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This paper studies a dynamic asset-liability management problem of a company with market frictions. 
Specifically, the asset prices are modeled by a multivariate geometric Brownian motion with their excess 
returns driven by some correlated stochastic signals; and the liability process is modeled by another 
geometric Brownian motion correlated to the asset price dynamics. The company trades dynamically to 
offset the risks from its liability and each trade induces both temporary and persistent price impacts. 
We characterize the optimal trading strategies in terms of the solutions to the coupled matrix Riccati 
differential systems. Due to the price impacts, the company should adopt a target-chasing strategy in 
which the dynamic target portfolio is expressed in terms of the return-predicting signals and realized 
liability. We also derive some sufficient conditions, based on the model parameters alone, to ensure 
the well-posedness of the coupled Riccati systems. Our numerical results indicate that the temporary 
and persistent price impacts have opposite implications on the company’s trading behavior. While 
the temporary price impact slows down the company’s trading speed toward the target portfolio, the 
persistent price impact may encourage the company to trade more aggressively to enhance the expected 
returns.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The problem of jointly managing assets and liabilities is prevalent in various industries such as insurance, pension funds, and banking. 
Asset-liability management (ALM) typically seeks the best asset investment plan to accomplish the profit goals while meeting the current 
and future liabilities. Indeed, this concept is described in Society of Actuaries (2003) as follows:

“ALM is the ongoing process of formulating, implementing, monitoring and revising strategies related to assets and liabilities to achieve an organi-
zation’s financial objectives, given the organization’s risk tolerances and other constraints.”

Considering its importance, ALM has always been a heated topic among practitioners and academics in related fields. For instance, Kusy 
and Ziemba (1986) developed a multi-period stochastic linear programming ALM model to find an optimal trade-off between risk, return, 
and liquidity in a bank; also see Choudhry (2011) for a comprehensive review for ALM in banking. Leippold et al. (2004) proposed a geo-
metric method to solve the multi-period ALM problem with explicit investment strategies and an efficient frontier using the mean-variance 
criterion. Within a stochastic linear-quadratic framework, Chiu and Li (2006) and Xie et al. (2008) respectively addressed a continuous-
time ALM problem, with the underlying liability dynamics being a geometric Brownian motion and an arithmetic Brownian motion. The 
Markovian regime-switching extensions were also implemented in Chen et al. (2008), Xie (2009), and Wei et al. (2013) to accommodate 
the randomly changing market state so that the ALM investment strategies are adaptive to the regime-switching environment. Chiu and 
Wong (2012, 2014) investigated the mean-variance ALM strategies under the cointegration effect and correlation risk, respectively. Yao et 
al. (2013) considered the case with endogenous liabilities and derived the optimal allocation among multiple risky assets and liabilities. 
Recently, more interesting and practical factors have been incorporated to advance the analysis on the ALM problems, which include, 
but not limited to, open-loop equilibrium strategy (Wei and Wang, 2017), derivative-based investment (Li et al., 2018), risk constraints 
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on liquidity (Pan and Xiao, 2017) and debt ratio (Zhang et al., 2020), inflation risk (Zhu et al., 2020), non-Markovian regime-switching 
environments (Shen et al., 2020), and general ALM problems with delay (A et al., 2022).

In this paper, we solve a continuous-time ALM problem with market frictions and return predictability under a local mean-variance 
(MV) optimization criterion. Indeed, market frictions play an important role in the daily operations of the insurance companies. Berry-
Stölzle (2008a) pointed out that property and casualty insurance companies often need to liquidate financial assets to cover claims and 
hence face liquidity risk. To the best of our knowledge, Berry-Stölzle (2008a) is the first paper to study asset allocation and liquidation 
with frictions in the context of property and casualty insurance. Berry-Stölzle (2008b) further explored the impact of illiquidity and 
interpreted it as transaction costs in the ALM problem. Berry-Stölzle (2008a) and Berry-Stölzle (2008b) resorted to numerical methods 
when computing optimal asset allocation and hedging strategies, but their numerical schemes prove to be difficult to be extended to the 
multi-asset settings. Due to the technical difficulty, there has been a scarcity of actuarial literature providing analytical results for the ALM 
problem with market frictions since then. In this respect, to the best of our knowledge, our work is the first one to fill this gap in a 
comprehensive setup with both temporary and persistent price impacts.

Our ALM problem has its roots dating back to the pioneering works of Samuelson (1969) and Merton (1969); also see Yan and Wong 
(2019, 2020), Han and Yam (2022), Han et al. (2022), and the references therein for some recent developments. Specifically, we build on the 
tractable frameworks of Gârleanu and Pedersen (2013, 2016) (hereinafter, the GP model). Considering the fact that the real financial market 
is not perfectly efficient and trading typically involves market frictions, Gârleanu and Pedersen (2013) introduced a quadratic transaction 
cost from a linear price impact assumption and derived a closed-form optimal investment strategy for an infinitely-lived mean-variance 
agent in a discrete-time framework. The continuous-time extension of Gârleanu and Pedersen (2013) was further investigated in Gârleanu 
and Pedersen (2016), and the highly tractable frameworks in these two seminar papers have sparked a widespread attention (Glasserman 
and Xu, 2013; Moallemi and Sağlam, 2017; Ma et al., 2019, 2020a,b, 2022,b; Bensoussan et al., 2022). Moreover, the GP model allows for 
return predictability, which has been a stylized fact validated by many empirical studies (Ang and Bekaert, 2007; Campbell and Thompson, 
2008; Welch and Goyal, 2008). As a related work to ALM problems with return predictability, Ferstl and Weissensteiner (2011) proposed 
a stochastic linear programming framework and solved it numerically.

We investigate a local mean-variance ALM problem over a finite time horizon inspired by the GP model. Different from the pre-
commitment solution approach to the mean-variance problems (Chiu and Li, 2006; Chiu and Wong, 2012, 2014; Zhang and Chen, 2016), 
the local mean-variance analysis provides an alternative convenient yet reasonable formulation to avoid the time-inconsistent issue and 
therefore it is widely adopted by the practitioners. More importantly, we do not follow the adoption of the arithmetic Brownian motions in 
the GP model. Instead, we assume that the asset prices follow a multi-dimensional geometric Brownian motion. Under some appropriate 
and reasonable model assumptions, the nice tractability is still preserved in our scenario. Meanwhile, we incorporate the mean-reverting 
return-predicting signals such that the expected returns of asset prices are linear in these predictors. The company is faced with an 
uncertain liability over time, with the randomness correlated with that of asset prices and predictors so as to account for the common 
risk in financial markets. Moreover, when the manager employs a dynamic investment strategy to maximize the objective function, each 
trade in the market not only incurs a quadratic transaction cost due to the linear temporary price impact, but also induces a persistent 
price impact that distorts the asset return persistently. These price impacts are motivated by the fact that institutional trades are typically 
of great volume, which may affect the trading decisions of other market participants and then hence the price movement (Bertsimas and 
Lo, 1998; Sannikov and Skrzypacz, 2016; Van Kervel and Menkveld, 2019).

Using the dynamic programming principle, we solve the corresponding Hamilton-Jacobi-Bellman (HJB) equation up to a coupled Riccati 
system of ordinary differential equations (ODEs). In line with the GP models, this coupled Riccati system admits no explicit solutions, 
although its well-posedness can be established when only a linear temporary price impact is present. However, the incorporation of 
the persistent price impact complicates the solution significantly. We follow the methodology of Bensoussan et al. (2022) and apply 
the comparison principle for matrix Riccati equation system in Abou-Kandil et al. (2003) to develop a refined sufficient condition for 
guaranteeing a unique local solution. We also derive some tight sufficient conditions for a unique global solution under some special 
important cases. These conditions can be verified easily in practice. Furthermore, we provide a comprehensive analysis on the discrete-
time counterpart of our formulated problem to demonstrate the superiority of our concise sufficient conditions in continuous time.

Our solution features the company dynamically trading towards a target portfolio. Indeed, the analytical characterizations enable the 
ALM manager to dynamically audit the target portfolio and implement the current trading strategy accordingly, based on the integrated 
information on return predictors and realized liabilities. In general, a higher growth rate or variation in liability induces the manager to 
invest more in stocks. The trading speed will be lowered when the temporary price impact becomes larger. The persistent price impact, in 
particular, has a greater influence on the trading behavior than the temporary price impact, which is consistent with Berry-Stölzle (2008b). 
Meanwhile, the presence of persistent price impact enables the manager to manipulate the price via engaging in an aggressive trading.

We conclude this introduction by highlighting the key differences between this paper and the existing literature. From the modeling 
perspective, this paper is the first one to study an ALM problem of an insurance company with multiple assets and market frictions 
(temporary and persistent price impacts). The objective is to maximize the company’s trading performance while netting trading costs 
and liabilities over a finite time horizon. Different from the existing literature (see, e.g. Gârleanu and Pedersen (2013, 2016); Glasserman 
and Xu (2013); Ma et al. (2020b); Bensoussan et al. (2022)), we do not use the arithmetic Brownian motions to model the asset price 
dynamics, and adopt a multi-dimensional geometric Brownian motion to ensure the price positiveness. Moreover, inspired by Gârleanu and 
Pedersen (2013, 2016), we characterize the persistent price impact with market resiliency, which introduces an additional state variable, 
known as the price distortion, into the asset price dynamics. On the other hand, Ma et al. (2020b) investigated a different optimal 
execution problem, where the investor should purchase/liquidate a predetermined amount of assets while minimizing the execution costs 
over a fixed time period. The price dynamics in Ma et al. (2020b) follow an arithmetic Brownian motion. Although Ma et al. (2020b) also 
considered temporary and permanent price impacts, they did not consider the market resiliency when formulating the persistent price 
impact.

From the mathematical perspective, the additional state variable from the newly introduced price distortion process leads to a more 
complicated coupled matrix Riccati differential equations (RDE) system compared with that in Ma et al. (2020b). Since the solution 
techniques in Ma et al. (2020b) can not be employed in our problem, we have henceforth developed some new results for the existence 
of solutions to the RDEs herein. In sum, this paper aims to offer a highly tractable framework to study the ALM problems with trading 
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frictions to the actuarial literature, showing that the optimal trading strategies of the multiple assets can be characterized in terms of the 
solutions to the coupled matrix RDEs, which can then be efficiently computed using the existing numerical schemes for ODEs.

The remainder of this paper is structured as follows. Section 2 describes the model settings and formulates our target ALM problem. 
In Section 3, we first explore the situation with only temporary price impact. Then, we proceed to tackling the case with both temporary 
and persistent price impacts in Section 4. In both cases, analytical optimal ALM strategies are characterized up to the solutions of the 
coupled differential Riccati system. In Section 5, we further investigate the optimal initial capital structure for the company by calculating 
the optimal funding ratio. Numerical examples are provided in Section 6 to better illustrate the financial implications. Section 7 concludes 
the paper. The detailed proofs of related claims are relegated to the Appendix.

2. Problem formulation

2.1. Notations

Before describing the problem, we introduce some basic mathematical notations that will be used frequently in this paper for readers’ 
convenience. We hereinafter use boldfaces to distinguish matrices (including vectors) from scalars, and all vectors are column vectors. 
Let n > 0 be a generic integer, 1 := (1, 1, . . . , 1)� ∈ Rn be a vector of ones, and In ∈ Rn×n denote the n-dimensional identity matrix. Let (
�,F ,F = {Ft}t≥0 ,P

)
be a complete filtered probability space satisfying the usual conditions.

The spectral norm is denoted by ‖·‖. Specifically, for any X ∈ Rn×n , ‖X‖ =
√

λmax
(
X�X

)
, where λmax(X) represents the largest eigen-

value of X. For two symmetric matrices X1, X2 ∈ Rn×n , X1 < (resp. >)X2 represents X2 − X1 is positive (resp. negative) definite, and 
X1 ≤ (resp. ≥)X2 represents X2 − X1 is positive (reps. negative) semidefinite.

2.2. State processes

We consider a financial market with one risk-free asset and n risky assets. The price dynamics for risky assets are jointly modeled by 
a multivariate geometric Brownian motion:

dPt = diag (Pt)
[(

r f 1 + Bft
)

dt + σ P dWP
t

]
, (1)

where Pt = (P1t , P2t , · · · , Pnt)
� and diag (Pt) represents a diagonal matrix with the diagonal entries being the components of Pt ; WP

t is 
an F -adapted n-dimensional Brownian motion; r f is the risk-free interest rate, and μP t := r f 1 + Bft ∈ Rn and σ P ∈ Rn×n denote the 
return and volatility coefficients for n stocks, respectively; and ft = ( f1t , f2t , · · · , fmt)

� ∈ Rm is a vector of return-predicting factors that 
could be of a different dimension of stocks, associated with the factor loading matrix B ∈ Rn×m . Specifically, motivated by the empirical 
evidences in Gârleanu and Pedersen (2013) and Lehalle and Neuman (2019) where the mean-reverting nature of common predictors is 
observed, we assume ft to be a stationary Ornstein-Uhlenbeck process

dft = −�ftdt + σ f dW f
t ,

where � ∈ Rm×m represents the mean-reversion speed, W f
t is an F -adapted m-dimensional Brownian motion which can be correlated 

with WP
t , and σ f ∈Rm×m represents the volatility coefficient for m factors.

The asset-liability manager takes a dynamic investment in these stocks over a finite horizon [0, T ]. The corresponding portfolio strategy 
is denoted by a vector xt = (x1t , x2t , · · · , xnt)

� specifying the dollar amount invested into each stock at time t . Following the setup in 
Gârleanu and Pedersen (2016) and Collin-Dufresne et al. (2020), we assume that xt is absolutely continuous with an instantaneous trading 
intensity ut = (u1t , u2t , · · · , unt)

� such that1

dxt = utdt. (2)

In particular, a trading strategy u is said to be admissible if

E

⎡
⎣ T∫

0

|us|2 ds

⎤
⎦ < ∞,

and the set of all admissible trading strategies is defined as A.
If we define the asset value of the company as at at time t , it then satisfies the following dynamics in a frictionless market

dat = r f

(
at − x�

t 1
)

dt + x�
t diag(Pt)

−1dPt .

However, the practical financial market is not entirely efficient and trading frictions always exist for each transaction. We first illustrate 
the setup for the temporary price impact. Bertsimas and Lo (1998) note that it is more plausible to consider a linear-percentage price 
impact than a linear price impact, because the latter has a percentage price impact that decreases in the price level, which is counterfactual 
(see Bertsimas and Lo (1998) and the references therein). Specifically, for an instantaneous trading intensity ut , we assume the execution 

1 In the continuous-time framework, Gârleanu and Pedersen (2016) shows that any portfolio xt that is not absolutely continuous, with non-smooth changes such as discrete 
jumps and quadratic variations, would incur an infinite trading costs, which is then excluded from our analysis.
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price is raised on average by a percentage of 1
2 �ut where � ∈ Rn×n is a positive definite matrix. Let P̃t represent the average execution 

price under ut , then

P̃t = Pt + 1

2
diag (Pt)�ut = diag (Pt)

(
1 + 1

2
�ut

)
.

Therefore, the temporary transaction cost TC(ut)dt incurred by utdt can be calculated by

TC(ut)dt = (
diag(Pt)

−1utdt
)�

P̃t − ut
�1dt = 1

2
u�

t �utdt.

The assumption that � is symmetric is without loss of generality (also see Footnote 5 in Gârleanu and Pedersen (2013)). One can assume 
a non-symmetric temporary price impact level �̄ and then the corresponding trading cost becomes 1

2 u�
t �̄ut , which is equivalent to the 

trading cost under a symmetric � = 1
2

(
�̄ + �̄�)

. The positive definite assumption on � is reasonable since a non-zero trading speed ut

should induce positive trading cost. The quadratic transaction cost has been commonly adopted in the literature (Obizhaeva and Wang, 
2013; Gârleanu and Pedersen, 2016; Collin-Dufresne et al., 2020; Isaenko, 2022). Indeed, the temporary price impact naturally arises from 
the instantaneous imbalance between the supply and demand of the stocks caused by the manager’s coming trading, which eventually 
renders the manager make a price concession in order to execute the trade.

In addition, we further consider the case that the manager’s trade shall cause a persistent impact on the market expectations as other 
market participants believe that institutional trades are usually accompanied with certain information leakage on the prices (Sannikov 
and Skrzypacz, 2016; Van Kervel and Menkveld, 2019). To study this situation, we again assume a linear-percentage price impact which 
distorts the assets’ return persistently. Specifically, we introduce a return distortion process Dt satisfying

dDt = −RDtdt + Cutdt,

where C ∈ Rn×n is a positive definite matrix measuring the persistent price impact level and R ∈ Rn×n is a positive definite matrix 
representing the resiliency of the persistent price impact. In other words, a trading speed of ut will raise or reduce the return by Cut , and 
the corresponding expected return in the interval [t, t +dt) becomes μ̃Ptdt = μPtdt +dDt . We naturally assume D0 = 0n×1 to indicate that 
there is no price distortion before the manager’s trade.

Remark 2.1. In addition, Gârleanu and Pedersen (2016) employs the arithmetic Brownian motion to model the price dynamic, which 
implies a positive probability of negative price. Nonetheless, our introduced models can get rid of this problematic setting in that the 
price dynamics are always strictly positive. Meanwhile, to the best of our knowledge, our work derives the first analytical result in 
the literature that tackles the portfolio selection following the framework of Gârleanu and Pedersen (2016), with the underlying prices 
assumed to follow geometric Brownian motions.

Employing the dynamic portfolio strategy ut , the firm’s asset value dynamic, with the presence of both persistent and temporary price 
impacts, evolves according to

dat = r f (at − x�
t 1)dt + x�

t

[
(diag Pt)

−1 dPt + dDt

]
− TC(ut)dt

=
{

r f at + x�
t [Bftdt − RDt + Cut] − 1

2
u�

t �ut

}
dt + x�

t σ P dWP
t .

Following Xie (2009); Zhang and Chen (2016); Zhu et al. (2020), the company’s uncontrollable liability process lt is modeled by a geometric 
Brownian motion:

dlt = lt
[
μldt + σldW l

t

]
, (3)

where W l
t is an F -adapted standard Brownian motion, which could be correlated with WP

t and W f
t . The respective vectors of correlation 

coefficients are denoted by ρ Pl ∈ Rn and ρ f l ∈ Rn . For simplicity, we define �P := σ P σ�
P ∈ Rn×n , �l := σ 2

l ∈ R, �Pl := σ P ρ Plσl ∈ Rn , 
and � f l := σ f ρ f lσl ∈Rm .

Remark 2.2. One can also choose a jump process, such as compound Poisson process, to model liability, especially when the companies 
face random payments for insurance claims or liability (Chiu and Wong, 2014). In this paper, we are interested in how asset allocation 
hedges liability risk while achieving the overall profit goal. Indeed, the hedging demand arises from the correlation between investment 
opportunity and liability. Therefore, to maintain this correlation in a jump model, one may also need to formulate a “co-jump” component 
in asset price dynamics. For convenience, we here adopt the geometric Brownian motion setting so that the correlation between asset and 
liability is more intuitive and accessible. Nonetheless, adding jumps to (3) will not lead to further mathematical complications and the 
main results of the current work remain valid.

Then the net asset value St := at − lt satisfies

dSt =
{

r f St + (
r f − μl

)
lt + x�

t [Bft − RDt + Cut] − 1
u�

t �ut

}
dt + x�

t σ P dWP
t − σlltdW l

t .
2
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2.3. Objective function

At time t ∈ [0, T ], the manager aims to maximize the discounted sum of her local mean-variance criterion of the net asset return over 
each infinitesimal time interval [s, s + ds] for s ∈ (t, T ]. Specifically, we consider the following objective function:

J (t,x,D, f,l; u) := Et

⎡
⎣ T∫

t

e−ρ(s−t)
(
Es

[
dSs − r f Ssds

]− γ

2
Vars

[
dSs − r f Ssds

])⎤⎦

= Et

⎡
⎣ T∫

t

e−ρ(s−t)
{(

r f − μl
)

ls + x�
s [Bfs − RDs + Cus] − 1

2
u�

s �us − γ

2

[
x�

s �P xs + �ll
2
s − 2x�

s �Plls

]}
ds

⎤
⎦ ,

where ρ > 0 is the discount rate, γ > 0 represents the manager’s risk aversion, and Et [·] and Vart [·] respectively denote the conditional 
expectation and variance operators given Ft . We refer to such an objective as the local mean-variance criterion. This criterion characterizes 
the company’s cumulative sum of its mean-variance preference on the changes in its net asset values in each infinitesimal time period. 
Indeed, it is widely adopted by practitioners. Moreover, it provides a simple alternative to circumvent the notion of time inconsistency in 
the dynamic mean-variance criterion (see the notable work by Basak and Chabakauri (2010) and also the recent work by Bensoussan et al. 
(2022)). Due to its high tractability, this criterion is popular in the extant literature on the portfolio choice problems with trading frictions 
(see, e.g., Gârleanu and Pedersen (2013, 2016); Glasserman and Xu (2013); Collin-Dufresne et al. (2020); Demiguel et al. (2016)). In this 
respect, this paper introduces the local mean-variance criterion as a tractable way to study the ALM problems with trading frictions to the 
actuarial literature.

The manager aims to find an admissible trading strategy u∗ ∈A which maximizes the objective function, i.e.,

J (t,x,D, f,l;u∗) = max
u∈A J (t,x,D, f,l;u). (4)

According to the standard dynamic programming theory, the Hamilton–Jacobi–Bellman (HJB) equation associated with the value func-
tion V is

ρV = max
u∈Rn

{∂V

∂t
+ ∂V

∂x

�
u − ∂V

∂f

�
	f + 1

2
tr

(
∂2 V

∂f∂f�
� f

)
+ ∂V

∂l
μll + 1

2

∂2 V

∂l2
�ll

2 + ∂2 V

∂f∂l

�
� f ll

+∂V

∂D

�
(−RD + Cu) + (

r f − μl
)

l + x� [Bf − RD + Cu] − 1

2
u��u − γ

2

(
x��P x + �ll

2 − 2x��Pll
)}

(5)

with the boundary condition V (T , x, D, f, l) = 0, where we have suppressed the arguments (t, x, D, f, l) for simplicity.
The choice of the control variable (portfolio position vs. trading intensity) can be explained in terms of trading frictions in continuous 

time. In absence of trading frictions, the existing literature on the ALM problems takes the portfolio position as the control variable to 
reflect that the utility-maximizing manager can adjust his portfolio freely to capture the instantaneous changes of the return-predicting 
factors and the liability. However, when trading frictions are present, the manager can no longer adjust his portfolio freely and must take 
the trading costs in consideration (Gârleanu and Pedersen (2013, 2016)). Since trading costs are incurred only when he rebalances his 
portfolio, we therefore adopt the manager’s trading intensity in continuous time as the control variable to account for the cumulative 
trading costs during the finite investment horizon.

Remark 2.3. In Section 4.2, the optimal solution to the frictionless version of our ALM problem (43) is xnf(ft , lt) = 1
γ �−1

P Bft + �−1
P �Pllt , 

which is of a Brownian-motion type. Economically, the optimal frictionless portfolio xnf implies that the manager should rebalance his 
portfolio whenever the return-predicting factors f and liability l change. However, as first stated in Gârleanu and Pedersen (2016), adopting 
xnf in the frictional market would incur infinite trading costs in continuous time, contributed by the non-differentiability of the Brownian 
paths. To quantify trading costs while maintaining tractability, we have therefore adopted the instantaneous rate of change of the portfolio 
position, i.e., trading intensity, as the control variable so that the portfolio position is absolutely continuous, with bounded trading costs.

Remark 2.4. For completeness, we have also included a discrete-time formulation of our ALM problem in Appendix B. For each time t , the 
control variable can be either xt or 
xt = xt − xt−1, and the state variable is xt−1. In other words, one can also adopt the commonly-used 
portfolio position or the change of the portfolio position as the control variable when solving the ALM problem in discrete time. Due 
to the feedback nature of our optimal solution, the optimal portfolio position xt is expressed in terms of the portfolio position in the 
previous period, xt−1, the observed return-predicting factors ft and liability lt , with the coefficients expressed in terms of the coupled 
system of Riccati difference equations.

3. Asset-liability management with only temporary price impact

In this section, we investigate this case and solve for the optimal trading strategy when the persistent distortion is absent, i.e., D ≡ 0n×1
(R = C = 0n×n). In other words, the market friction only comes from the linear temporary price impact.
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3.1. Optimal solution

The HJB equation (5) in this case degenerates to

ρV = max
u∈Rn

{∂V

∂t
+ ∂V

∂x

�
u − ∂V

∂f

�
	f + 1

2
tr

(
∂2 V

∂f∂f�
� f

)
+ ∂V

∂l
μll + 1

2

∂2 V

∂l2
�ll

2 + ∂2 V

∂f∂l

�
� f ll

+ (
r f − μl

)
l + x�Bf − 1

2
u��u − γ

2

(
x��P x + �ll

2 − 2x��Pll
)}

, (6)

where V = V (t, x, f, l) and V (T , x, f, l) = 0.
Consider the following ansatz for the value function:

V (t,x, f, l) = −1

2
x�Axx(t)x + 1

2
f�A f f (t)f + 1

2
All(t)l

2 + x�Axf (t)f + x�Axl(t)l + f�A f l(t)l + Al(t)l + Ac(t), (7)

where Axx ∈ Rn×n , A f f ∈ Rm×m , Axf ∈ Rn×m , Axl ∈ Rn , A f l ∈ Rm , and All, Al, Ac ∈ R. Applying the first-order condition then yields 
u∗ = �−1 ∂V

∂x . Substituting u∗ and (7) back into (6), we obtain

ρV = ∂V

∂t
+ 1

2

(−Axxx + Axf f + Axll
)�

�−1 (−Axxx + Axf f + Axll
) + (

r f − μl
)

l + 1

2
�ll

2

+
(

Alll + A�
xl x + A�

f lf + Al

)
μll −

(
A f f f + A�

xf x + A f ll
)�

�f + 1

2
tr
(
A f f � f

)
+A�

f l� f ll + x�Bf − γ

2

(
x��P x − 2x��Pll + �ll

2
)

.

Comparing the coefficients of x, f, l and the constant terms on both sides, we obtain

Ȧxx(t) = ρAxx(t) + Axx(t)
��−1Axx(t) − γ �P , (8)

Ȧ f f (t) = ρA f f (t) − A�
xf (t)�

−1Axf (t) + A f f (t)
�� + ��A f f (t), (9)

Ȧll(t) = ρ All(t) − Axl(t)
��−1Axl(t) − 2μl All(t) − All(t)�l + γ �l, (10)

Ȧxf (t) = ρAxf (t) + Axx(t)
��−1Axf (t) + Axf (t)� − B, (11)

Ȧxl(t) = ρAxl(t) + Axx(t)
��−1Axl(t) − Axl(t)μl − γ �Pl, (12)

Ȧ f l(t) = ρA f l(t) − Axf (t)
��−1Axl(t) − A f l(t)μl + ��A f l(t), (13)

Ȧl(t) = ρ Al(t) − μl Al(t) − A f l(t)
�� f l + μl − r f , (14)

Ȧc(t) = ρ Ac(t) − 1

2
tr
(
A f f (t)� f

)
, (15)

with the following boundary condition

Axx(T ) = 0n×n, A f f (T ) = 0m×m, Axf (T ) = 0n×m,

Axl(T ) = 0n×1, A f l(T ) = 0m×1, All(T ) = Al(T ) = Ac(T ) = 0. (16)

Still, we need to ensure that the matrix Riccati equation system admits a unique classical solution so that the corresponding ansatz of 
V in (7) as well as the optimal strategy is well-defined.

Lemma 3.1. The matrix RDE system (8)-(16) admits a unique classical solution on [0, T ]. Moreover, Axx(t) is positive definite on [0, T ) and Axx(t) =
K2(t)K−1

1 (t) where

d

dt

(
K1(t)
K2(t)

)
=

(
− 1

ρ In −�−1

−γ �P
1
ρ In

)(
K1(t)
K2(t)

)
. (17)

Proof. Note that once Axx is solved, Axf , A f f , Axl, All, A f l, Al , and Ac can be solved sequentially as their associated differential equations in 
(8)-(16) become linear. Therefore, it suffices to prove the existence and uniqueness of Axx to (8). This can be done by following the proof 
of Proposition 1 in Ma et al. (2019), where a comparison principle for matrix Riccati equation is utilized to find the upper bound and 
lower bound of the solution. We thus omit the details of the proof. �

While Lemma 3.1 establishes the well-posedness of the RDE system (8)-(16), the following assumption on a special price impact 
structure enables us to obtain simpler expressions for the optimal trading strategy and portfolio.

Assumption 1. � = λ�P with a constant λ > 0.
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As noted by Gârleanu and Pedersen (2013, 2016), Assumption 1 is natural and has its foundation in market microstructure. Particularly, 
a dealer, who stands in the opposite side of the manager’s trade 
xt , holds the position for a period of time dt and unwinds it at the 
end, is exposed to the risk 
x�

t �P 
xtdt . The trading cost is a compensation for risk. The positive constant λ can be understood as the 
risk aversion of the dealer. At time t , we define the single-period Markowitz mean-variance portfolio as xmv

t = 1
γ �−1Bft . The following 

theorem characterizes the optimal trading strategy.

Theorem 3.2. With only the temporary price impact, i.e., D ≡ 0n×1 (R = C = 0n×n),

(i) the optimal trading intensity is

u∗
t = �−1 [Axf (t)ft + Axl(t)lt − Axx(t)xt

]
, for t ∈ [0, T ]. (18)

The function (7) identifies the optimal value function in (4);
(ii) for t ∈ [0, T ), u∗

t has the following representation

u∗
t = Mrate

t

[
Maim

t − xt

]
, (19)

where

Mrate
t = �−1Axx(t),

Maim
t = γ Axx(t)

−1E1(t)
−1

T∫
t

e−ρ(s−t)E1(s)�PEt

[(
xmv

s + �−1
P �Plls

)]
ds,

and E1(t) is the solution to the following linear ODE

Ė1(t) = −Axx(t)�
−1E1(t), E1(T ) = In; (20)

(iii) under Assumption 1, for t ∈ [0, T ),

Mrate
t = axx(t)

λ
,

Maim
t =

T∫
t

ωu(s, t)Et

[
xmv

s + �−1
P �Plls

]
ds,

where ωu(s, t) = γ
axx(t)

e
− ∫ s

t

(
ρ+ axx(u)

λ

)
du

for 0 ≤ t ≤ s ≤ T , axx(t) is a nonnegative function given by

axx(t) = −γ λ
(
1 − e(T −t)(y+−y−)

)
y+ − y−e(T −t)(y+−y−)

≥ 0,

and y± = λ
2

(
−ρ ±

√
ρ2 + 4 γ

λ

)
.

Proof. See Appendix A.1 �
Remark 3.3. As shown in Gârleanu and Pedersen (2013) and Glasserman and Xu (2013), the empirical estimates of � are typically small. 
Therefore, it is important to assess the stability of the solutions of the matrix Riccati equation system when � is small. To investigate this 
issue more closely, let us consider a special case when Assumption 1 holds. In this case, the Axx in Equation (8) becomes

Ȧxx(t) = ρAxx(t) + 1

λ
Axx(t)

��−1
P Axx(t) − γ �P .

Similar to Proposition 5.9 in Bensoussan et al. (2022), for a small λ > 0, one can show that

‖Axx(t)‖ = O (
√

λ), t ≥ 0. (21)

This implies that the right-hand side of the differential equation for Axx is of order O (1). In other words, the derivative of Axx is bounded 
for small λ, which leads to a stable solution to the Riccati system. Similarly, one can show that terms Axf , Axl are of order O (

√
λ) and 

terms A f f , All, A f l, Al, Ac are of order O (1). In view of these small-λ analysis, the Riccati system will not explode as λ goes to zero.

The trading intensity in (19) is of a target-chasing form such that the portfolio is rebalanced towards a benchmark Maim at the tracking 
rate Mrate. Roughly speaking, the target process Maim

t can be understood as the expectation of a weighted sum of all the future Markowitz 
portfolios within the investment horizon adjusted by the liability dynamic. We distinguish such a trading behavior from many existing 
results in classical dynamic ALM problems such as Leippold et al. (2004); Chiu and Li (2006); Yao et al. (2013); Wei et al. (2013) where 
the optimal strategy is to realize a target portfolio immediately. This target-chasing behavior appears because of the market frictions.

Corollary 3.4. With only the temporary price impact,
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(i) the optimal portfolio is

x∗
t = E2(t)

−1x0 + γ

t∫
0

T∫
s

E2(s)�−1E1(s)−1e−ρ(u−s)E1(u)�PEs

[
xmv

u + �−1
P �Pllu

]
duds,

where E1(t) is given by (20) and E2(t) solves

Ė2(t) = �−1Axx(t)E2(t), E2(0) = In, (22)

(ii) suppose Assumption 1 is enforced, the optimal portfolio is

x∗
t = e

∫ t
0

axx(l)
λ

dlx0 +
t∫

0

T∫
s

ωx(s, u)Es

[
xmv

u + �−1
P �Pllu

]
duds,

where ωx(s, u) = γ
λ

e
∫ s

0
axx(l)

λ
dl−∫ u

s

(
ρ+ axx(l)

λ

)
dl

for 0 ≤ s ≤ u ≤ T and axx is given by (A.4).

Proof. The results in (22) can be straightforwardly obtained by utilizing (A.1) and (A.3). Then one can verify (ii) using the expression 
Axx(t) = axx(t)�P . �
4. Temporary and persistent price impact

In this section, we investigate the optimal trading strategy in our framework when the market frictions consists of two components: 
the temporary price impact and persistent price impact.

4.1. Optimal trading intensity and portfolio

For the ease of illustration, we first define a new vector y := (x�, D�)� ∈ R2n and some new matrices Q, N1 ∈ R2n×2n, N2, M1 ∈
R2n×n, M2 ∈R2n×m, M3 ∈R2n as follows:

Q =
(

γ �P R
R� 0n×n

)
, N1 =

(
0n×n 0n×n

0n×n R

)
, N2 =

(
In

C

)
, (23)

M1 =
(

C
0n×n

)
, M2 =

(
B

0n×n

)
, M3 =

(
γ �Pl
0n×n

)
. (24)

The original HJB equation (5) can then be rewritten as

ρV = ∂V

∂t
+ ∂V

∂y

�
(−N1y + N2u) − ∂V

∂f

�
�f + 1

2
tr

(
∂2 V

∂f∂f�
� f

)
+ ∂V

∂l
μll + 1

2

∂2 V

∂l2
�ll

2

+∂2 V

∂f∂l

�
� f ll + (r f − μl)l − 1

2
y�Qy + y�M1u − 1

2
u��u + y�M2f + y�M3l − γ

2
�ll

2. (25)

The first-order condition yields

u∗ = �−1
(

M�
1 y + N�

2
∂V

∂y

)
. (26)

Define Eyy :=
(

Exx ExD

E�
xD ED D

)
∈R2n×2n , Eyf :=

(
Exf
ED f

)
∈R2n×n , and Eyl :=

(
Exl
EDl

)
∈R2n . Consider the following ansatz for V :

V (t,y, f, l) = −1

2
y�Eyy(t)y + 1

2
f�E f f (t)f + 1

2
Ell(t)l

2 + y�Eyf (t)f + y�Eyl(t)l + f�E f l(t)l + El(t)l + Ec(t), (27)

where Eyy ∈R2n×2n, E f f ∈Rm×m, Eyf ∈R2n×m, Eyl ∈R2n , E f l ∈Rm , and Ell, El, Ec ∈R. Substituting (26) and (27) into (25), and compar-
ing the coefficients, we can similarly derive

Ėyy =
(

N�
2 Eyy − M�

1

)�
�−1

(
N�

2 Eyy − M�
1

)
+ Eyy

(
1

2
ρI + N1

)
+

(
1

2
ρI + N1

)�
Eyy − Q, (28)

Ė f f = −E�
yf N2�

−1N�
2 Eyf + ρE f f + E�

f f � + ��E f f , (29)

Ėll = −E�
ylN2�

−1N�
2 Eyl + (ρ − 2μl − �l) Ell + γ �l, (30)

Ėyf =
(

N�
2 Eyy − M�

1

)�
�−1N�

2 Eyf + ρEyf + N�
1 Eyf + Eyf � − M2, (31)

Ėyl =
(

N�
2 Eyy − M�

1

)�
�−1N�

2 Eyl + (ρ − μl)Eyl + N�
1 Eyl − M3, (32)
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Ė f l = −E�
yf N2�

−1N�
2 Eyl + (ρ − μl)E f l + ��E f l, (33)

Ėl = (ρ − μl) El + E�
f l� f l + μl − r f , (34)

Ėc = ρEc − 1

2
tr
(
E f f � f

)
, (35)

with the boundary conditions

Eyy(T ) = 02n×2n, E f f (T ) = 0m×m, Eyf (T ) = 02n×m,

Eyl(T ) = 02n×1, E f l(T ) = 0m×1, Ell(T ) = El(T ) = Ec(T ) = 0. (36)

Obviously, we again obtain a matrix RDE system in (28)–(36). If the solution of (28) exists, then (32) – (35) become linear, and 
they can be solved sequentially using variation of constants formula. As for the matrix RDE (28), we can apply the well-known Radon’s 
lemma, which connects the non-linear equations of Riccati type and the linear equations, and then provide the solution with an explicit 
representation as follows.

Lemma 4.1. Consider the solution (H1(t), H2(t))� of the following linear equation system:

d

dt

(
H1(t)
H2(t)

)
=

(− 1
2ρI − N1 + N2�

−1M�
1 −N2�

−1N�
2

M1�
−1M�

1 − Q 1
2ρI + N1 − M1�

−1N�
2

)(
H1(t)
H2(t)

)
, (37)

with H1(T ) = I2n and H2(T ) = 02n×2n. If H1(t) is non-singular for t ∈ [0, T ], then Eyy(t) = H2(t)H−1
1 (t) is a solution of (28).

Proof. We rewrite (28) as follows

Ėyy = EyyN2�
−1N�

2 Eyy +
(

1

2
ρI + N1 − N2�

−1M�
1

)�
Eyy + Eyy

(
1

2
ρI + N1 − N2�

−1M�
1

)
+ M1�

−1M�
1 − Q. (38)

Then the result can be established by applying Theorem 3.1.1 in Abou-Kandil et al. (2003). �
If we define the finite escape time of the matrix Eyy as t∞ := inf

{
t < T ; det |H1(t)| = 0

}
, Lemma 4.2 provides a sufficient condition 

such that t∞ /∈ [0, T ], i.e., Eyy(t) will never explode on [0, T ].

Lemma 4.2. Suppose that γ�P − C�−1C� is positive definite. The matrix RDE system (28)-(36) admits a unique bounded solution on [0, T ] if 
T < 1

2
(
ψ1+√

ψ0ψ2
) , where

ψ0 =
∥∥∥R� (

γ �P − C�−1C�)−1
R
∥∥∥ ,

ψ1 = ∥∥ 1
2ρI + R

∥∥ , ψ2 = ∥∥C�−1C�∥∥ .

Moreover, Exx(t) is positive semidefinite for t ∈ [0, T ].

Proof. See Appendix A.2. �
The aforementioned lemma provides a sufficient condition to ensure the local existence for the target matrix RDE system. However, 

the length of time period is highly sensible to the model parameters and could be quite short in some extreme circumstances. As a result, 
we give another sufficient condition below under which a unique global solution always exists, regardless of the length of the planning 
horizon.

Lemma 4.3. Suppose that �P , R, C, and � are all diagonal matrices with the i-th diagonal element being σ 2
P ,i, ri, ci , and λi for i = 1, 2, · · · , n, 

respectively. If γ σ 2
P ,i >

c2
i

λi
and ci

λi
< ri < ρ , then the matrix RDE system (28)-(36) admits a unique bounded solution for any finite T > 0.

Proof. See Appendix A.3. �
Roughly speaking, the conditions in Lemma 4.2 and 4.3 commonly indicate that the (squared) persistent price impact C discounted 

by the temporary price impact � cannot be too large compared to the trader’s perceived risk cost γ�P . Otherwise, it is cheap and risk-
affordable for the trader to manipulate the stock prices to achieve an abnormally high profit in the finite horizon [0, T ]. This is partially 
consistent with the well-posedness condition in Lemma 1 of Gârleanu and Pedersen (2016) that requires C to be moderate. We will also 
conduct a numerical study in Section 6 to investigate the general feature of the solutions.

Define Lx(t) := Exx(t) + C�ExD(t)� − C� . The following theorem provides the optimal trading strategy when both temporary and per-
sistent price impacts are present.

Theorem 4.4. With both temporary and persistent price impacts, and suppose that the matrix RDE system (28)-(36) admits a bounded solution, then
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(i) the optimal trading intensity is

u∗
t = �−1

[
−

(
ExD(t) + C�ED D(t)

)
Dt + N�

2 Eyf (t)ft + N�
2 Eyl(t)lt − Lx(t)xt

]
. (39)

The function (27) identifies the optimal value function in (4);
(ii) for t ∈ [0, T ), if Lx(t) is non-singular, u∗

t has the following representation

u∗
t = M̃rate

t

[
M̃aim

f lt + M̃aim
Dt − xt

]
, (40)

where

M̃rate
t = �−1Lx(t),

M̃aim
f lt = Lx(t)

−1N�
2

T∫
t

e−ρ(s−t)Ẽ1(t)
−1Ẽ1(s)

(
γ �P

0n×n

)
Et

[
xmv

s + �−1
P �Plls

]
ds,

M̃aim
Dt = −Lx(t)

−1
(

ExD(t) + C�ED D(t)
)

Dt,

and Ẽ1(t) ∈R2n×2n is the solution to the following linear ODE

˙̃E1(t) = −
[(

N�
2 Eyy(t) − M�

1

)�
�−1N�

2 + N1

]
Ẽ1(t), Ẽ1(T ) = I2n.

Proof. See Appendix A.4. �
The following corollary, as a direct result of Theorem 4.4, offers the corresponding optimal portfolio.

Corollary 4.5. Under the assumptions of Theorem 4.4 and assume that Lx(t) is non-singular, then the optimal portfolio is

x∗
t = Ẽ2(t)

−1x0 −
t∫

0

Ẽ2(t)
−1Ẽ2(s)�−1

(
ExD(s) + C�ED D(s)

)
Dsds

+
t∫

0

T∫
s

e−ρ(u−s)Ẽ2(t)
−1Ẽ2(s)�−1N�

2 Ẽ1(s)−1Ẽ1(u)

(
γ �P

0n×n

)
Es

[
xmv

u + �−1
P �Pllu

]
duds,

where Ẽ2(t) ∈Rn×n is the solution to the following linear ODE.

˙̃E2(t) = M̃rate
t E2(t), Ẽ2(0) = In. (41)

The previous discussions are built on a continuous-time economy. As noted by Gârleanu and Pedersen (2016), such a formulation 
addresses the dynamic trading problems under market frictions that arise when an investor trades at a relatively high trading frequency. 
Meanwhile, we offer a discrete-time solution in Appendix B for an associated low-frequency trading problem, similar to what has been 
done in Gârleanu and Pedersen (2013) and Collin-Dufresne et al. (2020), so that practitioners can choose suitable ALM strategies in 
different situations. Moreover, we find that the optimal strategies are consistent in these two formulations, which also echoes the results 
of Gârleanu and Pedersen (2013) and Collin-Dufresne et al. (2020).

4.2. Small-price-impact asymptotics

Theorem 4.4 characterizes the optimal trading strategy under the fixed parameters of market frictions, i.e., �, R and C. To study how 
these parameters affect the value function and the trading strategy, we now conduct a small-price-impact asymptotic analysis. Following 
Ekren and Muhle-Karbe (2019), we consider the following assumption,

� = ε2�1, C = εC1, R = ε−1R1, (42)

where ε > 0 is a small value. This assumption indicates a highly liquid market where both the temporary and persistent price impacts are 
small and the market resiliency is large. As noted by Ekren and Muhle-Karbe (2019), this scaling is chosen so that neither of the frictions 
dominates the other in the limit.

Before proceeding to the asymptotic analysis, we first study the benchmark case when there is no frictions. Suppose � = C = R = 0n×n

and D ≡ 0n×1, one can directly solve the following ALM problem,

V 0(t, f, l) = max
xt

Et

⎡
⎣ T∫

t

e−ρ(s−t)
{(

r f − μl
)

ls + x�
s Bfs − γ

2

[
x�

s �P xs + �ll
2
s − 2x�

s �Plls

]}
ds

⎤
⎦ . (43)

According to the classic dynamic programming equation, the HJB equation for Problem (43) is
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∂V 0

∂t
+ max

x∈Rn
Lx V 0 = ρV 0, (44)

where the operator Lx is defined as follows:

Lx V̂ := −∂ V̂

∂f

�
�f + 1

2
tr

(
∂2 V̂

∂f∂f�
� f

)
+ ∂ V̂

∂l
μll + 1

2

∂2 V̂

∂l2
�ll

2 + ∂2 V̂

∂f∂l

�
� f ll

+ (r f − μl)l + x�Bf − γ

2

[
x��P x + �ll

2 − 2x��Pll
]
. (45)

The first-order condition from (44) yields the optimal portfolio choice in absence of market frictions as xnf(f, l) := 1
γ �−1

P Bf + �−1
P �Pll. 

Since f and l are the drifted Brownian motions, the optimal portfolio without frictions xnf is of a Brownian-motion type, which is in stark 
contrast to the optimal portfolio with frictions x∗ in Corollary 4.5, which is absolutely continuous.

For simplicity, we write Ĉ�
1 := (

In C�
1

)
. The following theorem shows the relationship between the optimal value function V ε for 

problem (4) and its frictionless counterpart V 0 in (43).

Theorem 4.6. Under the regime (42), suppose C−1
1 R1 + R1C−1

1 is positive definite, then the value function V ε of Problem (4) has the following first-
order expansion around the small liquidity parameter ε > 0,

V ε(t,x, εD, f , l)

= V 0(t, f, l)︸ ︷︷ ︸
benchmark

−ε
[

V 1(t, l) + 1

2

(
x� − xnf(f, l)�,D�)

K
(

x� − xnf(f, l)�,D�)� + x�D − 1

2
D�C−1

1 D
]

︸ ︷︷ ︸
first-order approximation of the loss from frictions

+o(ε), (46)

where K ∈R2n×2n is positive definite and is the maximal solution of the following algebraic Riccati equation:

K�Ĉ1�
−1
1 Ĉ�

1 K +
(

0n×n 0n×n

0n×n R1

)
K� + K

(
0n×n 0n×n

0n×n R1

)
−

(
γ �P 0n×n

0n×n ρ
(

C−1
1 R1 + R1C−1

1

)) = 02n×2n, (47)

and V 1 admits the following representation

V 1(t, l) = Et

⎡
⎣ T∫

t

e−ρ(s−t)a(ls)ds

⎤
⎦ ,

a(l) := 1

2
��

Pl�
−1
P

�
K11�

−1
P �Pl�ll

2 + 1

γ
��

PlK11�
−1
P

�
B� f ll + 1

2γ 2
tr
(

B��−1
P

�
K11�

−1
P B� f

)
, (48)

where K11 ∈Rn×n is the submatrix of K formed by intersecting the first n rows with the first n columns.
Moreover, the first-order expansion of V ε in (46) is achieved when the manager adopts the almost-optimal trading strategy uε :

uε(xt,Dt , ft , lt) = ε−1�−1
1 Ĉ�

1 K
(

xnf(ft , lt) − xt

−εDt

)
. (49)

Proof. See Appendix A.5. �
In (46), we scale the distortion process and consider εD among the arguments of V ε , which is consistent with Ekren and Muhle-Karbe 

(2019). This setting is reasonable as market frictions are small in our regime (42) and we expect the distortion to converge to zero. At 
time zero, recall that D0 = 0n×1, one may simply let D = 0n×1 in (46) and obtain the first-order approximation of V ε .

According to (49), it is clear that when market frictions are small, or equivalently, ε and Dt go to zero, the almost-optimal trading 
strategy uε adjusts toward the frictionless portfolio xnf with a speed magnified by ε−1. In addition, the value function V ε in Equation 
(46) converges to the frictionless counterpart V 0 as ε ↓ 0. In other words, despite the fact that the asymptotic strategy gradually follows 
its frictionless counterpart, the presence of market frictions forbids it to converge to its frictionless counterpart as ε ↓ 0, and the value 
function with small market frictions can be well approximated by its frictionless counterpart.

5. Optimal funding ratio

The previous analysis answers the question that, given an initial asset value, stock holding and liability value, how can the company 
manage dynamically the risk from future asset allocation and future liability with frictions in the financial market. In this section, we 
provide one way for the manager about how to determine an initial capital structure at time zero.

Choosing a proper initial capital structure is important in ALM practice; indeed, it can be decided using the funding ratio, i.e. the ratio 
of the asset value to the liability see, e.g., Leippold et al. (2004) and Chiu and Li (2006). Following Chiu and Li (2006), we assume that the 
asset value is a linear function of the liability at t = 0. This dependency is realistic as argued by Chiu and Li (2006) because the company 
can increase the capital of investment by issuing loans. Mathematically, we write a0 = α + βl0, where α > 0 represents the wealth base 
for investment and β ∈ (0, 1] denotes the proportion of liability that is raised to increase the asset value.
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We consider the case that the initial portfolio is determined by x0 = a0(x̂�1)−1x̂, where x̂� is a target portfolio predetermined by the 
company. A noteworthy example is the static Markowitz portfolio x̂ = xmv = 1

γ �−1
P Bf0. Recall that under the temporary and persistent 

price impact, the optimal value function at time 0 is V (0, x0, D0, f0, l0) which is in a quadratic form. We define the optimal funding ratio 
as κ∗ := a∗

0
l∗0

, where (a∗
0, l

∗
0) solves the following quadratic programming problem:

max
a0,l0

V (0,a0(x̂�1)−1x̂,D0, f0, l0)

s.t. a0 = α + βl0, l0 > 0.

(50)

To obtain κ∗ more explicitly, we here assume temporary price impact only. We further impose Assumption 1 and assume that � =
� f = 0m×m and � f l = 0m×1 so that the dynamic predictors are not concerned and ft ≡ f0. Therefore, the vector of excess returns is 
time-invariant and is denoted by μP := Bf0. Recall that axx is given by (A.4). We define the following non-negative scalar functions

axl(t) :=
T∫

t

e
− ∫ s

t

(
ρ−μl+ axx(u)

λ

)
du

ds, axf (t) :=
T∫

t

e
− ∫ s

t

(
ρ+ axx(u)

λ

)
du

ds,

a f f (t) :=
T∫

t

e−ρ(s−t)
a2

xf (s)

λ
ds, a f l(t) :=

T∫
t

e−(ρ−μl)(s−t) axf (s)axl(s)

λ
ds.

In this simplified case, the solution of the RDE system (8)–(16) is explicitly given by

Axx(t) = axx(t)�P , A f f (t) = a f f (t)B��−1
P B,

All(t) =
T∫

t

e−(ρ−2μl−�l)(s−t)
(

a2
xl(s)

γ 2

λ2
��

Pl�
−1
P �Pl − γ �l

)
ds,

Axf (t) = axf (t)B, Axl(t) = γ axl(t)�Pl, A f l(t) = γ a f l(t)B��−1
P �Pl,

Al(t) =
T∫

t

e−(ρ−μl)(s−t)(r f − μl)ds, Ac(t) ≡ 0.

(51)

By Theorem 3.2, the value function at time t = 0 with only the temporary price impact is exactly V (0, x0, f0, l0), where V satisfies (7)
with the parameters solved above. Let z := (a0, l0)

� ∈ R2. The optimal funding ratio between the initial asset and initial liability is then 
calculated through κ∗ = a∗

0
l∗0

, where (a∗
0, l

∗
0) solves:

max
z

1

2
z�Qalz + c�

al z + c0

s.t. a0 = α + βl0, l0 > 0.

(52)

where

Qal =
(

−axx(0)
(
x̂�1

)−2
x̂��P x̂ γ axl(0)

(
x̂�1

)−1
x̂��Pl

γ axl(0)
(
x̂�1

)−1
x̂��Pl All(0)

)
. (53)

The quadratic programming problem (52) admits a unique optimal solution pair (a∗
0, l∗0) when Qal < 0, which clearly holds when �Pl = 0. 

In the following, we provide an explicit representation for κ∗ under a special case. We first ignore the constraint l0 > 0 and solve the 
optimal z∗ through the Karush–Kuhn–Tucker condition:

Qalz
∗ + cal + ν(1,−β)� = 02×1,

where ν ∈R is the Lagrange multiplier. Combining the above equation and the constraint (1, −β)�z∗ = α, we then derive

κ∗ = βγ axl(0)
(
x̂�1

)−1
x̂��Pl + All(0) − β

α φ(β)

βaxx(0)
(
x̂�1

)−2 x̂��P x̂ + γ axl(0)
(
x̂�1

)−1 x̂��Pl − 1
α φ(β)

, (54)

where φ(β) = βaxf (0) 
(
x̂�1

)−1
x̂�μP + γ a f l(0)μ�

P �−1
P �Pl + Al(0). The above κ∗ becomes a feasible and hence optimal funding ratio if 

the corresponding l∗0 > 0. The following proposition provides the conditions for that.

Proposition 5.1. Suppose Assumption 1 holds and the return predicting-factor is not concerned, i.e., � = � f = 0m×m and � f l = 0m×1 .

(i) If the following cubic polynomial inequality in terms of β is satisfied[
axx(0)(x̂�1)−2x̂��P x̂β2 − All(0)

]
[ζ1β + ζ0] < 0, (55)
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where ζ1, ζ0 are constants independent of β given by

ζ1 = axx(0)(x̂�1)−2x̂��P x̂ − 1

α
axf (0)

(
x̂�1

)−1
x̂�μP ,

ζ0 = γ axl(0)
(

x̂�1
)−1

x̂��Pl − γ

α
a f l(0)μ�

P �−1
P �Pl − 1

α
Al(0),

then κ∗ in (54) is a feasible funding ratio and attains the optimal value in Problem (50).
(ii) Moreover, if the asset prices and the liability are independent, i.e., �Pl = 0, then the condition (55) reduces to

ζ1β <
1

α
Al(0).

Proof. We only need to show that under the conditions in Proposition 5.1, κ∗ is a feasible funding ratio. It remains to address the 
constraint l∗0 > 0. Since κ∗ = a∗

0
l∗0

= α
l∗0

+ β with α > 0, then l∗0 > 0 is equivalent to κ∗ > β . Indeed, by utilizing the representation (54), we 
obtain

κ∗ − β = −axx(0)
(
x̂�1

)−2
x̂��P x̂β2 + All(0)

ζ1β + ζ0
.

Therefore, from the above relationship, it is clear that κ∗ > β is further equivalent to the cubic polynomial inequality (55) of β . In other 
words, under the condition (55), κ∗ given by (54) is a feasible funding ratio that optimizes Problem (50).

Suppose the asset prices and the liability are independent, i.e. �Pl = 0. According to the expressions in (51), All(0) =
− 

∫ T
0 e−(ρ−2μl−�l)sγ�lds < 0. From Theorem 3.2 (iii), we have axx(0) ≥ 0. Then the first term in the condition (55) is positive. More-

over, ζ0 = − 1
α Al(0). The condition (55) can be further simplified as ζ1β < 1

α Al(0). �
The inequalities in Proposition 5.1 can be efficiently verified in practice. In Section 6, the model parameters are chosen so that the 

condition in (55) is satisfied when we analyze the optimal initial funding ratio κ∗ .

6. Numerical study

One of the main contributions of this paper is the consideration of the transaction costs in the ALM problem. In this section, we 
investigate numerically the effects of liability and the market frictions on the manager’s trading strategies. First, a comparative statics 
analysis of the trading strategy with respect to the liability process and the temporary price impact level is given in Section 6.1. Second, 
based on the theory developed in Section 5, we study the optimal funding ratio and provide its sensitivity result in Section 6.2. Finally, 
in Section 6.3, we comprehensively analyze the scenario where both temporary and persistent price impacts are considered, and illustrate 
their different implications on the manager’s trading behaviors.

In the subsequent analysis, for the sake of clarity, we consider the one-dimensional setting (n = m = 1). Furthermore, to focus on the 
analysis on the effects of liability and market frictions, we temporarily put the return predictability aside and assume 	 = � f = � f l = 0 so 
that ft ≡ f0. Suppose that the planning horizon is 5 years, i.e., T = 5, and the asset-liability manager monthly updates the stock holdings, 
i.e., the time-discretization step has a length of 
t = 1/12. The initial values of stock holdings and liability are assumed to be x0 = 107

and l0 = 5 × 106, respectively. Let the manager’s risk aversion parameter be γ = 2 × 10−7, the discount rate be ρ = 0, and the annual 
risk-free interest rate be r f = 0.01.

6.1. Trading strategy with only temporary price impact

When the trading frequency is substantially lower than the price resiliency, it is reasonable to shift away from the persistent price 
impact to assume R = C = 0 so that the return distortion process is negligible, i.e., D ≡ 0. To produce the financial insights that closely 
link with the practice, we follow the setting in Leippold et al. (2004) to use a realistic parameter set for modeling the stock price and 
liability processes, while, at the same time, we inherit the parameter setting for the temporary price impact from Berry-Stölzle (2008b). 
Specifically, we have

B = 1, f0 = 0.1200, �P = 0.0589, μl = 0.0400,

�l = 0.0100, �Pl = 0.0149, 1
2 � = 10−7.

The above parameter setting implies a correlation between the stock price and the liability ρPl � 0.3376. Also, the last specification 
1
2 � = 10−7 on the temporary price impact indicates that the purchase of 100, 000 shares incurs 1% average trading cost.

We are interested in the effects of the liability parameters, including μl, �l, ρPl , as well as the temporary price impact � on the 
optimal stock holding value x∗ . When we vary one parameter, the remaining parameters are fixed so that every single effect can be 
clearly explored. For each case, we generate 100, 000 random sample paths for lt and calculate the average holding value in the stock x∗

t . 
Moreover, we introduce the following trading strategy:

xnf
t = 1

γ
�−1

P B ft + �−1
P �Pllt, (56)

which represents the optimal stock holding value in a frictionless market and can be derived directly from the objective (4) under a 
similar procedure as illustrated in Sections 3 and 4. Fig. 1 presents the sensitivity result and the comparison between x∗ and xnf.
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Fig. 1. Sensitivity analysis of the stock holding values with varying model parameters. The holding values are calculated using the average of 100, 000 sample paths. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

As shown in Fig. 1(a) and 1(b), increasing the growth rate of liability μl and the liability variance �l improves the stock holding. The 
former is quite intuitive because the manager seeks more potential profit from the financial market by taking more risky investment, so 
as to cover a higher growth rate of liability. Meanwhile, a more volatile liability process also motivates the manager to hold more stocks 
to hedge the risk, as the stock price and liability are positively correlated. Fig. 1(c) demonstrates that the manager holds more (resp. less) 
stocks when the stock-liability correlation is positive (resp. negative), which again illustrates that the financial portfolio in ALM should not 
only be itself profit-seeking, but should also meet the need of hedging liability risk. Fig. 1(d) reveals how the manager’s trading behavior 
changes as the price impact vanishes. Note that three red lines are overlapped since xnf represents the optimal stock holding value in a 
frictionless market and is independent of �. We can see that x∗ becomes more concave and moves up toward xnf as � decreases. The 
concavity of x∗ is due to the horizon effect (Gennotte and Jung, 1994). The manager is willing to adjust stock holdings at earlier times to 
enjoy the benefits from long-term investment. A higher price impact leads to a more conservative trading decision, which is as expected 
because the manager suffers a greater transaction cost with a higher price impact.

6.2. Optimal funding ratio

We keep using the same parameter set as in the previous subsection. Suppose the company needs to determine the optimal initial 
asset value and liability so as to maximize the objective function, and it can raise capital by issuing loans. Following the discussion in 
Section 5, the initial asset value is set up according to the following guideline:
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Fig. 2. Sensitivity analysis of the optimal funding ratio with varying model parameters under different price impact levels.

a0 = α + βl0.

In what follows, we set the basic value of asset as α = 106 and the proportion of raised liability as β = 1. For the temporary price impact, 
we consider three different scenarios: 1) a high level, where � = 10−6; 2) a normal level, where � = 5 × 10−7; and 3) a low level, where 
� = 10−7. The relationships between the optimal funding ratio κ∗ = α∗

0
l∗0

and the liability parameters under these three price impact levels 
are demonstrated in Fig. 2. Our model parameters are chosen such that the cubic inequality (55) in Proposition 5.1 is satisfied, indicating 
that κ∗ is a feasible funding ratio. Fig. 2 also provides a visual confirmation that κ∗ > β = 1.

From the definition of the function ratio that κ = α0
l0

= α
l0

+β , we know that a low funding ratio implies a high liability level. Generally 
speaking, Fig. 2 predicts a lower optimal funding ratio when the price impact is higher. This is expected because the manager needs to 
raise more initial capital by issuing loans to support the scheduled trading strategy when faced with a larger transaction cost. Fig. 2(a) and 
2(b) indicate that the optimal funding ratio is increasing in the growth rate and the variance of the liability. When μl and �l are large, 
the risk from liability is high and hence the company issues less loans. Fig. 2(c) demonstrates delicate results. When the price impact 
is relatively high, κ∗ is strictly increasing in ρPl . As the stock-liability correlation increases, the manager tends to raise less liability to 
avoid more systemic risk commonly embedded in stock prices and future liabilities. However, when the price impact is comparatively low, 
as ρPl increases, κ∗ first moves up but later drops down. The rationale behind is that in this case, the financial market becomes more 
attractive with less frictions and the risk from the net asset value reduces when the correlation ρPl gets larger. Specifically, when ρPl is 
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Fig. 3. Sensitivity analysis of the stock holding values with different joint effects of temporary and persistent price impacts. The processes are calculated using the average of 
100, 000 sample paths.

Fig. 4. The optimal trading intensity u∗ and the return distortion process D∗ with varying persistent price impact levels. The processes are calculated using the average of 
100, 000 sample paths.

over certain threshold and becomes very close to 1, it is optimal for the manager to invest more in the market by raising liability, leading 
to the decrease in the funding ratio.

6.3. Temporary price impact and persistent price impact

To study the ALM problem under a comprehensive market friction setting, we here further consider the persistent price impact. The 
basic model parameters in Section 6.1 are again used. To compare the temporary effect with the persistent effect, we let � = 10−7 and 
C = 10−8 and vary one of these two parameters with the other fixed. For the return distortion process Dt , we set D0 = 0 and the 
resiliency as R = 1. Fig. 3 shows the holding values under different market friction setting. Note that these processes are average values 
over 100, 000 sample paths. Different from that under varying temporary effect, as the persistent price impact increases, the stock holding 
value increases and the improvement becomes more significant as time approaches T . By comparing the magnitudes of � and C , we 
conclude that the persistent effect affects the manager’s trading behavior more significantly compared to the temporary price impact, 
which is consistent with the numerical finding in Berry-Stölzle (2008b).

Fig. 4 presents the optimal trading intensity u∗ and the corresponding return distortion process D∗ with different persistent price 
impact levels. It is expected that the distortion D∗ increases with C since a higher C implies a stronger ability to affect the prices. The 
result about u∗ again demonstrates that the persistent price impact not only increases the trading intensity at the initial time, but also 
renders the manager to improve the trading speed as time approaches the terminal time T , leading to a reversed S-shaped curve for x∗ . 
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We point out that such a pattern is indeed induced by the horizon effect. When the persistent price impact is present, purchasing stocks 
at a high speed will not only significantly increases the stock holding values but also improve the trading cost in the present and future. 
Since the ALM planning is [0, T ] and the company’s objective function (4) does not involve what occurs after T , the high execution price 
after T will have no influence on it. As a result, when t is near the end time T , the manager decides to manipulate the price through the 
persistent price impact by trading aggressively to increase the stock holdings value.

7. Conclusion

In this paper, we study an ALM problem with return predictability and market frictions from both temporary and persistent price im-
pacts. We adopt the local mean-variance framework in Gârleanu and Pedersen (2013, 2016) in order to avoid the time-inconsistency issue 
commonly encountered under a mean-variance optimization criterion. Different from Gârleanu and Pedersen (2013, 2016), we assume the 
asset dynamics to follow a multivariate geometric Brownian motion instead of a multivariate Arithmetic Brownian motion. It turns out 
that the optimal portfolio choice features a target-chasing manner so that the current position is rebalanced towards a target portfolio, 
which is dynamically audited by the manager based on the new information on predicting signals and liability.

The persistent price impact considered in this paper complicates the solvability of the associated matrix Riccati equation system. We 
provide sufficient conditions to address the well-posedness of the corresponding coupled Riccati differential system. To this end, we are 
able to examine the effects of liability and market frictions on the optimal trading behavior. On the one hand, the need to hedge the 
liability risk is incorporated into the dynamic target portfolio, which then influences the current trading decision. On the other hand, the 
temporary price impact leads to a quadratic transaction cost that hinders aggressive trading behavior. In addition, if the persistent price 
impact is large, it is possible for the ALM manager to manipulate the price through an adoption of an aggressive trading strategy.
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Appendix A. Proofs in this paper

A.1. Proof of Theorem 3.2

Proof. (i) According to Lemma 3.1, u∗ and V , respectively given by (18) and (7), are well defined and solve the HJB equation (6). Applying 
standard result (see, for instance, Yong and Zhou (1999)), it suffices to prove that the candidate control u∗ is admissible. We write the 
portfolio dynamic generated by u∗ as x∗ . Plugging (18) into (2), we derive

x∗
t = E2(t)

−1x0 +
t∫

0

E2(s)�−1 [Axf (s)fs + Axl(s)ls
]

ds, (A.1)

where E2(t) is the bounded solution to the linear ODE (22). Since ft and lt are solutions to linear SDEs, it is clear from the standard theory 
(Yong and Zhou, 1999) that

E

[
sup

t∈[0,T ]
|ft |2

]
< ∞, E

[
sup

t∈[0,T ]
|lt |2

]
< ∞. (A.2)

Therefore, there exists a constant c1 > 0 such that

E

[
sup

t∈[0,T ]
∣∣x∗

t

∣∣2] ≤ c1

(
1 +E

[
sup

t∈[0,T ]
|ft |2

]
+E

[
sup

t∈[0,T ]
|lt |2

])
< ∞.

Then we derive

E

⎡
⎣ T∫ ∣∣u∗

t

∣∣2 dt

⎤
⎦ = E

⎡
⎣ T∫ ∣∣�−1 [Axf (t)ft + Axl(t)lt − Axx(t)xt

]∣∣2 dt

⎤
⎦

0 0
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≤ c2

(
1 +E

[
sup

t∈[0,T ]
|ft |2

]
+E

[
sup

t∈[0,T ]
|lt |2

]
+E

[
sup

t∈[0,T ]
∣∣x∗

t

∣∣2])
< ∞,

where c2 > 0 is a proper constant. Therefore, we verify u∗ given by (18) is the optimal trading intensity.
(ii) Based on the ODE for Axf and Axl , i.e. (11) and (12), we apply the Feynman-Kac formula and derive

Axf (t)ft + Axl(t)lt = γEt

⎡
⎣E1(t)

−1

T∫
t

e−ρ(s−t)E1(s)�PEt

[
xmv

s + �−1
P �Plls

]
ds

⎤
⎦ . (A.3)

According to Lemma 3.1, Axx(t) is positive definite for t ∈ [0, T ) and thus non-singular. Therefore, Maim
t is well defined. Plugging the above 

equation into (18) yields the desired result.
(iii) Under the condition � = λ�P , we assume the ansatz Axx(t) = axx(t)�P . From (8), we derive

ȧxx(t) = 1

λ
a2

xx(t) + ρaxx(t) − γ , axx(T ) = 0.

The above scalar Riccati equation admits the following explicit solution

axx(t) = −γ λ
(
1 − e(T −t)(y+−y−)

)
y+ − y−e(T −t)(y+−y−)

≥ 0, (A.4)

where y± = λ
2

(
−ρ ±

√
ρ2 + 4 γ

λ

)
. Then E1(t) = e

∫ T
t

axx(s)
λ

ds . The representations of Mrate and Maim follow by plugging the expressions of 
Axx and E1 into the results in (20). �
A.2. Proof of Lemma 4.2

Proof. We first supplement some notations. Let X ∈Rn×n be partitioned as

X =
(

X11 X12
X21 X22

)
. (A.5)

If X11 is a square matrix and invertible, we denote the matrix X22 − X21X−1
11 X12 by X/X11, which is referred to as the Schur complement of 

X11 in X (see Zhang (2006) for detailed illustrations). Similarly, if X−1
22 exists, we denote the matrix X11 − X12X−1

22 X21 by X/X11 and call it 
the Schur complement of X22 in X.

Then we introduce the following comparison result for matrix RDEs (see Theorem 4.1.19 in Abou-Kandil et al. (2003)).

Lemma A.1. For i = 1, 2, let Ei(t) ∈Rn×n be the solution of the following matrix RDE

Ėi(t) = Ei(t)SiEi(t) + Ei(t)Hi + H�
i Ei(t) + Qi, (A.6)

where Si, Qi are symmetric. If 
(

Q1 H1

H�
1 S1

)
≤

(
Q2 H2

H�
2 S2

)
, and E2(T ) ≤ E1(T ), then E2(t) ≤ E1(t) for t ∈ [0, T ].

We proceed to the proof of Lemma 4.2. Note that if (28) admits a unique bounded solution, the existence and uniqueness result for the 
remaining equations follows immediately because they can be considered as linear ODEs and solved in sequence. It suffices to prove that 
(28) has a unique bounded solution on [0, T ]. The main idea is to introduce two functions Ē, Eε that are bounded solutions of two matrix 
RDEs respectively and show Eε(t) ≤ Eyy(t) ≤ Ē(t) for t ∈ [0, T ] using Lemma A.1. Recall that the equation (28) has a standard expression 
(38). Define Q0 := M1�

−1M�
1 − Q, H0 := 1

2 ρI + N1 − N2�
−1M�

1 , S0 := N2�
−1N�

2 . Then (38) becomes

Ėyy(t) = Eyy(t)S0Eyy(t) + Eyy(t)H0 + H�
0 Eyy(t) + Q0.

Step 1. Let Ē(·) solve the following linear equation:

˙̄E(t) = Ē(t)H0 + H�
0 Ē(t) + Q0, (A.7)

with Ē(T ) = 0n×n . It is clear that this equation admits a bounded solution on [0, T ]. Note that(
Q0 H0

H�
0 0n×n

)
≤

(
Q0 H0

H�
0 S0

)
. (A.8)

Therefore, according to Lemma A.1, we have Ē(t) ≥ Eyy(t) for t ∈ [0, T ].
Step 2. Let ε > 0 be a constant. For each ε , consider the matrix RDE:

Ėε(t) = Eε(t)S(ε)Eε(t) + Eε(t)H + H�Eε(t) + Q(ε), Eε(T ) = 0n×n, (A.9)

where
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S(ε) = S0 +
(

�1(ε) 0n×n

0n×n 0n×n

)
, H =

( 1
2ρIn − �−1C� 0n×n

0n×n
1
2ρIn + R

)
, Q(ε) =

(
0n×n 0n×n

0n×n �2(ε)

)
,

and

�1(ε) = 1

ε
C�−1C� (

R + r f I
)−1

(
γ �P − C�−1C�)(

R� + r f I
)−1

C�−1C�,

�2(ε) = (1 + ε)R� (
γ �P − C�−1C�)−1

R.

(A.10)

We will show in the following that Eε(t) ≤ Eyy(t) for each ε . Since C�−1C� < γ�P , we have �i ≥ 0 for i = 1, 2 and S0 ≤ S. Moreover, 

since Q(ε) − Q0 =
(

γ�P − C�−1C� R
R� �2(ε)

)
. Then

(
Q(ε) − Q0

)
/
(
γ �P − C�−1C�)

= εR� (
γ �P − C�−1C�)−1

R > 0n×n. (A.11)

According to Theorem 1.12 in Zhang (2006), we obtain Q(ε) − Q0 > 0n×n . Let G ∈ Rn be the last n rows of the last n columns of (
Q(ε) − Q0

)−1
. Theorem 1.2 in Zhang (2006) yields

G = 1

ε
R−1

(
γ �P − C�−1C�)

R�−1
> 0n×n.

Then we consider the Schur complement of Q(ε) − Q0 in the matrix 
(

Q(ε) H
H� S

)
−

(
Q0 H0

H�
0 S0

)
:

S − S0 −
(

0n×n C�−1C�
0n×n 0n×n

)(
Q(ε) − Q0

)−1
(

0n×n 0n×n

C�−1C� 0n×n

)

=
(

�1(ε) − C�−1C�GC�−1C� 0n×n

0n×n 0n×n

)
= 02n×2n. (A.12)

Applying Theorem 1.12 in Zhang (2006) again, we have 
(

Q(ε) H
H� S

)
≥

(
Q0 H0

H�
0 S0

)
. If Eε(t) exist, Lemma A.1 yields Eyy(t) ≥ Eε(t) for 

t ∈ [0, T ]. In the following, we show that a bounded solution Eε(t) exists under the given condition.

We write Eε =
(

Eε
xx Eε

xD
Eε

xD
� Eε

D D

)
. Then it is clear from (A.9) that Eε

xx = Eε
xD ≡ 0n×n and Eε

D D satisfies

Ė
ε
D D(t) = Eε

D D(t)C�−1C�Eε
D D(t) + Eε

D D(t)�
(

1

2
ρIn + R

)
+

(
1

2
ρIn + R�

)
Eε

D D(t) + �2(ε). (A.13)

Next, we show the existence and uniqueness result for Eε
D D(t). The proof is in the same spirit of that in Bensoussan et al. (2022); Chu 

et al. (2022). Let CT be the Banach space of the continuous matrix functions E(t) : [0, T ] → Rn×n with the maximum norm ‖E‖∞ :=
maxt∈[0,T ] ‖E(t)‖. Let BT be a ball with radius H in CT . For each ε > 0, we define an operator J ε on BT as follows

(J εE)(t) :=
T∫

t

[
E(s)C�−1C�E(s) + E(s)�

(
1

2
ρIn + R

)
+

(
1

2
ρIn + R�

)
E(s) + �2(ε)

]
ds,

for t ∈ [0, T ]. If

T (

∥∥∥C�−1C�
∥∥∥ H2 + 2

∥∥∥∥1

2
ρIn + R

∥∥∥∥ H + ‖�2(ε)‖) < H, (A.14)

we have for any function Ê ∈BT , 
∥∥∥J ε(Ê)

∥∥∥∞ < H . Therefore, J ε(BT ) ⊂BT and J ε is a self-map. Note that (A.14) is satisfied if

T <
1

2
(∥∥ 1

2ρIn + R
∥∥+

√∥∥C�−1C�∥∥‖�2(ε)‖
) . (A.15)

Next we prove that J ε(BT ) is relatively compact. Consider any sequence in J ε(BT ) denoted by 
{
J ε(En)

}
n=1,2,...

. The sequence is uni-
formly bounded, and from the definition of J ε , the derivatives of the functions in the sequence are also uniformly bounded. The latter 
implies 

{
J ε(En)

}
n=1,2,...

is equicontinuous. By using Arzela-Ascoli theorem, 
{
J ε(En)

}
n=1,2,...

has a uniformly convergent subsequence. 
And hence J ε(BT ) is relatively compact.

According to the Schauder’s fixed point theorem, the self-map J ε admits a fixed point, which is the solution to (A.13). Moreover, 
the uniqueness of the Eε follows from the fact that the right-hand side of the equation (A.13) is locally Lipschitz continuous. Note that 
limε↓0 �2(ε) = ψ2. By letting ε ↓ 0, we obtain that if

T <
1

2
(
ψ + √

ψ ψ
) ,
1 0 2
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there exists an ε0 > 0 and a bounded function Eε0 on [0, T ].
Step 3. Since Eε0(t) ≤ Eyy(t) ≤ Ē(t), the existence result for (28) is proved. The uniqueness of the solution to (28) follows easily by 

applying Lemma A.1. Exx is positive semidefinite since Exx ≥ Eε0
xx = 0n×n . �

A.3. Proof of Lemma 4.3

Proof. It suffices to show the result for equation (28). The following proof is in the spirit of that of Theorem 5 in Chu et al. (2022). 
Under the assumption of Lemma 4.3, one can verify that Exx(t), ExD(t), ED D(t) are diagonal. We denote their diagonal elements by Ei

xx(T −
t), Ei

D D(T − t) for i = 1, 2, . . . , n, respectively. Note that the timeline is reversed. Then, the existence and unique result of the matrix RDE 
(28) is equivalent to that of the following coupled RDEs:

Ė i
xx(t) = −λ−1

i (Ei
xx(t) + ci Ei

xD(t) − ci)
2 − ρEi

xx(t) + γ σ 2
P ,i, (A.16)

Ė i
xD(t) = −λ−1

i (Ei
xx(t) + ci Ei

xD(t) − ci)(Ei
xD(t) + ci Ei

D D(t)) − (ρ + ri)ExD(t) + ri, (A.17)

Ė i
D D(t) = −λ−1

i (Ei
xD(t) + ci Ei

D D(t))2 − E D D(t)(ρ + 2ri). (A.18)

For simplicity, we suppress the superscript i in the following statement. Let C :=C([0, T ]; R) denote the family of continuous functions 
f : [0, T ] → R with the norm ‖ f ‖∞ = maxt∈[0,T ] | f (t)|. Define the cube H := {

f ∈C; f (t) ∈ [0,1] for t ∈ [0, T ]}. Let ĝxD be an arbitrary 
function in H. We introduce a map T : H→C, where T (ĝxD) := gxD is a part of the solutions of the following RDE system.

ġD D(t) = −λ−1c2 g2
D D(t) − (ρ + 2r + 2λ−1c ĝxD(t))gD D(t) − λ−1 ĝ2

xD(t), (A.19)

ġxx(t) = −λ−1 g2
xx(t) − (2λ−1c(ĝxD(t) − 1) + ρ)gxx(t) + γ σ 2

P − λ−1c2(ĝxD(t) − 1)2, (A.20)

ġxD(t) = −λ−1cg2
xD(t) −

[
λ−1(gxx(t) − c) + λ−1c2 gD D(t) + ρ + r

]
gxD(t) − λ−1(gxx(t) − c)cgD D(t) + r. (A.21)

We introduce a lemma before showing that the map T is well defined.

Lemma A.2. For a constant a < 0 and two functions g1, g2 ∈C([0, ∞), R). Suppose there exist two constants m1, m2 ∈R such that g1(t) < m1 <

g2(t) < m2 , for t > 0. Consider a non-autonomous system:

ẏ(t) = a(y(t) − g1(t))(y(t) − g2(t)), y(0) = ξ ∈R. (A.22)

Denote the solution to the above equation as y(t; 0, ξ). Then every system trajectory starting from an initial point ξ ∈ [m1, m2] stays in an interval 
[m1, m2], i.e. for any t ≥ 0,

y(t;0, ξ) ∈ [m1,m2].

Proof. To prove this lemma, we first introduce a Lyapunov function v(y) = (y − m1+m2
2 )2. Then it is clear that v(y) ≤ (m2−m1

2

)2
if and 

only if y ∈ [m1, m2]. And v(y) = (m2−m1
2

)2
if and only if y ∈ {m1,m2}. The evolution of the Lyapunov function along the curve y(t; 0, ξ) in 

the system (A.22) is

dv(y(t;0, ξ))

dt
= 2a

(
y − m1 + m2

2

)
(y − g1(t))(y − g2(t))

∣∣∣
y=y(t;0,ξ)

. (A.23)

By using the assumption, we have dv(y(t;0,ξ))
dt

∣∣∣
y(t;0,ξ)=m1

≤ 0 and dv(y(t;0,ξ))
dt

∣∣∣
y(t;0,ξ)=m2

≤ 0, which implies that v(y(t; 0, ξ)) ≤ (m2−m1
2

)2
. 

Therefore, y(t; 0, ξ) ∈ [m1, m2] for any t ≥ 0. �
Then we proceed to show that T is a self-map, i.e. T (H) ⊂H:
First, we write the right-hand-side of (A.19) as hD D(t, gD D(t)). Then it is clear that, for each fixed t , hD D(t, x) = 0 admits two 

roots xD D,−(t) < xD D,+(t). Note that hD D(0) < 0 and hD D(−c−1 ĝxD(t)) = c−1 ĝxD(t)(ρ + 2r) > 0. Since −λ−1c2 < 0 and −(ρ + 2r +
2λ−1c ĝxD(t)) < 0, we have xD D,+(t) ∈ (−c−1 ĝxD(t), 0). By applying Lemma A.2, we derive gD D(t) ∈ [−c−1 ĝxD(t), 0].

Second, we similarly define the right-hand-side of (A.20) as hxx(t, gxx(t)) and xxx,−(t) < xxx,+(t) as two roots of hxx(t, x) = 0 for each t . 
Recall that we assume γ σ 2

P > λ−1c2. Therefore,

hxx(t,0) = −λ−1c2(ĝxD(t) − 1)2 + γ σ 2
P ≥ −λ−1c2 + γ σ 2

P > 0.

Since xxx,+(t) is a continuous function for t ∈ [0, T ], there exists a constant M such that xxx,+(t) < M . We conclude xxx,+(t) ∈ (0, M). 
Lemma A.2 yields gxx(t) ∈ [0, M].

Third, we write the right-hand-side of (A.21) as hxD(t, gxD(t)) and xxD,−(t) < xxD,+(t) as two roots of hxD(t, x) = 0 for each t . Note that

hxD(t,0) = −λ−1c(gxx(t) − c)gD D(t) + r ≥ −λ−1c2 + r > 0,

and hxD(t, 1) = −λ−1 gxx(t)(1 + cgD D(t)) − ρ < −ρ < 0. Therefore xxD,+(t) ∈ [0, 1]. Then, utilizing Lemma A.2, we obtain gxD ∈ H. Thus, 
T is a self-map.

By following the arguments in Step 2 of the proof of Lemma 4.2, it can be proved that T (H) is a relative compact subset of H and 
T admits a unique fixed point, denoted by gxD,∞ . With ĝxD replaced by gxD,∞ , we define the solutions to the equations (A.19), (A.20) as 
gD D,∞, gxx,∞ . It is clear that the solutions of (A.16)-(A.18) coincides with gxx,∞, gxD,∞, gD D,∞ . This proves the existence and uniqueness 
result for (28). �
76



T. Yan, J. Han, G. Ma et al. Insurance: Mathematics and Economics 111 (2023) 57–83
A.4. Proof of Theorem 4.4

Proof. (i) Similar to the proof of Theorem 3.2 (i), it suffices to show u∗ given by (39) is admissible. We write y∗(t) := (
x∗(t)�,D∗(t)�

)�
as the state process generated by u∗ and y0 := (

x�
0 ,D�

0

)�
. Then u∗ has the expression

u∗(t) = �−1
[(

M1 − Eyy(t)N2
)� y∗(t) + N�

2 Eyf (t)f(t) + N�
2 Eyl(t)l(t)

]
.

From dy∗(t) = (−N1y∗(t) + N2u∗(t))dt , we derive

y∗(t) = Ê(t)−1y0 +
t∫

0

Ê(t)−1Ê(s)
(

N2�
−1N�

2 Eyf (s)fs + N2�
−1N�

2 Eyl(s)ls

)
ds,

where Ê solves

˙̂E(t) =
[

N2�
−1

(
N�

2 Eyy(t) − M�
1

)
+ N1

]
Ê(t), Ê(0) = I2n.

Following the proof of Theorem 3.2 (i), one can show E 
[

supt∈[0,T ] |y∗(t)|2
]

< ∞ and E 
[

supt∈[0,T ] |u∗(t)|2
]

< ∞.

(ii) Using the ODE for Eyf and Eyl , i.e. (31) and (32), we apply the Feynman-Kac formula and derive

Eyf (t)ft + Eyl(t)lt = Et

⎡
⎣ T∫

t

e−ρ(s−t)Ẽ1(s)−1Ẽ1(s) [M2fs + M3ls] ds

⎤
⎦ .

Plugging the above expression into (39) yields the desired result. �
A.5. Proof of Theorem 4.6

Proof. The first-order condition in the HJB equation (5) is u∗ = �−1
(

∂V
∂x + C� ∂V

∂D + C�x
)
. Plugging u∗ to (5) and replacing V with V ε lead 

to

−ρV ε + ∂V ε

∂t
+Lx V ε − 1

ε
x�R1D − 1

ε

∂V ε

∂D

�
R1D + 1

2ε

(
∂V ε

∂x
+ εC�

1
∂V ε

∂D
+ εC�

1 x
)�

�−1
1

(
∂V ε

∂x
+ εC�

1
∂V ε

∂D
+ εC�

1 x
)

= 0,

(A.24)

where the operator Lx is given by (45).
Following Ekren and Muhle-Karbe (2019), we consider the asymptotic expansion of the following function

Ṽ ε(t,x,D, f, l) = V ε(t,x, εD, f, l) + ε

(
x�D − 1

2
D�C−1

1 D
)

, (A.25)

where a small distortion εD is considered in order to characterize the limiting trading behavior under large liquidity. Then Ṽ ε satisfies

−ρ Ṽ ε + ∂ Ṽ ε

∂t
+Lx Ṽ ε +HṼ ε + ρε

(
x�D − 1

2
D�C−1

1 D
)

− D�C−1
1 R1D = 0, (A.26)

where

HṼ ε = −1

ε

∂ Ṽ ε

∂D

�
R1D + 1

2ε2

∂ Ṽ ε

∂y

�
Ĉ1�

−1
1 Ĉ�

1
∂ Ṽ ε

∂y
.

Next, we consider the following ansatz for Ṽ ε :

Ṽ ε(t,x,D, f, l) = V 0(t, f, l) − εV 1(t, l) − ε2 (ω ◦ ξε
)
(x,D, f, l) + o(ε), (A.27)

where 
(
ω ◦ ξ ε

)
(x, D, f, l) = ω

(
ξ ε

)
and

ξ ε := (
ξ ε

1, ξ ε
2

) =
(
ε− 1

2

(
x − xnf(f, l)

)
, ε− 1

2 D
)

. (A.28)

We note that V 1 = V 1(t, l), ω = ω(ξ) are functions to be determined later. Then (A.26) becomes(
−ρV 0 + ∂V 0

∂t
+Lx V 0

)
︸ ︷︷ ︸

I0

+ε

(
ρV 1 − ∂V 1

∂t
−Lx V 1 − ρξ ε

2
�C−1

1 R1ξ
ε
2

)
︸ ︷︷ ︸

I1

+ε2

(
ρ
(
ω ◦ ξ ε

)−Lx (ω ◦ ξε
)+ 1

ε

∂
(
ω ◦ ξ ε

)
∂D

�
R1D + 1

2ε2

∂
(
ω ◦ ξε

)
∂y

�
Ĉ1�

−1
1 Ĉ�

1
∂
(
ω ◦ ξε

)
∂y

)
︸ ︷︷ ︸

I2

+ρε

(
εξ ε

1
�
ξ ε

2 + √
εxnf�ξ ε

2 − 1
εξε

2
�C−1

1 ξ ε
2

)
− εξ ε

2
�C−1

1 R1ξ
ε
2 + o(ε) = 0. (A.29)
2

77



T. Yan, J. Han, G. Ma et al. Insurance: Mathematics and Economics 111 (2023) 57–83
Using (45), (44) and (A.28), we derive

I0 = −ρV 0 + ∂V 0

∂t
+Lxnf

V 0 − γ

2
εξ ε

1
�
�P ξ ε

1 = −γ

2
εξε

1
�
�P ξ ε

1.

Then

I1 = ε

(
ρV 1 − ∂V 1

∂t
−Lxnf

V 1 − ρξ ε
2
�C−1

1 R1ξ
ε
2

)
+ γ

2
ε2ξε

1
�
�P ξ ε

1.

Next, we simplify I2. For ζ ∈ {x,D, f, l}, by applying the chain rule to the composite function ω ◦ ξ , we obtain

∂
(
ω ◦ ξ ε

)
∂ζ

= ε− 1
2

[
∂
(
x − xnf

)
∂ζ

�
∂ω

∂ξ1
+ ∂D

∂ζ

� ∂ω

∂ξ2

]
.

Moreover, since xnf is linear in f and l, for ζ , ̃ζ ∈ {f, l}, we derive

∂2
(
ω ◦ ξ ε

)
∂ζ∂ ζ̃

� = ε−1 ∂xnf

∂ζ

�
∂2ω

∂ξ1∂ξ�
1

∂xnf

∂ ζ̃
.

Then the terms in I2 can be reformulated as

I2 = ε
[
− 1

2
QVl (ω) + ∂ω

∂ξ2

�
R1ξ

ε
2 − 1

2

(
∂ω

∂ξ1
+ C�

1
∂ω

∂ξ2

)�
�−1

1

(
∂ω

∂ξ1
+ C�

1
∂ω

∂ξ2

)]
+ o(ε),

where

QV l (ω) = tr

(
∂xnf

∂f

�
∂2ω

∂ξ1∂ξ�
1

∂xnf

∂f
� f

)
+ ∂xnf

∂l

�
∂2ω

∂ξ1ξ
�
1

∂xnf

∂l
�ll

2 + 2
∂xnf

∂l

�
∂2ω

∂ξ1ξ
�
1

∂xnf

∂f
� f ll.

We collect the terms of order ε in (A.29) and let their summation equal to zero. Following Ekren and Muhle-Karbe (2019), we introduce 
the following two differential equations for function (ω, a) = (ω(ξ1, ξ2), a(l)): The first corrector equation

−1

2
QV l (ω) − γ

2
ξ�

1 �P ξ1 − ρξ�
2 C−1

1 R1ξ2 + ∂ω

∂ξ2

�
R1ξ2 + 1

2

(
∂ω

∂ξ1
+ C�

1
∂ω

∂ξ2

)�
�−1

1

(
∂ω

∂ξ1
+ C�

1
∂ω

∂ξ2

)
+ a(l) = 0, (A.30)

and the second corrector equation

ρV 1 − ∂V 1

∂t
−Lxnf

V 1 = a(l), V 1(T , l) = 0. (A.31)

To proceed, we introduce the following lemma.

Lemma A.3. Suppose C−1
1 R1 + R1C−1

1 is positive definite. The algebraic Riccati equation (47) has a maximal solution K ∈ R2n×2n. Moreover, K is 
positive definite.

Proof. This lemma can be proved similarly following the proof of Lemma 3.2 in Ekren and Muhle-Karbe (2019). �
Then, by a simple validation and the Feynman-Kac formula, the following two lemmas are valid.

Lemma A.4. The pair (ω, a) that solves the first corrector equation (A.30) admits the following form

ω(ξ ) = 1

2
ξ�Kξ ,

a(l) = 1

2
��

Pl�
−1
P

�
K11�

−1
P �Pl�ll

2 + 1

γ
��

PlK11�
−1
P

�
B� f ll + 1

2γ 2
tr
(

B��−1
P

�
K11�

−1
P B� f

)
,

where K ∈R2n×2n is the maximal solution in Lemma A.3 and K11 ∈Rn×n is the submatrix of K formed by intersecting the first n rows with the first n
columns.

Lemma A.5. The solution to (A.31), i.e. V 1 , admits a classical solution and it has the probability representation (48).

We define

�̃ε(t,x,D, f, l) := V 0(t, f, l) − εV 1(t, l) − ε2 (ω ◦ ξ ε
)
(x,D, f, l).

By the previous discussion, we have

−ρ�̃ε + ∂�̃ε

+Lx�̃ε +H�̃ε + ρε

(
x�D − 1

D�C−1
1 D

)
− D�C−1

1 R1D = o(ε).

∂t 2
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Let

�ε(t,x,D, f, l) := �̃ε(t,x,D, f, l) − ε(x�D − 1

2
D�C−1

1 D).

Then we have

−ρ�ε + ∂�ε

∂t
+Lx�ε − 1

ε
x�R1D − 1

ε

∂�ε

∂D

�
R1D + 1

2ε

(
∂�ε

∂x
+ εC�

1
∂�ε

∂D
+ εC�

1 x
)�

�−1
1

(
∂�ε

∂x
+ εC�

1
∂�ε

∂D
+ εC�

1 x
)

= o(ε),

which implies that the function �ε satisfies the equation (A.24) at the leading order. By utilizing the first-order condition, the optimal 
leading-order performance is attained by

uε(x,D, f, l) = ε−1�−1
1 Ĉ�

1 K
(

xnf(f, l) − x
−εD

)
.

We complete the proof. �
Appendix B. A discrete-time formulation

In this section, we provide a discrete-time formulation of the asset-liability management under market frictions. Let the time variable 
t = 1, 2, . . . , T . In the financial market, we consider an economy with n stocks: Pt = (P1t , P2t , . . . , Pnt)

� . The percentage excess returns of 
these assets are denoted by a random vector rt = (r1t , r2t , . . . , rnt)

� . In other words, rit = Pit+1/Pit −1 −r f , where r f denotes the risk-free 
interest rate and i = 1, 2, . . . , n. As our main focus is the impact of market liquidity on the asset-liability management, for simplicity, we 
assume rt ’s are independent and identically distributed with mean vector μr and variance-covariance matrix �r .

The manager rebalances the strategy at the end of each time point. The vector of the dollar holdings, i.e. the portfolio, is denoted by xt

and the dollar trade vector is denoted by 
xt := xt − xt−1. We assume a linear temporary price impact in which trading ut dollar amount 
incurs a trading cost of 1

2 
x�
t �
xt . We assume � is positive definite. Let the current asset value of the insurance company be at . By the 

means of self-financing principle, we obtain the dynamics of at :

at+1 = (1 + r f )at + x�
t r(t + 1) − 1

2

x�

t �
xt . (B.1)

Following Leippold et al. (2004), the liability process is defined as

lt+1 = ltqt+1, (B.2)

where qt ’s are independent and identically distributed non-negative random variables representing the liability return with mean μl and 
variance σ 2

l . We assume a constant covariance between r and q, i.e. Cov(εrt , qt) = �rl ∈Rn .
The persistent price impact is addressed using the return distortion Dt satisfies the following dynamics:

Dt+1 = (I − R)(Dt + C
xt), (B.3)

where we assume a trading speed of 
xt will raise or reduce the return by C
xt , where C ∈Rn×n is a positive definite matrix measuring 
the persistent price impact level. R ∈Rn×n is a positive definite matrix representing the mean-reverting speed (resiliency of the persistent 
price impact). The process D extends the preceding model by having a return vector rt + Dt+1 − Dt .

Similar to the analysis in Gârleanu and Pedersen (2013), for each period from t to t + 1, the return rate of the net asset value due to 
the posttrade return distortion is

Dt+1 − (Dt + C
xt) = −R (Dt + C
xt) ,

and the persistent price impact also raises the stock value by

xt−1C
xt + 1

2

x�

t C
xt .

The first term represents the mark-to-market gain from the old position xt−1 from the price impact of the new trade Cut . The second term 
reflects that the traded assets 
xt are assumed to be executed at the average distortion Dt + 1

2 C
xt and hence, ut earns a mark-to-market 
gain of 1

2 
x�
t C
xt as the price moves up an additional 1

2 C
xt . Moreover, at time t , the conditional variance of the dollar excess return 
of the net asset value in the next period is

x�
t �rxt − 2x�

t �rllt + σ 2
l l2t .

The manager aims to optimize the local mean-variance criterion which is a cumulative sum of the conditional expectation and variance 
of the dollar excess return in each period. Specifically, the objective function is

max
x1,...,xT

E
[ T∑

t=0

ρt+1{ (1 + r f − qt+1
)

lt + x�
t [μr − R(Dt + C
xt)] − 1

2
γ
(

x�
t �rxt − 2x�

t �rllt + σ 2
l l2t

)}

+
T∑

ρt
(

−1

2

x�

t �
xt + x�
t−1C
xt + 1

2

x�

t C
xt

)]
, (B.4)
t=0
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where γ > 0 represents the risk aversion parameter, ρ ∈ (0, 1) is the discount factor. The third line is discounted by ρt because these 
cash flows are incurred at time t , not time t + 1.

For the state vector 
(
x�

t−1,D�
t , lt

)� = (x�, D�, l)� ∈R2n+1, the Bellman equations for the optimization problem (B.4) is

V T +1(x,D, l) = 0, (B.5)

Vt(x,D, l) = max
xt

{
ρt+1{ (1 + r f − μl

)
l + x�

t [μr − R (D + C (xt − x))]

−1

2
γ
(

x�
t �rxt − 2x�

t �rll + σ 2
l l2

)}
+ρt{− 1

2
(xt − x)� � (xt − x) + x�C (xt − x)

+1

2
(xt − x)� C (xt − x)

}
+Et

[
Vt+1(xt, (I − R) (D + Cxt − Cx) , l2q2

t+1

]}
, (B.6)

where Et [·] =E 
[·∣∣xt−1 = x,Dt = D, lt = l

]
.

For t = 0, 1, . . . , T + 1, consider the following ansatz for Vt in the Bellman equation (B.6):

Vt(x,D, l) = ρt
[1

2
x�Exx(t)x + 1

2
D�ED D(t)D + 1

2
Ell(t)l

2 + x�ExD(t)D + x�Exl(t)l

+D�EDl(t)l + x�Ex(t) + D�ED(t) + El(t)l + Ec(t)
]
, (B.7)

with Exx(T ) = ED D(T ) = ExD(T ) = 0n×n , Exl(T ) = EDl(T ) = Ex(T ) = ED(T ) = 0n×1, Ell(T ) = El(T ) = Ec(T ) = 0.

For the ease of illustration, we define y := (x�, D�)� , Eyy :=
(

Exx ExD

E�
xD ED D

)
, Eyl :=

(
Exl
EDl

)
, Ey :=

(
Ex

ED

)
and the matrices M1, N1 ∈

R2n×2n, M2 ∈Rn×n, N2 ∈R2n×n, M3 ∈Rn×2n:

M1 =
(

� + C 0n×n

0n×n 0n×n

)
,

M2 = ρRC + ρC�R� + ργ �r + � − C,

M3 = (
� + ρRC −ρR

)
,

N1 =
(

0n×n 0n×n

− (I − R)C I − R

)
, N2 =

(
I

(I − R)C

)
.

Note that at stage t , the state variable is yt = (
x�

t−1,D�
t

)
and the control variable is xt . For yt = y, according to the special form of Vt+1 in 

(B.7), we obtain

Et

[
Vt+1(xt, (I − R) (D + Cxt − Cx) , l2q2

t+1

]
= ρt+1

[1

2
(N1y + N2xt)

� Eyy(t + 1) (N1y + N2xt) + 1

2
Ell(t + 1)

(
μ2

l + σ 2
l

)
l2

+ (N1y + N2xt)
� Eyl(t + 1)μll + (N1y + N2xt)

� Ey(t + 1) + El(t + 1)μll + Ec(t + 1)
]
.

Plugging the above into (B.6), we obtain

Vt(y, l) = max
xt

ρt
{

− 1

2
x�

t H(t)xt + x�
t

[
Ly(t)y + Ll(t)l + Lc(t)

]− 1

2
y�M1y

+ρ

2
y�N�

1 Eyy(t + 1)N1y + ρy�N1Eyl(t + 1)μll + ρy�N1Ey(t + 1)

+ρ

2
l2
[

Ell(t + 1)
(
μ2

l + σ 2
l

)
− γ σ 2

l

]
+ ρ

(
1 + r f − μl + El(t + 1)μl

)
l + ρEc(t + 1).

}
(B.8)

Let H(t) ∈Rn×n, Ly(t) ∈Rn×2n, Ll(t), Lc(t) ∈Rn×1 be given by

H(t) = M2 − ρN�
2 Eyy(t + 1)N2,

Ly(t) = M3 + ρN�
2 Eyy(t + 1)N1,

Ll(t) = ργ �rl + ρN�
2 Eyl(t + 1)μl,

Lc(t) = ρμr + ρN�
2 Ey(t + 1).

(B.9)

Before proceeding to solve (B.8), we introduce the following assumption to ensure the global maximizer exists.

Assumption 2. For t = T , T − 1, . . . , 0, H(t) > 0.
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We note that the above assumption is easy to verify in practice since H(t) can be derived by solving the recursive equation of Eyy(t), 
i.e. equation (B.11). See Glasserman and Xu (2013) for a similar assumption. Immediately, a sufficient condition for Assumption 2 is 
M2 = ρRC + ρC�R� + ργ�r + � − C > 0 and Eyy(t) ≤ 0 for t = T , T − 1, . . . , 0.

Theorem B.1. Suppose Assumption 2 is enforced. Let H(t), Lx(t), LD(t), Ll(t), Lc(t) be matrix valued functions given by (B.9) and (B.18). For t =
0, 1, . . . , T ,

1. the optimal portfolio is

x∗
t = H(t)−1 [Lx(t)x∗

t−1 + LD(t)Dt + Ll(t)lt + Lc(t)
]
.

2. if H(t) − Lx(t) is non-singular,

x∗
t = x∗

t−1 + Mrate
t

[
Maim

t − x∗
t−1

]
,

where

Mrate
t = I − H−1(t)Lx(t),

Maim
t = (H(t) − Lx(t))

−1 [LD(t)Dt + Ll(t)lt + Lc(t)] .

Proof. Since (ii) is a direct result of (i), we only prove (i). The first-order derivative condition for (B.8) yields the maximizer

x∗
t = H(t)−1 [Ly(t)y + Ll(t)l + Lc(t)

]
. (B.10)

Substituting (B.10) into the Bellman equation (B.6) and comparing the coefficients, we derive the following discrete Riccati equation:

Eyy(t) = Ly(t)
�H(t)−1Ly(t) + ρN�

1 Eyy(t + 1)N1 − M1, (B.11)

Ell(t) = Ll(t)
�H(t)−1Ll(t) + ρEll(t + 1)

(
μ2

l + σ 2
l

)
− ργ σ 2

l , (B.12)

Eyl(t) = Ly(t)
�H(t)−1Ll(t) + ρμlN1Eyl(t + 1), (B.13)

Ey(t) = Ly(t)
�H(t)−1Lc(t) + ρN1Ey(t + 1), (B.14)

El(t) = Ll(t)
�H(t)−1Lc(t) + ρμl El(t + 1) + ρ(1 + r f − μl), (B.15)

Ec(t) = 1

2
Lc(t)

�H(t)−1Lc(t) + ρEc(t + 1), (B.16)

for t = 1, . . . , T and

Eyy(T + 1) = 02n×2n, Eyl(T + 1) = Ey(T + 1) = 02n×1,

Ell(T + 1) = El(T + 1) = Ec(T + 1) = 0. (B.17)

The solution to the system (B.11)–(B.17) is well defined under Assumption 2. Let Lx, LD be the first n columns and the last n columns 
respectively, then

Lx(t) = −ρ
[

ExD(t + 1) + C� (I − R)ED D(t + 1)
]
(I − R)C + � + ρRC,

LD(t) = −ρR + ρ
[

ExD(t + 1) + C� (I − R)ED D(t + 1)
]
(I − R) .

(B.18)

We rewrite the optimal solution (B.10) as

x∗
t = H(t)−1 [Lx(t)x∗

t−1 + LD(t)Dt + Ll(t)lt + Lc(t)
]
,

= x∗
t−1 + Mrate

t

[
Maim

t − x∗
t−1

]
. �

Define the single-period Markowitz mean-variance portfolio as xmv
t = 1

γ �−1μr . The following corollary states the optimal portfolio 
with only temporary price impact.

Proposition B.2. Suppose there is only temporary price impact. Then for t = 0, 1, . . . , T ,

(i) The optimal trading strategy is

x∗
t = x∗

t−1 + Mrate
t

[
Maim

t − x∗
t−1

]
,

where
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Mrate
t = I − (ργ �r + � − ρExx(t + 1))−1 �,

Maim
t = Z(t)

(
xmv

t + �−1
r �rllt

) + (I − Z(t))Et

[
Maim

t+1

]
,

Z(t) = γ (γ�r − Exx(t + 1))−1 �r and Exx(t) satisfies the recursive equation (B.19).
(ii) if the temporary price impact level � = λ�r with a constant λ > 0, then

Mrate
t = 1 − λ

ρ (γ + axx(t + 1)) + λ
,

Maim
t = z(t)

(
xmv

t + �−1
r �rllt

)+ (1 − z(t))Et

[
Maim

t+1

]
,

where z(t) = γ
γ +axx(t+1)

, and {axx(t)}t=0,1,...,T +1 is a non-negative sequence solving the recursive equations (B.32). Moreover, axx(t) is increasing 
in λ and axx(t)

γ is decreasing in γ .

Proof. In this case, the equation system (B.11)–(B.17) can be simplified. We have ED D = 0n×n, EDl = ED = 0n×1 and

Exx(t) = �H(t)−1� − �, (B.19)

Ell(t) = ρ2 (γ �rl + μlExl(t + 1))� H(t)−1 (γ �rl + μlExl(t + 1)) + ρEll(t + 1)
(
μ2

l + σ 2
l

)
− γρσ 2

l , (B.20)

Exl(t) = ρ�H(t)−1 (γ �rl + μlExl(t + 1)) , (B.21)

Ex(t) = ρ�H(t)−1 (μr + Ex(t + 1)
)
, (B.22)

El(t) = ρ2 (γ �rl + μlExl(t + 1))H(t)−1 (Ex(t + 1) + μl) , (B.23)

Ec(t) = ρ2 (Ex(t + 1) + μr

)� H(t)−1 (Ex(t + 1) + μr

)+ ρEc(t + 1), (B.24)

with Exx(T + 1) = 0n×n, Exl(T + 1) = Ex(T + 1) = 0n×1, Ell(T + 1) = El(T + 1) = Ec(T + 1) = 0 and H(t) = ργ�r + � − ρExx(t + 1).
The optimal trading strategy is given by

x∗
t = H(t)−1 [�x∗

t−1 + ρ (γ �rl + μlExl(t + 1)) lt + ρEx(t + 1) + ρμr
]
,

= x∗
t−1 + Mrate

t

[
Maim

t − x∗
t−1

]
,

where

Mrate
t = I − H(t)−1�, (B.25)

Maim
t = ρ (H(t) − �)−1 [(γ �rl + μlExl(t + 1)) lt + Ex(t + 1) + μr] . (B.26)

Then we express (B.26) using the single-period Markowitz mean-variance portfolio

Maim
t = ρ (H(t) − �)−1 [γ �rxmv

t + γ �rllt + μlExl(t + 1)lt + Ex(t + 1)
]
. (B.27)

On the other hand, according to (B.26), (B.21) and (B.23), we have

Et

[
Maim

t+1

]
= (

� − �H(t + 1)−1�
)−1

[μlExl(t + 1)lt + Ex(t + 1)] . (B.28)

Combining (B.27) and (B.28) and utilizing (B.19), we obtain

Maim
t = (H(t) − �)−1

[
ργ �rxmv

t + ργ �rllt + ρ
(
� − �H(t + 1)−1�

)
Et

[
Maim

t+1

]]
(B.29)

= (H(t) − �)−1
[
ργ �rxmv

t + ργ �rllt + (H(t) − � − ργ �r)Et

[
Maim

t+1

]]
(B.30)

= Z(t)
(
xmv

t + �−1
r �rllt

)+ (I − Z(t))Et

[
Maim

t+1

]
, (B.31)

where Z(t) = ργ (H(t) − �)−1 �r .
Suppose � = λ�r . We consider the ansatz for Exx(t) = −axx(t)�r with axx(t) ∈R. From (B.19), we derive, for t = T , T − 1, . . . , 0,

axx(t) = λ − λ2

ργ + λ + ρaxx(t + 1)
, axx(T + 1) = 0. (B.32)

By employing mathematical induction, we have axx(t) > 0 for t < T + 1. Therefore, the above recursive equations is well defined for all T . 
Then (B.29) can be simplified as

Maim
t = γ

γ + axx(t + 1)

(
xmv

t + �−1
r �rllt

)+ axx(t + 1)

γ + axx(t + 1)
Et

[
Maim

t+1

]
. (B.33)

We write bxx(t) := axx(t) . Note that
γ

82



T. Yan, J. Han, G. Ma et al. Insurance: Mathematics and Economics 111 (2023) 57–83
∂axx(t)

∂λ
= ρ2 (γ + axx(t + 1)) (γ + axx(t + 1)) + λ2ρ ∂axx(t+1)

∂λ

(ργ + λ + ρaxx(t + 1))2
,

∂bxx(t)

∂γ
=

ρλ2 ∂bxx(t+1)
∂γ − ρ2λ(1 + bxx(t + 1))2

(ργ + λ + ρaxx(t + 1))2
.

Again, by using mathematical induction, axx(t) is increasing in λ and axx(t)
γ is decreasing in γ . �
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Moallemi, C.C., Sağlam, M., 2017. Dynamic portfolio choice with linear rebalancing rules. Journal of Financial and Quantitative Analysis 52, 1247–1278.
Obizhaeva, A.A., Wang, J., 2013. Optimal trading strategy and supply/demand dynamics. Journal of Financial Markets 16, 1–32.
Pan, J., Xiao, Q., 2017. Optimal asset–liability management with liquidity constraints and stochastic interest rates in the expected utility framework. Journal of Computational 

and Applied Mathematics 317, 371–387.
Samuelson, P.A., 1969. Lifetime portfolio selection by dynamic stochastic programming. Review of Economics and Statistics 51, 239–246.
Sannikov, Y., Skrzypacz, A., 2016. Dynamic trading: price inertia and front-running. Preprint. https://web .stanford .edu /~skrz /Dynamic _Trading .pdf.
Shen, Y., Wei, J., Zhao, Q., 2020. Mean–variance asset–liability management problem under non-Markovian regime-switching models. Applied Mathematics & Optimization 81, 

859–897.
Society of Actuaries, 2003. Professional actuarial specialty guide: asset-liability management. https://nexusrisk.com /docs /SOA %20ALM %20Specialty %20Guide .pdf.
Van Kervel, V., Menkveld, A.J., 2019. High-frequency trading around large institutional orders. The Journal of Finance 74, 1091–1137.
Wei, J., Wang, T., 2017. Time-consistent mean–variance asset–liability management with random coefficients. Insurance. Mathematics & Economics 77, 84–96.
Wei, J., Wong, K., Yam, S., Yung, S., 2013. Markowitz’s mean–variance asset–liability management with regime switching: a time-consistent approach. Insurance. Mathematics 

& Economics 53, 281–291.
Welch, I., Goyal, A., 2008. A comprehensive look at the empirical performance of equity premium prediction. The Review of Financial Studies 21, 1455–1508.
Xie, S., 2009. Continuous-time mean–variance portfolio selection with liability and regime switching. Insurance. Mathematics & Economics 45, 148–155.
Xie, S., Li, Z., Wang, S., 2008. Continuous-time portfolio selection with liability: mean–variance model and stochastic lq approach. Insurance. Mathematics & Economics 42, 

943–953.
Yan, T., Wong, H.Y., 2019. Open-loop equilibrium strategy for mean–variance portfolio problem under stochastic volatility. Automatica 107, 211–223.
Yan, T., Wong, H.Y., 2020. Open-loop equilibrium reinsurance-investment strategy under mean–variance criterion with stochastic volatility. Insurance. Mathematics & Eco-

nomics 90, 105–119.
Yao, H., Lai, Y., Li, Y., 2013. Continuous-time mean–variance asset–liability management with endogenous liabilities. Insurance. Mathematics & Economics 52, 6–17.
Yong, J., Zhou, X.Y., 1999. Stochastic Controls: Hamiltonian Systems and HJB Equations, vol. 43. Springer Science & Business Media.
Zhang, F., 2006. The Schur Complement and Its Applications, vol. 4. Springer Science & Business Media.
Zhang, J., Chen, P., Jin, Z., Li, S., 2020. Open-loop equilibrium strategy for mean–variance asset–liability management portfolio selection problem with debt ratio. Journal of 

Computational and Applied Mathematics 380, 112951.
Zhang, M., Chen, P., 2016. Mean–variance asset–liability management under constant elasticity of variance process. Insurance. Mathematics & Economics 70, 11–18.
Zhu, H.N., Zhang, C.K., Jin, Z., 2020. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial and 

Management Optimization 16, 813–834.
83

http://refhub.elsevier.com/S0167-6687(23)00025-2/bib5931EE1D9EF00DFE1F846079B72ABB75s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib52F9DA5344B8FDCE3FCAE43ED4258110s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibAFC919798E8FC701258AADC952A4F013s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib8A8A2EEE2C07FBC058F8ADAD5681EB78s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib8F788C41B2BE68DE93DDE4943EF96D57s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibDA8DD4B946A3EC75830BF6FC6D5E9041s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibB6DA84DA756C4F3F54B45CF1E0B742A1s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibF450DCFA88A87125EA2B6A9A9BDF556Es1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib5DEFE1C05257B0525618C6D9A92F37C0s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib80270C079CE124F925FF3BD2B9B79E2Ds1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib80270C079CE124F925FF3BD2B9B79E2Ds1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibB61B45C7C7D18B57F839C0FCC10797F7s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib83F3AC7769F2F1D3E6CF6B0F917A605Cs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib3AE562B6F7EBD255AE44B5E08B555973s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib01D78B2180FC49FDECFB809413DCB128s1
http://ssrn.com/abstract=4159192
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib18944789259BC6CF14FB1EBB5EA87510s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib76DE2790055826C67606DA4F19BC347Cs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib76DE2790055826C67606DA4F19BC347Cs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibF104F028B62E2FA1A13ADF924DA31879s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibAFFAD9C5B3875393313530A0C0AAFF60s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib9A9A40DEB0490B2731EF81AEFD4054D2s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib58E3AD09E82BF438E334695107536662s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibAB27731E026782A470C506E9AE4C0375s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib14E9E2485B3D846E374A2CF2B18E5015s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib386733BBFDCD4FE6F2ED6290C338E2E6s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibA8CB43A52703DE93C3AE137A497E5AEDs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibA8CB43A52703DE93C3AE137A497E5AEDs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibCF389B0D56ACE67619DD0037A7135DEEs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibA04DFD57656D8FF550C21F44403227B2s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibC55AB36B9B08F589CCD970C1586CBB76s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib6DB2AAE816423C417FB046503983CB88s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib6DB2AAE816423C417FB046503983CB88s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib66561858ED589CB4BA63A9A1205FEDA1s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib66561858ED589CB4BA63A9A1205FEDA1s1
https://ssrn.com/abstract=4202586
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib720AA5D96B07B3F34E88464F91FD06E7s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib950EA60BB2323570B8CD36305AFC5005s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibC9A0CFE606B0D97ECF7790892BD47524s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibE456C6C24D04E58F5F3C0AD4467FF0B7s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib8717C4F7267384D918C27C2AB91D4992s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibFB938931057E87C7AF725BE7B5E2068As1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib7B6AD82F28F5B86C28D85016C56B20EAs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib9B63032862E12D08273512E4493E78AAs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib9B63032862E12D08273512E4493E78AAs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibC578800C94434E627A735969B9DB11A7s1
https://web.stanford.edu/~skrz/Dynamic_Trading.pdf
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibF11ECAB4AC1F9F7D2E9213E39C97EC3Fs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibF11ECAB4AC1F9F7D2E9213E39C97EC3Fs1
https://nexusrisk.com/docs/SOA%20ALM%20Specialty%20Guide.pdf
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib5BAD3C0DF1F11F9D5BF1539144D77163s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibCA7EFE284E26F5F5C5E14989E9E5887As1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib3032EA1CDBDA5A58F8097C9626291083s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib3032EA1CDBDA5A58F8097C9626291083s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibA354EE471802AAF6953E254B152FCD57s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibBC54BAFDED8CB3322E26E3AED2EF454Es1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib37DA016D75A1FD41E4B750B5B686FB93s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib37DA016D75A1FD41E4B750B5B686FB93s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib9618F9B64EB96371824AB7121A53CA0Ds1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib9EB21ECB0F202AAFE5B74B20E099595Bs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib9EB21ECB0F202AAFE5B74B20E099595Bs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib2B9B329124A1CAFFC0FE5540F741406Bs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibC78AE206CCECE65FD0F031E297C9B61Ds1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bibF5E2DF166682E5891B8AD7CA6A227926s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib26E023084CB460C86632A59734B7A1E5s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib26E023084CB460C86632A59734B7A1E5s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib0D0C61A833C817118B06B781A2501A6Cs1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib6D52092CA0FF9030C5FA97FE6C033859s1
http://refhub.elsevier.com/S0167-6687(23)00025-2/bib6D52092CA0FF9030C5FA97FE6C033859s1

	Dynamic asset-liability management with frictions
	1 Introduction
	2 Problem formulation
	2.1 Notations
	2.2 State processes
	2.3 Objective function

	3 Asset-liability management with only temporary price impact
	3.1 Optimal solution

	4 Temporary and persistent price impact
	4.1 Optimal trading intensity and portfolio
	4.2 Small-price-impact asymptotics

	5 Optimal funding ratio
	6 Numerical study
	6.1 Trading strategy with only temporary price impact
	6.2 Optimal funding ratio
	6.3 Temporary price impact and persistent price impact

	7 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Proofs in this paper
	A.1 Proof of Theorem 3.2
	A.2 Proof of Lemma 4.2
	A.3 Proof of Lemma 4.3
	A.4 Proof of Theorem 4.4
	A.5 Proof of Theorem 4.6

	Appendix B A discrete-time formulation
	References


