi(X > z)γi(z)dz =
n∑

i=0

∞∫
0

τi(X > z)γi(z)dz =
n∑

i=0

ρi(Ii(z)) .

Therefore �I attains the inf-convolution.
We now show the converse. Suppose that �̃I is a feasible indemnity structure not of the specified form: that is, 

∑
i∈LC

z
Ĩ ′i(z) > 0 on a 

set A of positive measure. Then for every z in A, we have

n∑
i=0

τi(X > z) Ĩ ′i(z) =
∑
i∈Lz

τi(X > z) Ĩ ′i(z) +
∑
i∈LC

z

τi(X > z) Ĩ ′i(z)

=
∑
i∈Lz

min
j∈N∪{0}{τ j(X > z)} Ĩ ′i(z) +

∑
i∈LC

z

τi(X > z) Ĩ ′i(z)

>
∑
i∈Lz

min
j∈N∪{0}

{τ j(X > z)} Ĩ ′i(z) +
∑
i∈LC

z

min
j∈N∪{0}

{τ j(X > z)} Ĩ ′i(z)

=
n∑

i=0

min
j∈N∪{0}

{τ j(X > z)} Ĩ ′i(z) ,

where the strict inequality follows because Ĩ ′i(z) are not all zero. Taking the integral over the set A gives

∫
A

n∑
i=0

τi(X > z) Ĩ ′i(z)dz >

∫
A

n∑
i=0

min
j∈N∪{0}

{τ j(X > z)} Ĩ ′i(z)dz ,

where the inequality is strict since A has positive measure. Therefore in this case, the inequality (A.4) is strict, so �̃I does not attain the 
inf-convolution. �
Proof of Lemma 4.11. Since I∗ ∈ ℵ and (ν∗

1 , . . . , ν∗
n ) ∈ we know that (�I∗, �π∗) ,ג is IR by Theorem 4.4.

For PE, by Proposition 4.9, it suffices to show that the indemnities �I∗ attain the inf-convolution. We have seen in (A.5) that

�n
i=0 ρi(X) =

∞∫
0

min
j∈N∪{0}

{τ j(X > z)}dz .

Therefore it suffices to show that

n∑
i=0

ρi(I∗i (X)) =
∞∫

0

min
j∈N∪{0}

{τ j(X > z)}dz .

First recall that I∗0(x) =
x∫

0

γ ∗
0 (z) dz as defined in (3.4). Then we can write

n∑
i=0

ρi(I∗i (X)) =
n∑

i=0

∞∫
0

τi(X > z)γ ∗
i (z)dz =

∞∫
0

n∑
i=0

τi(X > z)γ ∗
i (z)dz .

We show that for all z ∈ R+ , we have 
∑n

i=0 τi(X > z)γ ∗
i (z) = min j∈N∪{0}{τ j(X > z)}. It suffices to show that γ ∗

i (z) > 0 implies that 
τi(X > z) = min j∈N∪{0} τ j(X > z). We consider two cases:
45



M.B. Zhu, M. Ghossoub and T.J. Boonen Insurance: Mathematics and Economics 113 (2023) 24–49
(1) i = 0: Then γ ∗
0 (z) > 0 implies that g(P (X > z)) � τ̄ (X > z). If this inequality is strict, then we automatically have g(P (X > z)) =

min j∈N∪{0} τ j(X > z). Otherwise, if g(P (X > z)) = τ̄ (X > z), then since every reinsurer is quoting the same price τ̄ (X > z), generous 
distribution implies that there does not exist k ∈ N such that τk(X > z) < g(P (X > z)). Therefore g(P (X > z)) = min j∈N∪{0} τ j(X > z)
as desired.

(2) i ∈N : In this case, since every reinsurer is using the strategy τ̄ , there does not exist k ∈ N such that τk(X > z) < τi(X > z), so 
τi(X > z) = min j∈N τ j(X > z). It remains to show that g(P (X > z)) � τi(X > z).

To this end, note that γ ∗
i (z) > 0 implies g(P (X > z)) � τ̄ (X > z). Then there exist k′ ∈ N such that τk′ (X > z) � τ̄ (X > z) �

g(P (X > z)), which implies that τi(X > z) � g(P (X > z)). Therefore τi(X > z) = min j∈N∪{0} τ j(X > z) as desired.

To conclude the proof, we see that since τi(X > z) = min j∈N∪{0}{τ j(X > z)} whenever γ ∗
i (z) > 0, we have

n∑
i=0

τi(X > z)γ ∗
i (z) =

∑
i∈N ,γ ∗

i (z)>0

τi(X > z)γ ∗
i (z) =

∑
i∈N ,γ ∗

i (z)>0

min
j∈N∪{0}

{τ j(X > z)}γ ∗
i (z)

= min
j∈N∪{0}

{τ j(X > z)}
∑

i∈N ,γ ∗
i (z)>0

γ ∗
i (z) = min

j∈N∪{0}
{τ j(X > z)} .

Therefore

n∑
i=0

ρi(I∗i (X)) =
∞∫

0

min
j∈N∪{0}

{τ j(X > z)}dz . �

Proof of Theorem 4.12. By Theorem 4.4, we know that (ν∗
1 , . . . , ν∗

n , I∗) induces an IR allocation. It remains to show PE.
First, let ( Ī∗1, . . . , ̄I∗n) := I∗(τ̄ , τ̄ , . . . , τ̄ ). Then since I∗ ∈ ℵ and (τ̄ , τ̄ , . . . , τ̄ ) ∈ we have ,ג

ρi( Ī∗i (X) − πτ̄ ( Ī∗i (X))) =
∫
Zi

τi(X > z) − τ̄ (X > z)dz,

ρI N

(
X −

∑
i∈N

Ī∗i (X) +
∑
i∈N

πτ̄ ( Ī∗i (X))

)
=

∫
ZI N

g(P (X > z))dz +
∫

ZC
I N

τ̄ (X > z)dz ,

by Proposition 3.9 and Lemma 4.3. Summing these inequalities and applying Lemma 4.11, we have∫
Zi

τi(X > z) − τ̄ (X > z)dz +
∫

ZI N

g(P (X > z))dz +
∫

ZC
I N

τ̄ (X > z)dz

= ρI N

(
X −

∑
i∈N

Ī∗i (X) +
∑
i∈N

πτ̄ ( Ī∗i (X))

)
+

∑
i∈N

ρi( Ī∗i (X) − πτ̄ ( Ī∗i (X)))

= ρI N

(
X −

∑
i∈N

Ī∗i (X)

)
+

∑
i∈N

πτ̄ ( Ī∗i (X)) +
∑
i∈N

ρi( Ī∗i (X)) −
∑
i∈N

πτ̄ ( Ī∗i (X))

= ρI N

(
X −

∑
i∈N

Ī∗i (X)

)
+

∑
i∈N

ρi( Ī∗i (X)) =
n∑

i=0

ρi( Ī∗i (X))

=
∞∫

0

min
j∈N∪{0}

{τ j(X > z)}dz = �n
i=0 ρi(X) .

Now suppose that I∗ ∈ ℵ and (ν∗
1 , . . . , ν∗

n ) ∈ . ,As before, we use the notation (I∗1 .ג . . , I∗n) = I∗(ν∗
1 , . . . , ν∗

n ). By Proposition 3.9 and 
Lemma 4.3, we have

n∑
i=0

ρi(I∗i (X)) = ρI N

(
X −

∑
i∈N

I∗i (X) +
∑
i∈N

πν∗
i (I∗i (X))

)
+

∑
i∈N

ρi

(
I∗i (X) − πν∗

i (I∗i (X))
)

=
∫
Zi

τi(X > z) − τ̄ (X > z)dz +
∫

ZI N

g(P (X > z))dz +
∫

ZC
I N

τ̄ (X > z)dz

= �n
i=0 ρi(X) ,

so the resulting allocation achieves the inf-convolution. Therefore by Proposition 4.9, the strategy (ν∗
1 , . . . , ν∗

n , I∗) induces a PE allocation, 
as desired. �
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Proof of Proposition 4.15. Recall that Zi = {z ∈R+ : τi(X > z) < τ̄(X > z)}. Note that this condition is equivalent to τi(X > z) < τ j(X > z)
for j ∈ (N ∪ {0}) \ {i} – that is, τi(X > z) attains the minimum min j τ j(X > z) uniquely. Then for all z ∈ Zi , we have γ ∗

i (z) = 1 by 
Proposition 4.10. Now define

Z̄i := {z ∈R+ : τi(X > z) = min
j

τ j(X > z)} \Zi .

That is, Z̄i is the set over which τi(X > z) attains the minimum, but not uniquely. Note that on this set, τi(X > z) = τ̄i(X > z). By 
Proposition 4.10, we have that γ ∗

i (z) = 0 on (Zi ∪ Z̄i)
C . By Assumption 4.14, we have∫

Zi

τi(X > z) − τ̄ (X > z)dz = ρi(I∗i (X) − π∗
i )

=
∞∫

0

τi(X > z)γ ∗
i (z)dz − π∗

i

=
∫
Zi

τi(X > z) · 1 dz +
∫
Z̄i

τi(X > z)γ ∗
i (z)dz

+
∫

(Zi∪Z̄i)
C

τi(X > z) · 0 dz − π∗
i

=
∫
Zi

τi(X > z)dz +
∫
Z̄i

τi(X > z)γ ∗
i (z)dz − π∗

i .

Subtracting 
∫
Zi

τi(X > z) dz from both sides and rearranging yields

π∗
i =

∫
Z̄i

τi(X > z)γ ∗
i (z)dz +

∫
Zi

τ̄ (X > z)dz

=
∫
Z̄i

τ̄ (X > z)γ ∗
i (z)dz +

∫
Zi

τ̄ (X > z)dz

=
∫
Z̄i

τ̄ (X > z)γ ∗
i (z)dz +

∫
Zi

τ̄ (X > z) · 1 dz +
∫

(Zi∪Z̄i)
C

τi(X > z) · 0 dz

=
∞∫

0

ν∗
i (X > z)γ ∗

i (z)dz =
∫

I∗i (X)dν∗
i ,

as desired. �
Proof of Proposition 4.16. By Proposition 4.15 and Lemma 4.3, we have

ρI N

(
X −

∑
i∈N

I∗i (X) +
∑
i∈N

πν∗
i (I∗i (X))

)
= ρI N

(
X −

∑
i∈N

I∗i (X) +
∑
i∈N

π∗
i

)

=
∫

ZI N

g(P (X > z))dz +
∫

ZC
I N

τ̄ (X > z)dz

= min
I∈�I

{
ρI N

(
X −

∑
i∈N

Ii(X) +
∑
i∈N

πν∗
i (Ii(X))

)}
. �

Proof of Proposition 4.17. Suppose for the sake of contradiction that �I∗ does not distribute generously. Then there exists a k ∈ N ∪ {0}
and a set of positive measure A such that for z ∈Z , we have

γ ∗
k (z) > 0 ,

and there exists a k′ ∈ (N ∪ {0}) \ {k} such that

τk′(X > z) < τk(X > z) .

Then 
∑n

i=0 γ ∗(z)τi(X > z) >
∑n

i=0 γ ∗(z) min j∈N∪{0} τ j(X > z) = min j∈N∪{0} τ j(X > z), so
i i
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n∑
i=0

ρi(I∗i (X)) =
n∑

i=0

∞∫
0

τi(X > z)γ ∗
i (z)dz =

∞∫
0

n∑
i=0

τi(X > z)γ ∗
i (z)dz

=
∫
A

n∑
i=0

τi(X > z)γ ∗
i (z)dz +

∫
AC

n∑
i=0

τi(X > z)γ ∗
i (z)dz

>

∫
A

min
j∈N∪{0}

τ j(X > z)dz +
∫
AC

n∑
i=0

τi(X > z)γ ∗
i (z)dz

�
∫
A

min
j∈N∪{0}

τ j(X > z)dz +
∫
AC

n∑
i=0

min
j∈N∪{0}

τ j(X > z)γ ∗
i (z)dz

�
∞∫

0

min
j∈N∪{0}

τ j(X > z)dz = �n
i=0 ρi(X) .

Hence, �I∗ does not achieve the inf-convolution, so �I∗ is not PE by Proposition 4.9, which contradicts our initial assumption. �
Appendix B. Additional examples of equilibria

B.1. An SPNE not characterized by Theorem 3.11

As an example of an SPNE that is not characterized by Theorem 3.11, consider the following example for n = 2. We construct an SPNE 
such that the reinsurers’ strategy does not satisfy (3.6), and therefore not in ג. Suppose for all z ∈R+ , we have

τ1(X > z) < τ2(X > z) < g(P (X > z)) .

Let I∗ ∈ ℵ, and define ν1, ν2 by

ν1 = ν2 = τ1 .

Note that by construction, since τ̄ = τ2 > τ1 = ν , this does not satisfy (3.6). We claim that (ν1, ν2, I∗) is an SPNE. Indeed, for reinsurer 
1, we have ρ1(I∗1(X) − πτ1 (I∗1(X))) = 0. It is impossible for reinsurer 1 to profit, as quoting a higher price than their true preferences 
τ1 will result in being undercut by reinsurer 2. On the other hand, since the insurer distributes generously, I∗2(X) = 0. Hence, we have 
ρ2(I∗2(X) − πτ1 (I∗2(X))) = 0 as well. It is impossible for reinsurer 2 to profit, as quoting a higher price than their true preferences τ2 will 
result in being undercut by reinsurer 1.

However, by Remark 3.14, we see that ν∗
1 = ν∗

2 = τ̄ = τ2 is also an SPNE, which charges a strictly higher price for reinsurance. From the 
perspective of the reinsurers (in particular reinsurer 1), this SPNE would be preferable.

B.2. A remark on NE vs. SPNE

Throughout this paper, we focus on finding SPNEs, as opposed to the perhaps more familiar notion of NE. It is clear from Definition 2.6
that all SPNEs are NEs. However, we show in this section that the converse statement is not true, even within our model where the game 
structure is not overly complicated.

Suppose that the strategy (ν∗
1 , . . . , ν∗

n , I∗) is an SPNE, as given in Theorem 3.11. We construct a strategy as follows. Define by ν̂ ∈ C a 
capacity such that:

(1) ν̂ �= ν∗
i for all i ∈N ; and,

(2) ν̂(X > z) > g(P (X > z)) on a set of positive measure.

Now define by Î a strategy in (�I)C
n

such that

Î : Cn → �I
(ν̂, ν̂, . . . , ν̂) �→ 0 ,

(ν1, . . . , νn) �→ I∗(ν1, . . . , νn), otherwise.

Under the strategy Î, the insurer refuses to do business with any reinsurer in the scenario that all reinsurers quote the price ν̂ . This is 
admittedly strange behaviour, which is indeed not optimal for the insurer. Since ν̂(X > z) > g(P (X > z)) on a set of positive measure, the 
insurer can benefit from reinsurance that is priced via ν̂ . Hence, 0 does not solve

min
I∈�I

{
ρI N

(
X −

∑
i∈N

Ii(X) +
∑
i∈N

πν̂(Ii(X))

)}
,

so (ν∗, . . . , ν∗
n , ̂I) is not an SPNE.
1
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However, we can see that (ν∗
1 , . . . , ν∗

n , ̂I) is an NE. Let τ ∈ C be any non-negative capacity, and i ∈ N . By Proposition 3.10, we have

ρi(Îi(τ , ν∗
−i)(X)) − ρτ (Îi(τ , ν∗

−i)(X)) = ρi(I
∗
i (τ , ν−i)(X)) − ρτ (I∗

i (τ , ν−i)(X))

� ρi(I
∗
i (ν

∗
1 , . . . , ν∗

n )(X)) − πν∗
i (I∗

i (ν
∗
1 , . . . , ν∗

n )(X))

= ρi(Îi(ν
∗
1 , . . . , ν∗

n )(X)) − πν∗
i (Îi(ν

∗
1 , . . . , ν∗

n )(X)) .

Also, by construction, Î(ν∗
1 , . . . , ν∗

n ) ∈ I(ν∗
1 , . . . , ν∗

n ), so it solves

min
I∈�I

{
ρI N

(
X −

∑
i∈N

Ii(X) +
∑
i∈N

πν∗
i (Ii(X))

)}
.

Hence, (ν∗
1 , . . . , ν∗

n , ̂I) is an NE.
Although this is an NE, we see that the strategy of the insurer is not a reasonable one. One possible interpretation is that the insurer’s 

sub-optimal behaviour when the pricing capacity is ν̂ is a threat to the reinsurers, to dissuade them from actually choosing such a pricing 
rule. The notion of SPNE can be seen as a refinement that eliminates this possibility. That is, we assume that the insurer is unable or 
unwilling to issue such threats, or that the reinsurers correctly identify that the insurer will never follow through with such threats.
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