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This paper proposes a new risk-sharing procedure, framed into the classical insurance surplus process. 
Compared to the standard setting where total losses are shared at the end of the period, losses are 
allocated among participants at their occurrence time in the proposed model. The conditional mean risk-
sharing rule proposed by Denuit and Dhaene (2012) is applied to this end. The analysis adopts two 
different points of views: a collective one for the pool and an individual one for sharing losses and 
adjusting the amounts of contributions among participants. These two views are compatible under the 
compound Poisson risk process. Guarantees can also be added by partnering with an insurer.
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1. Introduction and motivation

Risk-sharing mechanisms have been studied for decades in the 
actuarial literature. In a risk-sharing pool, each participant is com-
pensated from the pool for his or her individual losses. In return, 
he or she pays an ex-post contribution to the pool, which is deter-
mined so that the sum of all the individual contributions matches 
the aggregate loss of the pool.

In the standard setting, risk sharing thus operates ex post, by 
allocating total losses to participants at the end of the period. This 
is not in line with decentralized insurance (DeIn) models where 
claims are handled when they occur. Once approved, claims are 
settled without waiting until the end of the period. This is the 
case for example with Nexus Mutual (https://nexusmutual .io/). For 
a thorough presentation of DeIn models, we refer the interested 
reader to Chapter 9 in Feng (2023). This is why an alternative 
model where claims are shared when they are submitted is pro-
posed in this paper. The conditional mean risk-sharing rule pro-
posed by Denuit and Dhaene (2012) and axiomatized by Jiao et al. 
(2022) is used to that end, resulting in an intuitive allocation 
among participants.
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Let us mention that the allocation of losses is performed using 
the conditional mean risk-sharing rule at every occurrence time. 
In that respect, the rule itself does not take into account the dy-
namic of the underlying risk process. This is in contrast with the 
approach developed by Abdikerimova et al. (2022), where dynamic 
risk-sharing rules are proposed in the sense that the allocation pol-
icy itself changes over time and adapts to previous losses. Here, 
the sharing rule remains static but it is applied repeatedly, each 
time a loss occurs within the pool and not only once at the end of 
the period. This aligns the analysis of the pooling mechanism with 
practice, since claims are settled when reported, without waiting 
until the end of the agreed coverage period.

According to Chapter 24 in Culp (2006), finite risk programs 
correspond to a range of risk management solutions in which the 
(re)insurer’s downside risk is limited and the policyholders partic-
ipate in case of favorable claims experience. Some degree of finite 
risk turns out to be useful to design successful DeIn schemes. In 
this paper, timing risk is transferred to a partnering financial in-
stitution, bank or insurance company. This refers to the risk that 
actual losses occur at a faster rate than expected and that accu-
mulated surplus is too low to fund those claims when they occur, 
whereas on the long run balance is expected to be positive. The 
amount of deficit is then borrowed from the partnering institution 
and the community pays interest at an agreed rate. With finite 
risk, participants benefit from favorable claims experience while 
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the partnering financial institution provides the loan in case of 
temporary deficits.

Participants may also buy additional guarantees from a partner-
ing insurer. The model developed in this paper then makes explicit 
the diversification within the pool of participants and optional 
guarantees added by a partnering insurer. Instead of paying a fixed 
amount of premium, participants can then be granted bonuses in 
case of favorable experience, while benefiting from insurer’s guar-
antee in case of adverse experience.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce individual and collective insurance accounts 
developing according to the compound Poisson surplus process of 
risk theory. Then we formalize risk sharing among participants, al-
locating losses at their occurrence time. Section 3 discusses the 
impact of this new risk-sharing mechanism based on different cri-
teria. Considering infinite-time default probability, it is shown that 
pooling is beneficial. Over a finite-time horizon, the analysis is 
more contrasted. On the one hand, pooling is detrimental with re-
spect to finite-time default probabilities with zero initial deposit 
but on the other hand, it remains beneficial under several other 
criteria. Under the no-sabotage condition, Section 4 gives formulas 
to share the burden of interest on temporary deficits as well as the 
accumulated surplus at maturity. Section 5 considers large pools. 
It is shown there that under mild assumptions, individual risk can 
be fully diversified when the number of participants tends to infin-
ity. The asymptotic behavior of finite-time and infinite-time default 
probabilities is studied to assess the benefits of risk pooling. The 
final Section 6 summarizes the main findings of the paper. The in-
clusion of additional guarantees by partnering with an insurer is 
discussed there.

2. Dynamic risk sharing

2.1. Individual accounts

Each participant owns an individual insurance account reflect-
ing his or her specific experience. Specifically, we consider a pool 
gathering losses of a community of n participants, numbered i =
1, 2, . . . , n. The pool starts operating at time 0. Let Ni,t be the num-
ber of claims recorded by participant i over time interval (0, t), 
with Ni,0 = 0. Throughout this paper, the claim number process 
{Ni,t , t ≥ 0} is assumed to be Poisson with constant rate λi > 0. 
The size of the kth claim is denoted as Yi,k . The random variables 
Yi,1, Yi,2, . . . are assumed to be non-negative, mutually indepen-
dent, with common distribution function Fi . Claim sizes Yi,k are 
furthermore assumed to be independent of {Ni,t , t ≥ 0}. To ease 
exposition, we assume that individual claim sizes are absolutely 
continuous with respective probability density function f i .

The total claim amount filed by participant i up to time t is 
given by

Si,t =
Ni,t∑
k=1

Yi,k, t ≥ 0,

starting from Si,0 = 0. The process {Si,t , t ≥ 0} is compound Pois-
son. Participants are required to contribute at constant rate ci and 
to pay an initial deposit κi ≥ 0. The amount κi can be interpreted 
as membership fees, for instance. The individual account for par-
ticipant i is then given by

V i,t = ci t − Si,t + κi, t ≥ 0,

where

ci = (1 + η)E[Si,1] = (1 + η)λiE[Yi,1]

24
denotes the contribution rate for participant i, corresponding to 
expected claims over one period of time supplemented with safety 
loading proportional to pure premium, with safety coefficient 
η > 0.

Throughout the paper, we assume that individual claim experi-
ences are mutually independent, that is, all the random variables 
associated to a participant are independent of the random vari-
ables associated to any other participant.

Remark 2.1. Notice that claim sizes Yi,k include loss adjustment 
expenses. The pool can contract with professional loss adjusters 
to settle the claims, including their fees within claim sizes, or ap-
point participants to act as claim assessors (through a consensus 
mechanism as with Nexus Mutual, for instance). When a partner-
ing insurer is involved, claim sizes Yi,k may correspond to incurred 
losses to deal with long-tailed business developing beyond the ma-
turity of the pool.

2.2. Pooled fund

Participants agree to join the pool in order to diversify claims 
experience. Contributions, claims and initial deposits are aggre-
gated into

c =
n∑

i=1

ci, St =
n∑

i=1

Si,t and κ =
n∑

i=1

κi .

The fund participants collectively own at time t is given by

Vt =
n∑

i=1

V i,t = c t − St + κ, t ≥ 0. (2.1)

We recognize in (2.1) the dynamics of the classical insurance sur-
plus, or risk process.

The pool is impacted by claims recorded by the n participants. 
The number of claims filed during time interval (0, t) is Nt =∑n

i=1 Ni,t . The claim occurrence process at pool level {Nt , t ≥ 0}
is Poisson with parameter λ = ∑n

i=1 λi . Let

Tk = inf{t ≥ 0|Nt = k}
be the time at which the kth claim is filed. The total claim amount 
up to time t can then be represented as

St =
Nt∑

k=1

Yk, t ≥ 0,

where the claim size Yk is given by

Yk =
n∑

i=1

I[Ni,Tk − Ni,Tk− = 1]Yi,Ni,Tk

where I[·] is the indicator function, equal to 1 if the event appear-
ing within brackets is realized and to 0 otherwise. The random 
variables Y1, Y2, . . . are independent with common distribution 
function F = 1

λ

∑n
i=1 λi F i . We denote as f = 1

λ

∑n
i=1 λi f i the cor-

responding probability density function. The total claim process 
{St , t ≥ 0} is compound Poisson with claim frequency λ and sever-
ity distribution F .

2.3. Conditional mean risk-sharing rule at occurrence time

Let us now explain how individual losses can be shared among 
participants at occurrence time. The mixture representation link-
ing individual accounts and pooled fund is used to allocate losses 
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among participants. In the collective model, losses Yk impacting 
the community are not attributed to a given participant but are 
allocated among them according to the respective chances they 
would have produced Yk . In this way, heterogeneity is accounted 
for. It turns out that this intuitive approach corresponds to the 
allocation according to the conditional mean risk-sharing rule pro-
posed by Denuit and Dhaene (2012). Formally, consider the kth 
loss Yk impacting the pool at time Tk . Define Zk,1, Zk,2, . . . , Zk,n as

Zk,i = I[Ni,Tk − Ni,Tk− = 1]Yi,Ni,Tk

for i = 1,2, . . . ,n with
n∑

i=1

Zk,i = Yk.

The conditional mean risk sharing of Yk among participants is de-
fined as

hcmrs
i (y) = E[Zk,i |Yk = y], i = 1,2, . . . ,n.

The next result shows that this allocation rule indeed distributes 
losses among participants according to the respective chances they 
would have produced them.

Proposition 2.2. The amount contributed by participant i to the kth loss 
Yk = y according to the conditional mean risk-sharing rule is given by

hcmrs
i (y) = y

λi f i(y)∑n
j=1 λ j f j(y)

for i = 1,2, . . . ,n.

Proof. Let Ik denote the participant who filed the kth claim Yk . 
From the mixture representation, we have that

P[Ik = i] = λi

λ
for i = 1,2, . . . ,n.

We then get

P[Ik = i|Yk = y] = λi f i(y)∑n
j=1 λ j f j(y)

for i = 1,2, . . . ,n and y ≥ 0.

The random variables Zk,1, Zk,2, . . . , Zk,n are mutually exclusive in 
the sense that

P[Zk,i > 0, Zk, j > 0] = 0 for all i �= j ∈ {1,2, . . . ,n}.
According to Section 4.4.3 in Denuit and Dhaene (2012), the con-
ditional mean risk-sharing rule applied to mutually exclusive risks 
is based on

p j(y) = d

dy
P[Ik = j, Yk ≤ y] = f (y)P[Ik = j|Yk = y] = λ j

λ
f j(y).

This results in the allocation

hcmrs
i (y) = E[Zk,i |Yk = y] = y

pi(y)∑n
j=1 p j(y)

= y
λi f i(y)∑n

j=1 λ j f j(y)

as an application of the conditional mean risk-sharing rule. �
With this risk sharing rule, the pooled individual risk account 

for participant i at time t is now given by

V pool
i,t = ci t − Spool

i,t + κi where Spool
i,t =

Nt∑
k=1

hcmrs
i (Yk), t ≥ 0.

Whereas Si,t aggregates all losses specific to participant i over 
(0, t), Spool

i,t gives all losses allocated to participant i over (0, t) af-
ter pooling has taken place at every occurrence time Tk ∈ (0, t).
25
Proposition 2.2 shows that participant i contributes to the kth 
loss Yk = yk covered by the pool the amount

hcmrs
i (yk) = βi(yk)yk

where βi(yk) = P[Ik = i|Yk = yk] = λi f i(yk)∑n
j=1 λ j f j(yk)

.

Clearly, 
∑n

i=1 hcmrs
i (yk) = yk and hence the loss is totally paid by 

the participants in the pool. This means that

Vt =
n∑

i=1

V i,t =
n∑

i=1

V pool
i,t . (2.2)

Since the conditional mean risk-sharing rule is known to be 
actuarially fair, joining the pool does not modify average payments 
compared to the situation where participants stand alone. This is 
formally established next.

Proposition 2.3. For all t ≥ 0, E[Si,t] = E[Spool
i,t ].

Proof. We have

E[Spool
i,t ] = E

[
Nt∑

k=1

βi(Yk)Yk

]
=

∞∑
l=1

P[Nt = l]
l∑

k=1

E[βi(Yk)Yk]

with

E[βi(Yk)Yk] = 1

λ

∞∫
0

λi f i(y)ydy = 1

λ
λiE[Yi,1].

This results in

E[Spool
i,t ] = λitE[Yi,1] = E[Ni,t]E[Yi,1] = E[Si,t]

and ends the proof. �
Remark 2.4. Denuit and Robert (2022) demonstrated that partic-
ipants can be grouped in teams according to some meaningful 
criterion (family, friends, profession, etc.), resulting in a hierarchi-
cal decomposition of the community. Such a team partitioning is 
possible in the compound Poisson model, by first allocating losses 
to the different teams and then within these teams according to 
the formulas given in this section.

3. Impact of pooling

3.1. Default probabilities

Infinite-time default probabilities for participant i are defined 
as

ψi (κi) = P[V i,t < 0 for some t ≥ 0] and

ψ
pool
i (κi) = P[V pool

i,t < 0 for some t ≥ 0]
if he or she stands alone or joins the pool, respectively. The fol-
lowing lemmas are useful to prove our main result comparing 
infinite-time default probabilities. The first result uses the idea of 
thinning the Poisson process {Nt , t ≥ 0}, which refers to classi-
fying each loss Yk , independently, into one of a finite number of 
different types. Then, the losses of a given type also form a Pois-
son process. This construction allows us to represent {Si,t , t ≥ 0}
as a compound Poisson process with losses occurring according to 
{Nt , t ≥ 0} by discarding losses produced by other participants.
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Lemma 3.1. Let Y ′
i,1, Y

′
i,2, . . . be independent and identically distributed 

random variables, with

P[Y ′
i,1 = 0] = 1 − λi

λ
and P[Y ′

i,1 > y] = λi

λ

(
1 − Fi (y)

)
.

Define

S ′
i,t =

Nt∑
k=1

Y ′
i,k, t ≥ 0.

Then, the process {Si,t, t ≥ 0} is distributed as {S ′
i,t, t ≥ 0}.

The next lemma uses the convex order 	CX. Recall that given 
two random variables W1 and W2, W1 	CX W2 holds when 
E[W1] = E[W2] and E[(W1 − t)+] ≤ E[(W2 − t)+] for all t . This 
ensures that E[g(W1)] ≤ E[g(W2)] holds true for any convex func-
tion g for which the expectations exist. The relation 	CX expresses 
the common preferences of all risk-averse economic agents in the 
expected utility paradigm for choice under risk.

Lemma 3.2. For any k = 1, 2, . . ., we have 
∑k

j=1 hcmrs
i (Y j) 	CX∑k

j=1 Y ′
i, j .

Proof. First,

E[hcmrs
i (Yk)] =

∞∫
0

yβi(y)

⎛⎝ n∑
j=1

λ j

λ
f j(y)

⎞⎠ dy

= λi

λ
E[Yi,k] = E[Y ′

i,k].
Let g be a convex function. We have

E[g(Y ′
i,k)] =

(
1 − λi

λ

)
g (0) + λi

λ
E[g(Yi,k)]

and

E[g(hcmrs
i (Yk))] = E

[
g
(
Ykβi(Yk)

)]
= E

[
g
(
(1 − βi(Yk)) × 0 + βi(Yk)Yk

)]
≤ E

[
(1 − βi(Yk)) g (0) + βi(Yk)g (Yk)

]
= E [1 − βi(Yk)] g (0) + E [βi(Yk)g (Yk)]

=
(

1 − λi

λ

)
g (0) + λi

λ
E[g(Yi,k)]

since

E [1 − βi(Yk)] = 1 −
∞∫

0

βi(y)

⎛⎝ n∑
j=1

λ j

λ
f j(y)

⎞⎠ dy = 1 − λi

λ

and

E [βi(Yk)g (Yk)] =
∞∫

0

βi(y)g(y)

⎛⎝ n∑
j=1

λ j

λ
f j(y)

⎞⎠ dy

= λi

λ

∞∫
0

g(y) f i(y)dy

= λi

λ
E[g(Yi,k)].

This shows that hcmrs
i (Yk) 	CX Y ′

i,k holds for any k. The announced 
result then follows from the stability of the convex order under 
convolution. This ends the proof. �
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We are now ready to state the main result of this section, show-
ing that pooling reduces infinite-time default probabilities.

Proposition 3.3. For all κi ≥ 0, we have ψpool
i (κi) ≤ ψi (κi).

Proof. Lemma 3.1 allows us to write

ψi (κi) = P[V ′
i,t < 0 for some t ≥ 0] where V ′

i,t = ci t − S ′
i,t + κi .

Infinite-time default probabilities are ordered for the processes V i,t
and V ′

i,t if the corresponding severities are ordered in the convex 
order 	CX. The result then follows from Lemma 3.2 for k = 1. �

In practice, pools often operate over a finite time horizon, ex-
actly as insurance covers run over successive one-year periods. Let 
us now consider a pool operating over a finite time horizon (0, m)

for some maturity 0 < m < ∞.
When κi = 0 for all i, Beekman formula shows that ψpool

i (0)

and ψi (0) only depend on η, so that we have ψpool
i (0) = ψi (0). 

Hence, pooling has no effect on infinite-time default probabilities. 
Finite-time default probabilities for participant i are defined as

ψi (κi,m) = P[V i,t < 0 for some 0 ≤ t ≤ m]
if he or she stands alone and as

ψ
pool
i (κi,m) = P[V pool

i,t < 0 for some 0 ≤ t ≤ m]
if he or she joins the pool.

The next result questions the benefits of risk pooling when 
starting with zero deposits.

Proposition 3.4. For all m ≥ 0, we have ψi (0,m) ≤ ψ
pool
i (0,m).

Proof. Takacs-type formula provides us with the following con-
venient representation of the finite-time default probability when 
κi = 0:

ψi (0,m) = 1 − 1

cim
E[(cim − Si,m)+]

ψ
pool
i (0,m) = 1 − 1

cim
E[(cim − Spool

i,m )+].
See Proposition 3.2 in Lefèvre and Loisel (2008). Since the convex 
order is stable under mixture, we deduce from Lemma 3.2 that 
Spool

i,m 	CX Si,m which implies

E[(s − Spool
i,m )+] ≤ E[(s − Si,m)+] for all s,

so that we end up with the announced result. �
Proposition 3.4 shows that over a finite time interval, default 

probability favors larger risks in the convex order, when initial 
deposit is 0. This can be understood as follows. Without initial de-
posit, default typically occurs when a claim is filed rapidly, at a 
time when the surplus is still small. What matters is thus the left-
part of the graph of the excess function, for relatively small values 
of the argument, and risks dominating in the convex order tend to 
have a heavier left tail. Proposition 3.4 shows that a positive ini-
tial deposit is required, to avoid that pooling becomes detrimental 
in terms of default probabilities.

Numerical illustrations in Cheung et al. (2023) show that this 
may also happen for initial capital close to 0. See Examples 4.2, 
4.4 and 4.5 in that paper where the finite-time ruin probabil-
ity decreases when the variance of claim severities increases for 
small initial capital. Considering for instance Example 4.2 in that 
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paper, let J , W1 and W2 be independent random variables with 
P[ J = 1] = 1 − P[ J = 0] = 1

3 , W1 obeying the Negative Exponen-
tial distribution with mean 2 and W2 obeying the Negative Ex-
ponential distribution with mean 0.5. Claim severities are then 
distributed as E[ J ]W1 + (1 −E[ J ])W2, that is, as a sum of indepen-
dent, Negative Exponentially distributed random variables, or as a 
mixture J W1 + (1 − J )W2 of Negative Exponentially distributed 
random variables. The variance is higher in the latter case, which 
also corresponds to larger severities in the convex order since

E[ J ]W1 + (1 − E[ J ])W2 = E
[

J W1 + (1 − J )W2
∣∣W1, W2

]
.

Tables 9–10 in Cheung et al. (2023) show that for an initial capital 
equal to 1, ruin probabilities over time horizons 2, 4, 6, 8, 10, 20, 
and 40 are larger with the sum compared to the mixture.

In general, ψi (κi,m) and ψpool
i (κi,m) cannot be compared for 

κi > 0. But even if finite-time default probabilities do not neces-
sarily recognize the beneficial aspect of pooling, their integrals do 
so, as shown in the next section.

3.2. Largest excess of claims over contributions

Pooling reduces timing risk, that is, the risk that accumulated 
surplus is too low to face losses occurring rapidly. Define the non-
negative random variables

Lpool
i = sup

t≥0
(Spool

i,t − cit) and Li = sup
t≥0

(Si,t − cit)

as well as

Lpool
i (m) = sup

0≤t≤m
(Spool

i,t − cit) and Li(m) = sup
0≤t≤m

(Si,t − cit)

corresponding to the largest excesses of claims over collected con-
tributions over an infinite or finite time horizon, respectively. The 
next result shows that pooling is effective in improving these ex-
cesses.

Proposition 3.5. We have

P[Lpool
i > s] ≤ P[Li > s] for all s ≥ 0

and

E

[(
Lpool

i (m) − s
)

+

]
≤ E

[
(Li(m) − s)+

]
for all s ≥ 0.

Proof. We have

P[Lpool
i > s] = ψ

pool
i (s) and P[Li > s] = ψi (s) .

The announced result then follows from Proposition 3.3. Consid-
ering a finite time horizon, Proposition 2 in Lefèvre et al. (2017)
shows that for all s ≥ 0 and m > 0,

∞∫
s

ψ
pool
i (z,m)dz ≤

∞∫
s

ψi (z,m)dz.

Since

ψ
pool
i (z,m) = P

[
Lpool

i (m) > z
]

and ψi (z,m) = P [Li(m) > z] ,

we obtain the announced inequality between stop-loss premiums. 
This ends the proof. �
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Over an infinite time horizon, Proposition 3.5 shows that pool-
ing succeeds in reducing the largest excess of claims over contri-
butions in the usual stochastic order. This is considered as being 
beneficial by all economic agents. Over a finite time horizon (0, m), 
Proposition 3.5 shows that the stop-loss premiums for Lpool

i (m)

are smaller than the corresponding stop-loss premiums for Li(m). 
This means that pooling succeeds in reducing the largest excess of 
claims over contributions until maturity in the stop-loss order.

3.3. Risk-reducing effect of pooling

The following result shows that pooling improves the total 
amount of losses and the amounts on the individual insurance ac-
counts, at all time points.

Proposition 3.6. We have V pool
i,t 	CX V i,t for all t ≥ 0.

Proof. Since the convex order is stable under mixture, we know 
from Lemma 3.2 that Spool

i,m 	CX Si,m holds true, so that

−Spool
i,t 	CX −Si,t for all t ≥ 0 ⇒ V pool

i,t 	CX V i,t for all t ≥ 0,

where the implication follows from the stability of the convex or-
der under constant shifts. This ends the proof. �

Proposition 3.6 shows that every risk-averse economic agent 
prefers holding an insurance account with amount V pool

i,t over an 
insurance account with amount V i,t , for all t ≥ 0.

3.4. Numerical illustration

In this section, we illustrate the results derived earlier with the 
help of a simple example. Let us simulate Poisson rates λi as real-
izations of independent random variables with a common Gamma 
distribution with mean equal to 0.1 and variance equal to 0.001 
(shape of 10 and scale of 0.01). The severity distribution is iden-
tical for all participants and given by the Negative Exponential 
distribution with parameter ν . Here, we set ν = 1, without loss 
of generality. Then, Spool

i,t follows a compound Poisson process with 
intensity λ = ∑n

j=1 λ j and Negative Exponential severity distribu-
tion with parameter equal to ν

λi
λ.

This particular setting has been selected because analytic ex-
pressions are available for the ruin probabilities in both individual 
and pooled surplus models. Notice that the pooling of losses is 
proportional when severity distributions are identical for all par-
ticipants, as assumed here: if f1 = f2, . . . = fn then Proposition 2.2
shows that

hcmrs
i (y) = λi

λ
y.

Losses are thus shared proportionally, according to the respective 
expected claim frequencies. With pooling, contributions must be 
paid more often, at rate λ, but the amounts are scaled downwards 
by the factor λi/λ to adapt to participants’ propensities to report 
losses. This has no impact on the average payment over time but 
reduces its variability in a way considered as being beneficial by 
all risk-averse agents (whose common preferences generate 	CX). 
Any other proportional rule would modify expected payments and 
be detrimental for at least one participant.

Henceforth, we indicate the relevant parameters entering the 
calculation of ruin probabilities as additional arguments compared 
to the notation adopted before (appearing after a semi-colon). The 
infinite-time default probabilities for participant i are given by
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ψi (κi;ν) = 1

1 + η
exp

(
− η

1 + η
νκi

)
ψ

pool
i (κi;λi, ν,λ) = ψi

(
κi; ν

λi
λ

)
= 1

1 + η
exp

(
− η

1 + η

ν

λi
λκi

)
.

Theorem 5.6.3 in Rolski et al. (1999) shows that the finite-time 
default probabilities for the same participant are given by

ψi (κi,m;λi, ν) = 1 − e−νκi−(2+η)λim g
(
νκi + (1 + η)λim, λim

)
where the function g(·) is defined as

g (z, θ) = J (θ z) + θ J (1) (θ z) +
z∫

0

ez−v J (θ v)dv

− 1

1 + η

(1+η)θ∫
0

e(1+η)θ−v J

(
zv

1 + η

)
dv,

with J (x) = I0
(
2
√

x
) = ∑∞

n=0 xn/(n!)2 and

ψ
pool
i (κi,m;λi, ν,λ) = ψi

(
κi,m;λ,

ν

λi
λ

)
.

Let us now consider a pool with n = 4 participants. The respec-
tive Poisson rates are 0.1190, 0.0980, 0.1103, and 0.1139, and we 
set η = 0.4. The results are given for participant 1. Calculations are 
performed with the software R, using the package Bessel.

Fig. 1 displays the default probabilities as functions of the ini-
tial deposit κ1, for selected time horizons (1 year, 50 years and 
ultimate). Over infinite time horizon (m = ∞), we can see there 
that the default probabilities without pooling ψi printed in black 
are larger than default probabilities with pooling ψpool

i printed in 
red, whatever the amount of initial deposit. Over finite time hori-
zons however (when m = 1 and m = 50), a crossing of default 
probabilities ψi and ψpool

i is visible. For small amounts of deposit, 
ψ

pool
i dominates ψi when m < ∞, as expected from Proposition 3.4

and the comments made earlier. Pooling implies that participants 
contribute more often compared to the situation where they stay 
alone and pay for their own losses. With zero initial deposits, ruin 
typically occurs early, at a time when accumulated surplus is not 
high enough to cover first losses. Since contributions tend to be 
due earlier with pooling, this tends to increase ruin probabilities 
with zero deposit and provides an explanation to the detrimen-
tal effect of pooling in that case. This also applies to low levels of 
initial surplus but the phenomenon disappears when deposits get 
large enough.

4. Negative balance and surplus at maturity

Consider a pool with n participants operating as explained in 
Sections 2–3. We assume that when Vt < 0, the pool can borrow 
money until it recovers. Notice that only the aggregate Vt matters 
here and we do not consider individual accounts V pool

i,t summing 
to Vt according to (2.2). The cost of the loan covering Vt < 0
must be allocated to participants, each of them paying an extra 
contribution so that the pool can pay interests. This question is 
addressed in Section 4.1. If the pool operates over a finite time 
horizon, it may end up with positive surplus to be shared among 
participants. Likewise, if the pool terminates in deficit then the lat-
ter must also be shared among participants, who are charged an 
additional contribution at maturity. The way to allocate terminal 
surplus is studied in Section 4.2.
28
Fig. 1. Default probabilities as functions of the initial deposit κ1 for participant 1, 
over time horizons m = ∞ (solid line), m = 1 (dashed line), and m = 50 (dotted 
line). Default probabilities without pooling printed in black and default probabilities 
with pooling printed in red. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

4.1. Sharing interest on negative balance

The surplus Vt may become negative at each occurrence time 
Tk , and remain negative for some time before it recovers (this pe-
riod is referred to as time in red in the literature). In this case, 
participants borrow amounts |Vt | as long as Vt < 0, paying interest 
rate until the fund recovers, in addition to individual contributions. 
This is similar to a finite risk program where participants’ contri-
butions are accumulated in an “experience account” out of which 
losses up to a specified amount are paid when they occur. The 
partnering insurer fills up the experience account if it has a neg-
ative balance and charges the participant a specified interest on 
the funds added to the account. Funds added to an experience ac-
count with a negative balance are thus debited at an agreed rate. 
This approach is standard when dealing with insurance captives. 
See e.g. Maeda et al. (2011).

Let δ be the force of interest to be paid by participants when 
Vt < 0. Here, we assume that the functions v �→ E[V i,t |Vt = v]
are continuously increasing (and thus one-to-one) for every i ∈
{1, 2, . . . , n} and t ≥ 0. This imposes a kind of solidarity among 
participants as no individual account may increase on average 
given that the pooled fund decreases. This condition is similar 
to the no-sabotage requirement in risk sharing, meaning that al-
locations must be comonotonic. It is equivalent to requiring that 
the functions s �→ E[Si,t |St = s] are continuously increasing for ev-
ery i ∈ {1, 2, . . . , n} and t ≥ 0. This condition is generally fulfilled 
provided the number n of participants is large enough, as demon-
strated in Denuit and Robert (2021).

Participants must pay interest when Vt is negative, at rate

δ|Vt |I[Vt < 0] = δ(St − κ − ct)+.

Under the no-sabotage requirement, this can be decomposed into

δ|Vt |I[Vt < 0] =
n∑

i=1

δ
(

wi,t − E[V i,t |Vt]
)

+

with
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wi,t = E[V i,t |Vt = 0] = κi + cit − E[Si,t |St = κ + ct].
Alternatively,

δ|Vt |I[Vt < 0] = δ

n∑
i=1

(
E[Si,t |St] − w ′

i,t

)
+

where w ′
i,t = E[Si,t |St = κ + ct]. The contribution rate for partici-

pant i then becomes

ci + c+
i (t)

where c+
i (t) = δ

(
wi,t − E[V i,t |Vt]

)
+ = δ

(
E[Si,t |St] − w ′

i,t

)
+

as long as Vt < 0.

Notice that the dynamics of the pooled fund Vt and individual ac-
counts V i,t and V pool

i,t is not modified. This is because interests at 
rate c+

i (t) are paid in addition to regular contributions ci , in favor 
of the partnering institution financing the debt Vt < 0.

Denuit and Robert (2020) established representations for con-
ditional mean risk sharing of compound Poisson losses, which can 
be used in the present context. With vt < 0, we have

E
[
V i,t |Vt = vt

]
= κi + cit − E

[
Si,t |St = κ + ct − vt

]
= κi + cit − λiE

[
Yi,1

]
f St+Ỹ i,1

(κ + ct − vt)∑n
j=1 λ jE

[
Y j,1

]
f St+Ỹ j,1

(κ + ct − vt)
(κ + ct − vt)

where the random variables Ỹ j,1 are independent of St , with re-
spective probability density function

f̃ j (y) = y

E
[
Y j,1

] f j (y) , y > 0, j = 1,2, . . . ,n,

corresponding to the size-biased distribution associated to Fi . This 
formula allows participants to compute c+

i (t) once Vt is known to 
be equal to vt < 0.

Remark 4.1. Notice that in the proposed system, we do not pe-
nalize participants with V pool

i,t < 0 as long as Vt > 0. Interest is 
charged to all participants when Vt < 0, each one contributing 
c+

i (t) in addition to the initial ci as long as Vt remains negative. 
This provides an added benefit of joining the pool. Notice also that 
c+

i (t) accounts for each participant’s risk profile.
As an alternative, we might consider another system where par-

ticipants are penalized as soon as their individual account becomes 
negative. Thus, participant i would be forced to pay extra con-
tribution over ci as soon as V pool

i,t < 0, even when Vt > 0. This 
possibility is not considered further in this paper and left for fu-
ture research.

4.2. Sharing accumulated surplus at maturity

Participants share losses occurring over (0, m) according to con-
ditional mean risk-sharing rule and cover deficit by paying interest 
as long as Vt < 0. When the pool operates over a finite time hori-
zon, participants also share the surplus at maturity, if positive. 
Under the no-sabotage condition, the allocation of Vm > 0 at time 
m can be based on the decomposition

VmI[Vm > 0] =
n∑

i=1

(
E[V i,m|Vm] − wi,m

)
+

where wi,m = E[V i,m|Vm = 0],

or

(κ

A
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+ cm − Sm)+ =
n∑

i=1

(w ′
i,m − E[Si,m|Sm])+

where w ′
i,m = E[Si,m|Sm = κ + cm].

ny deficit at maturity must also be shared among participants. 
is can be done according to the decomposition

m)− = |Vm|I[Vm < 0] =
n∑

i=1

(
wi,m − E[V i,m|Vm]

)
+

m − κ − cm)+ =
n∑

i=1

(E[Si,m|Sm] − w ′
i,m)+.

 Large pools

1. Motivation

Diversification typically increases when the number of inde-
ndent risks comprised in the pool gets larger. This is also the 
se here: within large pools, that is, letting the number of par-

cipants n increase, individual risk disappears at the limit under 
ild conditions. This can be seen as follows. Assume for instance 
at E[Y 2

i,1] < ∞ for all i and that, for any y such that f i (y) > 0, 
n
j=1 λ j f j(y) → ∞ as n → ∞. Then, the variance of Spool

i,t given 

t

∞∫
0

(
y

λi f i(y)∑n
j=1 λ j f j(y)

)2
⎛⎝ n∑

j=1

λ j

λ
f j(y)

⎞⎠ dy

= λit

∞∫
0

y2 λi f i(y)∑n
j=1 λ j f j(y)

f i(y)dy

nds to 0 by the dominated convergence theorem. It follows that

pool
i,t

d→ ηλiE[Yi,1] t + κi, t ≥ 0,

d that ψpool
i (κi) → 0 as n → ∞. Diversification increases with 

e number of participants and this section studies how infinite-
me and finite-time default probabilities decrease towards 0.

2. Assumptions

We need some additional assumptions to study the asymptotic 
havior of default probabilities in the pool. Precisely, we will use 
e following set of assumptions.

ssumption 5.1. We assume that there exist two positive constants 
and c∞ and a limit distribution function F∞ such that λ/n →

, c/n → c∞ and F
d→ F∞ as n → ∞. Moreover, we assume that 

e moment generating function L∞ (ν) = ∫ ∞
0 eν ydF∞ (y) of F∞ is 

ch that either

(ν) < ∞ for all ν < ∞,

 there exists ν∞ < ∞ such that

(ν) < ∞ for all ν < ν∞ and L∞ (ν) = ∞ for all ν ≥ ν∞.
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Let us briefly comment on Assumption 5.1. The existence of 
a moment generating function for the limit implies that this is 
also the case for all individual distributions with probability den-
sity functions f i . The convergence in distribution of F guarantees 
that the moment generating functions converge pointwise, but the 
other conditions appearing in Assumption 5.1 may not be fulfilled.

Under Assumption 5.1, there exists n1, such that, for any n ≥ n1, 
an adjustment coefficient R > 0 (also known as Lundberg’s expo-
nent) satisfying

1 + c

λ
R = L (R) =

∞∫
0

eR ydF (y)

exists and is unique. Moreover R → R∞ as n → ∞, where R∞ is 
defined as the solution of

1 + c∞
λ∞

R∞ = L∞ (R∞) .

For the asymptotic behavior of individual default probabilities, 
we will use the following set of assumptions.

Assumption 5.2. We assume that there exist a positive constant 
λ∞ and a probability density function f∞ such that λ/n → λ∞ , 
f → f∞ uniformly as n → ∞. Let

Zi = Y
λi f i(Y )

λ∞ f∞(Y )

where Y denotes a random variable with probability density 
function f∞ . We assume that the moment generating function 
LZi (ν) = ∫ ∞

0 eν ydF Zi (y) of F Zi is such that either

LZi (ν) < ∞ for all ν < ∞,

or there exists νi < ∞ such that

LZi (ν) < ∞ for all ν < νi and LZi (ν) = ∞ for all ν ≥ νi .

Considering Assumption 5.2, it is indeed possible that one of 
the probability density functions f i is not light-tailed and that f∞
exists. But in such a case, the moment generating function of Zi
would not exist. It is therefore necessary that each density f i be 
light-tailed (and hence has all moments).

Under Assumption 5.2, there exists n1,i , such that for any n ≥
n1,i , an adjustment coefficient Ri > 0 satisfying

1 + ci

(λ/n)
Ri =

∞∫
0

exp

(
Ri y

λi f i(y)

(λ/n)
∑n

j=1(λ j/λ) f j(y)

)
dF (y)

exists and is unique. Moreover Ri → Ri,∞ as n → ∞, where Ri,∞
is defined as the solution of

1 + ci

λ∞
Ri,∞ = LZi

(
Ri,∞

)
.

5.3. Infinite time horizon

Define

V̆ t = (c/n) t − S̆t + κ with S̆t =
N̆t∑

k=1

Yk

where {N̆t , t ≥ 0} is a Poisson process with intensity λ/n. The 
infinite-time default probability of the pool ψ (κ) = P[Vt < 0
for some t ≥ 0] is then also equal to the probability

ψ̆ (κ) = P[V̆ t < 0 for some t ≥ 0].

30
Define

C = η/(1 + η)

(λ/c)L′ (R) − 1

and notice that C → C∞ as n → ∞, where

C∞ = η/(1 + η)

(λ∞/c∞)L′ (R∞) − 1
.

Proposition 5.3. If Assumption 5.1 holds and κ → ∞ as n → ∞ then

ψ (κ) ∼ C exp (−Rκ) as n → ∞.

Proof. By Theorem IV.5.3 in Asmussen and Albrecher (2010), for 
any (fixed) n, as z → ∞,

ψ̆ (z) ∼ C exp (−Rz) .

Let

ψ̆∞ (κ) = P[V̆ (∞)
t < 0 for some t ≥ 0]

where {V̆ (∞)
t , t ≥ 0} is the surplus process for which c/n and λ/n

have been replaced by c∞ and λ∞ , respectively. Let ε > 0. For each 
n ≥ n1, there exists zn < ∞ such that, for z > zn ,∣∣∣∣∣ ψ̆ (z)

C exp (−Rz)
− 1

∣∣∣∣∣ < ε.

Moreover by Assumption 5.1, there exists z∞ < ∞ such that for 
z > z∞∣∣∣∣∣ ψ̆∞ (z)

C∞ exp (−R∞z)
− 1

∣∣∣∣∣ < ε.

The sequence (zn) is bounded and converges to z∞ . Therefore 
there exists n2 ≥ n1 such that, for n ≥ n2, κ > maxn≥n1 zn . We de-
duce that, for n ≥ n2,∣∣∣∣∣ ψ̆ (κ)

C exp (−Rκ)
− 1

∣∣∣∣∣ < ε,

and the announced result follows. �
Remark 5.4. Notice that, since C → C∞ , we also have

ψ (κ) ∼ C∞ exp (−Rκ) as n → ∞.

It is worth to stress that R can not be replaced by R∞ in general. 
Silvestrov (2014) presents several asymptotic results for perturbed 
risk processes that can be used to replace R by a power series 
expansion in 1/n (see Theorem 5.4 there). However stronger as-
sumptions are needed, in particular on the rate of convergences of 
the sequences (λ/n)n≥1, (c/n)n≥1 and (L (R∞))n≥1.

Let us now consider individual infinite-time default probability 
when joining the pool. As we did at the pool level, define

V̆ pool
i,t = ci t − S̆pool

i,t + nκi with S̆pool
i,t =

N̆t∑
k=1

nhcmrs
i (Yk) .

Default probability ψpool
i (κi) = P[V pool

i,t < 0 for some t ≥ 0] is then 
also equal to the probability

ψ̆
pool
i (κi) = P[V̆ pool

i,t < 0 for some t ≥ 0].
Let

Ci = η/(1 + η)

(λ/(nci))L′
nhcmrs Y (Ri) − 1
i ( k)
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and notice that Ci → Ci,∞ as n → ∞, where

Ci,∞ = η/(1 + η)

(λ∞/ci)L′
Zi

(
Ri,∞

) − 1
.

Proposition 5.5. If Assumption 5.2 holds then

ψ
pool
i (κi) ∼ Ci exp (−Rinκi) as n → ∞.

Proof. By Assumption 5.2, we have for ν such that LZi (ν) < ∞
that

Lnhcmrs
i (Yk)

(ν) → LZi (ν) as n → ∞.

We can then use the same type of arguments as in the proof of 
Proposition 5.3 to conclude. �
Remark 5.6. We also have that

ψ
pool
i (κi) ∼ Ci,∞ exp (−Rinκi) as n → ∞.

5.4. Finite time horizon

The finite-time default probability for the pool ψ (κ,m) =
P[Vt < 0 for some 0 ≤ t ≤ m] is also equal to

ψ̆ (κ,nm) = P[V̆ t < 0 for some 0 ≤ t ≤ nm].
Let us assume that there exists κ∞ > 0 such that κ/n → κ∞ as 

n → ∞ and we write

ψ̆ (κ,nm) = ψ̆ (κ,κ y)

where y = m/(κ/n) → y∞ = m/κ∞ as n → ∞. Define

βF (r) = λ

c

⎛⎝ ∞∫
0

erydF (y) − 1

⎞⎠ − r and

βF∞ (r) = λ∞
c∞

⎛⎝ ∞∫
0

erydF∞ (y) − 1

⎞⎠ − r.

Under Assumption 5.1, for r such that βF∞ (r) < ∞, then βF (r) →
βF∞ (r) as n → ∞.

Let us now define (αy, R y) by

β ′
F

(
αy

) = 1

y
, R y = αy − yβF

(
αy

)
and (αy∞ , R y∞ ) by

β ′
F∞

(
αy∞

) = 1

y∞
, R y∞ = αy∞ − y∞βF∞

(
αy∞

)
.

Proposition 5.7. If Assumption 5.1 holds and κ/n → κ∞ as n → ∞
then

(i) If y∞ < 1/β ′
F∞ (R∞) then there exists n2 such that for n ≥ n2 the 

solution α̃y < αy of βF
(
α̃y

) = βF
(
αy

)
is negative, and as n → ∞

ψ (κ,m) ∼ αy − α̃y

αy|α̃y|
√

2π(λ/c)yL′′ (αy
) e−R yκ

√
κ

.

(ii) If y∞ > 1/β ′
F∞ (R∞), then there exists n3 such that for n ≥ n3 the 

solution α̃y is positive, and as n → ∞

ψ (κ) − ψ (κ,m) ∼ αy − α̃y

αy|α̃y|
√

2π(λ/c)yL′′ (αy
) e−R yκ

√
κ

.
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Proof. Under Assumption 5.1, β ′
F (R) → β ′

F∞ (R∞) as n → ∞, and 
since κ/n → κ∞ as n → ∞, we also have y → y∞ .

Consider statement (i). If y∞ < 1/β ′
F∞ (R∞), then there exists 

n2 such that, for n ≥ n2, y < 1/β ′
F (R). By Theorem V.4.9 in As-

mussen and Albrecher (2010), for any (fixed) n ≥ n2, as z → ∞,

ψ̆ (z, zy) ∼ αy − α̃y

αy|α̃y|
√

2π(λ/c)yL′′ (αy
) e−R y z

√
z

.

Using the same type of arguments as in the proof of Proposi-
tion 5.3, we can conclude that, as n → ∞,

ψ (κ,m) = ψ̆ (κ,nm)

= ψ̆ (κ,κ y) ∼ αy − α̃y

αy|α̃y|
√

2π(λ/c)yL′′ (αy
) e−R yκ

√
κ

.

Turning to statement (ii), if y∞ > 1/β ′
F∞ (R∞), the same type 

of reasoning and Theorem V.4.9 in Asmussen and Albrecher (2010)
lead to, as n → ∞

ψ (κ) − ψ (κ,m) ∼ αy − α̃y

αy|α̃y|
√

2π(λ/c)yL′′ (αy
) e−R yκ

√
κ

.

This ends the proof. �
Equivalent forms for individual finite-time default probabilities 

can also be derived under Assumption 5.2.

5.5. Numerical illustration

Let us continue with the example of Section 3.4. For any n ≥ 1, 
let us rewrite the infinite-time ruin probability as

ψ
pool
i (κi;λi, ν,λ) = 1

1 + η
exp (−Rinκi)

with

Ri = η

1 + η

νλ

nλi
.

For large pools, λ/n → λ∞ = 0.1 and Zi obeys the Negative Ex-
ponential distribution with parameter λ∞

λi
ν . This is clearly in line 

with the result stated under Proposition 5.5.
Fig. 2 displays default probabilities as functions of the number 

n of participants. Again, we only consider participant 1. Results are 
represented for three levels of initial deposit: κ1 = 0.05, 0.1, and 
0.5. We consider different time horizons, those in Fig. 1 supple-
mented with an intermediate value; specifically, results for m = ∞, 
m = 1, m = 10, and m = 50 are represented in Fig. 2. We can see 
there that the default probabilities with pooling ψpool

i increase as 
m increases, as expected. However, default probabilities are not al-
ways decreasing functions of the number of participants except if 
m = ∞. They are nevertheless ultimately decreasing as n becomes 
large. Let us mention that the curves depicted in Fig. 2 are not 
perfectly smooth because Poisson rates λi have been simulated, as 
explained in Section 3.4.

6. Discussion

In this paper, we have proposed a new way of allocating insur-
ance losses within a pool, where the conditional mean risk-sharing 
rule applies at each occurrence time. An explicit expression is de-
rived for this rule, based on the results derived for mutually exclu-
sive risks in Denuit and Dhaene (2012). The impact of pooling is 
assessed with the help of default probabilities and largest excesses 
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Fig. 2. Default probabilities for participant 1 as functions of the number n of par-
ticipants, for initial deposit κ1 = 0.05 (printed in black), 0.1 (printed in red), and 
0.5 (printed in green) over time horizons m = ∞ (solid line), m = 1 (dashed line), 
m = 10 (dotted line), and m = 50 (dotdash line). (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

of accumulated claims over contributions. Thanks to the convex or-
der, pooling is shown to be beneficial, except for finite-time default 
probability with zero initial deposit. Under the no-sabotage condi-
tion, formulas splitting the burden of interest on temporary deficits 
and the accumulated surplus at maturity have been derived. Large 
pools have been considered, showing that individual risk can be 
fully diversified when the number of participants tends to infinity, 
under mild technical conditions. The asymptotic behavior of finite-
time and infinite-time default probabilities has also been studied.

The paper only considered pure pooling solutions so far. There 
is just a partnering financial institution helping participants to face 
timing risk by providing them with an access to loan when Vt < 0. 
If participants wish to benefit from some guarantees, they can con-
tract with a partnering insurer. When an insurer is involved, we 
adopt the standard practice working with annual coverage periods 
so that we set m = 1 and we consider one period, (0, 1) say. The 
partnering insurer offers credit on Vt when negative, with cost

1∫
0

δ|Vt |I[Vt < 0]dt = δ

n∑
i=1

1∫
0

(
wi,t − E[V i,t |Vt]

)
+dt

or
1∫

0

δ(St − κ − ct)+dt = δ

n∑
i=1

1∫
0

(
E[Si,t |St] − w ′

i,t

)
+dt

under the no-sabotage condition, where δ is the force of inter-
est. Notice that these integrals are referred to as area in red after 
Loisel (2005) who derived expressions for the corresponding ex-
pectations. The partnering insurer also covers the negative surplus 
at time 1 given by

|V 1|I[V 1 < 0] =
n∑

i=1

(
wi,1 − E[V i,1|V 1]

)
+

or

(S1 − κ − c)+ =
n∑

i=1

(
E[Si,1|S1] − w ′

i,1

)
+

under the no-sabotage condition. These guarantees are priced ac-
cording to some premium calculation principle, assumed to be 
comonotonic additive (so that the premium can be allocated to 
participants with the help of the decomposition given above). Par-
ticipants may still share (part of) V 1 > 0 in case of favorable expe-
rience.

The approach developed in this paper also helps to formalize 
the guarantees comprised in an insurance contract. Considering 
that commercial insurers operate pooling within their portfolios, 
on behalf of the policyholders, risk sharing as described in this 
paper disentangles pooling effects from additional guarantees. The 
latter can then be priced accordingly.
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