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The Parisian ruin time, which is the first time the insurer’s surplus process has an excursion below level 
zero that exceeds a prescribed time length, has been extensively analyzed in recent years mainly in the 
Lévy model and its special cases. However, the cumulative Parisian ruin time, which is the first time the 
total time spent by the surplus process below level zero exceeds a certain time length, has been rarely 
considered in the literature. In this paper, we study the cumulative Parisian ruin problem in a renewal 
risk model with general interclaim times and exponential claims. Explicit formulas for the infinite-time 
cumulative Parisian ruin probability is first derived under a deterministic Parisian clock and then under 
an Erlang clock, where the latter case can also serve as an approximation of the former. The finite-time 
cumulative Parisian ruin probability is subsequently analyzed as well when the time horizon is another 
Erlang random variable. Our formulas are applied in various numerical examples where the interclaim 
times follow gamma, Weibull, or Pareto distribution. Consequently, we demonstrate that the choice of 
the interclaim distribution does have a significant impact on the cumulative Parisian ruin probabilities 
when one deviates from the exponential assumption.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, the insurance risk surplus process {U (t)}t≥0 is assumed to follow the dynamics

U (t) = u + ct −
N(t)∑
i=1

Yi,

where U (0) = u ≥ 0 is the initial surplus level and c > 0 is the incoming premium rate. Moreover, the number of claims process {N(t)}t≥0
is assumed to be a renewal process with independent and identically distributed (i.i.d.) inter-arrival times {V i }∞i=1 possessing common 
density k(·) and Laplace transform k̃(s) = ∫ ∞

0 e−stk(t) dt . The claim amounts {Yi}∞i=1 are assumed to form a sequence of i.i.d. random 
variables independent of {N(t)}t≥0. Under the above specifications, {U (t)}t≥0 is known as a renewal or Sparre Andersen risk process 
(Sparre Andersen (1957)). For convenience, we shall use Pu and Eu to denote, respectively, the probability and the expectation taken 
under the initial condition U (0) = u. Traditionally, the ruin time is defined by τCL = inf{t ≥ 0 : U (t) < 0} (with the convention inf∅ = +∞). 
We assume the positive security loading condition cE[V 1] >E[Y1], which guarantees that {U (t)}t≥0 drifts to positive infinity in the long 
run and the ultimate ruin probability Pu{τCL < ∞} is less than one for u ≥ 0 (see Prabhu (1998, Part I, Theorems 2 and 7)). If each V i is 
assumed to be exponentially distributed, then {U (t)}t≥0 reduces to the classical compound Poisson or Cramér-Lundberg risk process. For 
n = 1, 2, . . ., the n-th fold convolution of k(·) is denoted by k∗n(·) (which is the density of the n-th arrival time 

∑n
i=1 V i of {N(t)}t≥0). In 

the remainder of the paper, we assume each Yi follows an exponential distribution with mean 1/μ.
The renewal risk process, being a natural generalization of the compound Poisson model, has been studied extensively in the literature 

(see Asmussen and Albrecher (2010) and Willmot and Woo (2017) for review). Quantities such as the ruin probability, the distribution of 
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the deficit at ruin and more generally Gerber-Shiu type functions (see Gerber and Shiu (1998)) have been analyzed by e.g. Drekic et al. 
(2004), Willmot (2007), Landriault and Willmot (2008), Cheung et al. (2010) and Frostig et al. (2012). In these works, the distribution of the 
inter-arrival times is left unspecified. In particular, as far as explicit results are concerned, distributional assumption (such as exponential, 
phase-type, and Coxian) only needs to be made on the claim amounts. This is contrary to the analysis of the classical compound Poisson 
risk model where the inter-arrival times are specifically exponential while the claim amounts can possibly be more general.

In modifying the traditional definition of ruin, Dassios and Wu (2008a,b) proposed (in the compound Poisson risk model) the idea 
of Parisian ruin time which is the first time the surplus process has continuously remained negative for a prescribed amount of time 
(say r > 0). Since then, the Parisian ruin problem and its modifications (such as replacement of the deterministic grace period r by a 
random time; further incorporation of a lower bankruptcy barrier; consideration of Parisian drawdown) have received a lot of attention 
in spectrally negative Lévy risk process and its special cases. See e.g. Czarna and Palmowski (2011), Loeffen et al. (2013, 2018), Landriault 
et al. (2014, 2019), Baurdoux et al. (2016), Czarna (2016), Czarna et al. (2017), Lkabous et al. (2017) and Li and Zhou (2022), where the 
results are typically expressed in terms of scale functions. Outside the class of Lévy risk processes, the Parisian ruin problem was studied 
in the present renewal risk process with exponential claims by Wong and Cheung (2015). As mentioned by Dassios and Wu (2008a,b), 
such a concept of Parisian ruin was motivated by Parisian options in finance, where an option can be knocked in or knocked out if, before 
the maturity date, there is an excursion of the underlying asset price above or below a certain level that exceeds a prescribed length of 
time (see Chesney et al. (1997)). In an insurance context, the interpretation is that the insurer is given a grace period by the regulator for 
debt restructuring in attempt to recover from a negative surplus. Compared to the classical ruin time τCL , Parisian ruin is more consistent 
with the notion of bankruptcy and liquidation described by Chapters 7 and 11 of the US Bankruptcy Code. On average, the rehabilitation 
process lasts for about 2.5 years as the business undergoes reorganization (e.g. Broadie et al. (2007, footnote 14)). Moreover, Antill and 
Grenadier (2019) argued that modelling the ‘conversion (from Chapter 11 (reorganization) to Chapter 7 (liquidation)) as exogenous and 
random is a reasonable approximation of reality’. Therefore, the consideration of a random grace period may make sense as well. Further 
motivation and justification of Parisian ruin problem in connection to Chapters 7 and 11 can be found in e.g. Li et al. (2014, 2020).

Chesney et al. (1997) also discussed an alternative type of Parisian option, namely cumulative Parisian option, where knock-in or 
knock-out is based on the cumulative time spent by the underlying asset above or below a fixed level. This has led to analogous definition 
of ruin in an actuarial context as well. From Guérin and Renaud (2017), cumulative Parisian ruin is said to occur when the total time the 
surplus process has spent in the red (i.e. below zero) reaches r time units for the first time, where r > 0 is a prescribed constant known 
as the (cumulative) Parisian clock. That is, as opposed to the previously discussed Parisian ruin which is based on excursion of the process 
below level zero, cumulative Parisian ruin is defined based on the occupation time below zero. Defining OTt = ∫ t

0 1{U (s)<0} ds to be the 
occupation time in the red by time t ≥ 0, the event that cumulative Parisian ruin occurs by time t is equivalent to the event that OTt

exceeds r. Then, the cumulative Parisian ruin time is τr = inf{t ≥ 0 : OTt > r}, and the finite-time cumulative Parisian ruin probability is

ψr(u, t) = Pu{τr ≤ t} = Pu{OTt > r}, (1.1)

whereas the infinite-time or ultimate cumulative Parisian ruin probability is

ψr(u) = Pu{τr < ∞} = Pu{OT∞ > r}. (1.2)

As commented by Li et al. (2020), the descriptions of the feature of rehabilitation are mainly qualitative and far from unified in essentially 
all global insurance prudential regulatory frameworks. We believe that cumulative Parisian ruin provides an attractive alternative to the 
usual definition of Parisian ruin. In particular, if the surplus process has fallen below zero, this possibly signals substantial underlying 
problems with the insurance portfolio, and the insurer’s reputation has already taken a hit even it subsequently survives the first grace 
period. The regulators should be hesitant to grant the business another grace period of the same length (or distribution) if its surplus 
falls below zero again in the future. Therefore, it makes more sense to sum the durations of negative surplus in determining the event of 
ruin (as in cumulative Parisian ruin) instead of starting a new clock whenever an excursion below zero begins (as in the usual Parisian 
ruin). While Parisian ruin has been extensively analyzed in the literature, the study of the cumulative Parisian ruin problem is scarce. The 
limited references include Guérin and Renaud (2017) who primarily considered the classical compound Poisson and the Brownian motion 
risk models, and Bladt et al. (2019) who applied techniques from Markov-modulated fluid flow processes to a phase-type renewal process 
with phase-type claims. Lkabous and Renaud (2018) has subsequently looked into a VaR-type risk measure based on cumulative Parisian 
ruin in the compound Poisson risk model. Specifically, they defined such a risk measure as inf{u ≥ 0 : ψr(u, t) ≤ ε} for some tolerance level 
ε > 0. Thanks to the relationship (1.1), this is equivalent to inf{u ≥ 0 : Pu{OTt > r} ≤ ε} which is expressed in terms of the distribution 
of OTt . They have shown that this risk measure satisfies attractive properties such as translation invariance, positive homogeneity and 
monotonicity, which facilitate actuarial applications. Our focus here is to develop exact formulas and/or approximations for ψr(u) and 
ψr(u, t), and our work serves to fill an important literature gap in the cumulative Parisian ruin problem in allowing for the interclaim 
times to be arbitrary. It is important to note that finite-time ruin probabilities defined for the classical ruin time τCL are in general not 
easy to obtain even in the simple cases of the compound Poisson model (e.g. Dickson and Willmot (2005)) and the present renewal risk 
model with exponential claims (e.g. Borovkov and Dickson (2008) and Landriault et al. (2011)). Our results on ψr(u, t) can in principle be 
applied to calculate or approximate the afore-mentioned risk measure as well.

This paper is organized as follows. Section 2 starts by providing some technical preliminaries that will be used throughout. In Section 3, 
the ultimate cumulative Parisian ruin probability (1.2) is first derived under a deterministic Parisian clock r, and then an approximation 
based on replacing r by an Erlang random variable (see Section 2.2 for justification) is also developed. Section 4 is concerned with 
approximations of the finite-time cumulative Parisian ruin probability (1.1) via replacing the time horizon t by an Erlang random variable. 
The formulas developed can be easily programmed in software such as Mathematica. Numerical examples are given in Section 5 to illustrate 
the impact of the choice of the interclaim time distribution (gamma, Weibull, or Pareto) on the cumulative Parisian ruin probabilities when 
one deviates from the exponential interclaim times implicitly assumed in the compound Poisson model. Section 6 ends the paper with 
some concluding remarks.
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2. Preliminaries

2.1. Lundberg’s fundamental equation

For each y ≥ 0, the Lundberg’s fundamental equation (in ξ ) of the renewal risk model with exponential claims is given by (e.g. Willmot
(2007, Equation (3.16)))

1 − k̃(cξ + y)
μ

μ − ξ
= 0, (2.1)

which has a unique positive real root that is denoted by R y (commonly known as the ‘adjustment coefficient’). The root R y and its 
derivatives evaluated at various values of y will be crucial to our analysis. In particular, the Laplace transform of the classical ruin time is

Eu[e−δτCL 1{τCL<∞}] = μ − Rδ

μ
e−Rδu (2.2)

under a Laplace transform argument of δ ≥ 0 (e.g. Willmot (2007, Equation (3.15))). The classical ruin probability can be retrieved by 
letting δ = 0. Moreover, for an exponential random variable with mean 1/γ (denoted by E1,γ ) that is independent of the surplus process 
{U (t)}t≥0, it is known from Wong and Cheung (2015, Equations (5.2) and (5.5)) that the Laplace transform of the occupation time OTE1,γ

in red until time E1,γ is

Eu[e−ωOTE1,γ ] = 1 − c(Rω+γ − Rγ ) + ω

cRω+γ + ω + γ

μ − Rγ

μ
e−Rγ u, (2.3)

where ω ≥ 0 is the Laplace transform argument.

2.2. Erlangization

While the Parisian clock r and the finite-time horizon t in (1.1) and (1.2) are preferably deterministic, it is often mathematically more 
tractable to assume a random clock or a random time horizon so that a Markovian structure of the process may be exploited to ease 
the analysis. A popular choice to replace a deterministic amount of h > 0 is an Erlang(n) distribution with rate parameter χ > 0 due to 
the Erlangization technique: if one sets χ = n/h and lets n → ∞ then the Erlang variable converges in distribution to a point mass at h. 
Erlangization was first proposed in option pricing by e.g. Carr (1998) and Kyprianou and Pistorius (2003). It was subsequently utilized by 
e.g. Asmussen et al. (2002), Stanford et al. (2005) and Ramaswami et al. (2008) in finite-time ruin problems (to replace the finite-time 
horizon), by e.g. Albrecher et al. (2011) and Cheung and Zhang (2019) in risk models with periodic dividend decisions (to mimic the 
intervals between dividend decision times), and by e.g. Landriault et al. (2014) and Cheung and Wong (2017) in Parisian ruin and dividend 
problems (to mimic the Parisian implementation delays). The good performance of Erlangization has been well documented in these works 
and references therein. For later use, an Erlang(n) random variable with rate parameter χ will be denoted by En,χ .

2.3. Faà di Bruno’s formula

It will be seen that in various steps of our analysis we need to take higher order derivatives of composite functions (such as differ-
entiating e−R y u with respect to y). This can be done with the help of Faà di Bruno’s formula (e.g. Johnson (2002, Equation (2.2))) which 
states that

di

dxi
g1(g2(x)) =

i∑
j=0

g( j)
1 (g2(x))Bij(g(1)

2 (x), g(2)
2 (x) . . . , g(i− j+1)

2 (x)), i = 0,1,2, . . . , (2.4)

as long as the relevant derivatives of g1(·) and g2(·) above exist. In the above formula, Bij(x1, . . . , xi− j+1) represents the Bell polynomial

Bij(x1, . . . , xi− j+1) =
∑ i!

k1!k2! · · ·ki− j+1!
( x1

1!
)k1 ( x2

2!
)k2 · · ·

(
xi− j+1

(i − j + 1)!
)ki− j+1

, (2.5)

where the sum is taken over non-negative integers k1, k2 . . . , ki− j+1 such that k1 + k2 + . . . + ki− j+1 = i and k1 + 2k2 + . . . + (i − j +
1)ki− j+1 = i. The Faà di Bruno’s formula (2.4) will be applied under specific choices of g1(·) and g2(·) later on (see (3.17) and (4.9)). The 
software Mathematica has the built-in function ‘BellY’ to compute Bell polynomials conveniently. We remark that if i in (2.4) is non-zero, 
then the lower limit of the summation on the right-hand side can start at j = 1 because Bi0(x1, . . . , xi+1) is identical to zero.

2.4. Lagrange’s implicit function theorem

In insurance risk processes, the Laplace transforms of the ruin time and the occupation time are often expressed in terms of the 
roots of the Lundberg’s equation. However, the roots typically depend on the Laplace transform argument in an implicit manner (like 
how R y depends on y via (2.1)), which make it far from trivial to perform Laplace transforms inversion to obtain the related probability 
densities. The Lagrange’s implicit function theorem has proved to be useful in this regard (e.g. Dickson and Willmot (2005) and Landriault 
et al. (2011)). From e.g. Cohen (1982, pp.652-653), it is known that for analytic functions a(x) and ϕ(x) in x on and inside a contour D
surrounding a point w and for ζ satisfying

|ζϕ(x)| < |x − w| (2.6)
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for every x on D , the function x − w − ζϕ(x) has exactly one zero, say v , inside D so that

v = w + ζϕ(v), (2.7)

and moreover one has

a(v) = a(w) +
∞∑

n=1

ζn

n!
dn−1

dxn−1 {a′(x)[ϕ(x)]n}
∣∣∣∣
x=w

. (2.8)

3. Ultimate cumulative Parisian ruin probability

3.1. Deterministic Parisian clock r

In this subsection, we will find the ultimate cumulative Parisian ruin probability ψr (u) under a deterministic Parisian clock r. The key 
to our approach is to invert the Laplace transform of the occupation time OT∞ = ∫ ∞

0 1{U (s)<0} ds to obtain its density function, and then 
ψr(u) can be obtained by integrating the tail via (1.2). It is important to note that, because the (classical) ruin probability is strictly less 
than one under the positive loading condition, the occupation time OT∞ in the red has a positive probability mass at zero. Consequently, 
OT∞ follows a mixed distribution. In particular, the event {OT∞ = 0} is equivalent to the event that the surplus process never falls below 
zero and therefore its probability of occurrence is simply the classical ultimate survival probability so that

Pu{OT∞ = 0} = 1 − μ − R0

μ
e−R0u (3.1)

according to (2.2). With probability 1 − Pu{OT∞ = 0} = [(μ − R0)/μ]e−R0u , the occupation time OT∞ has a proper density on (0, ∞)

which will be denoted by fOT∞(·). It will be seen that fOT∞(·) does not depend on the initial surplus u, and therefore u is omitted from 
the notation. Intuitively, it is well known that, conditional on (classical) ruin occurrence, the deficit always follows the same exponential 
distribution with mean 1/μ regardless of the initial surplus u. Consequently, the dependence of the distribution of OT∞ on u only appears 
via the classical ruin probability. The Laplace transform of OT∞ (with Laplace transform argument ω > 0) can now be written as

Eu[e−ωOT∞] = Pu{OT∞ = 0} + (1 − Pu{OT∞ = 0})
∞∫

0

e−ωt fOT∞(t)dt. (3.2)

On the other hand, from the results in Wong and Cheung (2015, Section 5), we can put γ = 0 into (2.3) to obtain the Laplace transform 
of OT∞ as

Eu[e−ωOT∞] = 1 − c(Rω − R0) + ω

cRω + ω

μ − R0

μ
e−R0u = 1 − μ − R0

μ
e−R0u + μ − R0

μ
e−R0u cR0

cRω + ω
. (3.3)

Utilizing (3.1), comparison of (3.2) and (3.3) reveals the Laplace transform relationship

∞∫
0

e−ωt fOT∞(t)dt = cR0

cRω + ω
= cR0

∞∫
0

e−ωte−ct Rω dt, (3.4)

which indicates that fOT∞(t) can be obtained by analytic inversion of Laplace transforms with respect to ω. Note that the right-hand side 
does not involve u.

Since Rω on the right-hand side of (3.4) depends on ω via the Lundberg’s equation (2.1), we shall apply the Lagrange’s implicit function 
theorem from Section 2.4. To this end, by first rewriting (2.1) (with y = ω and ξ = Rω) as

Rω = μ − μ̃k(cRω + ω),

we observe that (2.7) is satisfied with v = Rω , w = μ, ζ = −μ and ϕ(x) = k̃(cx + ω). Although it is known from the literature that the 
adjustment coefficient Rω is the only root of (2.1) (under y = ω) with positive real part, for completeness we would still verify (2.6)
holds true by considering a contour D that consists of (i) the semi-circle of radius s running clockwise from is to −is (where i = √−1); 
and (ii) part of the imaginary axis from −is to is. For x on the semi-circle, it is clear that |ζϕ(x)| = μ|̃k(cx + ω)| ≤ μ̃k(ω) since x has 
non-negative real part, and with ω > 0 we must have |ζϕ(x)| < μ. Moreover, on the semi-circle one also has |x − w| = |x − μ|, and 
therefore for s sufficiently large (say for s > 2μ) one has μ < |x − μ| so that (2.6) is satisfied. For x on part of the imaginary axis, we 
use the parametric expression x = isε for −1 ≤ ε ≤ 1. Then |ζϕ(x)| = μ|̃k(isε + ω)| ≤ μ̃k(ω) < μ and |x − w| = |isε − μ| > μ and (2.6)
is satisfied as well. From the statement of the Lagrange’s implicit function theorem, we conclude that x − w − ζϕ(x) = 0, or equivalently 
x −μ + μ̃k(cx +ω) = 0, has exactly one root inside the contour D (for sufficiently large s), meaning that x −μ + μ̃k(cx +ω) only has one 
zero with positive real part (which is Rω). Letting a(x) = e−ctx , application of the result (2.8) gives

e−ct Rω = e−ctμ +
∞∑

n=1

(−μ)n

n!
∂n−1

∂xn−1 {(−ct)e−ctx [̃k(cx + ω)]n}
∣∣∣∣
x=μ

.

Substitution into the right-hand side of (3.4) along with the use of the fact that [̃k(s)]n = ∫ ∞ e−szk∗n(z) dz leads to
0
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∞∫
0

e−ωt fOT∞(t)dt = cR0

∞∫
0

e−ωt
{

e−cμt +
∞∑

n=1

(−μ)n

n!
∂n−1

∂xn−1

⎛⎝(−ct)e−ctx

∞∫
0

e−(cx+ω)zk∗n(z)dz

⎞⎠∣∣∣∣
x=μ

}
dt. (3.5)

We can simplify the integral as

∞∫
0

e−ωt
∞∑

n=1

(−μ)n

n!
∂n−1

∂xn−1

⎛⎝(−ct)e−ctx

∞∫
0

e−(cx+ω)zk∗n(z)dz

⎞⎠∣∣∣∣
x=μ

dt

=
∞∫

0

e−ωt
∞∑

n=1

(−μ)n

n! (−ct)
∂n−1

∂xn−1

⎛⎝ ∞∫
0

e−(t+z)cxe−ωzk∗n(z)dz

⎞⎠∣∣∣∣
x=μ

dt

=
∞∫

0

e−ωt
∞∑

n=1

(−μ)n

n! (−ct)

∞∫
0

(−c)n−1(t + z)n−1e−(t+z)cμe−ωzk∗n(z)dz dt

=
∞∫

0

∞∫
t

∞∑
n=1

(cμ)n

n! te−ωzzn−1e−cμzk∗n(z − t)dz dt

=
∞∫

0

z∫
0

∞∑
n=1

(cμ)n

n! te−ωzzn−1e−cμzk∗n(z − t)dt dz

=
∞∫

0

e−ωt

⎛⎝e−cμt
∞∑

n=1

(cμ)n

n! tn−1

t∫
0

zk∗n(t − z)dz

⎞⎠ dt.

By substituting the above expression into (3.5), the uniqueness of Laplace transform implies

fOT∞(t) = cR0e−cμt

⎛⎝1 +
∞∑

n=1

(cμ)n

n! tn−1

t∫
0

zk∗n(t − z)dz

⎞⎠ , t > 0. (3.6)

Finally, with the relationship (1.2), the ultimate cumulative Parisian ruin probability under a deterministic clock r > 0 is given by

ψr(u) = μ − R0

μ
e−R0u

∞∫
r

fOT∞(t)dt = μ − R0

μ
e−R0ucR0

∞∫
r

e−cμt

⎛⎝1 +
∞∑

n=1

(cμ)n

n! tn−1

t∫
0

zk∗n(t − z)dz

⎞⎠ dt. (3.7)

It is clear that explicit evaluation of the above probability heavily depends on whether the convolution k∗n(·) in (3.6) is of closed-form. In 
what follows, we present an example when the interclaim time follows an Erlang distribution.

Example 1 (Erlang renewal process). In this example, it is assumed that the interclaim time is Erlang(m) distributed with rate parameter 
β > 0, so that k∗n(·) corresponds to an Erlang(mn) density with the same rate for n = 1, 2, . . .. We first evaluate the integral in (3.6) as

t∫
0

zk∗n(t − z)dz =
t∫

0

(t − z)k∗n(z)dz = t

t∫
0

βmnzmn−1e−βz

(mn − 1)! dz −
t∫

0

z
βmnzmn−1e−βz

(mn − 1)! dz

= t

(
1 −

mn−1∑
i=0

(βt)i

i! e−βt

)
− mn

β

(
1 −

mn∑
i=0

(βt)i

i! e−βt

)
.

In Section 4.1, it will be necessary to evaluate an integral (see (4.10)) that is slightly more general than the one in (3.7). Therefore, for 
� = 0, 1, 2, . . . and γ ≥ 0, using the above result we consider

∞∫
r

t�e−γ te−cμt

⎛⎝1 +
∞∑

n=1

(cμ)n

n! tn−1

t∫
0

zk∗n(t − z)dz

⎞⎠ dt

=
∞∫

r

t�e−(γ +cμ)t dt +
∞∑

n=1

(cμ)n

n!

⎛⎝ ∞∫
r

t�+ne−(γ +cμ)t dt −
mn−1∑

i=0

β i

i!
∞∫

r

t�+n+ie−(γ +cμ+β)t dt

⎞⎠
−

∞∑
n=1

(cμ)n

n!
mn

β

⎛⎝ ∞∫
t�+n−1e−(γ +cμ)t dt −

mn∑
i=0

β i

i!
∞∫

t�+n+i−1e−(γ +cμ+β)t dt

⎞⎠ (3.8)
r r
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= �!
(γ + cμ)�+1

�∑
j=0

[(γ + cμ)r] j

j! e−(γ +cμ)r +
∞∑

n=1

(cμ)n

n!

⎛⎝ (� + n)!
(γ + cμ)�+n+1

�+n∑
j=0

[(γ + cμ)r] j

j! e−(γ +cμ)r

−
mn−1∑

i=0

β i

i!
(� + n + i)!

(γ + cμ + β)�+n+i+1

�+n+i∑
j=0

[(γ + cμ + β)r] j

j! e−(γ +cμ+β)r

⎞⎠
−

∞∑
n=1

(cμ)n

(n − 1)!
m

β

⎛⎝ (� + n − 1)!
(γ + cμ)�+n

�+n−1∑
j=0

[(γ + cμ)r] j

j! e−(γ +cμ)r

−
mn∑
i=0

β i

i!
(� + n + i − 1)!

(γ + cμ + β)�+n+i

�+n+i−1∑
j=0

[(γ + cμ + β)r] j

j! e−(γ +cμ+β)r

⎞⎠ . (3.9)

Alternatively, the integrals in (3.8) can also be expressed in terms of the incomplete gamma function defined by �(a, x) = ∫ ∞
x ya−1e−y dy

for x ≥ 0 and a > 0, which can be conveniently computed using built-in function in e.g. Mathematica. This leads to

∞∫
r

t�e−γ te−cμt

⎛⎝1 +
∞∑

n=1

(cμ)n

n! tn−1

t∫
0

zk∗n(t − z)dz

⎞⎠ dt

= �(� + 1, (γ + cμ)r)

(γ + cμ)�+1 +
∞∑

n=1

(cμ)n

n!

(
�(� + n + 1, (γ + cμ)r)

(γ + cμ)�+n+1 −
mn−1∑

i=0

β i

i!
�(� + n + i + 1, (γ + cμ + β)r)

(γ + cμ + β)�+n+i+1

)

−
∞∑

n=1

(cμ)n

(n − 1)!
m

β

(
�(� + n, (γ + cμ)r)

(γ + cμ)�+n
−

mn∑
i=0

β i

i!
�(� + n + i, (γ + cμ + β)r)

(γ + cμ + β)�+n+i

)
. (3.10)

The special case of (3.9) or (3.10) where � = γ = 0 corresponds to the integral in (3.7), and therefore the ultimate cumulative Parisian ruin 
probability ψr(u) is fully characterized. �
3.2. Erlang(m1, ω) Parisian clock

It is important to note that the ultimate cumulative Parisian ruin probability (3.7) under a deterministic clock in Section 3.1 requires 
closed-form expression for the convolution of the interclaim time density, namely k∗n(·), to work well. This somewhat limits its use. In 
this subsection, the deterministic Parisian clock is replaced by an Erlang(m1, ω) random variable Em1,ω that is independent of the surplus 
process {U (t)}t≥0. We shall determine the resulting cumulative Parisian ruin probability Pu{OT∞ > Em1,ω} = 1 − Pu{OT∞ < Em1,ω} that 
can be more widely applicable to other interclaim time distributions (see comments before Example 2). As we shall see, the survival 
probability Pu{OT∞ < Em1,ω} is closely related to the Laplace transform and the discounted moments of OT∞ . First, we substitute (3.1)
into (3.2) so that

Eu[e−ωOT∞] = 1 − μ − R0

μ
e−R0u + μ − R0

μ
e−R0u

∞∫
0

e−ωt fOT∞(t)dt. (3.11)

Taking the i-th derivative with respect to ω results in the discounted moments

Eu[OTi∞e−ωOT∞] = μ − R0

μ
e−R0u

∞∫
0

tie−ωt fOT∞(t)dt, i = 1,2, . . . . (3.12)

Now, we proceed to analyze Pu{OT∞ < Em1,ω} by conditioning on whether the occupation time OT∞ is zero or not and comparing it 
with Em1,ω which is independent of OT∞ . Note that Pu{OT∞ < Em1,ω|OT∞ = 0} = 1 since Em1,ω is positive almost surely. Therefore, we 
arrive at

Pu{OT∞ < Em1,ω}

= 1 − μ − R0

μ
e−R0u + μ − R0

μ
e−R0u

∞∫
0

P {Em1,ω > t} fOT∞(t)dt

= 1 − μ − R0

μ
e−R0u + μ − R0

μ
e−R0u

∞∫
0

(
m1−1∑

i=0

(ωt)i

i! e−ωt

)
fOT∞(t)dt

= 1 − μ − R0

μ
e−R0u + μ − R0

μ
e−R0u

∞∫
e−ωt fOT∞(t)dt + μ − R0

μ
e−R0u

m1−1∑
i=1

ωi

i!
∞∫

tie−ωt fOT∞(t)dt
0 0
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= Eu[e−ωOT∞] +
m1−1∑

i=1

ωi

i! Eu[OTi∞e−ωOT∞]

=
m1−1∑

i=0

(−ω)i

i!
∂ i

∂ωi
Eu[e−ωOT∞], (3.13)

where the second last equality follows from (3.11) and (3.12). Meanwhile, we also have from (3.3) an expression for the Laplace transform 
of OT∞ in terms of the root Rω of the Lundberg’s equation, and therefore the above equation becomes

Pu{OT∞ < Em1,ω} = 1 − μ − R0

μ
e−R0u + μ − R0

μ
e−R0ucR0

m1−1∑
i=0

(−ω)i

i!
di

dωi

1

cRω + ω
. (3.14)

While we adopt the convention that the zeroth derivative is simply the function itself, the higher order derivatives appearing on the 
right-hand side can be evaluated by applying Faà di Bruno’s formula discussed in Section 2.3 with h1(·) and h2(·) in place of g1(·) and 
g2(·), where

h1(x) = 1

x
, h2(x) = cRx + x. (3.15)

For convenience, we define R(n)
x = (dn/dxn)Rx . Clearly, one has

h(n)
2 (x) =

{
cR(1)

x + 1, n = 1.

cR(n)
x , n = 2,3, . . . .

(3.16)

Then, according to Faà di Bruno’s formula (2.4) we have

di

dxi
h1(h2(x)) = di

dxi

1

cRx + x
=

i∑
j=1

(−1) j( j!)
(cRx + x) j+1

Bij(h
(1)
2 (x),h(2)

2 (x) . . . ,h(i− j+1)
2 (x)), i = 1,2, . . . , (3.17)

where the Bell polynomial Bij(x1, . . . , xi− j+1) is defined in (2.5). Moreover, the derivatives R(n)
x (for n = 1, 2, . . .) appearing in (3.17) via 

(3.16) can be calculated recursively in an approach similar to that in Landriault et al. (2014, Appendix). To this end, it is noted that the 
Lundberg’s equation (2.1) can be rewritten as, for x ≥ 0,

Rx = μ − μh3(h2(x)), (3.18)

where h2(x) = cRx + x is the same as before and h3(x) = ∫ ∞
0 e−xtk(t) dt so that h(n)

3 (x) = ∫ ∞
0 (−t)ne−xtk(t) dt for n = 1, 2, . . .. Differentiating 

both sides of the above equation and solving for R(1)
x leads to

R(1)
x = μ

∫ ∞
0 te−(cRx+x)tk(t)dt

1 − cμ
∫ ∞

0 te−(cRx+x)tk(t)dt
. (3.19)

For the higher order derivatives of Rx , we apply Faà di Bruno’s formula to h3(h2(x)) in (3.18) to arrive at

R(n)
x = − μ

n∑
j=1

h( j)
3 (h2(x))Bnj(h

(1)
2 (x),h(2)

2 (x), . . . ,h(n− j+1)
2 (x))

= − μh(1)
3 (h2(x))h(n)

2 (x) − μ

n∑
j=2

h( j)
3 (h2(x))Bnj(h

(1)
2 (x),h(2)

2 (x), . . . ,h(n− j+1)
2 (x)), n = 2,3, . . . ,

where the last equality is due to the fact that Bn1(x1, . . . , xn) = xn . Because h(n)
2 (x) above equals cR(n)

x according to (3.16), we can solve for 
R(n)

x and it is found that

R(n)
x = −μ

1 + cμh(1)
3 (h2(x))

n∑
j=2

h( j)
3 (h2(x))Bnj(h

(1)
2 (x),h(2)

2 (x), . . . ,h(n− j+1)
2 (x))

= −μ

1 − cμ
∫ ∞

0 te−(cRx+x)tk(t)dt

×
n∑

j=2

(−1) j

⎛⎝ ∞∫
0

t je−(cRx+x)tk(t)dt

⎞⎠ Bnj(h
(1)
2 (x),h(2)

2 (x), . . . ,h(n− j+1)
2 (x)), n = 2,3, . . . . (3.20)

To conclude, the ultimate cumulative Parisian ruin probability under an Erlang(m1, ω) Parisian clock can be computed as follows.

1. Solve the Lundberg’s equation (2.1) (with y = ω) to obtain the unique positive root Rω .
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2. Compute the derivatives R(n)
ω for n = 1, 2, . . . , m1 − 1 recursively via (3.20) with the starting point (3.19) (both with x = ω). Note that 

the dependence of R(n)
ω on {R(i)

ω }n−1
i=1 is through the derivatives of h2(ω) because of (3.16).

3. Compute the expression in (3.17) for i = 1, 2, . . . , m1 − 1 (with x = ω), where the derivatives of h2(ω) are given in (3.16).
4. Calculate the ultimate cumulative Parisian survival probability using (3.14), where R0 is the unique positive root of the Lundberg’s 

equation (2.1) with y = 0.

While the results concerning deterministic Parisian clock in Section 3.1 require the convolution k∗n(·) of the interclaim time, our analy-
sis in the present case of Erlang Parisian clock requires computation of integral of the form 

∫ ∞
0 t je−stk(t) dt for s ≥ 0 and j = 1, 2, . . . as in 

(3.19) and (3.20). (Note that when j = 0, an expression for 
∫ ∞

0 t je−stk(t) dt = k̃(s) can be helpful for solving the Lundberg’s equation (2.1).) 
While the evaluation of such an integral can clearly be done analytically for interclaim time distributions such as phase-type and gamma, 
this also works for distributions such as Weibull and Pareto where closed-form expressions for k∗n(·) are not available. Nevertheless, the 
key formula (3.7) in Section 3.1 for deterministic Parisian clock is still valuable because it can be used to assess the performance of Erlan-
gization for interclaim time distributions such as exponential and Erlang (see Tables 3-4 in Section 5 and the comments therein). We end 
this section by illustrating how 

∫ ∞
0 t je−stk(t) dt can be expressed in terms of special functions in the following examples of interclaim 

time distributions.

Example 2 (Gamma renewal process). Suppose that the interclaim times follow a Gamma(α, β) distribution with density

k(t) = βαtα−1e−βt

�(α)
,

where α, β > 0 are the parameters and �(·) is the gamma function. Then it is straightforward to see that

∞∫
0

t je−stk(t)dt = �(α + j)

�(α)

βα

(β + s)α+ j
,

for s ≥ 0 and j = 0, 1, 2, . . .. �
Example 3 (Pareto renewal process). In this example, we assume that the interclaim times are Pareto(α, β) distributed with density

k(t) = αβα

(β + t)α+1 ,

where α, β > 0 are the parameters. Then, by a change of variable x = (β + t)/β and a binomial expansion on (x − 1) j , we find that

∞∫
0

t je−stk(t)dt = αβα

∞∫
1

e−sβ(x−1) [β(x − 1)] j

(βx)α+1 β dx

= αβ jeβs
j∑

i=0

(
j

i

)
(−1) j−i

∞∫
1

e−βsx 1

xα+1−i
dx

= αβ jeβs
j∑

i=0

(
j

i

)
(−1) j−iEα+1−i(βs),

for s ≥ 0 and j = 0, 1, 2, . . ., where

En(z) =
∞∫

1

e−zx

xn
dx

is the exponential integral function (and n does not necessarily need to be an integer). Mathematica has built-in function to compute 
exponential integrals to arbitrary numerical precision. When evaluating En(z) for negative n, one may express it in terms of the incomplete 
gamma function as En(z) = zn−1�(1 − n, z), where the incomplete gamma function can also be computed to arbitrary numerical precision 
by Mathematica. �
Example 4 (Weibull renewal process). Assume that the interclaim times are Weibull distributed with density

k(t) = α

β

(
t

β

)α−1

e
−

(
t
β

)α

,

where α, β > 0 are the parameters. Performing a change of variable x = st , it is seen that
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∞∫
0

t je−stk(t)dt = α

β

∞∫
0

( x

s

) j
e−x

(
x/s

β

)α−1

e
−

(
x/s
β

)α 1

s
dx

= α

s j+αβα

∞∫
0

x( j+α)−1e
−x− 1

(βs)α
xα

dx,

for s ≥ 0 and j = 0, 1, 2, . . .. If α is rational such that α = q1/q2 for some positive integers q1 and q2, then it is known from Sagias and 
Karagiannidis (2005, Equation (8)) that the integral above can be expressed in terms of the Meijer G-function such that

∞∫
0

t je−stk(t)dt = α

s j+αβα

q j+α
1

√
1/α

(
√

2π)q1+q2−2
Gq2,q1

q1,q2

(
qq1

1

(βs)αq2 qq2
2

∣∣∣∣∣
1−( j+α)

q1

2−( j+α)
q1

. . .
q1−( j+α)

q1
0

q2

1
q2

. . .
q2−1

q2

)
,

for s ≥ 0 and j = 0, 1, 2, . . .. Mathematica has built-in function to evaluate the Meijer G-function to arbitrary numerical precision. For given 
specific parameters, Mathematica can also analytically simplify the Meijer G-function to other more well-known special functions such as 
the confluent hypergeometric function. �
4. Finite-time cumulative Parisian ruin probability

In this section, we will study the cumulative Parisian ruin problem over a finite time horizon. Because finite-time ruin problems are 
known to be challenging even under the classical definition of ruin, the deterministic time horizon will be replaced by an independent 
Erlang(m2, γ ) random variable for the entire section. Similar to Section 3, both deterministic and Erlang(m1, ω) Parisian clocks will be 
considered.

4.1. Erlang(m2, γ ) time horizon and deterministic Parisian clock r

With the ‘finite’ time horizon being Erlang(m2, γ ) distributed (denoted by Em2,γ ) and the Parisian clock being deterministic at r >

0, our goal is to find the ‘finite-time’ cumulative Parisian ruin probability Pu{OTEm2,γ > r} = Pu{∫ Em2,γ

0 1{U (s)<0} ds > r}. This can also 
be regarded as E[ψr(u, Em2,γ )] by recalling that ψr(u, t) is the finite-time cumulative Parisian ruin probability with deterministic time 

horizon t . If we can determine the distribution of the occupation time OTEm2,γ = ∫ Em2,γ

0 1{U (s)<0} ds over an Em2,γ horizon, then the finite-
time cumulative Parisian ruin probability is simply its survival function. Similar to OT∞ discussed Section 3, OTEm2,γ also has a mixed 
distribution consisting of a probability mass at zero and a density fOTEm2,γ

(·|u). However, different from Section 3, here fOTEm2,γ
(·|u) is 

defined to be a defective density which includes the event {OTEm2,γ > 0} and it depends on the initial surplus u. Then, with the above 
definitions the Laplace transform of OTEm2,γ admits the representation

Eu[e−ωOTEm2,γ ] = Pu{OTEm2,γ = 0} +
∞∫

0

e−ωt fOTEm2,γ
(t|u)dt. (4.1)

Now we analyze Eu[e−ωOTEm2,γ ] by conditioning on the Erlang time horizon Em2,γ to get

Eu[e−ωOTEm2,γ ] =
∞∫

0

Eu[e−ωOTt ]γ
m2tm2−1e−γ t

(m2 − 1)! dt

= (−1)m2−1γ m2

(m2 − 1)!
∂m2−1

∂γ m2−1

⎛⎝ 1

γ

∞∫
0

Eu[e−ωOTt ]γ e−γ t dt

⎞⎠
= (−1)m2−1γ m2

(m2 − 1)!
∂m2−1

∂γ m2−1

(
1

γ
Eu[e−ωOTE1,γ ]

)

=
m2−1∑

i=0

(−γ )i

i!
∂ i

∂γ i
Eu[e−ωOTE1,γ ], (4.2)

where the Leibniz’s rule for differentiating products has been used. The above result expresses the Laplace transform of the occupation 
time over an Erlang time horizon in terms of the derivatives of the Laplace transform of the occupation time over an exponential time 
horizon. Because Eu[e−ωOTE1,γ ] on the right-hand side of (4.2) can be written in the form of (4.1) (which is also valid for m2 = 1), (4.2)
now becomes

Eu[e−ωOTEm2,γ ] =
m2−1∑

i=0

(−γ )i

i!
∂ i

∂γ i
Pu{OTE1,γ = 0} +

∞∫
0

e−ωt
m2−1∑

i=0

(−γ )i

i!

(
∂ i

∂γ i
fOTE1,γ

(t|u)

)
dt.

By the uniqueness of Laplace transforms, comparison of the above equation with (4.1) shows that the point mass of OTEm ,γ at zero is

2
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Pu{OTEm2,γ = 0} =
m2−1∑

i=0

(−γ )i

i!
∂ i

∂γ i
Pu{OTE1,γ = 0}, (4.3)

and the density part is

fOTEm2,γ
(t|u) =

m2−1∑
i=0

(−γ )i

i!
∂ i

∂γ i
fOTE1,γ

(t|u), t > 0. (4.4)

The above results again connects the distribution of OTEm2,γ to that of OTE1,γ .
To find the distribution of OTE1,γ , we start with the point mass Pu{OTE1,γ = 0} which is the probability that classical ruin does not 

occur within the exponential time horizon E1,γ . With the help of (2.2), it is found that

Pu{OTE1,γ = 0} = 1 − Pu{τCL ≤ E1,γ } = 1 −
∞∫

0

e−γ tPu{τCL ∈ dt} = 1 − μ − Rγ

μ
e−Rγ u . (4.5)

For the density fOTE1,γ
(t|u), we rearrange (4.1) (at m2 = 1) and make use of the above expression and (2.3) to arrive at its Laplace 

transform

∞∫
0

e−ωt fOTE1,γ
(t|u)dt =

(
1 − c(Rω+γ − Rγ ) + ω

cRω+γ + ω + γ

μ − Rγ

μ
e−Rγ u

)
−

(
1 − μ − Rγ

μ
e−Rγ u

)

= μ − Rγ

μ
e−Rγ u cRγ + γ

cRω+γ + ω + γ

= μ − Rγ

μ
e−Rγ u(cRγ + γ )

∞∫
0

e−(cRω+γ +ω+γ )t dt.

We shall perform Laplace transform inversion with respect to ω to get fOTE1,γ
(t|u). It is instructive to note that the integral on the right-

hand side is structurally identical to that in (3.4) except that ω + γ is in place of ω. Hence, following the same procedure leading to (3.6)
gives rise to

fOTE1,γ
(t|u) = μ − Rγ

μ
e−Rγ u(cRγ + γ )e−γ t

⎡⎣e−cμt

⎛⎝1 +
∞∑

n=1

(cμ)n

n! tn−1

t∫
0

zk∗n(t − z)dz

⎞⎠⎤⎦ , t > 0. (4.6)

When differentiating (4.6) with respect to γ to obtain fOTEm2,γ
(t|u) via (4.4), we note that the components inside the square bracket 

on the right-hand side of (4.6) do not depend on γ , and the derivatives of the component outside the bracket with respect to γ can be 
evaluated by Leibniz’s differentiation rule for products. Thus, we rewrite (4.6) as

fOTE1,γ
(t|u) = h2(γ )h4(h5(γ )|u)h6(γ |t)

⎡⎣e−cμt

⎛⎝1 +
∞∑

n=1

(cμ)n

n! tn−1

t∫
0

zk∗n(t − z)dz

⎞⎠⎤⎦ , t > 0, (4.7)

where

h2(x) = cRx + x, h4(x|u) = μ − x

μ
e−xu, h5(x) = Rx, h6(x|t) = e−xt . (4.8)

Note that the definition of h2(x) is the same as that in (3.15) and its derivatives are already given in (3.16), where the derivatives 
h(n)

5 (x) = R(n)
x for n = 1, 2, . . . are available in (3.19) and (3.20). It is straightforward to find that

∂ j

∂x j
h4(x|u) = (−1) ju j−1e−xu

(
u + j − xu

μ

)
,

∂ j

∂x j
h6(x|t) = (−t) je−xt, j = 0,1,2, . . . .

Faà di Bruno’s formula (2.4) implies

∂n

∂γ n
h4(h5(γ )|u) =

n∑
j=1

(−1) ju j−1e−Rγ u
(

u + j − Rγ u

μ

)
Bnj(R(1)

γ , R(2)
γ , . . . , R(n− j+1)

γ ), n = 1,2, . . . . (4.9)

Consolidating the above results, Leibniz’s differentiation rule leads us to

∂ i

∂γ i
[h2(γ )h4(h5(γ )|u)h6(γ |t)] =

i∑
j=0

i− j∑
�=0

i!
j!�! (i − j − �)!h( j)

2 (γ )

(
∂ i− j−�

∂γ i− j−�
h4(h5(γ )|u)

)
(−t)�e−γ t, i = 0,1,2, . . . ,

and therefore substitution of (4.7) into (4.4) yields
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fOTEm2,γ
(t|u) =

m2−1∑
i=0

i∑
j=0

i− j∑
�=0

(−γ )i(−1)�

j!�! (i − j − �)!h( j)
2 (γ )

(
∂ i− j−�

∂γ i− j−�
h4(h5(γ )|u)

)

× t�e−γ te−cμt

⎛⎝1 +
∞∑

n=1

(cμ)n

n! tn−1

t∫
0

zk∗n(t − z)dz

⎞⎠ , t > 0.

Finally, similar to (3.7), the finite-time cumulative Parisian ruin probability Pu{OTEm2,γ > r} under deterministic clock r > 0 and Erlang 
time horizon Em2,γ is given by

Pu{OTEm2,γ > r} =
m2−1∑

i=0

i∑
j=0

i− j∑
�=0

(−γ )i(−1)�

j!�! (i − j − �)!h( j)
2 (γ )

(
∂ i− j−�

∂γ i− j−�
h4(h5(γ )|u)

)

×
∞∫

r

t�e−γ te−cμt

⎛⎝1 +
∞∑

n=1

(cμ)n

n! tn−1

t∫
0

zk∗n(t − z)dz

⎞⎠dt, (4.10)

where the integral has been evaluated in (3.9) (or (3.10)) for the Erlang(m) risk process.
We remark that, although the point mass Pu{OTEm2,γ = 0} is not needed in the calculation of the ruin probability Pu{OTEm2,γ > r} and 

can indeed be obtained as 1 − Pu{OTEm2,γ > 0} by putting r = 0 above, it can readily be expressed in terms of simpler quantities. To see 
this, we can substitute (4.5) into (4.3) to get

Pu{OTEm2,γ = 0} = 1 − μ − Rγ

μ
e−Rγ u −

m2−1∑
i=1

(−γ )i

i!
∂ i

∂γ i
h4(h5(γ )|u).

4.2. Erlang(m2, γ ) time horizon and Erlang(m1, ω) Parisian clock

Similar to (3.7), we need the convolution k∗n(·) when applying (4.10) to calculate Pu{OTEm2,γ > r} under deterministic Parisian clock. 
In order to obtain approximation formulas that are applicable to more general interclaim time distributions, in this subsection both the 
Parisian clock and the finite time horizon are assumed to be Erlang distributed with the corresponding random variables denoted by Em1 ,ω

and Em2,γ respectively. The surplus process {U (t)}t≥0 and these variables are mutually independent. The finite-time cumulative Parisian 

ruin probability is thus Pu{OTEm2,γ > Em1,ω} = Pu{∫ Em2,γ

0 1{U (s)<0} ds > Em1,ω}, which may be written as E[ψEm1 ,ω (u, Em2,γ )]. First, we 
recall from Section 3.2 that when the Parisian clock is Erlang, the ultimate cumulative Parisian survival probability can be expressed in 
terms of the derivatives of the Laplace transform of the occupation time OT∞ as in (3.13). The same connection can also be established 
for the finite-time cumulative Parisian survival probability Pu{OTEm2,γ < Em1,ω}. We omit the rather repetitive details and state that

Pu{OTEm2,γ < Em1,ω} =
m1−1∑

i=0

(−ω)i

i!
∂ i

∂ωi
Eu[e−ωOTEm2,γ ], (4.11)

which is in terms of the Laplace transform of OTEm2,γ studied in Section 4.1. Substitution of (2.3) into (4.2) gives rise to

Eu[e−ωOTEm2,γ ] =
m2−1∑

j=0

(−γ ) j

j!
∂ j

∂γ j

(
1 − c(Rω+γ − Rγ ) + ω

cRω+γ + ω + γ

μ − Rγ

μ
e−Rγ u

)

= 1 −
m2−1∑

j=0

(−γ ) j

j!
∂ j

∂γ j

(
μ − Rγ

μ
e−Rγ u

)
+

m2−1∑
j=0

(−γ ) j

j!
∂ j

∂γ j

(
cRγ + γ

cRω+γ + ω + γ

μ − Rγ

μ
e−Rγ u

)
.

Since the first summation does not depend on ω, it will disappear upon taking derivatives with respect to ω. Thus, we substitute the 
above equation into (4.11) to yield

Pu{OTEm2,γ < Em1,ω}

= 1 −
m2−1∑

j=0

(−γ ) j

j!
∂ j

∂γ j

(
μ − Rγ

μ
e−Rγ u

)
+

m1−1∑
i=0

m2−1∑
j=0

(−ω)i

i!
(−γ ) j

j!
∂ i

∂ωi

∂ j

∂γ j

(
cRγ + γ

cRω+γ + ω + γ

μ − Rγ

μ
e−Rγ u

)

= 1 −
m2−1∑

j=0

(−γ ) j

j!
∂ j

∂γ j
h4(h5(γ )|u) +

m1−1∑
i=0

m2−1∑
j=0

(−ω)i

i!
(−γ ) j

j!
∂ j

∂γ j

(
h2(γ )h4(h5(γ )|u)

∂ i

∂ωi
h1(h2(ω + γ ))

)
, (4.12)

where the definitions (3.15) and (4.8) have been used. Note that the derivatives of h2(·), h1(h2(·)) and h4(h5(·)|u) have already been 
identified in (3.16), (3.17) and (4.9) (with the help of (3.19) and (3.20)). Moreover, concerning h1(h2(·)), the two arguments ω and γ
always appear together so that
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Table 1
Examples of interclaim time distributions and their variances.

Interclaim time distribution Variance

Weilbull(α = 2, β = 2/
√

π = 1.128379) 0.273240
Erlang(2) with β = 2 0.5
Exponential with mean 1 1
Pareto(α = 3, β = 2) 3
Gamma(α = 1/3, β = 1/3) 3
Pareto(α = 5/2, β = 3/2) 5
Weilbull(α = 1/2, β = 1/2) 5
Gamma(α = 1/5, β = 1/5) 5

Table 2
Ultimate cumulative Parisian ruin probability for Weibull interclaim times with variance 0.273240.

m1 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.704272 0.260553 0.096394 0.013194 0.566811 0.209698 0.077580 0.010618 0.482301 0.178432 0.066013 0.009035
5 0.691421 0.255799 0.094635 0.012953 0.534500 0.197744 0.073158 0.010013 0.437776 0.161960 0.059919 0.008201
10 0.689394 0.255049 0.094358 0.012915 0.530001 0.196080 0.072542 0.009929 0.431640 0.159690 0.059079 0.008086
20 0.688340 0.254659 0.094214 0.012895 0.527725 0.195238 0.072230 0.009886 0.428539 0.158543 0.058655 0.008028
30 0.687983 0.254527 0.094165 0.012888 0.526963 0.194956 0.072126 0.009872 0.427501 0.158159 0.058513 0.008009
40 0.687803 0.254460 0.094140 0.012885 0.526581 0.194815 0.072074 0.009865 0.426981 0.157966 0.058441 0.007999
50 0.687695 0.254420 0.094126 0.012883 0.526352 0.194730 0.072042 0.009861 0.426669 0.157851 0.058399 0.007993
60 0.687623 0.254394 0.094116 0.012882 0.526199 0.194673 0.072021 0.009858 0.426461 0.157774 0.058370 0.007989
70 0.687571 0.254374 0.094109 0.012881 0.526090 0.194633 0.072007 0.009856 0.426312 0.157719 0.058350 0.007986
80 0.687532 0.254360 0.094103 0.012880 0.526008 0.194602 0.071995 0.009854 0.426201 0.157678 0.058335 0.007984

Table 3
Ultimate cumulative Parisian ruin probability for Erlang interclaim times with variance 0.5.

m1 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.739956 0.314322 0.133519 0.024092 0.606748 0.257737 0.109483 0.019755 0.522642 0.222010 0.094306 0.017017
5 0.728762 0.309567 0.131499 0.023728 0.576244 0.244779 0.103978 0.018762 0.479858 0.203836 0.086586 0.015624
10 0.727010 0.308822 0.131183 0.023671 0.571943 0.242952 0.103202 0.018622 0.473919 0.201313 0.085515 0.015430
20 0.726100 0.308436 0.131019 0.023641 0.569764 0.242027 0.102809 0.018551 0.470915 0.200037 0.084972 0.015333
30 0.725792 0.308305 0.130963 0.023631 0.569034 0.241717 0.102677 0.018527 0.469909 0.199610 0.084791 0.015300
40 0.725637 0.308239 0.130935 0.023626 0.568669 0.241561 0.102611 0.018515 0.469405 0.199396 0.084700 0.015283
50 0.725544 0.308199 0.130918 0.023623 0.568449 0.241468 0.102572 0.018508 0.469102 0.199267 0.084645 0.015274
60 0.725481 0.308173 0.130907 0.023621 0.568303 0.241406 0.102545 0.018503 0.468900 0.199181 0.084609 0.015267
70 0.725437 0.308154 0.130899 0.023620 0.568198 0.241361 0.102526 0.018500 0.468756 0.199120 0.084583 0.015262
80 0.725403 0.308140 0.130893 0.023618 0.568119 0.241328 0.102512 0.018497 0.468648 0.199074 0.084563 0.015259

Exact 0.725168 0.308040 0.130850 0.023611 0.567569 0.241094 0.102413 0.018480 0.467890 0.198752 0.084427 0.015234

∂ i+ j

∂ωi∂γ j
h1(h2(ω + γ )) = di+ j

dxi+ j
h1(h2(x))

∣∣∣∣
x=ω+γ

, i, j = 0,1,2, . . . .

Then, applying the Leibniz’s rule to (4.12) results in

Pu{OTEm2,γ < Em1,ω}

= 1 −
m2−1∑

j=0

(−γ ) j

j!
∂ j

∂γ j
h4(h5(γ )|u)

+
m1−1∑

i=0

m2−1∑
j=0

j∑
�=0

j−�∑
n=0

(−ω)i(−γ ) j

i!�!n! ( j − � − n)!h(�)
2 (γ )

(
∂n

∂γ n
h4(h5(γ )|u)

)
di+ j−�−n

dxi+ j−�−n
h1(h2(x))

∣∣∣∣
x=ω+γ

, (4.13)

which can be used to compute the finite-time cumulative Parisian survival probability.

5. Numerical illustrations

In this section, the theoretical results from the previous sections are applied to illustrate the impact of the interclaim time distributions 
on the cumulative Parisian ruin probabilities. To demonstrate the versatility of our approach, we consider eight interclaim distributions 
which have the same mean of 1 but possibly possess different variances. The parameters and the variances of these distributions are 
summarized in Table 1 in increasing (i.e. non-decreasing) order of the variance. In all numerical examples, the claim amounts are expo-
nentially distributed with parameter μ = 1 (and hence mean 1) and the premium rate is c = 1.15 (so that the relative security loading is 
15%).

Tables 2-9 show the ultimate cumulative Parisian ruin probabilities for the eight interclaim time distributions described in Table 1. 
In each table, we follow Section 3.2 to compute the values of Pu{OT∞ > Em1,ω} under initial surplus levels u = 0, 5, 10, 20 and Erlang 
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Table 4
Ultimate cumulative Parisian ruin probability for exponential interclaim times with variance 1.

m1 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.794105 0.413659 0.215480 0.058470 0.670499 0.349271 0.181940 0.049369 0.589082 0.306860 0.159847 0.043374
5 0.785347 0.409097 0.213104 0.057826 0.643461 0.335187 0.174603 0.047378 0.550057 0.286531 0.149258 0.040501
10 0.783979 0.408384 0.212732 0.057725 0.639578 0.333164 0.173549 0.047092 0.544576 0.283676 0.147771 0.040097
20 0.783267 0.408013 0.212539 0.057672 0.637606 0.332136 0.173014 0.046947 0.541800 0.282230 0.147017 0.039893
30 0.783026 0.407888 0.212474 0.057655 0.636944 0.331792 0.172834 0.046899 0.540870 0.281746 0.146765 0.039825
40 0.782904 0.407824 0.212441 0.057646 0.636612 0.331619 0.172744 0.046874 0.540404 0.281503 0.146638 0.039790
50 0.782831 0.407786 0.212421 0.057640 0.636413 0.331515 0.172690 0.046859 0.540124 0.281357 0.146562 0.039770
60 0.782782 0.407761 0.212407 0.057637 0.636280 0.331446 0.172654 0.046850 0.539937 0.281260 0.146512 0.039756
70 0.782747 0.407742 0.212398 0.057634 0.636185 0.331396 0.172628 0.046843 0.539804 0.281190 0.146475 0.039746
80 0.782721 0.407729 0.212391 0.057632 0.636114 0.331359 0.172609 0.046837 0.539703 0.281138 0.146448 0.039739

Exact 0.782536 0.407633 0.212341 0.057619 0.635614 0.331099 0.172474 0.046801 0.539002 0.280773 0.146258 0.039687

Table 5
Ultimate cumulative Parisian ruin probability for Pareto interclaim times with variance 3.

m1 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.869715 0.585269 0.393852 0.178357 0.774734 0.521351 0.350840 0.158879 0.706138 0.475190 0.319776 0.144811
5 0.864549 0.581792 0.391513 0.177297 0.756468 0.509060 0.342568 0.155133 0.677913 0.456197 0.306994 0.139023
10 0.863754 0.581257 0.391153 0.177134 0.753802 0.507266 0.341361 0.154586 0.673865 0.453473 0.305161 0.138193
20 0.863341 0.580979 0.390966 0.177050 0.752441 0.506350 0.340744 0.154307 0.671804 0.452086 0.304228 0.137770
30 0.863202 0.580885 0.390903 0.177021 0.751983 0.506042 0.340537 0.154213 0.671112 0.451620 0.303914 0.137628
40 0.863131 0.580838 0.390871 0.177007 0.751753 0.505887 0.340433 0.154166 0.670764 0.451386 0.303757 0.137557
50 0.863089 0.580810 0.390852 0.176998 0.751615 0.505794 0.340371 0.154138 0.670556 0.451246 0.303663 0.137514
60 0.863061 0.580791 0.390839 0.176992 0.751523 0.505732 0.340329 0.154119 0.670417 0.451152 0.303600 0.137486
70 0.863040 0.580777 0.390830 0.176988 0.751457 0.505688 0.340299 0.154105 0.670317 0.451085 0.303555 0.137465
80 0.863025 0.580767 0.390823 0.176985 0.751408 0.505655 0.340277 0.154095 0.670243 0.451035 0.303521 0.137450

Table 6
Ultimate cumulative Parisian ruin probability for gamma interclaim times with variance 3.

m1 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.885431 0.634164 0.454201 0.232993 0.791110 0.566609 0.405817 0.208173 0.722835 0.517709 0.370794 0.190207
5 0.880995 0.630987 0.451926 0.231825 0.772921 0.553582 0.396487 0.203387 0.694475 0.497397 0.356246 0.182744
10 0.880313 0.630498 0.451576 0.231646 0.770211 0.551641 0.395097 0.202673 0.690370 0.494457 0.354140 0.181664
20 0.879958 0.630244 0.451394 0.231552 0.768821 0.550645 0.394384 0.202308 0.688278 0.492959 0.353067 0.181114
30 0.879838 0.630158 0.451332 0.231521 0.768353 0.550310 0.394143 0.202184 0.687576 0.492456 0.352707 0.180929
40 0.879777 0.630114 0.451301 0.231505 0.768118 0.550142 0.394023 0.202123 0.687224 0.492204 0.352527 0.180836
50 0.879741 0.630088 0.451282 0.231495 0.767976 0.550040 0.393950 0.202085 0.687012 0.492052 0.352418 0.180781
60 0.879716 0.630071 0.451270 0.231489 0.767882 0.549973 0.393902 0.202061 0.686871 0.491951 0.352346 0.180743
70 0.879699 0.630058 0.451261 0.231484 0.767815 0.549925 0.393867 0.202043 0.686770 0.491879 0.352294 0.180717
80 0.879686 0.630049 0.451254 0.231481 0.767764 0.549888 0.393841 0.202030 0.686695 0.491825 0.352255 0.180697

Table 7
Ultimate cumulative Parisian ruin probability for Pareto interclaim times with variance 5.

m1 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.890912 0.641871 0.462446 0.240042 0.806956 0.581384 0.418867 0.217422 0.744514 0.536397 0.386455 0.200598
5 0.886692 0.638831 0.460256 0.238905 0.791552 0.570286 0.410871 0.213271 0.720256 0.518920 0.373864 0.194062
10 0.886044 0.638364 0.459919 0.238731 0.789299 0.568663 0.409702 0.212664 0.716763 0.516403 0.372051 0.193120
20 0.885709 0.638122 0.459745 0.238640 0.788147 0.567833 0.409104 0.212354 0.714982 0.515120 0.371126 0.192641
30 0.885595 0.638040 0.459686 0.238609 0.787759 0.567553 0.408903 0.212249 0.714384 0.514689 0.370816 0.192479
40 0.885538 0.637999 0.459656 0.238594 0.787565 0.567413 0.408802 0.212197 0.714084 0.514473 0.370660 0.192399
50 0.885503 0.637975 0.459639 0.238585 0.787448 0.567329 0.408741 0.212165 0.713904 0.514343 0.370566 0.192350
60 0.885480 0.637958 0.459627 0.238579 0.787370 0.567273 0.408700 0.212144 0.713783 0.514256 0.370504 0.192318
70 0.885464 0.637946 0.459618 0.238574 0.787314 0.567233 0.408672 0.212129 0.713697 0.514194 0.370459 0.192294
80 0.885452 0.637937 0.459612 0.238571 0.787272 0.567203 0.408650 0.212118 0.713633 0.514148 0.370426 0.192277

Parisian clocks with means E[Em1,ω] = 1, 5, 10. Moreover, Erlangization is performed by increasing m1 to up to 80 down each column 
while keeping the mean E[Em1,ω] = m1/ω fixed. Tables 3-4 further contain an additional row, labelled as ‘Exact’, which is concerned with 
ψr(u) = Pu{OT∞ > r} under deterministic clocks r = 1, 5, 10 (see Section 3.1). These values are obtained using the results in Example 1
for the class of Erlang renewal processes (which contains compound Poisson processes).

We begin by examining Table 4 regarding exponential interclaim times, as this situation corresponds to the standard compound Poisson 
case. First, it can be seen from each row that the ultimate cumulative Parisian ruin probability decreases in u for each fixed E[Em1,ω]
(or fixed r in the final row). This is because a higher initial surplus keeps the surplus process further away from level zero, thereby 
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Table 8
Ultimate cumulative Parisian ruin probability for Weibull interclaim times with variance 5.

m1 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.917311 0.724059 0.571519 0.356078 0.841969 0.664589 0.524578 0.326832 0.784052 0.618874 0.488494 0.304350
5 0.914364 0.721733 0.569683 0.354934 0.828895 0.654269 0.516432 0.321757 0.762553 0.601904 0.475099 0.296004
10 0.913916 0.721379 0.569404 0.354760 0.826940 0.652726 0.515215 0.320998 0.759401 0.599416 0.473135 0.294781
20 0.913683 0.721195 0.569259 0.354669 0.825936 0.651934 0.514589 0.320608 0.757789 0.598144 0.472131 0.294155
30 0.913604 0.721133 0.569210 0.354639 0.825597 0.651666 0.514378 0.320477 0.757247 0.597716 0.471793 0.293945
40 0.913565 0.721101 0.569185 0.354623 0.825427 0.651532 0.514272 0.320410 0.756975 0.597501 0.471624 0.293839
50 0.913541 0.721082 0.569170 0.354614 0.825324 0.651451 0.514208 0.320371 0.756811 0.597372 0.471522 0.293776
60 0.913525 0.721070 0.569160 0.354608 0.825256 0.651397 0.514165 0.320344 0.756702 0.597285 0.471454 0.293733
70 0.913513 0.721061 0.569153 0.354604 0.825207 0.651358 0.514135 0.320325 0.756624 0.597224 0.471405 0.293703
80 0.913505 0.721054 0.569148 0.354600 0.825171 0.651330 0.514112 0.320311 0.756565 0.597178 0.471369 0.293680

Table 9
Ultimate cumulative Parisian ruin probability for gamma interclaim times with variance 5.

m1 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.919719 0.734966 0.587325 0.375061 0.842720 0.673434 0.538154 0.343661 0.784001 0.626510 0.500657 0.319715
5 0.916900 0.732713 0.585525 0.373911 0.829115 0.662562 0.529466 0.338113 0.761659 0.608656 0.486389 0.310604
10 0.916472 0.732371 0.585252 0.373737 0.827057 0.660917 0.528152 0.337274 0.758367 0.606026 0.484287 0.309262
20 0.916250 0.732193 0.585110 0.373647 0.825996 0.660070 0.527474 0.336841 0.756683 0.604680 0.483212 0.308575
30 0.916175 0.732133 0.585062 0.373616 0.825638 0.659783 0.527246 0.336695 0.756117 0.604228 0.482850 0.308344
40 0.916137 0.732103 0.585038 0.373600 0.825458 0.659640 0.527131 0.336621 0.755832 0.604000 0.482668 0.308228
50 0.916114 0.732085 0.585023 0.373591 0.825350 0.659553 0.527062 0.336577 0.755662 0.603864 0.482559 0.308159
60 0.916099 0.732073 0.585014 0.373585 0.825277 0.659495 0.527015 0.336548 0.755548 0.603773 0.482487 0.308112
70 0.916088 0.732064 0.585007 0.373580 0.825226 0.659454 0.526982 0.336527 0.755466 0.603708 0.482435 0.308079
80 0.916080 0.732057 0.585001 0.373577 0.825187 0.659423 0.526958 0.336511 0.755405 0.603659 0.482395 0.308054

decreasing the occupation time in the red. Second, for fixed u, the ruin probability in each row decreases in the mean E[Em1,ω] of the 
Erlang Parisian clock (or decreases in r in the case of deterministic Parisian clock). This is also expected since it is less likely for the 
occupation time OT∞ to exceed the clock when the clock is longer. Third, we look at the performance of Erlangization by moving down 
each column of Table 4. As m1 increases, the ruin probability under an Erlang Parisian clock approaches that under a deterministic clock. 
We notice that Erlangization produces very good performance even for moderate values of m1. We have indeed separately computed 
the percentage error by comparing the Erlangian approximation with the corresponding exact value in the last row. While the table of 
percentage errors is omitted here for brevity, we would like to report that (i) for fixed pair of (m1, ω), the percentage errors are almost 
identical across different initial surplus levels; (ii) for fixed m1, the percentage error increases with the mean E[Em1,ω] = m1/ω (or 
equivalently, decreases with ω). The latter observation is also evident in the Erlangization demonstration in Cheung and Wong (2017), 
and similar explanations are applicable and given as follows. Recall that the idea of Erlangization is to successively reduce the variance 
of the Erlang distribution to mimic the deterministic clock via increasing m1. Note that the variance of the Erlang Parisian clock is 
Var(Em1,ω) = m1/ω

2 = (E[Em1,ω])2/m1. If E[Em1,ω] is large, then a larger value of m1 is required to keep the variance and hence the 
percentage error small. In particular, when E[Em1,ω] = 1 the use of m1 = 2 leads to a percentage error of 0.831% (i.e. less than 1%) while 
for E[Em1,ω] = 10 we require m1 = 10 to give a comparable percentage error of 1.034%. For further reference, as m1 increases from 1 
to 80, when E[Em1,ω] = 1 the percentage error decreases from 1.478% to 0.024%. For E[Em1,ω] = 5 (resp. E[Em1,ω] = 10), the percentage 
error decreases from 5.488% to 0.079% (resp. from 9.291% to 0.130%).

Moving from Table 4 to Tables 2-3 and 5–9, we observe the same pattern in terms of the monotonicity of the ultimate cumulative 
Parisian ruin probability in the initial surplus level and the mean Parisian clock within each table (and also regarding Erlangization in 
Table 3). Now, we are interested in comparing the ruin probabilities within the same class of distributions that have different variances. 
Specifically, Tables 3, 4, 6 and 9 feature gamma distributions with shape parameters α = 2, 1, 1/3, 1/5, respectively. It can be seen that 
the ultimate cumulative Parisian ruin probability increases with the variance of the gamma distribution. Intuitively, as the variance of the 
interclaim times increases, the increments {cV i − Yi}∞i=1 of the surplus process between successive claim arrival times also have a larger 
variance. This means that the surplus is more likely to downcross level zero (see the numerical illustrations in Landriault and Willmot 
(2008) for similar explanations), which in turn increases the chance that the occupation time in the red exceeds the Parisian clock. For the 
same reason, we can also compare Tables 2, 4 and 8 which concern Weibull distributions with shape parameters α = 2, 1, 1/2, respectively, 
and the same observation can be made. Likewise, from Tables 5 and 7 the ruin probability also increases with the variance of the Pareto 
interclaim times.

It is worthwhile to point out that when one moves away from the compound Poisson model (Table 4), the ultimate cumulative Parisian 
ruin probability can become very different especially when the initial surplus level gets large. For example, when u = 20 and the mean 
Parisian clock is 10, such probability is around 4%-4.3% in the compound Poisson model. This drastically reduces to about 0.8%-0.9% when 
the interclaim times are Weibull with small variance (Table 2) and significantly increases to over 30% for gamma interclaim times with 
higher variance (Table 9). This demonstrates the importance of allowing for interclaim time distributions other than the classic exponential 
assumption.

Next, we would like to compare the ultimate cumulative Parisian ruin probability across different classes of interclaim time distributions 
with the same variance. In particular, we inspect Tables 7-9 which correspond to Pareto, Weibull and gamma distributions having the same 
variance of 5. Interestingly, we note that the case of Pareto interclaim times produces significantly lower ultimate cumulative Parisian 
ruin probabilities. This can be attributed to the heaviest tail of the Pareto distribution among the three distributions. Under heavy-tail 
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Table 10
Finite-time (E[Em2,γ ] = 50) cumulative Parisian ruin probability for Weibull interclaim times with variance 0.273240: Erlang Parisian clock Em1,ω .

m1 = m2 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.598570 0.151848 0.038522 0.002479 0.428222 0.108634 0.027559 0.001774 0.333373 0.084572 0.021455 0.001381
5 0.647112 0.182729 0.045970 0.002255 0.465259 0.123898 0.029640 0.001348 0.349927 0.088308 0.020222 0.000862
10 0.650115 0.187582 0.047502 0.002182 0.468907 0.127193 0.030232 0.001240 0.354628 0.090145 0.020114 0.000740
20 0.651345 0.190033 0.048364 0.002139 0.470262 0.128968 0.030614 0.001176 0.356454 0.091344 0.020123 0.000667
30 0.651718 0.190849 0.048667 0.002123 0.470653 0.129572 0.030757 0.001153 0.356949 0.091778 0.020141 0.000641
40 0.651898 0.191256 0.048822 0.002115 0.470838 0.129876 0.030831 0.001141 0.357178 0.092000 0.020154 0.000627
50 0.652004 0.191501 0.048916 0.002110 0.470945 0.130059 0.030877 0.001134 0.357310 0.092135 0.020162 0.000619

Table 11
Finite-time (E[Em2,γ ] = 50) cumulative Parisian ruin probability for Erlang interclaim times with variance 0.5: deterministic Parisian clock r.

m2 r = 1 r = 5 r = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.611581 0.179636 0.052763 0.004552 0.403019 0.118376 0.034770 0.003000 0.282699 0.083036 0.024390 0.002104
5 0.677895 0.221307 0.065003 0.004425 0.490640 0.150777 0.041990 0.002632 0.368422 0.106534 0.028187 0.001634
10 0.683101 0.227714 0.067454 0.004361 0.499546 0.156770 0.043620 0.002514 0.380815 0.111900 0.029148 0.001493
20 0.685465 0.230936 0.068809 0.004323 0.503511 0.159885 0.044569 0.002442 0.386226 0.114853 0.029759 0.001406
30 0.686220 0.232008 0.069281 0.004310 0.504771 0.160933 0.044909 0.002416 0.387920 0.115866 0.029987 0.001374
40 0.686592 0.232543 0.069520 0.004303 0.505390 0.161459 0.045083 0.002403 0.388750 0.116377 0.030107 0.001357
50 0.686814 0.232864 0.069665 0.004298 0.505758 0.161775 0.045188 0.002395 0.389241 0.116685 0.030180 0.001347
60 0.686960 0.233077 0.069762 0.004296 0.506002 0.161986 0.045260 0.002389 0.389567 0.116890 0.030229 0.001340
70 0.687065 0.233230 0.069832 0.004294 0.506175 0.162136 0.045311 0.002385 0.389799 0.117037 0.030265 0.001335
80 0.687143 0.233344 0.069885 0.004292 0.506305 0.162249 0.045349 0.002383 0.389972 0.117147 0.030292 0.001331

Table 12
Finite-time (E[Em2,γ ] = 50) cumulative Parisian ruin probability for Erlang interclaim times with variance 0.5: Erlang Parisian clock Em1,ω .

m1 = m2 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.632585 0.185805 0.054575 0.004708 0.459418 0.134942 0.039636 0.003420 0.360598 0.105916 0.031110 0.002684
5 0.682082 0.222919 0.065545 0.004470 0.500576 0.154700 0.043330 0.002743 0.382086 0.112124 0.030095 0.001788
10 0.685216 0.228542 0.067740 0.004385 0.504511 0.158739 0.044311 0.002572 0.387494 0.114647 0.030130 0.001574
20 0.686527 0.231355 0.068955 0.004335 0.505992 0.160872 0.044920 0.002472 0.389589 0.116219 0.030254 0.001448
30 0.686930 0.232289 0.069379 0.004318 0.506424 0.161593 0.045143 0.002436 0.390166 0.116776 0.030318 0.001402
40 0.687125 0.232754 0.069594 0.004309 0.506629 0.161954 0.045259 0.002418 0.390434 0.117059 0.030355 0.001378
50 0.687240 0.233033 0.069725 0.004303 0.506749 0.162171 0.045330 0.002407 0.390590 0.117231 0.030379 0.001364

Table 13
Finite-time (E[Em2,γ ] = 50) cumulative Parisian ruin probability for exponential interclaim times with variance 1: deterministic Parisian clock r.

m2 r = 1 r = 5 r = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.667717 0.245640 0.090366 0.012230 0.454247 0.167108 0.061476 0.008320 0.326189 0.119998 0.044145 0.005974
5 0.732032 0.298413 0.111530 0.012748 0.547995 0.211613 0.075334 0.007966 0.422405 0.154388 0.052425 0.005147
10 0.736928 0.305974 0.115511 0.012814 0.557020 0.219279 0.078331 0.007832 0.435584 0.161801 0.054506 0.004893
20 0.739158 0.309719 0.117655 0.012856 0.561034 0.223172 0.080021 0.007756 0.441268 0.165746 0.055774 0.004742
30 0.739872 0.310957 0.118392 0.012872 0.562310 0.224470 0.080614 0.007730 0.443047 0.167077 0.056235 0.004688
40 0.740223 0.311573 0.118764 0.012881 0.562937 0.225118 0.080916 0.007717 0.443917 0.167745 0.056473 0.004661
50 0.740433 0.311943 0.118989 0.012886 0.563310 0.225507 0.081099 0.007709 0.444433 0.168146 0.056618 0.004644
60 0.740571 0.312188 0.119139 0.012890 0.563557 0.225766 0.081222 0.007704 0.444775 0.168413 0.056716 0.004633
70 0.740670 0.312364 0.119247 0.012893 0.563733 0.225950 0.081310 0.007700 0.445018 0.168605 0.056786 0.004624
80 0.740744 0.312495 0.119328 0.012895 0.563865 0.226089 0.081376 0.007697 0.445200 0.168748 0.056839 0.004618

interclaim times, there is higher chance that there can be extended periods where the surplus process does not experience any claims. 
If this happens when the surplus process is in the red then it can be beneficial because the surplus process can recover quicker and the 
occupation time in the red (and hence the Parisian ruin probability) can be reduced. Another observation from Tables 8-9 is that the 
Weibull and the gamma cases have comparable ultimate cumulative Parisian ruin probabilities with the gamma case producing slightly 
higher ruin probabilities in most situations. The similarity in these two cases is possibly due to the fact that all the moments exist for 
both Weibull and gamma distributions, whereas the slightly lower figures in the Weibull case may be explained via the heavy-tailedness 
of a Weibull distribution with shape parameter α < 1 (as the moment generating function does not converge in such case).

We now turn our attention to the finite-time cumulative Parisian ruin probabilities which are provided in Tables 10-19 for the eight 
interclaim time distributions in Table 1, where the mean Erlang time horizon is taken to be E[Em2,γ ] = m2/γ = 50. Specifically, Tables 11
and 13 provide the ruin probabilities Pu{OTEm2,γ > r} under deterministic clocks r = 1, 5, 10, where the computation is done using the 
results from Section 4.1 with Erlangization performed on Em2,γ . In contrast, Tables 10, 12 and 14–19 are about the ruin probabilities 
Pu{OTEm2,γ > Em1,ω} computed with the formulas in Section 4.2. Here Erlangization is performed simultaneously on both Em1,ω and Em2,γ

by setting m1 = m2 and increasing them at the same time while keeping m1/ω = 1, 5, 10 and m2/γ = 50 fixed.
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Table 14
Finite-time (E[Em2,γ ] = 50) cumulative Parisian ruin probability for exponential interclaim times with variance 1: Erlang Parisian clock Em1,ω .

m1 = m2 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.685854 0.252312 0.092820 0.012562 0.509812 0.187549 0.068995 0.009338 0.405356 0.149122 0.054859 0.007424
5 0.735468 0.300065 0.112239 0.012847 0.557369 0.216241 0.077357 0.008252 0.435412 0.161119 0.055388 0.005559
10 0.738664 0.306820 0.115883 0.012867 0.561718 0.221596 0.079366 0.007983 0.441974 0.165072 0.056006 0.005112
20 0.740030 0.310147 0.117845 0.012883 0.563383 0.224332 0.080544 0.007834 0.444498 0.167372 0.056526 0.004855
30 0.740454 0.311243 0.118520 0.012890 0.563875 0.225244 0.080964 0.007782 0.445204 0.168161 0.056737 0.004764
40 0.740661 0.311788 0.118860 0.012895 0.564111 0.225699 0.081179 0.007756 0.445536 0.168558 0.056849 0.004718
50 0.740783 0.312115 0.119066 0.012897 0.564249 0.225971 0.081310 0.007740 0.445729 0.168796 0.056919 0.004690

Table 15
Finite-time (E[Em2,γ ] = 50) cumulative Parisian ruin probability for Pareto interclaim times with variance 3: Erlang Parisian clock Em1,ω .

m1 = m2 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.757371 0.364569 0.175489 0.040662 0.589329 0.283680 0.136553 0.031640 0.480857 0.231466 0.111419 0.025817
5 0.809562 0.431239 0.213768 0.044199 0.653311 0.332961 0.158528 0.030686 0.533208 0.260226 0.119345 0.021776
10 0.812911 0.439987 0.220534 0.044943 0.658952 0.341339 0.163391 0.030470 0.542702 0.267914 0.122148 0.020811
20 0.814378 0.444216 0.224081 0.045397 0.661183 0.345462 0.166105 0.030390 0.546321 0.272064 0.124022 0.020291
30 0.814840 0.445599 0.225283 0.045565 0.661859 0.346814 0.167047 0.030372 0.547355 0.273439 0.124717 0.020116
40 0.815066 0.446285 0.225888 0.045653 0.662186 0.347485 0.167524 0.030365 0.547846 0.274123 0.125076 0.020030
50 0.815200 0.446696 0.226251 0.045706 0.662378 0.347885 0.167812 0.030362 0.548134 0.274531 0.125296 0.019978

Table 16
Finite-time (E[Em2,γ ] = 50) cumulative Parisian ruin probability for gamma interclaim times with variance 3: Erlang Parisian clock Em1,ω .

m1 = m2 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.782167 0.420513 0.226079 0.065346 0.608878 0.327349 0.175991 0.050869 0.496662 0.267018 0.143556 0.041494
5 0.828806 0.486884 0.272205 0.075302 0.669281 0.379065 0.204896 0.053525 0.546820 0.298747 0.156429 0.038785
10 0.831802 0.494934 0.279502 0.077312 0.674256 0.386972 0.210568 0.054189 0.555644 0.306585 0.160370 0.038311
20 0.833126 0.498797 0.283223 0.078448 0.676200 0.390759 0.213576 0.054624 0.558928 0.310589 0.162756 0.038141
30 0.833543 0.500058 0.284470 0.078849 0.676787 0.391991 0.214598 0.054789 0.559862 0.311888 0.163598 0.038102
40 0.833748 0.500683 0.285094 0.079054 0.677070 0.392600 0.215111 0.054875 0.560306 0.312530 0.164027 0.038087
50 0.833869 0.501056 0.285468 0.079179 0.677236 0.392964 0.215420 0.054929 0.560566 0.312912 0.164285 0.038079

Table 17
Finite-time (E[Em2,γ ] = 50) cumulative Parisian ruin probability for Pareto interclaim times with variance 5: Erlang Parisian clock Em1,ω .

m1 = m2 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.777255 0.401750 0.207658 0.055480 0.613407 0.317060 0.163883 0.043784 0.504786 0.260915 0.134863 0.036031
5 0.830085 0.474409 0.253316 0.061243 0.682801 0.374012 0.192055 0.043528 0.565273 0.296850 0.146938 0.031412
10 0.833456 0.483737 0.261242 0.062490 0.688868 0.383467 0.198167 0.043504 0.575833 0.306062 0.150885 0.030325
20 0.834941 0.488223 0.265366 0.063243 0.691288 0.388076 0.201535 0.043559 0.579849 0.310945 0.153437 0.029764
30 0.835409 0.489688 0.266758 0.063519 0.692025 0.389581 0.202696 0.043594 0.581003 0.312550 0.154368 0.029582
40 0.835638 0.490414 0.267457 0.063662 0.692383 0.390327 0.203283 0.043615 0.581553 0.313345 0.154847 0.029493
50 0.835774 0.490847 0.267877 0.063749 0.692594 0.390772 0.203637 0.043629 0.581875 0.313820 0.155139 0.029441

Table 18
Finite-time (E[Em2,γ ] = 50) cumulative Parisian ruin probability for Weibull interclaim times with variance 5: Erlang Parisian clock Em1,ω .

m1 = m2 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.816087 0.491486 0.295996 0.107358 0.651917 0.392615 0.236451 0.085761 0.539566 0.324952 0.195702 0.070981
5 0.862904 0.566385 0.356450 0.126866 0.721622 0.458616 0.279958 0.094472 0.604287 0.371544 0.220149 0.070665
10 0.865780 0.574933 0.365527 0.130782 0.727116 0.468089 0.288077 0.096585 0.614666 0.382070 0.226865 0.070968
20 0.867059 0.578985 0.370073 0.132959 0.729283 0.472521 0.292263 0.097870 0.618444 0.387214 0.230715 0.071352
30 0.867464 0.580301 0.371584 0.133720 0.729943 0.473948 0.293664 0.098338 0.619521 0.388850 0.232036 0.071529
40 0.867663 0.580952 0.372338 0.134106 0.730263 0.474653 0.294365 0.098579 0.620035 0.389654 0.232700 0.071628
50 0.867781 0.581341 0.372789 0.134341 0.730451 0.475072 0.294786 0.098727 0.620335 0.390131 0.233100 0.071690

First, it can be seen that the finite-time cumulative Parisian ruin probabilities in Tables 10-19 show similar patterns to those in 
Tables 2-9: (i) within each table, the probabilities are decreasing in both the initial surplus u and the (mean) Parisian clock; (ii) the prob-
abilities converge down each column due to Erlangization taking place; (iii) the probabilities increase with the variance of the interclaim 
times within the same class of distributions (such as gamma in Tables 12, 14, 16 and 19); and (iv) when comparing across different 
classes of distributions with the same variance, in most situations Pareto and gamma interclaim times lead to the smallest and the highest 
ruin probabilities, respectively, with the Weibull case falling in between (see Tables 17-19). A lot of the intuitive explanations provided 
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Table 19
Finite-time (E[Em2,γ ] = 50) cumulative Parisian ruin probability for gamma interclaim times with variance 5: Erlang Parisian clock Em1,ω .

m1 = m2 E[Em1,ω] = m1/ω = 1 E[Em1,ω] = m1/ω = 5 E[Em1,ω] = m1/ω = 10

u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20 u = 0 u = 5 u = 10 u = 20

1 0.822674 0.512368 0.319107 0.123778 0.654803 0.407816 0.253991 0.098520 0.540686 0.336744 0.209727 0.081351
5 0.866410 0.583085 0.379283 0.147168 0.721021 0.471260 0.298229 0.110245 0.601738 0.381748 0.235170 0.083045
10 0.869149 0.590998 0.387894 0.151547 0.726126 0.479947 0.305976 0.112865 0.611504 0.391590 0.241824 0.083899
20 0.870375 0.594759 0.392185 0.153921 0.728135 0.483990 0.309905 0.114382 0.615044 0.396304 0.245506 0.084580
30 0.870764 0.595983 0.393608 0.154740 0.728746 0.485292 0.311214 0.114920 0.616054 0.397798 0.246753 0.084853
40 0.870955 0.596589 0.394318 0.155155 0.729041 0.485934 0.311867 0.115196 0.616535 0.398530 0.247377 0.084998
50 0.871069 0.596951 0.394744 0.155406 0.729215 0.486317 0.312259 0.115363 0.616817 0.398966 0.247752 0.085088

for the ultimate cumulative Parisian ruin probabilities are applicable here as well. We also note that (except for small values of m2 less 
than 10) the ruin probabilities across Tables 11-12 are reasonably close in the case of Erlang(2) interclaim time distribution, and the same 
comments apply to Tables 13-14 in the exponential case. It is interesting to note that, except in some cases with small initial surplus, the 
majority of the ruin probabilities in Table 17 for Pareto interclaim times with variance 5 are smaller than those in Table 16 concerning 
gamma interclaim times with variance 3. Therefore, in general one cannot simply rank the ruin probabilities according to the variance of 
the interclaim times when comparing across different classes of distributions, as the tail behaviour of the interclaim times can also impact 
the ruin probabilities.

We end this section by discussing some computational matters in relation to our algorithms. For reference, all the computations are 
done by Mathematica using a Dell Latitude 9420 with 16.0GB RAM and i7 CPU at 3.00 GHz. Regarding the calculation of the ultimate 
cumulative Parisian ruin probability ψr(u) = Pu{OT∞ > r} under a deterministic clock, we utilize (3.7) and (3.10) to obtain the last row 
of Tables 3-4. In doing so, we need to truncate the infinite sums in (3.10). Note that (3.10) does not depend on the initial surplus u, and 
ψr(u) in (3.7) is simply (3.10) times an exponential term in u. This means that the afore-mentioned sums do not have to be recalculated 
when altering u. In the case of Erlang interclaim times, a truncation point of 2000 is more than sufficient to yield converging results for 
ψr(u) at the 6 decimal places for the Parisian clocks r = 1, 5, 10 considered. For each r = 1, 5, 10, it took about 8 minutes to obtain the 
whole Pu{OT∞ > r} as a function of u. For the ultimate cumulative Parisian ruin probability Pu{OT∞ > Em1,ω} under an Erlang clock in 
Tables 2-9, the computational procedure stated after (3.20) is applied. The time-consuming part arises from Step 2 where the evaluation 
of Bell polynomials is needed to obtain the higher order derivatives of Rx recursively via (3.20). The values of these polynomials should 
be stored in Mathematica’s memory for the computation of (3.17) in Step 3. Once these polynomials have been calculated for a given 
pair of (m1, ω), the whole ultimate cumulative Parisian survival probability Pu{OT∞ < Em1,ω} as a function of u is obtained thanks to 
(3.14). However, changing ω does require recalculations because the Bell polynomials need to be evaluated at x = ω. When performing 
Erlangization by keeping the mean Parisian clock E[Em1,ω] = m1/ω fixed, it is found that Pu{OT∞ > Em1,ω} can be obtained instantly 
for m1 up to 50. When m1 = 60, 70, 80, the computational times increase quickly to about 20, 100 and 500 seconds, respectively, and 
these are not sensitive to the choice of interclaim time distribution or the mean Parisian clock considered. Moving to Tables 11 and 13
for the finite-time cumulative Parisian ruin probabilities Pu{OTEm2,γ > r} under a deterministic clock, computation via (4.10) requires (i) 
truncation of the infinite sums in (3.10); and (ii) the use of Bell polynomials because of the derivative terms. A truncation point of about 
400-600 is found to be sufficient, and the computation times for the whole Table 11 and the whole Table 13 are about 9300 and 4300 
seconds, respectively. Lastly, the calculation of Pu{OTEm2,γ > Em1,ω} in Tables 10, 12 and 14–19 using (the complement of) (4.13) requires 
the first m1 +m2 − 2 derivatives of h1(h2(·)). This in turn requires the evaluation of a large number of Bell polynomials which can be very 
time-consuming. While Pu{OTEm2,γ > Em1,ω} as a function of u can be obtained instantly for m1 = m2 up to 20, when m1 = m2 = 30, 40, 50
the computational times are around 20, 400 and 7000 seconds, respectively, and these do not change much across different interclaim 
time distributions and different mean Parisian clocks. Nevertheless, the evaluation of Bell polynomials itself presents a complex problem 
in mathematics (see e.g. Cvijović (2011), Natalini and Ricci (2016) and references therein for further discussions), and our calculations can 
be possibly sped up if there are advances in such a field of mathematics.

6. Concluding remarks

In this paper, we consider the cumulative Parisian ruin problem in both finite and infinite time horizons, where the Parisian clock 
can be deterministic or Erlang distributed, and in the finite-time case the time horizon is replaced by an Erlang random variable. Our 
analysis does not require any specific distributional assumption on the interclaim times. Consequently, the present paper fills an im-
portant literature gap in the cumulative Parisian ruin problem where exponential or phase-type interclaim times are typically assumed. 
Our numerical illustrations (which include gamma, Weibull and Pareto interclaim times) demonstrate that the cumulative Parisian ruin 
probabilities can be quite different when one deviates from the classical compound Poisson risk model. Moreover, the heavy-tailedness 
of the interclaim time distributions can also have a significant impact on these probabilities when comparing across different classes of 
interclaim distributions with the same variance. We hope our findings can stimulate further research that allows for more general claim 
arrival processes.
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