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Mixed copula approach has been used to jointly model discrete variable of claim counts and continuous 
variable of claim amounts. We propose to use a copula to link two continuous variables of the waiting 
time for the second claim and the average claim size. The frequency-severity dependence can be derived 
using the relationship between the waiting time and the counts of a Poisson process. Assuming a 
Gaussian copula and a log-normal distributed average claim size, we can investigate the effect of claim 
counts on the conditional claim severity analytically, which would be difficult in the mixed copula 
approach. We propose a Monte Carlo algorithm to simulate from the predictive distribution of the 
aggregated claims amount. In an empirical example, we illustrate the proposed method and compare 
with other competing methods. It shows that our proposed method provides quite competitive results.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Pricing insurance contracts is an essential task in non-life actuarial science. Generalized linear models (GLMs) are often used to model 
the number of claims and the individual claim amount. In this way, the corresponding expectations are modeled by the linear combi-
nation of actuarial risk factors. In the classical approach of random sum, claim counts and individual claim amount are assumed to be 
independent, so the pure premium is simply the product of the expected claim frequency and the expected claim severity.

Some studies indicate that the assumption of independence is not always satisfied in some cases. Garrido et al. (2016) showed that 
claim frequency and severity are negatively associated in the collision automobile insurance. We discuss two possible reasons for the 
frequency-severity dependence. For example, there may be an unobserved covariate related to both frequency and severity but in dif-
ferent directions. Missing this covariate in the modeling would lead to a negative frequency-severity dependence. For another example, 
policyholders would balance between reporting a claim with a higher renewal premium and not reporting a claim with a lower renewal 
premium (due to bonus-malus system). Such behavior would induce a negative frequency-severity dependence since small claims would 
not be reported. There is a need for flexible models to accommodate the dependence between claims frequency and severity.

According to the current literature, there are two main dependence modeling approaches: conditional approach and mixed copula 
approach. In the conditional approach, the number of claims is used as a covariate in the GLM for the average claim size; see Frees et al. 
(2011a) and Garrido et al. (2016). Lee et al. (2019) extended Garrido et al. (2016) by allowing varying dispersion parameters in the GLM 
for average claim size. Jeong and Valdez (2020) consider the longitudinal property of a P&C dataset in a collective risk model and extend 
Garrido et al. (2016)’s argument to the credibility premium.

In the mixed copula approach (Song et al., 2009), two marginal GLMs are fitted to claim counts and average claim size. A mixed 
copula is employed to link the discrete distribution of claim counts and the continuous distribution of average claim size; see Czado et 
al. (2012) and Krämer et al. (2013). Shi and Zhao (2020) extended the mixed copula approach to collective risk models and proposed 
a copula-linked compound distribution. Shi et al. (2015) proposed a three-part model, which splits the frequency model into a binary 
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classification model and a zero-truncated claim counts model. Genest and Nešlehová (2007) are concerned that such a mixed copula is 
not unique. To circumvent this issue, Frees and Wang (2006) assumed continuous latent factor as the random effect in the claim frequency 
model, while Shi and Valdez (2014) and Oh et al. (2020) used jittered claim counts. Another concern is that it is challenging to study 
the frequency-severity dependence analytically using copulas. The frequency-severity dependence induced by copula is not clear, and the 
effect of frequency-severity dependence on the aggregated claims amount is not apparent.

Our work differs from and contributes to the existing literature of the copula approach in the sense that we link two continuous 
variables by a copula, and we get analytical results for the frequency-severity dependence; see equations (3.6) and (3.11) and Fig. 7. Our 
proposed method is summarized as follows. First, we link a latent variable of waiting time for a second claim and average claim size by 
an elliptical copula. Second, we derive the frequency-severity joint model using the relationship between claim counts and waiting time 
of a Poisson process. The parameters are estimated by the inference functions for margins (IFM) method. Third, we employ a Monte Carlo 
algorithm to simulate the aggregated claims amount for new policyholders. In addition, by assuming a log-normal distributed average 
claim size and a Gaussian copula, we can analytically study the effect of dependence on the conditional severity given the claims count.

The rest of the paper is structured as follows. In Section 2, we review two dependence modeling approaches: the conditional ap-
proach and the copula approach. In Section 3, we propose a new dependence modeling method using latent variable of waiting time and 
derive analytic results under certain model assumptions. In Section 4, we conduct an empirical study of a real insurance data auspri-
vauto0405 from the CASdatasets R package. In Section 5, we conclude the paper with some important findings. The code for this paper 
is available in https://github .com /Richardljh /Dependence -Modelling.

2. Revision of frequency-severity dependence modeling

We assume to have a sufficiently rich probability space (�, F , P ), carrying all objects to be studied. For each policyholder i = 1, . . . , n, 
we denote the risk factors by xi ∈ X , the number of claims by Ni ∈ N (natural numbers), the k-th individual claim amount by Yi,k ∈
R+ (positive real numbers) for k = 1, . . . , Ni , and the aggregated claims amount by Si ∈ R0 (non-negative real numbers). We have the 
following random sum equation between those variables

Si =
{

0, if Ni = 0∑Ni
k=1 Yi,k otherwise.

(2.1)

For the number of claims, we normally employ a Poisson regression to estimate the claims frequency λ : X →R+, x �→ λ(x):

Ni
ind.∼ Poi(λ(xi)), for i ∈ I, (2.2)

where λ is the mean parameter and I = {1, 2, . . . , n} is the index set of policyholders.
For the individual claim amount, we normally employ a gamma regression to estimate the claim severity μ : X →R+, x �→ μ(x):

Yi,k
ind.∼ Gamma(μ(xi),φ), for i ∈ I+, k = 1, . . . , Ni, (2.3)

where μ(xi) is the mean parameter, φ is the dispersion parameter and I+ = {i : Ni > 0} is the index set of policyholders with claims. We 
also denote the index set of policyholders without any claims by I0 = {i : Ni = 0}. Note that I = I+ ∪ I0 = {1, 2, . . . , n}. Remark that we 
consider all the available risk factors x in both models for frequency and severity, however, after model fitting and variable selection, the 
two models may contain different risk factors.

It can be shown that the sufficient statistics in the model (2.3) is the average claim size Yi = Si/Ni , i.e., we only need the average claim 
size rather than individual claim amount to estimate the parameters. The model (2.3) is equivalent to the regression of average claim size 
Yi = Si/Ni on the risk factors xi with prior weights Ni :

Yi |Ni
ind.∼ Gamma(μ(xi),φ/Ni), for i ∈ I+. (2.4)

This equivalence is essential since in some cases only the number of claims and the aggregated claims amount are available. This weighted 
regression (2.4) can be approximated by the un-weighted version:

Yi |Ni
ind.∼ Gamma(μ(xi),φ), for i ∈ I+. (2.5)

This approximation is often accurate for two reasons: (1) the dispersion has a secondary effect on the estimation of the mean parameter; 
(2) in most cases a majority of policyholders make no more than one claim.

Under the assumption of independence between the number of claims Ni and the individual claims amount Yi,k , we have the expected 
aggregated claims amount (pure premium) as the product of frequency and severity:

E(Si |xi) = E(Ni|xi)E(Yi,k|xi) = λ(xi)μ(xi) = λiμi .

There are two existing approaches to relax the constraint of independence between Ni and Yi,k . The first approach incorporates the 
positive number of claims Ni |Ni > 0 into the severity regression function μ(·) as a covariate (Garrido et al., 2016), while the second 
approach employs a copula to jointly model two marginal regressions (2.2) and (2.5) (Czado et al., 2012).
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2.1. First approach: conditional dependence modeling

The first approach considers the systematic effect of claim counts on average claim size. Garrido et al. (2016) incorporate the number 
of claims into the conditional claim severity regression model (2.4) as follows:

Yi |Ni
ind.∼ Gamma(μ(xi, Ni),φ), for i ∈ I+.

Under this setting, we have the expected aggregated claims amount as

E(Si |xi) = E(E(Si|Ni, xi)|xi) = E(E(Ni Yi |Ni, xi)|xi) = E(Niμ(xi, Ni)|xi). (2.6)

Garrido et al. (2016) showed that if μ(·) is specified as μ(xi, Ni) = μ̃(xi)eθ Ni , the expected aggregated claims amount is E(Si |xi) =
μ̃(xi)M ′

Ni
(θ), where M ′

Ni
(θ) is the derivative of the moment generating function of Ni w.r.t. θ . This particular model restricts the depen-

dence as log-linearity.

2.2. Second approach: dependence modeling with copulas

The second approach considers the joint distribution of claim counts and average claim size under the copula framework, where the 
empirical dependence is modeled implicitly in the joint distribution. Czado et al. (2012) and Shi et al. (2015) apply a mixed copula (Song 
et al., 2009) to jointly model the frequency and the severity. While Czado et al. (2012) use the same marginal regressions as (2.2) and 
(2.5), Shi et al. (2015) split the frequency model into a logistic model and a zero-truncated negative binomial model. A weakness of this 
approach is that we do not have any analytical results. Unlike conditional dependence modeling, it is unclear how the number of claims 
affects the severity of claims.

3. Jointly modeling of waiting time for claim and average claim size by copulas

In this paper, we propose to use the continuous variable of waiting time rather than the discrete variable of claim count in the 
copula. The relationship between waiting time and Poisson count is well established in a Poisson process, and it is straightforward to 
get the (induced) joint distribution of claim count and average claim size. It is worth noting that theoretically, the non-uniqueness of the 
copula issue still exists since only the discrete claim counts are observed rather than the waiting time. However, in our application, only 
parametric copulas are used, and the marginal regression models contain continuous covariates, so the identifiability is not a big issue in 
this paper.

3.1. Model specification

We first introduce the latent variable of waiting time, then we propose the jointly modeling under the copula framework, finally we 
derive the analytical results for the frequency-severity dependence under certain model specification.

3.1.1. Latent variable of waiting time
We assume that the claim arrival process follows a Poisson process with annual intensity of λ. For policyholder i, we denote the 

waiting time between the k − 1 and k-th claim by Ti,k . For policyholder i, the waiting times are independent and identically distributed 
as an exponential distribution:

Ti,k
i.i.d.∼ Exp(1/λ(xi)), for k = 1,2, . . . , (3.1)

where we model the annual intensity (claims frequency) by λ(xi).
We consider policies with one year coverage and denote the censored number of claims in one policy year by Ni ∈ {0, 1, 2+}. We have 

the following correspondence between the censored number of claims and the waiting times:

Ni =

⎧⎪⎨
⎪⎩

0, if and only if Ti,1 > 1;
1, if and only if Ti,1 ≤ 1, Ti,1 + Ti,2 > 1;
2+, if and only if Ti,1 ≤ 1, Ti,1 + Ti,2 ≤ 1,

(3.2)

where Ni = 2+ denotes the event that the number of claims is larger than 1. For most third-party motor liability insurance datasets, a 
tiny proportion of policyholders make more than 2 claims. So it is reasonable to combine those rare cases. However, a limitation of the 
proposed method is that it is not suitable for some claim frequency datasets with a high proportion of more than 2 claims.

Note that we have slightly abused the notation Ni ; it denotes the uncensored number in Section 2. We have the following probability 
mass function for the censored number of claims

Pr(Ni = m) =

⎧⎪⎨
⎪⎩

e−λ(xi), for m = 0;
λ(xi)e−λ(xi), for m = 1;
1 − e−λ(xi) − λ(xi)e−λ(xi), for m = 2 + .

(3.3)

We denote by N∗
i ∈ {1, 2+} the censored number of claims given that at least one claim occurs in a year. This random variable N∗

i is 
σ({Ni > 0})-measurable. We denote by Ti ∈ (0, ∞) the total waiting time until 2 claims occur given that the first claim occurs in a year. 
This random variable Ti is σ({Ti,1 ≤ 1})-measurable. In Appendix A, we derive the distribution of Ti as
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F Ti (t) =
⎧⎨
⎩

1−e−λ(xi )t−λ(xi)te−λ(xi )t

1−e−λ(xi )
, for t ≤ 1;

1−e−λ(xi )−λ(xi)e−λ(xi )t

1−e−λ(xi )
, for t > 1.

(3.4)

The distribution (3.4) is a key component in our proposed method since it will appear in the joint likelihood function of N∗
i and Yi ; see 

(3.8). Since σ({Ni > 0}) equals to σ({Ti,1 ≤ 1}) and both of them are sub-σ -algebras of F , the two variables N∗
i and Ti are defined on 

the same measurable space (�, σ({Ni > 0})). The connection between them is

N∗
i =

{
1, if and only if Ti > 1;
2+, if and only if Ti ≤ 1.

(3.5)

Remark that if over-dispersion is observed in the claim counts, one could consider using a mixture of Poisson regressions or a negative 
binomial regression. Another concern is that the claim counts contain too many zeros compared to the Poisson distribution. One could 
consider using a zero-inflated Poisson distribution, which is a mixture of a Poisson distribution and a probability mass at 0 (a special case 
of the mixture of Poisson distributions; see Appendix B).

For both the mixture of Poisson distributions and the negative binomial distribution, the distribution of waiting time Ti in (3.4) needs 
to be modified accordingly. We derive the distribution of Ti for the mixture of Poisson distributions in equation (B.1) and for the zero-
inflated Poisson distribution in equation (B.2) in Appendix B. For the negative binomial distribution, we show that the waiting time Ti,k
follows a Pareto type II distribution in equation (B.3) in Appendix B; however, there is no closed form for the distribution of Ti .

3.1.2. Jointly modeling specification
We establish the (indirect) relationship between N∗

i and Yi for i ∈ I+ via a copula on two continuous variables Ti and Yi :

F Ti ,Yi (t, y|xi;α,β, φ,ρ) = C
(

F Ti (t|xi;α), FYi (y|xi;β, φ);ρ) , (3.6)

where F Ti ,Yi : R2+ → (0, 1) is the joint distribution of Ti and Yi , F Ti (·; α) is the marginal distribution of Ti with the regression coeffi-
cients α, e.g., the frequency regression function can be chosen as λ(xi) = exp(α�xi), and FYi (·; β, φ) is the marginal distribution of Yi

with dispersion φ and the regression coefficients β , e.g., the severity regression function can be chosen as μ(xi) = exp(β�xi). The depen-
dence between waiting time and severity is opposite to the frequency-severity dependence in the direction. Thus, a negative (positive) 
dependence parameter ρ implies a positive (negative) frequency-severity dependence.

Following (3.5), the induced joint distribution of N∗
i and Yi is then given by

Pr(N∗
i = m, Yi ≤ y|xi;α,β, φ,ρ)

=
{

F Ti ,Yi (1, y|xi;α,β, φ,ρ), for m = 2+;
FYi (y|xi;β, φ) − F Ti ,Yi (1, y|xi;α,β, φ,ρ), for m = 1.

(3.7)

The mixed density f N∗
i ,Yi

= ∂ Pr(N∗
i = m, Yi ≤ y)/∂ y can be derived as

f N∗
i ,Yi

(m, y|xi;α,β, φ,ρ)

=
{

C2
(

F Ti (1|xi;α), FYi (y|xi;β, φ);ρ) fYi (y|xi;β, φ), for m = 2+;[
1 − C2

(
F Ti (1|xi;α), FYi (y|xi;β, φ);ρ)] fYi (y|xi;β, φ), for m = 1,

(3.8)

where fYi (·; β, φ) is the marginal probability density function of average claim size for policyholder i ∈ I+ , C2(·, ·) is the partial derivative 
of copula C(·, ·) with respect to the second variable.

We focus on two elliptical copulas, Gaussian copula and t copula. For detailed properties of these two copula families, we refer to Joe 
(2014). The Gaussian copula C G (u1, u2) is given by

C G(u1, u2) = 	2
(
	−1(u1),	

−1(u2);ρ
)
,

where 	2(z1, z2; ρ) is the standard bivariate normal distribution of z1 and z2 with correlation ρ , and 	−1 : (0, 1) → R is the inverse 
function of the standard normal distribution. The t copula with degree of freedom ν is given by

Ct(u1, u2;ρ,ν) = T2,ν(T −1
ν (u1), T −1

ν (u2);ρ),

where T2,ν (w1, w2; ρ) is the standard bivariate t distribution of w1 and w2 with degree of freedom ν and correlation ρ , and T −1
ν :

(0, 1) →R is the inverse function of the univariate t distribution with degree of freedom ν .
For Gaussian copula, we can derive that (see Appendix C)

f N∗
i ,Yi

(m, y|xi;α,β, φ,ρ) =

⎧⎪⎪⎨
⎪⎪⎩

	

(
zi,1−ρzi,2√

1−ρ2

)
fYi (y|xi;β, φ), for m = 2+;

	

(
− zi,1−ρzi,2√

1−ρ2

)
fYi (y|xi;β, φ), for m = 1,

zi,1 is the normal score of ui,1 := Pr(Ti ≤ 1|xi; α),

zi,1 = 	−1(ui,1) = 	−1(F T (1|xi;α)) = 	−1(Pr(N∗ = 2 + |xi;α)),
i i

32



G. Gao and J. Li Insurance: Mathematics and Economics 109 (2023) 29–51
and zi,2 is the normal score of ui,2 := Pr(Yi ≤ y|xi; β, φ),

zi,2 = 	−1(ui,2) = 	−1(FYi (y|xi;β, φ)).

When ρ = 0, we have

	

(
zi,1 − ρzi,2√

1 − ρ2

)
= 	

(
zi,1

)= Pr(N∗
i = 2 + |xi;α)

and

	

(
− zi,1 − ρzi,2√

1 − ρ2

)
= 1 − 	

(
zi,1

)= Pr(N∗
i = 1|xi;α).

Therefore, when the correlation ρ between Ti and Yi is zero, we return to the independent case with the joint probability density function 
as

f N∗
i ,Yi

(m, y|xi;α,β, φ) = Pr(N∗
i = m|xi;α) × fYi (y|xi;β, φ).

For t copula, we can derive that (see Appendix C)

f N∗
i ,Yi

(m, y|xi;α,β, φ,ρ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tν+1

⎛
⎝ wi,1−ρwi,2√(

1−ρ2
)(

ν+w2
i,2

)
/(ν+1)

⎞
⎠ fYi (y|xi;β, φ), for m = 2+;

Tν+1

⎛
⎝− wi,1−ρwi,2√(

1−ρ2
)(

ν+w2
i,2

)
/(ν+1)

⎞
⎠ fYi (y|xi;β, φ), for m = 1,

where

wi,1 = T −1
ν (F Ti (1|xi;α)) = T −1

ν (Pr(N∗
i = 2 + |xi;α))

and

wi,2 = T −1
ν (FYi (y|xi;β, φ)).

Remark that an uncorrelated bivariate t distribution with ρ = 0 does not imply independence (McNeil et al., 2015). From this aspect, we 
prefer the Gaussian copula, which nests the independence case. On the other hand, t copula has a non-zero tail dependence which may 
be undesirable for some datasets. We compare those two copulas in Section 4 of the empirical study.

3.1.3. Analytical results under the log-normal distributed average claim size and the Gaussian copula
Assume that the logarithm of average claim size follows a normal distribution:

log Yi
ind.∼ N (μ(xi),σ

2), for i ∈ I+,

where μ(xi) = β�xi . For Gaussian copula, following (3.8), the conditional distribution of N∗
i given Yi is

f N∗
i |Yi

(m|y, xi;α,β,σ 2,ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

	

(
zi,1−ρ

(
log yi−μ(xi )

σ

)
√

1−ρ2

)
, for m = 2+;

	

(
− zi,1−ρ

(
log yi−μ(xi )

σ

)
√

1−ρ2

)
, for m = 1.

(3.9)

The conditional distribution of Yi given N∗
i is

fYi |N∗
i
(y|m, xi;α,β,σ 2,ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

	

(
zi,1−ρ

(
log yi−μ(xi )

σ

)
√

1−ρ2

)
fYi (y|xi;β,σ 2)

ui,1
, for m = 2+;

	

(
− zi,1−ρ

(
log yi−μ(xi )

σ

)
√

1−ρ2

)
fYi (y|xi;β,σ 2)

1−ui,1
, for m = 1,

(3.10)

where ui,1 = F Ti (1|xi; α) = Pr(N∗
i = 2 + |xi; α) and zi,1 = 	−1(ui,1). Appendix D shows that the conditional expectation of log Yi given N∗

i
is

E(log Yi|N∗
i = m, xi) = μ(xi) +

{− ρσ
ui,1

φ
(
	−1(ui,1)

)
, for m = 2+;

ρσ
1−ui,1

φ
(
	−1(ui,1)

)
, for m = 1.

(3.11)

It is worth noting that when ρ > 0 (ρ < 0), the conditional expectation E(log Yi |N∗
i = 1) is larger (smaller) than E(log Yi |N∗

i = 2+). 
The conditional expectation depends on the claim frequency λ(xi) via the quantity ui,1. Also, note that the discrepancy between the 
two conditional expectations in (3.11) is increasing with σ and |ρ|, as expected. In Fig. 7 of Section 4, we show the curves of the 
conditional expectation (3.11) against the claims frequency. Our proposed method facilitates an analytical investigation of frequency-
severity dependence.
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3.2. Parameter estimation

We consider three estimation methods: global maximum likelihood estimation (MLE), two-stage estimation, and inference functions for 
margins (IFM) method. Those three methods are compared in Section 3.2.4 of a simulated example. Generally, we prefer the IFM method 
since it has the least computing burden and provides quite similar estimates compared with the other two methods; see Joe (2014). The 
estimation procedures for Gaussian copula and t copula are similar. In this section, we mainly focus on the Gaussian copula. Remark that 
for the degrees of freedom of the t copula, we can either treat it as a pre-defined hyperparameter or find its MLE directly (Demarta and 
McNeil, 2005); see Section 4.2.2.

3.2.1. Global maximum likelihood estimation
The joint log-likelihood for a data set containing n observations {(m1, y1, x1), . . . , (mn, yn, xn)} is given by

l(α,β, φ,ρ) =
∑
i∈I0

log f Ni (0|xi;α) +
∑
i∈I+

log
(
(1 − f Ni (0|xi;α)) f N∗

i ,Yi
(mi, yi|xi;α,β, φ,ρ)

)

=
∑
i∈I0

log Pr(Ni = 0|xi;α) +
∑
i∈I+

log Pr(Ni > 0|xi;α) +
∑
i∈I+

log fYi (yi|xi;β, φ)+
∑
i∈I+

{
11(mi) log C2

(
F Ti (1|xi;α), FYi (y|xi;β, φ);ρ)

+12+(mi) log
[
1 − C2

(
F Ti (1|xi;α), FYi (y|xi;β, φ);ρ)]} ,

(3.12)

where C2 is the partial derivative of either a Gaussian copula C G (·, ·; ρ) or a t copula Ct(·, ·; ρ, ν) with respect to the second variable.
For the Gaussian copula and ρ = 0, the joint log-likelihood is given by

l(α,β, φ) =
∑
i∈I0

log Pr(Ni = 0|xi;α) +
∑
i∈I+

11(mi) log Pr(Ni = mi|xi;α)+
∑
i∈I+

12+(mi) log Pr(Ni = mi|xi;α) +
∑
i∈I+

log fYi (yi |xi;β, φ)

=
∑
i∈I

log f Ni (mi|xi;α) +
∑
i∈I+

log fYi (yi|xi;β, φ),

(3.13)

which corresponds to the independent case. The probability mass function f Ni is specified in (3.3), i.e., we have censored the number 
of claims Ni ∈ {0, 1, 2+}. We apply the Fisher’s scoring method to estimate the parameters α, β, ρ; see the scoring functions (E.8) in 
Appendix E.

3.2.2. Two-stage estimation
The joint log-likelihood (3.12) suggests a two-stage estimation strategy (Shi and Zhao, 2020). The two-stage estimation strategy is 

detailed as follows. First, we calculate the MLE α̂ in the claims frequency (marginal) model (2.2). Second, holding MLE α̂, we maximize 
the following log-likelihood to find the MLEs of β, ρ:

l2s(β, φ,ρ) =
∑
i∈I+

log fYi (yi |xi;β, φ)

+
∑
i∈I+

{
11(mi) log C2

(
F Ti (1|xi; α̂), FYi (y|xi;β, φ);ρ)

+12+(mi) log
[
1 − C2

(
F Ti (1|xi; α̂), FYi (y|xi;β, φ);ρ)]} .

(3.14)

By adding a fixed value (not containing parameters to be estimated)

−
∑
i∈I+

[
11(mi) log Pr(N∗

i = 1|xi; α̂) + 12+(mi) log Pr(N∗
i = 2 + |xi; α̂)

]

to the right hand side of (3.14), we find that maximizing l2s(β, φ, ρ) is equivalent to maximizing the log-likelihood of conditional severity 
model as follows∑

i∈I+
log fYi |N∗

i
(yi |mi, xi; α̂,β, φ,ρ).

Remark that the key point of two-stage estimation procedure is to determine the conditional distribution of Yi given N∗
i .

3.2.3. Inference functions for margins (IFM) method
The inference functions for margins (IFM) method uses the “plug-in” normal scores when calculating the MLE of the copula association 

parameter ρ . The IFM method is detailed as follows. First, we calculate the MLEs α̂ and β̂ in the two marginal models (2.2) and (2.5), 
respectively, i.e., we maximize the independent log-likelihood (3.13). Second, we find the MLE of the copula association parameter ρ:
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ρ̂ = arg max
ρ

∑
i∈I+

{
11(mi) log C2

(
F Ti (1|xi; α̂), FYi (y|xi; β̂, φ̂);ρ

)

+ 12+(mi) log
[

1 − C2

(
F Ti (1|xi; α̂), FYi (y|xi; β̂, φ̂);ρ

)]}
.

(3.15)

The IFM method has the least computing burden among the three estimation methods.

3.2.4. A simulation study
In this section we examine the finite-sample properties of three estimation methods discussed above. We assume that the average 

claim size follows either a gamma distribution or a log-normal distribution. We generate the covariates xi1 from a uniform distribution 
U(18, 65) and xi2 from a Bernoulli distribution B(1, 0.5) for i = 1, . . . , n. We set the regression function for claim frequency as

λ(xi) = exp {−0.5 − 0.04xi1 + 0.3xi2}, i = 1, . . . ,n.

For the gamma distributed claim size, we set the dispersion as φ = 2 and the mean as

μ(xi) = exp {−1 + 0.1xi1 − 0.2xi2}, i = 1, . . . ,n.

For the log-normal distributed claim size, we set the dispersion as σ 2 = 22 and the logged mean as

μ(xi) = −1 + 0.1xi1 − 0.2xi2, i = 1, . . . ,n.

We consider three different Gaussian copulas with the association value ρ ∈ {0.2, 0.5, 0.9}. Thus, we have six different scenarios in total. 
We simulate a data set of sample size n = 5000 for 50 times for each scenario.

The estimation results are summarized in Tables 7 and 8. We have similar observations for both severity distributions. We find no 
substantial difference among the estimated parameters using the three estimation methods when ρ = 0.2, 0.5. For the case of ρ = 0.9, 
the estimated parameters in the frequency model using the three estimation methods are quite close, while the estimated parameters in 
the severity model using the IFM method have a larger bias than those from the other two estimation methods. According to the current 
literature, for most data sets the association between frequency and severity is not very high (e.g. 0.9). Hence, we conclude that the IFM 
method performs as well as both the global MLE and the two-stage estimation when the proposed model is applied to a real data set. 
Furthermore, a t copula with the degree of freedom 10 is fitted, and the estimated parameters are quite close to those from the Gaussian 
copula. So we do not provide detailed results for the t copula.

3.3. Predictive distribution of the aggregated claims amount

The predictive distribution of aggregated claim amount is crucial for risk management. Two Monte Carlo algorithms are proposed 
to simulate the aggregated claims amount. The first one is for the general case while the second one is for the model discussed in 
Section 3.1.3.

3.3.1. General case
We employ the following Monte Carlo algorithm to simulate the correlated number of claims and average claim size for a new policy-

holder with risk factors xn+1.

Algorithm 1 The first Monte Carlo simulation.

1: Generate the waiting time for the first claim Tn+1,1 ∼ Exp(1/λ̂(xn+1)).
2: if Tn+1,1 > 1 then
3: return The number of claims as Nn+1 = 0 and the aggregated claims amount as Sn+1 = 0.
4: else
5: Generate a pair of correlated normal scores (zn+1,1, zn+1,2) or (wn+1,1, wn+1,2) from a bivariate normal distribution or a bivariate t distribution with correlation ρ̂ .
6: Recover Tn+1 by inverting its distribution function F Tn+1 (t|xn+1; ̂α).

7: Recover Yn+1 by inverting its distribution function FYn+1 (y|xn+1; ̂β, φ̂).
8: Set T ← Tn+1, N ← 2.
9: if T > 1 then

10: return The number of claims as Nn+1 = N − 1 and the aggregated claims amount as Sn+1 = Nn+1Yn+1.
11: else
12: repeat
13: Generate the next waiting time Tn+1,∗ from Exp(1/λ̂(xn+1)).
14: Set T ← T + Tn+1,∗, N ← N + 1.
15: until T > 1
16: return The number of claims as Nn+1 = N − 1 and the aggregated claims amount as Sn+1 = Nn+1Yn+1.
17: end if
18: end if

Repeating Algorithm 1 for many times leads to an empirical predictive distribution of the aggregated claims amount for policyholder 
n +1 with risk factor xn+1. This simulated predictive distribution only incorporates the process variance induced by the assumed stochastic 
model. The estimation variance can be incorporated by an additional step of sampling regression coefficients from a multivariate normal 
distribution with mean of the MLEs and covariance of the inverse Fisher’s information matrix. The estimation variance accounts for the 
estimation error due to finite sample size.
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Fig. 1. Left: The distribution of exposures. Right: The distribution of claim counts.

3.3.2. Log-normal distributed average claim size and Gaussian copula
In Section 3.1.3, the conditional distributions can be derived under the assumption of the log-normal distributed average claim size and 

the Gaussian copula. So we can employ the following Monte Carlo simulation which is much easier and faster than Algorithm 1 for the 
general case.

Algorithm 2 The second Monte Carlo simulation.

1: Generate the number of claims Nn+1 from a Poisson distribution with mean of λ̂(xn+1).
2: if Nn+1 = 0 then
3: return The number of claims as Nn+1 and the aggregated claims amount as Sn+1 = 0.
4: else
5: Generate the average claim size Yn+1 from the conditional distribution (3.10) given the number of claims.
6: return The number of claims as Nn+1 and the aggregated claims amount as Sn+1 = Nn+1Yn+1.
7: end if

4. An empirical study

We consider the ausprivauto0405 data set in the CASdatasets R package. It is based on one-year compulsory third party car 
insurance policies taken out in 2004 and 2005. The number of claims and the total claims amounts are available for those policies. For 
each policy, five risk factors are provided, including vehicle value, vehicle age, vehicle body, gender and driver age.

4.1. Data description

A preliminary analysis shows that the annual claims frequency and average claim size are negatively related to the exposure for the 
partially exposed policies (i.e., less than 0.7 years exposure). Including those partially exposed policies would distort the frequency-severity 
dependence. Thus, we only consider the nearly fully exposed policies in the following, i.e., the n = 1, 7491 policies with more than 0.7
years exposure. For those nearly fully exposed policies, the annual claims frequency and average claim size are not strongly correlated 
with the exposure, which is commonly observed in a typical insurance claim data set.

The total exposure of the portfolio is 
∑n

i=1 ei = 14, 964.57 years. The total claim count is 
∑n

i=1 Ni = 2, 112. The empirical claims 
frequency is λ̄ =∑n

i=1 Ni/ 
∑n

i=1 ei = 14.11%. The empirical claim severity is μ̄ =∑
i∈I+ Yi/|I+| = 1, 486.00. We show the distributions of 

exposure, claim counts and average claim size in Figs. 1 and 2 (left). A large proportion of policies are fully exposed with 1 year. Most 
policies do not make a claim and very rare policies make more than 2 claims. The distribution of average claim size has a heavy right tail.

We investigate five available actuarial risk factors: vehicle value VehValue, vehicle age VehAge (4 levels), vehicle body VehBody (11 
levels), gender Gender (2 levels) and driver age DrivAge (6 levels). Except for vehicle value VehValue, all the other risk factors are 
categorical variables. The distributions of the five risk factors are shown in Figs. 2 (right), 3 and 4, respectively. The range of vehicle values 
is from AUD 0.19 thousands to AUD 34.56 thousands. The old vehicles are nearly twice as many as the youngest ones. Most vehicles are 
sedan, hatchback, or station wagon. Female drivers are more than male drivers. Older working drivers and working drivers are more than 
other age groups. We select the level containing the most policyholders as the reference level, i.e., older working female drivers with old 
sedan cars. Applying the dummy coding, the risk factors (VehValuei, VehAgei, VehBodyi, Genderi, DrivAgei) can be encoded in a 
20-dimensional vector xi = (xi,1, . . . , xi,20) ∈R+ × {0, 1}19, where xi,1 = VehValuei .

As a preliminary analysis of frequency-severity dependence, we draw the boxplot of the logged average claim size for different numbers 
of claims in Fig. 5. It shows that the average claim size tends to increase with the number of claims.

We denote the index set of the whole portfolio by I = {1, 2, . . . , n = 17491}, and the index set of 1, 938 policies with at least one 
claim by I+ = {i ∈ I : Ni > 0}. We split the whole portfolio I into a learning set IL of 13, 995 policies (80% of the whole portfolio) 
and its complement set as a test set IT , i.e., I − IL = IT . The empirical claim frequencies on the learning set IL and the test set IT
G. Gao and J. Li Insurance: Mathematics and Economics 109 (2023) 29–51
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Fig. 2. Left: The distribution of average claim size. Right: The distribution of vehicle values.

Fig. 3. Left: The distribution of vehicle age. Right: The distribution of vehicle body.

Fig. 4. Left: The distribution of gender. Right: The distribution driver age.
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Fig. 5. The boxplot of the logged average claim size.

Table 1
The estimated coefficients in the marginal claims frequency model (4.1).

estimated std. error z value p-value

Intercept -2.0348 0.0528 -38.54 < 2e-16
LnVehValue 0.2302 0.0405 5.69 1.3e-08
DrivAge old -0.1748 0.0808 -2.16 0.031
DrivAge oldest -0.1310 0.0959 -1.37 0.172
DrivAge working -0.0359 0.0707 -0.51 0.612
DrivAge young 0.0603 0.0737 0.82 0.413
DrivAge youngest 0.1642 0.0930 1.77 0.078

are 14.13% and 14.04%, respectively. We denote the learning policies with claims by IL+ = IL ∩ I+ and the test policies with claims by 
IT + = IT ∩ I+ .

We will establish two GLMs for the claim frequency and severity, respectively. While the learning set IL is used for the claim frequency 
modeling, the set IL+ ⊂ IL is used for both the average claim size modeling and the dependence modeling. The test set IT is used to 
evaluate the out-of-sample prediction performance of the claim frequency model and the aggregated claims amount model, while the set 
IT + ⊂ IT is used to evaluate the out-of-sample prediction performance of the claim severity model.

4.2. Jointly modeling of frequency-severity

We first establish the marginal GLMs for the claims frequency and severity. A Poisson GLM, a negative binomial GLM and a mixture of 
Poisson regressions are used and compared for the claims frequency modeling, while a gamma GLM and a log-normal GLM are used and 
compared for the claims severity modeling. We then investigate the frequency-severity dependence using the proposed method.

4.2.1. Marginal models
The Poisson GLM is specified in (2.2) with the claims frequency modeled by:

log λ(xi) = log ei + α0 + α1 log xi,1 +
20∑

k=2

αkxi,k, (4.1)

where ei is the exposure, xi,1 is the vehicle value VehValuei and (xi,k)k=2:20 is the dummy coding of VehAgei , VehBodyi , Genderi , 
DrivAgei . Note that we have investigated the possible non-linear effect of vehicle value in a generalized additive model, and it turns out 
that the logged claims frequency is linearly related to the logged vehicle value. We fit the model to the learning data set IL and apply 
the backward elimination algorithm by the AIC to select the relevant covariates. The final model contains the vehicle value and the driver 
age. Using the Pearson’s residuals, the dispersion is estimated as 1.0629, indicating no obvious over-dispersion.

The estimated coefficients are listed in Table 1. The claim frequency is increasing with the vehicle value. Youngest drivers have the 
highest claim frequency among all the age groups, while old drivers have the lowest claim frequency. Vehicle age, vehicle body and 
gender are not important in predicting the claim frequency (at least according to the AIC). The out-of-sample Poisson deviance loss on IT
is 0.5305, compared with 0.5347 for a null homogeneous model without any covariates.

We refine the model by searching for important interaction terms. We first incorporate all the bivariate interaction terms having 
more than 1, 000 exposure years into the claim frequency model, then we perform the backward elimination algorithm by the AIC. The 
out-of-sample Poisson deviance loss on IT is 0.5315, even worse than the model with the main terms.

For comparison, two competing models (a negative binomial regression and a mixture of two Poisson regressions) are fitted to the 
number of claims. The mean regression function in the negative binomial model is the same as in the Poisson model (4.1), while the 
dispersion parameter is assumed to be constant. The mean regression functions in the two component regressions of the mixture Poisson 
model are the same as in the Poisson model (4.1). We use one prediction as the baseline and the other as alternative predictions. We 
examine whether the insurer could profit by switching from the base to the alternatives. A large relative Gini index (Frees et al., 2011b) 
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Table 2
The matrix of the Gini indices of marginal claims frequency models.

base model
relative Gini index

Poisson negative binomial mixture of Poisson

Poisson 0 -0.72 -1.93
negative binomial 0.79 0 -1.58
mixture of Poisson 2.30 1.94 0

Fig. 6. Left: The Q-Q plot of deviance residuals in the gamma severity model. Right: The Q-Q plot of deviance residuals in the log-normal severity model.

Table 3
The estimated coefficients in the average claim size model (4.2). The 
Fano factor σ 2 is estimated as 1.1109. Note that the covariate of claim 
counts (in the last row) is not included in the marginal severity model 
in the proposed copula method.

estimated std. error z value p-value

Intercept 6.3249 0.1093 57.84 <2e-16
LnVehValue 0.1759 0.0592 2.97 0.003
VehAge oldest 0.1616 0.0792 2.04 0.042
VehAge young -0.1231 0.0719 -1.71 0.087
VehAge youngest -0.1388 0.0861 -1.61 0.107
Gender Male 0.1076 0.0549 1.96 0.050

claim counts 0.2021 0.0844 2.39 0.017

rejects the base and suggests the alternative. The matrix of the (out-of-sample) relative Gini indices is shown in Table 2. It turns out that 
the Poisson model performs at least as well as the two alternatives.

Next, we establish the GLMs for the average claim size. Preliminary modeling using a gamma distribution and a log-normal distribution 
indicates that the gamma distribution cannot capture the right heavy tail of the average claim size; see the Q-Q plots of the deviance 
residuals in Fig. 6. So we implement a log-normal GLM for the average claim size. Remark that the log-normal regression model is still 
insufficient for the claims severity data. One may implement a mixture of distributions (e.g. a mixture of gamma and Pareto distributions) 
to the claims amount data.

The log-normal claims severity model is specified as follows:

log Yi
ind.∼ N (μ(xi),σ

2), for i ∈ I+, (4.2)

where μ(xi) = β0 + β1 log xi,1 +∑20
k=2 βkxi,k + β21ei . Note that we have investigated the possible non-linear effect of the exposure and the 

vehicle value in a generalized additive model, and it turns out that the logged average claim size is linearly related to the exposure and 
the logged vehicle value. We fit the model to the learning set IL+ and apply a backward elimination algorithm by the AIC to select the 
relevant covariates. The final model contains vehicle value, vehicle age and gender. The estimated coefficients are listed in Table 3. The 
average claim size is positively related to vehicle value and vehicle age. Male drivers tend to have a higher severity than female drivers. 
Vehicle body and driver age are not important for predicting the average claim size (at least according to the AIC).

In the conditional modeling of frequency-severity (Garrido et al., 2016), the number of claims is incorporated into the average claim 
size model as a covariate; see equation (2.6). We implement this approach and the estimated coefficient is added to the last line of 
Table 3. Thus, the average claim size is positively related to the number of claims. The out-of-sample mean squared error on IT + is 
1.1412 for the severity model without claim counts and 1.1390 for the one with claim counts. Thus, by incorporating claim counts as a 
covariate we improve the out-of-sample predictive performance of the average claim size model. As in the claim frequency modeling, we 
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Fig. 7. Left: The conditional expectation of logged severity E(log Yi |N∗
i = m, xi) against the estimated claims frequency λ̂(xi). Right: The difference between the conditional 

expectations of logged severity given N∗
i = 1 or N∗

i = 2+ against the estimated claims frequency.

Fig. 8. The predictive distribution of the total claims amounts on the test data set IT .

refine the average claim size model by incorporating bivariate interaction terms. However, there is no improvement on the model fitting 
or out-of-sample prediction performance, and the above statements still hold.

4.2.2. The copula model
By fixing the estimated coefficients α̂, β̂, σ̂ , we maximize the function (3.15) w.r.t. ρ to find the IFM estimate ρ̂ = −0.1106 for a 

Gaussian copula. The estimated 95% confidence interval of ρ is (−0.1957, −0.0254). Therefore, the waiting time and the average claim size 
have a significantly negative relationship (i.e. positive frequency-severity dependence), which aligns with the finding from the conditional 
modeling.

We investigate the conditional expectation E(log Yi |N∗
i = m, xi) given the claim counts m ∈ {1, 2+}. According to (3.11), this conditional 

expectation depends on the estimated claim frequency λ̂(xi) from the marginal frequency model. Suppose that for a policyholder i, the 
(unconditional) expected logged claim severity μ̂(xi) is equal to the empirical mean of logged severity 6.67. We draw the conditional 
expectation E(log Yi |N∗

i = m, xi) against the estimated claim frequency λ̂(xi) in Fig. 7 (left).
Given N∗

i = 2+, the conditional expected logged severity is larger than the unconditional expected logged severity μ̂(xi), and the 
difference is decreasing with the claim frequency λ̂(xi). Given N∗

i = 1, the conditional expected logged severity is slightly smaller than the 
unconditional expected logged severity μ̂(xi), and the difference is slightly increasing with the estimated claim frequency λ̂(xi). In Fig. 7
(right), the difference between the conditional expectation of logged severity given N∗

i = 2+ or N∗
i = 1 is decreasing from 0.27 to 0.22

with the estimated claims frequency.
We apply the Monte Carlo algorithm in Section 3.3 to simulate a sample of the aggregated claims amount for each policyholder on the 

test data set IT for 2, 000 times. Hence, we get an empirical predictive distribution of the aggregated claims amount for each policyholder 
i ∈ IT on the test data set. The predictive distribution of the total aggregated claims amount on the test data set is shown in Fig. 8. The 
actual total claims amount is between the predicted 75% and 95% VaRs.

Finally, we compare with a t copula, which might be more desirable than the Gaussian copula if the data indicated a non-zero tail 
dependence. The degree of freedom of t copula is either predetermined or estimated by maximizing the joint likelihood. We try both ways 
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Table 4
Dependence measures for the estimated t and Gaussian copulas. Remark that a neg-
ative ρ indicates a negative waiting time-severity dependence. Note that this depen-
dence parameter has a different interpretation from that in Model 2 discussed later.

copula family df ρ̂ Kendall’s tau coefficient of tail dependence

t 10 -0.0811 -0.0517 0.0042
t 15 -0.0914 -0.0583 0.0005
t 20 -0.0964 -0.0615 0.0001
Gaussian - -0.1106 -0.0705 0

Table 5
The matrix of the Gini indices of frequency-severity models.

base model
relative Gini index

0 1 2 3 0∗ 1∗ 2∗ 0∗∗ 1∗∗ 2∗∗

0 0 8.67 11.60 12.77 2.56 3.89 5.57 11.81 12.92 13.38
1 0.84 0 9.58 11.17 0.84 3.70 6.28 11.41 11.26 11.41
2 -2.77 -0.09 0 6.57 -2.77 -1.18 1.21 4.42 6.28 6.00
3 -3.73 -2.10 3.38 0 -3.73 -2.65 -1.34 2.70 2.89 3.07
0∗ 2.56 8.67 11.60 12.77 0 3.89 5.57 11.81 12.92 13.38
1∗ 5.45 6.23 10.10 11.54 5.45 0 5.30 8.90 12.24 10.54
2∗ 3.94 3.65 8.50 11.06 3.94 4.22 0 10.93 11.45 9.91
0∗∗ -3.04 -2.05 5.15 6.53 -3.04 0.48 -1.89 0 5.60 4.36
1∗∗ -3.46 -1.03 3.49 7.10 -3.46 -2.75 -1.23 3.85 0.00 4.77
2∗∗ -4.39 -1.81 3.54 6.76 -4.39 -1.91 -0.58 4.60 5.31 0

here. In the first way, we predetermine the degrees of freedom at {10, 15, 20}, i.e., we fit three t copulas with three different degrees of 
freedom. The corresponding dependence measures are shown in Table 4, indicating that all the copula families lead to a similar fit. The 
tail dependence is rather weak for this data set. In the second way, we calculate the MLEs of both the association parameter ρ and the 
degree of freedom ν . The range of the degree of freedom is restricted to [1, 1000] to reduce computing time. The MLEs are calculated as 
ρ̂ = −0.1106 and ν̂ = 1000. With such a large degree of freedom, we get a similar fit to the Gaussian copula. We conclude that there is 
no obvious tail dependence for this data, and the Gaussian copula is a reasonable choice.

4.3. Comparison with the competing models

We consider nine competing models: the independent frequency-severity models, denoted by Models 0, 0∗, 0∗∗; the conditional depen-
dence models by Garrido et al. (2016), denoted by Models 1, 1∗, 1∗∗; the mixed copula models by Czado et al. (2012), denoted by Models 
2, 2∗, 2∗∗ . Our proposed model is called as Model 3. Model 0 consists of the same two marginal models as (4.1) and (4.2). Model 1 consists 
of the same marginal frequency model as (4.1) and the conditional severity model as shown in Table 3. Model 2 consists of the same 
two marginal models as (4.1) and (4.2) in a mixed copula. Models 0∗, 1∗, 2∗ , are similar to Models 0, 1, 2 but with a negative binomial 
regression model for claims frequency, while Models 0∗∗, 1∗∗, 2∗∗ with a mixture of Poisson regressions for claims frequency. We estimate 
the Gaussian copula association parameter in Model 2 as ρ̂ = 0.1058. Hence, all Models 1, 2, 3 indicate that frequency and severity are 
positively related. We compare those models in terms of two out-of-sample metrics on the test data set IT : relative Gini indices (Frees et 
al., 2011b) and percentiles of actual claims amounts in the predictive distribution for grouped policyholders.

The matrix of the relative Gini indices is shown in Table 5, with the standard errors shown in Table 6. We bold the Gini indices larger 
than 10 (around double the standard errors). All the bolded numbers are in the columns for Models 2, 3, 0∗∗, 1∗∗ and 2∗∗ . Thus, we have 
two facts: the copula models 2 and 3 are better than the independent models 0 and 0∗ and the conditional models 1 and 1∗; the mixture 
of Poisson regressions in Models 0∗∗, 1∗∗ and 2∗∗ are more suitable than the Poisson regression or the negative binomial regression in 
Models 0, 1, 0∗, 1∗ and 2∗ . We investigate the Gini indices for Models 2 and 3 in Table 5. It shows that we could identify more profit 
opportunities by switching from Model 2 to 3 than from Model 3 to 2, but such a difference between Models 2 and 3 is not statistically 
significant. Then we investigate the Gini indices for Models 3, 0∗∗, 1∗∗ and 2∗∗ . It shows that Model 3 is the best (although not statistically 
significant). We conclude that for this particular data, our Model 3 provides quite competitive results compared with the other competing 
methods.

Since most policyholders do not make any claims, it is not suitable to compare the actual claims amount with the predicted claims 
amount at the individual policyholder level. We cluster the policyholders in IT into 100 groups and compare the actual claims amount 
with the predictions at the group level. Ideally, the percentiles of the grouped actual claims amount in the predictive distribution should 
be uniformly distributed in (0, 1). We perform the Kolmogorov-Smirnov tests for those 100 percentiles against the uniform distribution 
(0, 1). The p-values for Models 0 −3 are 0.31, 0.34, 0.42, 0.40, respectively, under the null hypothesis that the percentiles follow a uniform 
distribution (0, 1). We conclude that Models 2 and 3 are better than Models 0 and 1 in terms of this out-of-sample measure.

5. Conclusions

In this paper, we propose to investigate the frequency-severity dependence by using the waiting time for claim. The proposed model 
utilizes the relationship between counts and the waiting time of a Poisson process. The copula links two continuous variables of the 
waiting time and average claim size, which induces the frequency-severity dependence. Given the claim counts, the conditional expectation 
of the logged severity (3.11) is derived, which is related to the claims frequency, e.g. see Fig. 7.
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Table 6
The standard errors of the Gini indices of frequency-severity models.

base model
relative Gini index

0 1 2 3 0∗ 1∗ 2∗ 0∗∗ 1∗∗ 2∗∗

0 0 4.51 5.11 5.21 5.26 4.78 4.96 5.31 4.73 5.17
1 4.49 0 4.78 5.37 4.49 4.86 4.59 4.86 4.34 4.44
2 5.17 4.77 0 4.42 5.17 5.65 5.06 4.63 4.34 4.63
3 5.39 5.49 4.49 0 5.39 5.98 5.3 5.07 4.42 4.49
0∗ 5.26 4.51 5.11 5.21 0 4.78 4.96 5.31 4.73 5.17
1∗ 4.81 4.89 5.6 5.82 4.81 0 4.84 5.26 5.41 5.89
2∗ 5.05 4.57 4.98 5.16 5.05 4.86 0 5.50 4.60 4.98
0∗∗ 5.32 4.84 4.62 5.02 5.32 5.38 5.56 0.00 4.91 5.01
1∗∗ 4.85 4.38 4.35 4.47 4.85 5.47 4.69 4.92 0.00 3.99
2∗∗ 5.27 4.44 4.61 4.53 5.27 5.95 5.09 4.99 4.04 0.00

In a simulation study, we learn the finite sample properties of parameter estimation methods, including global MLE, two-stage estima-
tion and the IFM method. We observe that the estimated coefficients from those estimation methods are quite close under a moderate 
dependence. We prefer the IFM method since it has the least computing burden.

In an empirical study, we compare the Gaussian copula with the t copula, and both copula models lead to a similar fit for this particular 
data set. We point out a weakness of the t copula that it does not nest the independent case. We contrast the proposed model with nine 
competing models: the independent models, the conditional models by Garrido et al. (2016) and the mixed copula models by Czado et 
al. (2012). The relative Gini indices and the grouped percentiles on the test data indicate that the proposed model has a competitive 
generalization ability for this particular data compared with other methods.
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Appendix A. Proof of (3.4)

Proof.

F Ti (t) = Pr(Ti ≤ t) = Pr(Ti,1 + Ti,2 ≤ t|Ti,1 ≤ 1) = Pr(Ti,1 + Ti,2 ≤ t, Ti,1 ≤ 1)

Pr(Ti,1 ≤ 1)
.

If t ≤ 1, we get

F Ti (t) = Pr(Ti,1 + Ti,2 ≤ t, Ti,1 ≤ 1)

Pr(Ti,1 ≤ 1)

= Pr(Ti,1 + Ti,2 ≤ t)

Pr(Ti,1 ≤ 1)

= 1 − e−λ(xi)t − λ(xi)te−λ(xi)t

1 − e−λ(xi)
.

If t > 1, we get

F Ti (t) = Pr(Ti,1 + Ti,2 ≤ t, Ti,1 ≤ 1)

Pr(Ti,1 ≤ 1)

= Pr(Ti,1 ≤ 1) − Pr(Ti,1 + Ti,2 > t, Ti,1 ≤ 1)

Pr(Ti,1 ≤ 1)

= Pr(Ti,1 ≤ 1) − ∫ 1
0 Pr(Ti,2 > t − s)λ(xi)e−λ(xi)sds

Pr(Ti,1 ≤ 1)

= Pr(Ti,1 ≤ 1) − ∫ 1
0 e−λ(xi)(t−s)λ(xi)e−λ(xi)sds

Pr(Ti,1 ≤ 1)

= 1 − e−λ(xi) − λ(xi)e−λ(xi)t

−λ(x )
. �
1 − e i
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Appendix B. Waiting time associated with mixture Poisson distribution and negative binomial distribution

B.1. Mixture Poisson distribution

We consider the mixture of two exponential distributed waiting times, which leads to a mixture of Poisson distributions. Choose a 
Bernoulli random variable Hi ∈ {0, 1} with Pr(Hi = 0) = π0 > 0. Given {Hi = h}, the waiting time between the k − 1 and k-th claim of 
policy i is independently and identically distributed as an exponential distribution:

Ti,k|Hi = h
i.i.d.∼ Exp(1/λh(xi)), for k = 1,2, . . . and h = 0,1.

The correspondence between the censored number of claims Ni and the waiting times Ti,k is the same as (3.2). By Partition Equation, we 
gained that

Pr(Ni = 0) = Pr(Ni = 0|Hi = 0)Pr(Hi = 0) + Pr(Ni = 0|Hi = 1)Pr(Hi = 1)

= π0 Pr(Ti,1 > 1|Hi = 0) + (1 − π0)Pr(Ti,1 > 1|Hi = 1)

= π0e−λ0(xi) + (1 − π0)e−λ1(xi),

Pr(Ni = 1) = Pr(Ni = 1|Hi = 0)Pr(Hi = 0) + Pr(Ni = 1|Hi = 1)Pr(Hi = 1)

= π0λ0(xi)e−λ0(xi) + (1 − π0)λ1(xi)e−λ1(xi),

Pr(Ni = 2+) = Pr(Ni = 2 + |Hi = 0)Pr(Hi = 0) + Pr(Ni = 2 + |Hi = 1)Pr(Hi = 1)

= π0

(
1 − e−λ0(xi) − λ0(xi)e−λ0(xi)

)
+ (1 − π0)

(
1 − e−λ1(xi) − λ1(xi)e−λ1(xi)

)
.

Recall that

F Ti (t) = Pr(Ti ≤ t) = Pr(Ti,1 + Ti,2 ≤ t|Ti,1 ≤ 1) = Pr(Ti,1 + Ti,2 ≤ t, Ti,1 ≤ 1)

Pr(Ti,1 ≤ 1)
.

The conditional distribution of Ti given {Hi = h} is the same as (3.4). For t > 0, by Partition Equation, the unconditional CDF of Ti is given 
by

F Ti (t) = Pr(Ti ≤ t) = Pr(Ti ≤ t|Hi = 0)Pr(Hi = 0) + Pr(Ti ≤ t|Hi = 1)Pr(Hi = 1)

=
⎧⎨
⎩π0

1−e−λ0(xi )t−λ0(xi)te−λ0(xi )t

1−e−λ0(xi )
+ (1 − π0)

1−e−λ1(xi )t−λ1(xi)te−λ1(xi )t

1−e−λ1(xi )
, for t ≤ 1;

π0
1−e−λ0(xi )−λ0(xi)e−λ0(xi )t

1−e−λ0(xi )
+ (1 − π0)

1−e−λ1(xi )−λ1(xi)e−λ1(xi )t

1−e−λ1(xi )
, for t > 1.

(B.1)

Note that when λ0(xi) → 0, the distribution of Ni converges to (right-censored) zero-inflated Poisson distribution. The unconditional CDF 
of Ti in a zero-inflated Poisson distribution is given by

F Ti (t) = Pr(Ti ≤ t) = Pr(Ti ≤ t|Hi = 1)Pr(Hi = 1)

=
⎧⎨
⎩(1 − π0)

1−e−λ1(xi )t−λ1(xi)te−λ1(xi )t

1−e−λ1(xi )
, for t ≤ 1;

(1 − π0)
1−e−λ1(xi )−λ1(xi)e−λ1(xi )t

1−e−λ1(xi )
, for t > 1.

(B.2)

B.2. Negative binomial distribution

The negative binomial distribution is known as a compound distribution of Poisson distribution with the mixing gamma distribution 
of the Poisson mean. Assume that the Poisson mean λi follows a gamma distribution with shape s and rate ri = r(xi), and given λi the 
number of claims Ni follows a Poisson distribution with mean λi . The unconditional distribution of Ni is a negative binomial distribution 
given by

f (Ni = m|s, ri) =
∞∫

0

λm
i

m! e−λi · λs−1
i

e−λi ri

r−s
i �(s)

dλi

= rs
i

m!�(s)

∞∫
0

λs+m−1
i e−λi(1+ri)dλi

= rs
i

m!�(s)
(1 + ri)

−s−m�(s + m)

∞∫
0

λs+m−1
i e−λi(1+ri)

(1 + ri)
−s−m�(s + m)

dλi

= rs
i

m!�(s)
(1 + ri)

−s−m�(s + m)

=�(s + m)
(

1
)m (

ri
)s
m!�(s) 1 + ri 1 + ri
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=�(s + m)

m!�(s)
pm

i (1 − pi)
s ,

where pi = 1/(1 + ri). Note that we do not require s as an integer.
Given λi , the waiting time Ti,k follows an exponential distribution with mean 1/λi . The unconditional distribution of waiting time is 

derived as

f (Tik = t|s, ri) =
∞∫

0

λie
−λi t · λs−1

i

e−λi ri

r−s
i �(s)

dλi

= rs
i

�(s)

∞∫
0

λs
i e−λi(t+ri)dλi

= rs
i

�(s)
(t + ri)

−s−1�(s + 1)

∞∫
0

λs
i e−λi(t+ri)

(t + ri)
−s−1�(s + 1)

dλi

=
(

t + ri

ri

)−(s+1)
�(s + 1)

ri�(s)

= s

ri

(
1 + t

ri

)−(s+1)

.

(B.3)

Thus, the waiting time Tik follows a Pareto Type II distribution with shape s and scale ri . Recall that

F Ti (t) = Pr(Ti ≤ t) = Pr(Ti,1 + Ti,2 ≤ t|Ti,1 ≤ 1) = Pr(Ti,1 + Ti,2 ≤ t, Ti,1 ≤ 1)

Pr(Ti,1 ≤ 1)
.

Unfortunately we do not have an explicit expression for the distribution of the sum of i.i.d Pareto variables Ti,1 + Ti,2 (Ramsay, 2006). 
Therefore, we do not have a closed form for the CDF F Ti (t).

Appendix C. Proof of (3.8) for Gaussian copula and t copula (revisited)

Proof.

f N∗
i ,Yi

(m, y|xi;α,β, φ,ρ) =
{

C2
(

F Ti (1|xi;α), FYi (y|xi;β, φ);ρ) fYi (y|xi;β, φ), for m = 2+;[
1 − C2

(
F Ti (1|xi;α), FYi (y|xi;β, φ);ρ)] fYi (y|xi;β, φ), for m = 1,

For the partial derivative of bivariate Gaussian copula, we refer to Joe Joe (2014) Section 4.3:

∂

∂u2
C G(u1, u2;ρ) = ∂

∂u2
	2(	

−1(u1),	
−1(u2);ρ) = 	

(
	−1(u1) − ρ	−1(u2)√

1 − ρ2

)
.

For Gaussian copula, since zi,1 = 	−1(ui,1) and zi,2 = 	−1(ui,2), we can gain that

f N∗
i ,Yi

(m, y|xi;α,β, φ,ρ) =

⎧⎪⎪⎨
⎪⎪⎩

	

(
zi,1−ρzi,2√

1−ρ2

)
fYi (y|xi;β, φ), for m = 2+;

	

(
− zi,1−ρzi,2√

1−ρ2

)
fYi (y|xi;β, φ), for m = 1.

For the partial derivative of bivariate t copula, we refer to Joe Joe (2014) Section 4.13:

∂

∂u2
Ct(u1, u2;ρ,ν) = ∂

∂u2
T2,ν(T −1

ν (u1), T −1
ν (u2);ρ) = Tν+1

⎛
⎜⎜⎜⎜⎝

T −1
ν (u1) − ρT −1

ν (u2)√(
1 − ρ2

)(
ν +

[
T −1
ν (u2)

]2
)

/(ν + 1)

⎞
⎟⎟⎟⎟⎠ .

For t copula, since wi,1 = T −1
ν (ui,1) and wi,2 = T −1

ν (ui,2), we can gain that

f N∗
i ,Yi

(m, y|xi;α,β, φ,ρ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tν+1

⎛
⎝ wi,1−ρwi,2√(

1−ρ2
)(

ν+w2
i,2

)
/(ν+1)

⎞
⎠ fYi (y|xi;β, φ), for m = 2+;

Tν+1

⎛
⎝− wi,1−ρwi,2√(

1−ρ2
)(

ν+w2
i,2

)
/(ν+1)

⎞
⎠ fYi (y|xi;β, φ), for m = 1. �
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Appendix D. Proof of (3.11)

Proof. Let Zi,2 = log Yi−μ(xi)
σ . By (3.10), we can compute the conditional density of Zi,2.

When m = 2+, we get

Pr(Zi,2 ≤ zi,2|N∗
i = m, xi) = Pr(Yi ≤ eμ(xi)+zi,2σ |N∗

i = m, xi)

=
eμ(xi )+zi,2σ∫

0

	

⎛
⎝ zi,1 − ρ

(
log y−μ(xi)

σ

)
√

1 − ρ2

⎞
⎠ 1

ui,1

1√
2π yσ

e
− [log y−μ(xi )]2

2σ2 dy,

where zi,1 = 	−1(ui,1). Thus, the conditional density of Zi,2 is given by

f Zi,2(zi,2|N∗
i = m, xi) = ∂

∂zi,2
Pr(Zi,2 ≤ zi,2|N∗

i = m, xi) = 	

(
zi,1 − ρzi,2√

1 − ρ2

)
1

ui,1

1√
2π

e− z2
i,2
2 .

The conditional expectation of Zi,2 is given by

E(Zi,2|N∗
i = m, xi) =

∞∫
−∞

	

(
zi,1 − ρzi,2√

1 − ρ2

)
1

ui,1

1√
2π

e− z2
i,2
2 zi,2dzi,2

= 1

ui,1

∞∫
−∞

	

(
zi,1 − ρzi,2√

1 − ρ2

)
d

(
− 1√

2π
e− z2

i,2
2

)

= 1

ui,1

⎧⎨
⎩− 1√

2π
e− z2

i,2
2 	

(
zi,1 − ρzi,2√

1 − ρ2

)∣∣∣∣∣
∞

−∞
+

∞∫
−∞

1√
2π

e− z2
i,2
2 d	

(
zi,1 − ρzi,2√

1 − ρ2

)⎫⎬
⎭

= 1

ui,1

⎧⎨
⎩

∞∫
−∞

1√
2π

e− z2
i,2
2

1√
2π

e
− (zi,1−ρzi,2)2

2(1−ρ2)

(
−ρ√

1 − ρ2

)
dzi,2

⎫⎬
⎭

= −ρ

ui,1

⎧⎨
⎩

∞∫
−∞

1

2π
√

1 − ρ2
e
− (z2

i,1−2ρzi,2 zi,1+z2
i,2)

2(1−ρ2) dzi,2

⎫⎬
⎭ .

Since 1
2π

√
1−ρ2

e
− (z2

i,1−2ρzi,2 zi,1+z2
i,2)

2(1−ρ2) is the joint density of two standard Gaussian random variables, we get

E(Zi,2|N∗
i = m, xi) = −ρ

ui,1
φ(zi,1) = −ρ

ui,1
φ(	−1(ui,1)).

Because log Yi = μ(xi) + σ Zi,2, the conditional expectation of log Yi is given by

E(log Yi|N∗
i = m, xi) = μ(xi) + σE(Zi,2|N∗

i = m, xi) = μ(xi) − ρσ

ui,1
φ(	−1(ui,1)).

When m = 1, we get

Pr(Zi,2 ≤ zi,2|N∗
i = m, xi) = Pr(Yi ≤ eμ(xi)+zi,2σ |N∗

i = m, xi)

=
eμ(xi )+zi,2σ∫

0

	

⎛
⎝−

zi,1 − ρ
(

log y−μ(xi)
σ

)
√

1 − ρ2

⎞
⎠ 1

1 − ui,1

1√
2π yσ

e
− (log y−μ(xi ))

2

2σ2 dy,

where zi,1 = 	−1(ui,1). Thus, the conditional density of Zi,2 is given by

f Zi,2(zi,2|N∗
i = m, xi) = ∂

∂zi,2
Pr(Zi,2 ≤ zi,2|N∗

i = m, xi) = 	

(
− zi,1 − ρzi,2√

1 − ρ2

)
1

1 − ui,1

1√
2π

e− z2
i,2
2 .

The conditional expectation of Zi,2 is given by
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E(Zi,2|N∗
i = m, xi) =

∞∫
−∞

	

(
− zi,1 − ρzi,2√

1 − ρ2

)
1

1 − ui,1

1√
2π

e− z2
i,2
2 zi,2dzi,2

= 1

1 − ui,1

∞∫
−∞

	

(
− zi,1 − ρzi,2√

1 − ρ2

)
d

(
− 1√

2π
e− z2

i,2
2

)

= 1

1 − ui,1

⎧⎨
⎩− 1√

2π
e− z2

i,2
2 	

(
− zi,1 − ρzi,2√

1 − ρ2

)∣∣∣∣∣
∞

−∞
+

∞∫
−∞

1√
2π

e− z2
i,2
2 d	

(
− zi,1 − ρzi,2√

1 − ρ2

)⎫⎬
⎭

= 1

1 − ui,1

⎧⎨
⎩

∞∫
−∞

1√
2π

e− z2
i,2
2

1√
2π

e
− (zi,1−ρzi,2)2

2(1−ρ2)

(
ρ√

1 − ρ2

)
dzi,2

⎫⎬
⎭

= ρ

1 − ui,1

⎧⎨
⎩

∞∫
−∞

1

2π
√

1 − ρ2
e
− (z2

i,1−2ρzi,2 zi,1+z2
i,2)

2(1−ρ2) dzi,2

⎫⎬
⎭ .

Similar to the case of m = 2+, the conditional expectation of log Yi for m = 1 can be gained as

E(log Yi|N∗
i = m, xi) = μ(xi) + σE(Zi,2|N∗

i = m, xi) = μ(xi) + ρσ

1 − ui,1
φ(	−1(ui,1)). �

Appendix E. Fisher’s scoring functions for Gaussian copula model

Consider a data set containing n observations {(m1, y1, x1), . . . , (mn, yn, xn)}. We denote the risk factors (including an intercept) used 
in the frequency model and the severity model by c i ∈Rp and di ∈Rq , respectively. We denote the parameters of the proposed model by 
θ = (α�, β�, φ, ρ)� ∈Rp+q+2. By (3.12), we have

l(α,β, φ,ρ) =l1(α) + l2(β, φ) + l3(α,β, φ,ρ),

where

l1(α) =
∑
i∈I0

log Pr(Ni = 0|ci;α) +
∑
i∈I+

log Pr(Ni > 0|c i;α),

l2(β, φ) =
∑
i∈I+

log fYi (yi |c i;β, φ),

l3(α,β, φ,ρ) =
∑
i∈I+

[
11(mi) log 	

(
− zi,1 − ρzi,2√

1 − ρ2

)
+ 12+(mi) log 	

(
zi,1 − ρzi,2√

1 − ρ2

)]
.

First, l1 is given as

l1(α) =
∑
i∈I0

−exp〈α, c i〉vi +
∑
i∈I+

log
(

1 − e−exp〈α,ci〉vi

)
.

We can calculate the partial derivatives of l1(α) for 1 ≤ j ≤ p

∂

∂α j
l1(α) =

∑
i∈I0

−exp〈α, c i〉vici j +
∑
i∈I+

e−exp〈α,ci〉vi

1 − e−exp〈α,ci〉vi
exp〈α, c i〉vici j,

where c i = (ci0, ci1, . . . , cip)� with ci0 = 1. We can write the partial derivative into a vector version as

∂

∂α
l1(α) =

∑
i∈I0

−exp〈α, c i〉vic i +
∑
i∈I+

e−exp〈α,ci〉vi

1 − e−exp〈α,c i〉vi
exp〈α, c i〉vic i (E.1)

Second, l2 is given as

l2(β, φ) =
∑
i∈I+

− mi yi

φ exp〈β,di〉 − mi

φ
〈β,di〉 +

(
mi

φ
− 1

)
log yi + mi

φ
log

(
mi

φ

)
− log�

(
mi

φ

)
.

We compute the partial derivatives of l2(β, φ) for 1 ≤ j ≤ q

∂

∂β j
l2(β, φ) =

∑
i∈I+

mi yi

φ exp〈β,di〉dij − mi

φ
dij

= 1

φ

∑
mi

(
yi

exp〈β,di〉 − 1

)
dij,
i∈I+
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where di = (di0, di1, . . . , diq)
� with di0 = 1. We can write the partial derivative into a vector version as

∂

∂β
l2(β, φ) = 1

φ

∑
i∈I+

mi

(
yi

exp〈β,di〉 − 1

)
di . (E.2)

We also compute the partial derivatives of l2(β, φ) w.r.t. φ:

∂

∂φ
l2(β, φ) =

∑
i∈I+

mi yi

φ2 exp〈β,di〉 + mi

φ2
〈β,di〉 − mi

φ2
log yi − mi

φ2
log

(
mi

φ

)
− mi

φ2
+ �′(mi/φ)

�(mi/φ)

mi

φ2

=
∑
i∈I+

[
yi

exp〈β,di〉 + 〈β,di〉 − log yi − 1

]
mi

φ2
− mi

φ2
log

(
mi

φ

)
+ �′(mi/φ)

�(mi/φ)

mi

φ2
,

(E.3)

where �′(·) is the derivative of gamma function:

�′(s) =
∞∫

0

xs−1e−x log sdx.

Third, we compute the partial derivatives of l3(α, β, φ, ρ).

∂

∂α j
l3(α,β, φ,ρ) =

∑
i∈I+

⎧⎨
⎩11(mi)

[
	

(
− zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
− zi,1 − ρzi,2√

1 − ρ2

)(
− 1√

1 − ρ2

)
∂zi,1

∂α j

+12+(mi)

[
	

(
zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
zi,1 − ρzi,2√

1 − ρ2

)(
1√

1 − ρ2

)
∂zi,1

∂α j

⎫⎬
⎭

=
∑
i∈I+

⎧⎨
⎩−11(mi)

[
	

(
− zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
− zi,1 − ρzi,2√

1 − ρ2

)

+12+(mi)

[
	

(
zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
zi,1 − ρzi,2√

1 − ρ2

)⎫⎬
⎭ 1√

1 − ρ2

∂zi,1

∂α j
,

where

∂zi,1

∂α j
= dzi,1

dui,1

∂ui,1

∂α j
=
(

dui,1

dzi,1

)−1
∂ui,1

∂α j
= 1

φ(	−1(ui,1))

∂ui,1

∂α j
.

Now, we calculate the partial derivative of ui,1 for 1 ≤ j ≤ p

∂ui,1

∂α j
= ∂

∂α j
Pr(N∗

i = 2 + |c i;α)

= ∂

∂α j

1 − e−λi vi − λi vie−λi vi

1 − e−λi vi

= ∂

∂λi

(
1 − e−λi vi − λi vie−λi vi

1 − e−λi vi

)
∂λi

∂α j

= λi v2
i e−λi vi − vie−λi vi + vie−2λi vi

(1 − e−λi vi )2
λici j,

where λi = λ(c i) = exp〈α, ci〉. Therefore,

∂l3
∂α

=
∑
i∈I+

⎧⎨
⎩−11(mi)

[
	

(
− zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
− zi,1 − ρzi,2√

1 − ρ2

)

+12+(mi)

[
	

(
zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
zi,1 − ρzi,2√

1 − ρ2

)⎫⎬
⎭ 1√

1 − ρ2

1

φ(	−1(ui,1))

× exp〈α, c i〉v2
i e−exp〈α,c i〉vi − vie−exp〈α,c i〉vi + vie−2 exp〈α,c i〉vi

(1 − e−exp〈α,ci〉vi )2
exp〈α, c i〉c i .

(E.4)

Similarly,
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∂

∂β j
l3(α,β, φ,ρ) =

∑
i∈I+

⎧⎨
⎩11(mi)

[
	

(
− zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
− zi,1 − ρzi,2√

1 − ρ2

)(
ρ√

1 − ρ2

)
∂zi,2

∂β j

+12+(mi)

[
	

(
zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
zi,1 − ρzi,2√

1 − ρ2

)(
− ρ√

1 − ρ2

)
∂zi,2

∂β j

⎫⎬
⎭

=
∑
i∈I+

⎧⎨
⎩11(mi)

[
	

(
− zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
− zi,1 − ρzi,2√

1 − ρ2

)

−12+(mi)

[
	

(
zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
zi,1 − ρzi,2√

1 − ρ2

)⎫⎬
⎭ ρ√

1 − ρ2

∂zi,2

∂β j
,

where

∂zi,2

∂β j
= 1

φ(	−1(ui,2))

∂ui,2

∂β j
.

Then, we calculate the partial derivative of ui,2 for 1 ≤ j ≤ q

∂ui,2

∂β j
= ∂

∂μi
FYi (yi |di;β, φ)

∂μi

∂β j
= ∂

∂μi
FYi (yi;μi, φ)exp〈β,di〉dij.

where μi = μ(di) = exp〈β, di〉.
Now, we compute the partial derivatives of ui,2 with respect to μi .

∂

∂μi
FYi (yi;μi, φ) = ∂

∂μi

yi∫
0

fYi (y;μi, φ)dy =
yi∫

0

∂

∂μi
fYi (y;μi, φ)dy

=
yi∫

0

∂

∂μi

[
1

�(mi/φ)

(
mi

φμi

)mi/φ

ymi/φ−1e−ymi/φμi

]
dy

=
yi∫

0

mi

φμ2
i

fYi (y;μi, φ)(y − μi)dy

= mi

φμ2
i

⎡
⎣ yi∫

0

yfYi (y;μi, φ)dy −
yi∫

0

μi fYi (y;μi, φ)dy

⎤
⎦

= mi

φμ2
i

⎡
⎣ yi∫

0

yfYi (y;μi, φ)dy − μi FYi (y;μi, φ)

⎤
⎦

= mi

φμ2
i

⎡
⎣ yi∫

0

1

�(mi/φ)

(
mi

φμi

)mi/φ

ymi/φ+1−1e−ymi/φμi dy − μi FYi (y;μi, φ)

⎤
⎦ .

Let ai = mi/φ and bi = mi/φμi , then

yfYi (y;μi, φ) = 1

�(mi/φ)

(
mi

φμi

)mi/φ

ymi/φ+1−1e−ymi/φμi

= 1

�(ai)
bai

i yai+1−1e−bi y

= ai

bi

1

�(ai + 1)
bai+1

i yai+1−1e−bi y

= μi fYi (y;ai + 1,bi),

where fYi (y; ai + 1, bi) is the pdf of gamma distribution with ai + 1 and bi . Then, we have

∂

∂μi
FYi (yi;μi, φ) = mi

φμi
[FYi (yi;ai + 1,bi) − FYi (yi;μi, φ)].

Thus, we have
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∂l3
∂β

=
∑
i∈I+

⎧⎨
⎩11(mi)

[
	

(
− zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
− zi,1 − ρzi,2√

1 − ρ2

)

−12+(mi)

[
	

(
zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
zi,1 − ρzi,2√

1 − ρ2

)⎫⎬
⎭ ρ√

1 − ρ2

1

φ(	−1(ui,2))
(E.5)

× mi

φμi
[FYi (yi;ai + 1,bi) − FYi (yi;μi, φ)]μidi .

To compute the partial derivative of l3 with respect to φ, we only need to compute:

∂

∂φ
ui,2 = ∂

∂φ
FYi (yi;μi, φ).

Similarly,

∂

∂φ
FYi (yi;μi, φ) = ∂

∂φ

yi∫
0

fYi (y;μi, φ)dy =
yi∫

0

∂

∂φ
fYi (y;μi, φ)dy

=
yi∫

0

∂

∂φ
exp

{
log fYi (y;μi, φ)

}
dy

=
yi∫

0

fYi (y;μi, φ)
∂

∂φ
log fYi (y;μi, φ)dy,

where ∂
∂φ

log fYi (y; μi, φ) is given as

∂

∂φ
log fYi (y;μi, φ) =

[
y

exp〈β,di〉 + 〈β,di〉 − log y − 1

]
mi

φ2
− mi

φ2
log

(
mi

φ

)
+ �′(mi/φ)

�(mi/φ)

mi

φ2
.

Thus, we have

∂l3
∂φ

=
∑
i∈I+

⎧⎨
⎩1mi (1)

[
	

(
− zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
− zi,1 − ρzi,2√

1 − ρ2

)

−1mi (2+)

[
	

(
zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
zi,1 − ρzi,2√

1 − ρ2

)⎫⎬
⎭ ρ√

1 − ρ2

1

φ(	−1(ui,2))

×
yi∫

0

fYi (y;μi, φ)
∂

∂φ
log fYi (y;μi, φ)dy.

(E.6)

We now compute the partial derivatives of l3 with respect to ρ .

∂l3
∂ρ

= ∂

∂ρ

∑
i∈I+

[
11(mi) log 	

(
− zi,1 − ρzi,2√

1 − ρ2

)
+ 12+(mi) log 	

(
zi,1 − ρzi,2√

1 − ρ2

)]

=
∑
i∈I+

⎧⎨
⎩11(mi)

[
	

(
− zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
− zi,1 − ρzi,2√

1 − ρ2

)[
zi,2 − ρzi,1

(1 − ρ2)3/2

]

+12+(mi)

[
	

(
zi,1 − ρzi,2√

1 − ρ2

)]−1

φ

(
zi,1 − ρzi,2√

1 − ρ2

)[
ρzi,1 − zi,2

(1 − ρ2)3/2

]⎫⎬
⎭ .

(E.7)

By applying equations (E.1), (E.2), (E.3), (E.4), (E.5), (E.6), (E.7), we get the following partial derivatives:

∂

∂α
l(α,β, φ,ρ) = ∂

∂α
l1(α) + ∂

∂α
l3(α,β, φ,ρ),

∂

∂β
l(α,β, φ,ρ) = ∂

∂β
l2(β, φ) + ∂

∂β
l3(α,β, φ,ρ),

∂

∂φ
l(α,β, φ,ρ) = ∂

∂φ
l2(β, φ) + ∂

∂φ
l3(α,β, φ,ρ),

∂
l(α,β, φ,ρ) = ∂

l3(ρ,β, φ,ρ),

(E.8)
∂ρ ∂ρ
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Therefore, the scoring function s(θ) of proposed model is given by

s(θ) = ∂

∂θ
l(θ) =

(
∂

∂α
l(α,β, φ,ρ)�,

∂

∂β
l(α,β, φ,ρ)�,

∂

∂φ
l(α,β, φ,ρ),

∂

∂ρ
l(α,β, φ,ρ)

)�
.

For the log-normal distributed severity, we can follow the above procedure to get the corresponding scoring functions.

Appendix F. Tables

Table 7
Estimated coefficients under the gamma distributed severity.

Global MLE Two-stage estimation IFM estimation

Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE

Case 1
α0 = −0.5 -0.4739 0.0261 0.1108 -0.4754 0.0246 0.1135 -0.4754 0.0246 0.1135
α1 = −0.04 -0.0407 -0.0007 0.0028 -0.0407 -0.0007 0.0028 -0.0407 -0.0007 0.0028
α2 = 0.3 0.3026 0.0026 0.0677 0.3019 0.0019 0.0664 0.3019 0.0019 0.0664
β0 = −1 -1.0100 -0.0100 0.1621 -1.0099 -0.0099 0.1621 -1.0456 -0.0456 0.1686
β1 = 0.1 0.1001 0.0001 0.0040 0.1001 0.0001 0.0040 0.1006 0.0006 0.0040
β2 = −0.2 -0.2055 -0.0055 0.1074 -0.2055 -0.0055 0.1075 -0.2095 -0.0095 0.1092
φ = 2 1.9965 -0.0035 0.0855 1.9965 -0.0035 0.0855 1.9837 -0.0163 0.0855
ρ = 0.2 0.2032 0.0032 0.0701 0.2031 0.0031 0.0701 0.2051 0.0051 0.0721

Case 2
α0 = −0.5 -0.5309 -0.0309 0.1371 -0.5350 -0.0350 0.1370 -0.5350 -0.0350 0.1370
α1 = −0.04 -0.0393 0.0007 0.0032 -0.0392 0.0008 0.0032 -0.0392 0.0008 0.0032
α2 = 0.3 0.3066 0.0066 0.0787 0.3059 0.0059 0.0773 0.3059 0.0059 0.0773
β0 = −1 -1.0199 -0.0199 0.1436 -1.0195 -0.0195 0.1435 -1.1067 -0.1067 0.1821
β1 = 0.1 0.1002 0.0002 0.0036 0.1002 0.0002 0.0036 0.1015 0.0015 0.0041
β2 = −0.2 -0.1898 0.0102 0.1029 -0.1898 0.0102 0.1029 -0.1971 0.0029 0.1088
φ = 2 1.9935 -0.0065 0.0871 1.9932 -0.0068 0.0871 1.9600 -0.0400 0.0954
ρ = 0.5 0.5052 0.0052 0.0616 0.5050 0.0050 0.0615 0.5064 0.0064 0.0621

Case 3
α0 = −0.5 -0.4899 0.0101 0.1147 -0.4895 0.0105 0.1206 -0.4895 0.0105 0.1206
α1 = −0.04 -0.0401 -0.0001 0.0030 -0.0401 -0.0001 0.0032 -0.0401 -0.0001 0.0032
α2 = 0.3 0.2830 -0.0170 0.0626 0.2836 -0.0164 0.0656 0.2836 -0.0164 0.0656
β0 = −1 -1.0305 -0.0305 0.1377 -1.0307 -0.0307 0.1376 -1.1850 -0.1850 0.2514
β1 = 0.1 0.1004 0.0004 0.0040 0.1004 0.0004 0.0040 0.1028 0.0028 0.0057
β2 = −0.2 -0.2074 -0.0074 0.1052 -0.2075 -0.0075 0.1054 -0.2238 -0.0238 0.1182
φ = 2 1.9910 -0.0090 0.0707 1.9908 -0.0092 0.0714 1.9430 -0.0570 0.1006
ρ = 0.9 0.8995 -0.0005 0.0154 0.8992 -0.0008 0.0155 0.8699 -0.0301 0.0402

Table 8
Estimated coefficients under the log-normal distributed severity.

Global MLE Two-stage estimation IFM estimation

Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE

Case 4
α0 = −0.5 -0.4736 0.0264 0.1112 -0.4754 0.0246 0.1135 -0.4754 0.0246 0.1135
α1 = −0.04 -0.0407 -0.0007 0.0028 -0.0407 -0.0007 0.0028 -0.0407 -0.0007 0.0028
α2 = 0.3 0.3025 0.0025 0.0675 0.3019 0.0019 0.0664 0.3019 0.0019 0.0664
β0 = −1 -1.0337 -0.0337 0.2279 -1.0335 -0.0335 0.2280 -1.0353 -0.0353 0.2271
β1 = 0.1 0.1008 0.0008 0.0056 0.1008 0.0008 0.0057 0.1009 0.0009 0.0055
β2 = −0.2 -0.2067 -0.0067 0.1519 -0.2066 -0.0066 0.1519 -0.2072 -0.0072 0.1555
σ = 2 1.9927 -0.0073 0.0538 1.9927 -0.0073 0.0538 1.9967 -0.0033 0.0535
ρ = 0.2 0.2047 0.0047 0.0684 0.2047 0.0047 0.0684 0.2043 0.0043 0.0683

Case 5
α0 = −0.5 -0.5319 -0.0319 0.1373 -0.5350 -0.0350 0.1370 -0.5350 -0.0350 0.1370
α1 = −0.04 -0.0392 0.0008 0.0032 -0.0392 0.0008 0.0032 -0.0392 0.0008 0.0032
α2 = 0.3 0.3064 0.0064 0.0785 0.3059 0.0059 0.0773 0.3059 0.0059 0.0773
β0 = −1 -0.9962 0.0038 0.2215 -0.9955 0.0045 0.2219 -0.9996 0.0004 0.2219
β1 = 0.1 0.0995 -0.0005 0.0055 0.0994 -0.0006 0.0055 0.0995 -0.0005 0.0055
β2 = −0.2 -0.1859 0.0141 0.1428 -0.1858 0.0142 0.1426 -0.1801 0.0199 0.1527
σ = 2 1.9919 -0.0081 0.0603 1.9918 -0.0082 0.0603 1.9946 -0.0054 0.0609
ρ = 0.5 0.5069 0.0069 0.0613 0.5067 0.0067 0.0613 0.5055 0.0055 0.0604

Case 6
α0 = −0.5 -0.4878 0.0122 0.1150 -0.4895 0.0105 0.1206 -0.4895 0.0105 0.1206
α1 = −0.04 -0.0401 -0.0001 0.0031 -0.0401 -0.0001 0.0032 -0.0401 -0.0001 0.0032
α2 = 0.3 0.2843 -0.0157 0.0633 0.2836 -0.0164 0.0656 0.2836 -0.0164 0.0656
β0 = −1 -1.0483 -0.0483 0.1836 -1.0474 -0.0474 0.1847 -1.0631 -0.0631 0.2395
β1 = 0.1 0.1011 0.0011 0.0047 0.1010 0.0010 0.0048 0.1013 0.0013 0.0064
β2 = −0.2 -0.2137 -0.0137 0.1276 -0.2132 -0.0132 0.1268 -0.2136 -0.0136 0.1637
σ = 2 1.9871 -0.0129 0.0580 1.9868 -0.0132 0.0582 1.9929 -0.0071 0.0628
ρ = 0.9 0.9008 0.0008 0.0149 0.9007 0.0007 0.0149 0.8972 -0.0028 0.0149
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