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is illustrated at interpersonal precautionary saving comparisons and the intrapersonal conditions for 
decreasing Ross absolute and relative risk aversion.
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1. Introduction

Risk comparative statics often hinge on comparing direct risk effects on utility derivatives. For example, the risk-induced variation 
of a decision maker’s optimal choice depends on how risk impacts marginal utility in the first-order condition (Rothschild and Stiglitz, 
1971). A case in point is precautionary saving: saving increases with future risk in a well-behaved problem if and only if risk raises future 
marginal expected utility (Kimball, 1990; Eeckhoudt and Schlesinger, 2008).1 The risk impact on the second utility derivative, in turn, 
shapes properties of the optimal choice, such as the willingness to change that choice in reaction to a risk increase (see Section 5). In 
a similar vein, a comparison of the risk impacts on consecutive utility derivatives determines the effect that background risk has on the 
aversion to an independent foreground risk (Gollier and Pratt, 1996; Wang and Li, 2014).

Despite the economic importance of direct risk effects on utility derivatives, the comparative analysis of the preferences sustaining 
those effects has so far been limited to the level of marginal utility and to preference measures that focus on tradeoffs with first-degree 
risk. For example, Liu’s (2014) precautionary premium measures the strength of the precautionary saving motive as the safe reduction of 
risky future income that has the same effect on saving as an nth-degree increase of future income risk. As a result, that premium is based 
on the tradeoff between an nth- and a first-degree risk increase at the level of marginal utility.

By contrast, at the level of expected utility (EU), comparative risk aversion has long been formulated for tradeoffs between nth - and 
mth-degree risk increases, for any n and m with n > m ≥ 1. In a crucial contribution, Liu and Meyer (2013) extend characterizations of 
comparative nth-degree Ross risk aversion (Jindapon and Neilson, 2007; Li, 2009; Denuit and Eeckhoudt, 2010) to tradeoffs with mth-degree 
risk. Their (n/m)th-degree Ross more risk aversion order covers Ross’s (1981) original order for (n,m) = (2,1). Liu and Meyer introduce 
the “rate of substitution between nth- and mth-degree risk increases” as a new preference measure. That rate measures the willingness 
to substitute an mth-degree risk increase for a given nth-degree risk increase. Using such rates, two decision makers’ attitudes toward a 
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1 Analogous observations hold for static choice. For instance, the background risk impact on partial insurance or deductible choices similarly plays out via the influence of 

the background risk on marginal utility in the first-order condition (Eeckhoudt and Kimball, 1992; Schlesinger, 2013).
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downside-risk increase (n = 3), for example, can be compared regarding their willingness to substitute it for a first-degree risk increase 
(m = 1) or a mean-preserving spread (m = 2).

A key element for such preference comparisons at EU level is the utility premium. As introduced by Friedman and Savage (1948), the 
utility premium is an intuitive, non-monetary measure of a decision maker’s risk-induced pain. It is usually defined as the EU reduction 
due to a risk increase. For an additive risk to wealth, the utility premium of a kth-degree risk increase is positive if and only if the decision 
maker is kth-degree risk averse (Ekern, 1980). Importantly, Liu and Meyer’s risk substitution rate is the ratio of two utility premia, that of 
the nth-degree risk increase is divided by that of an mth-degree risk increase.2 By definition, this measure is unit-free. Li and Liu (2014)
introduce the “normalized utility premium” as an alternative. It consists of the ratio of the utility premium for the nth -degree risk increase 
and the mth utility derivative with a sign adjustment. Both measures provide characterizations of (n/m)th-degree Ross more risk aversion.

Interestingly, comparative utility premium analysis has been concentrating on attitudes toward additive risk, regardless of the impor-
tance that multiplicative risk has in economic decisions.3 A reason might be that, for additive and multiplicative risk alike, signing the 
utility premium merely involves inspecting the sign of the appropriate utility derivative (Loubergé et al., 2020). However, this homogeneity 
does not extend to risk impacts on marginal utility. Consider Bostian and Heinzel’s (2018) marginal EU premium. This premium captures 
the risk-induced variation of marginal EU as a function of the attitudes that determine precautionary saving in the discounted EU model. 
The sign of the marginal EU premium follows by inspecting the appropriate utility derivative only in the case of an additive risk to ex-
ogenous future income. In the face of the (multiplicative) risk on the interest rate on saving, its sign rather hinges on the interplay of a 
(positive) precautionary and a (negative) substitution effect, and it is positive or negative depending on which effect is stronger. Bostian 
and Heinzel (2022) show that for the same risk averse and prudent decision maker, who has a positive marginal EU premium under 
income risk, the substitution effect typically prevails, providing for a negative premium under return risk. Similarly, studies on how the 
utility premium evolves with wealth and its riskiness find different conditions per risk type (Eeckhoudt and Schlesinger, 2009; Loubergé 
et al., 2020; Loubergé and Rey, 2022).

Motivated by the importance of direct risk effects on utility derivatives and the analytical differences for additive versus multiplicative 
risk, this paper extends comparative utility premium analysis to the level of arbitrary utility derivatives and multiplicative risk. The aim 
is to develop a general framework to explore and compare the economic implications of the impacts of increases of additive versus 
multiplicative risks on the derivatives of a decision maker’s utility. I apply this framework to comparative precautionary saving analysis 
and the intrapersonal conditions that determine the shape of Ross risk aversion and background risk effects. The new preference measures 
developed in this paper help to quantify decision makers’ preferences and to compare them by inspecting the stated preference criteria.

My starting point is the definition of the jth utility derivative premium for additive risk and for multiplicative risk. For arbitrary n ≥ 2
and j ≥ 0, these premia quantify the impact of an nth-degree risk increase on the jth derivative of a decision maker’s EU.4 In view of 
comparing such premia, I extend Liu and Meyer’s (n/m)th-degree Ross more risk aversion order to the ((n + j)/(m + j))th degree. Then, I 
provide characterizations in terms of adaptations of the two mentioned normalized utility premium measures.

The main result is twofold. Whereas the extension of the comparative analysis from EU level is straightforward under additive risk, 
the analysis for multiplicative risk differs markedly as soon as it is situated at the level of a utility derivative. The reason is that, in the 
standard case of a decision maker with utility derivatives with alternating sign, the impact of multiplicative risk on any utility derivative 
depends on the relative strength of counteracting effects. The Ross conditions entailing the characterizations in terms of the two new 
normalized measures must account for that sign ambiguity according to the places where the measures involve utility derivative premia. 
As a consequence, different Ross conditions are associated with the two measures, and the two characterizations are not equivalent.

Two applications illustrate the general results. The first is situated at marginal utility level and generalizes characterizations of compar-
ative precautionary saving to comparisons of the willingness to save in response to an nth - versus an mth-degree increase in future risk. 
Conventional characterizations – notably, in terms of precautionary premia (Liu, 2014; Bostian and Heinzel, 2018) – focus on tradeoffs 
between nth- and first-degree risk increases. Under multiplicative risk, only the comparison of two decision-makers’ normalized marginal 
utility premia for m = 1 is equivalent to comparing their multiplicative precautionary premia; their comparison in terms of risk substitu-
tion rates is distinct.

The second set of applications studies the intrapersonal conditions for an independent background risk to raise foreground risk aversion 
of second order and higher. Those conditions bear on comparing direct risk effects on two successive utility derivatives up to the (m + 1)th

for m ≥ 1. Wang and Li’s (2014) decreasing (n/m)th-degree Ross risk aversion is crucial to capture such background risk effects under 
additive risk. In order to consider the direct risk effects on utility derivatives, I extend their definition to the ((n + j)/(m + j))th degree. 
Special cases when m = 1 are the often-used traits of decreasing Ross absolute risk aversion (Ross DARA) for j = 0 and decreasing 
Ross absolute prudence (Ross DAP) for j = 1.5 For multiplicative risk, I introduce decreasing ((n + j)/(m + j))th-degree Ross relative risk 
aversion, which covers, when m = 1, Ross decreasing relative risk aversion (Ross DRRA) for j = 0 and Ross decreasing relative prudence 
(Ross DRP) for j = 1.6

2 The values of simple utility premia are unique only up to positive linear transformations and cannot be compared interpersonally. The remedy is appropriate normaliza-
tions. See Crainich and Eeckhoudt (2008); Huang and Stapleton (2015) on the normalization and comparison of utility premia for risk added to certainty and Wong (2018)
for an extension to higher-order risk aversion and prudence. Fleurbaey et al. (2021) discuss utility normalizations and apply normalized utility premia in a social-choice 
context.

3 Examples of economic decisions under multiplicative risk include partial insurance (Schlesinger, 2013), portfolio choice with a risky asset (Chiu et al., 2012), saving 
with risky return (Eeckhoudt and Schlesinger, 2008), production with risky prices or output (Broll and Wong, 2013), labor/leisure decisions with risky wage rate (Chiu and 
Eeckhoudt, 2010), abatement policy with risky damage rate (Barro, 2015; Bramoullé and Treich, 2009), and the effect of economic convergence on the social discount rate 
(Gollier, 2015).

4 The j = 0 special case covers the analysis at EU level. In parallel work, Loubergé et al. (2020) implicitly use these premia in a proof and provide conditions for their 
uniform signing in relation to risk apportionment theory. The focus in this paper is on the economic importance and comparison of those premia.

5 Eeckhoudt et al. (1996) show in a basic result that a second-order increase of background risk raises foreground risk aversion if the decision maker exhibits Arrow-Pratt 
DAP and Ross DARA. In the same vein, Ross DARA and Ross DAP jointly guarantee the preservation of Kimball’s (1993) “standard risk aversion,” which combines Arrow-Pratt 
DARA and DAP (Keenan et al., 2008). That same joint condition warrants that adding a fair (zero-mean) or unfair (negative-mean) background risk to safe wealth raises Ross 
aversion to risk increases, also called Ross risk vulnerability (Keenan and Snow, 2012).

6 Only little research has concerned the effects of multiplicative background risk on foreground risk aversion, see especially Franke et al. (2006, 2011) and Jokung (2013).
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Under additive risk, characterizing decreasing ((n + j)/(m + j))th-degree Ross ARA in terms of the new normalized measures is straight-
forward for any j ≥ 0. Under multiplicative risk, a general result yields Ross conditions to order each of the measures for any pair of 
successive utility derivatives, and the conditions determining the decreasing (increasing) Ross RRA shape involve these orderings. Due to 
the ambiguous risk impacts, those conditions are only sufficient (necessary) and, in view of their complexity, only stated for j = 0, 1.

Two specific examples apply these results for each risk type. The first provides three characterizations of a decreasing precautionary 
saving motive, including one in terms of temperance and precautionary premia. The temperance premium measures here the decision 
maker’s willingness to pay to avoid changing the optimal saving choice due to the risk increase. The second example shows that (n − m)th-
degree increases of an additive background risk raise (m + 1)th-degree Arrow-Pratt ARA if and only if, for either of the two normalized 
measures, that at marginal utility level exceeds that at EU level. As regards multiplicative background risk, I provide the conditions on 
preferences such that the normalized (m + 1)th utility derivative premium exceeding the mth is necessary and sufficient for an nth-degree 
increase to raise (m + 1)th-degree Arrow-Pratt RRA. Because of the focus on Arrow-Pratt risk aversion, only normalized jth utility derivative 
premia apply here; a corresponding result in terms of risk substitution rates is not available.

Section 2 introduces the analytical framework and analyzes the risk comparative statics of utility derivatives in terms of (n/m)th-
degree risk substitution rates and normalized utility derivative premia for additive risk. Section 3 develops the corresponding analysis 
for multiplicative risk. Section 4 treats comparative precautionary saving as an illustration. Section 5 extends the existing definitions, 
characterizations, and applications of decreasing Ross absolute and relative risk aversion. Section 6 concludes.

2. Utility derivative premia for additive risk

This paper focuses on attitudes toward nth-degree increases in risk as in Ekern (1980). An expected utility maximizer u is kth-degree 
risk averse if (−1)k+1 u(k) (x) > 0 for all x, where utility function u is defined on [a,b] ∈R+

0 and u(k) denotes its kth derivative.
To define Ekern risk increases, consider the cumulative distribution functions (CDFs) F (z) = F [1] (z) and G (z) = G[1] (z) of two random 

variables, with finite support in [za, zb] and equal start and end points, F (za) = G (za) = 0 and F (zb) = G (zb) = 1. Denote higher-order 
CDFs F [k] (z) = ∫ z

za
F [k−1] (t)dt for k = 2, 3, . . ., and similarly for G (z).

Definition 1 (nth-Degree Risk Increase [Ekern, 1980]). G (z) has more nth-degree risk than F (z) if

G[k] (zb) = F [k] (zb) for k = 1, . . . ,n

G[n] (z) ≥ F [n] (z) for all z ∈ [za, zb] and “>” holding for some z ∈ (za, zb) .

Such a risk increase implies an nth-degree stochastic dominance shift with unchanged first n − 1 moments. Well-known special cases 
are mean-preserving spreads for n = 2 (Rothschild and Stiglitz, 1970); increases in downside risk for n = 3 (Menezes et al., 1980); and 
increases in outer risk for n = 4 (Menezes and Wang, 2005).

Below, I will denote risk in its low state, associated with F , z̃l and risk in its high state, associated with G , z̃h . I will further consider 
CDFs Hm and Hn−m , defined like F and G , which have, respectively, more mth- and more (n − m)th-degree risk than F . These intermediate 
risks will also be denoted z̃m and z̃n−m . Throughout, I assume n > m ≥ 1.

For an additive risk ε̃ to wealth x, I use the shorthand x̃ ≡ x + ε̃. Ekern shows that G (x) having more nth-degree risk than F (x) is 
equivalent to every nth-degree risk averter preferring F (x) to G (x). Ekern derives this result by proving that utility premium

Eu
(
x̃l

) − Eu
(
x̃h

)
(1)

is positive whenever a decision maker is nth-degree risk averse.7 Hence, in the face of a first- (second-; third-) degree risk increase, the 
positive sign holds if and only if the decision maker exhibits non-satiation (risk aversion; downside risk aversion) or u′ > 0 (u′′ < 0; 
u′′′ > 0).

Risk comparative statics often hinge on direct risk effects on utility derivatives, as noted in Section 1. To measure the impact of a risk 
increase on the jth utility derivative, I define the jth utility derivative premium as

(−1) j
{

Eu( j) (
x̃l

) − Eu( j) (
x̃h

)}
(2)

For j = 0, this premium covers (1). For j = 1, (2) measures the risk impact on marginal utility. The marginal EU premium in Section 4.1
is a particular case defined in a saving problem with income risk. For j = 2, (2) captures the risk impact on the slope of marginal utility. 
That premium can represent attitudes toward the willingness to change an optimal choice (see Section 5.2). For arbitrary j ≥ 0, (2) is 
positive if and only if the decision maker is (n + j)th-degree risk averse, (−1)n+ j−1 u(n+ j) (x) > 0 (Loubergé et al., 2020).

Other applications have used utility derivative premia to study the shape of utility premium (1) when wealth changes. By establishing 
(2)’s positive sign for j = 0, 1, 2, Eeckhoudt and Schlesinger (2006) show that the utility premium of a zero-mean risk added to safe 
wealth is positive, decreasing, and convex in wealth if and only if the decision maker is, respectively, risk averse (u′′ < 0), downside risk 
averse (u′′′ > 0), and temperant (u′′′′ < 0).8 Loubergé and Rey (2022) generalize that result to general nth-degree Ekern risk increases.

Elaborating on that line of reasoning, Loubergé et al. provide a general result on risk apportionment. Under risk apportionment, a 
decision maker prefers to disaggregate risks, which may be degenerate, in different states of the world, instead of cumulating them in one 
state of the world. Starting from an mth-degree deterioration of risky initial wealth, Loubergé et al. determine the preference condition for 
apportioning the nth-degree increase of an independent background risk in the state of the world with undeteriorated initial wealth. The 

7 The proof uses (1)’s n-fold integration by parts, Definition 1, and nth -degree risk aversion.
8 For the purposes of their discussion, Eeckhoudt and Schlesinger (2006) consider the negative of (2) and omit sign correction (−1) j .
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derivation of that condition in the proof of their Theorem 1 is equivalent to signing (2) for j = m. This observation implies the following 
remark.

Remark 1 (Relation to Additive Risk Apportionment). Consider an nth-degree background risk increase and an mth-degree foreground risk 
increase, with m = j. Any decision maker with a positive jth utility derivative premium prefers a lottery that disaggregates the risk 
increases in different states of the world, 

[
x̃l + x̃h, x̃m + x̃l

]
, to a lottery that cumulates the risk increases in one state of the world, [

x̃m + x̃h, x̃l + x̃l
]
.

This paper uses risk apportionment only for illustration purposes. The main focus is on comparing the attitudes responsible for the risk 
impact on the jth utility derivative.

To that end, I first extend Liu and Meyer’s (2013) (n/m)th-degree Ross more risk aversion.

Definition 2 (((n + j)/(m + j))th-Degree Ross More Risk Aversion, Additive Risk). Suppose j ≥ 0, and let u and v be (n + j)th- and (m + j)th-
degree risk averse. Then, u is ((n + j)/(m + j))th-degree Ross more risk averse than v on [a,b] ⊆ R+

0 if there exists a scalar λ > 0 such 
that

u(n+ j) (xa)

v(n+ j) (xa)
≥ λ ≥ u(m+ j) (xb)

v(m+ j) (xb)
for all xa, xb ∈ [a,b] (3)

When j = 0, this definition covers Ross’s (1981) more risk aversion order for (n,m) = (2,1), Jindapon and Neilson’s (2007) nth-degree 
extension for (n,m) = (n,1), and Liu and Meyer’s (n/m)th-degree Ross more risk aversion for arbitrary n and m.

The preference comparison in (3) equivalently applies to ((n + j)/(m + j))th-degree risk tradeoffs at EU level and (n/m)th-degree risk 
tradeoffs at jth utility derivative level.9

Lemma 1 (Relation to (n/m)th-Degree Ross More Risk Aversion, Additive Risk). The ((n + j)/(m + j))th-degree Ross more risk averse order between 
u and v is equivalent to (−1) j u( j) being (n/m)th-degree Ross more risk averse than (−1) j v( j) .

The lemma derives from applying Liu and Meyer’s (n/m)th-degree order at the level of the jth utility derivative and comparing with 
(3).

To characterize ((n + j)/(m + j))th-degree Ross more risk aversion in terms of preferences measures, I compare two kinds of normal-
izations of utility derivative premia. Definition 3 extends Liu and Meyer’s risk substitution rate to the level of utility derivatives.

Definition 3 (Risk Substitution Rate for the jth Utility Derivative, Additive Risk). Let u be (n + j)th- and (m + j)th-degree risk averse. The 
(n/m)th-degree risk substitution rate for the jth utility derivative is

T (n/m)

j,u

(
x̃l, x̃h, x̃m

) = Eu( j)
(
x̃l

) − Eu( j)
(
x̃h

)
Eu( j)

(
x̃l

) − Eu( j)
(
x̃m

) (4a)

Alternatively, T (n/m)

j,u is the scalar solving

Eu( j) (
x̃h

) =
(

1 − T (n/m)

j,u

)
Eu( j) (

x̃l
) + T (n/m)

j,u Eu( j) (
x̃m

)
(4b)

In (4a), premium (2) is normalized by its analog for an mth-degree risk increase. For an (n + j)th- and (m + j)th-degree risk averse 
decision maker, both of those premia are positive, and so is the risk substitution rate. Because both premia are measured in the same unit, 
the ratio is unit-free. In light of Lemma 1, T (n/m)

j gauges equivalently the willingness to substitute an mth - for an nth-degree risk increase 
at the level of the jth utility derivative and the willingness to substitute an (m + j)th- for an (n + j)th-degree risk increase at EU level.

Li and Liu’s normalized utility premium involves dividing premium (1) by (−1)m−1 Eu(m)
(
x̃l

)
. To adapt their approach, I use the 

normalizer (−1) j+m−1 Eu( j+m)
(
x̃l

)
.

Definition 4 (Normalized jth Utility Derivative Premium, Additive Risk). Let u be (m + j)th-degree risk averse. The normalized jth utility deriva-
tive premium for a risk increase from x̃l to x̃h is defined as

N j U P (n/m)
u

(
x̃l, x̃h

) = Eu( j)
(
x̃l

) − Eu( j)
(
x̃h

)
(−1)m−1 Eu( j+m)

(
x̃l

) (5)

Similar to Li and Liu’s normalized utility premium, the utility derivative in (5)’s denominator is m times higher than in the numerator. 
As for the Li and Liu premium, this normalization converts (2) into the unit of the mth moment of random wealth and indicates the cost 
of the impact of the risk increase on the jth utility derivative in terms of a decrease (increase) in x̃l ’s mth moment, for m odd (even). For 
an (m + j)th-degree risk averse decision maker, N j U P (n/m)

u has the same sign as (2).
The two kinds of normalized utility derivative premia admit equivalent characterizations of ((n + j)/(m + j))th-degree Ross more risk 

aversion.

9 Liu (2014) points to this relation in the context of saving for marginal utility ( j = 1) and m = 1.
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Theorem 1 (Comparative ((n + j)/(m + j))th-Degree Ross Risk Aversion, Additive Risk). Conditions (i)–(iv) are equivalent:

(i) (−1) j u( j) is (n/m)th-degree Ross more risk averse than (−1) j v( j) .
(ii) There exist λ > 0 and φ (x) with φ( j) (x) such that u( j) (x) = λ v( j) (x)+φ( j) (x), where (−1) j+m−1 φ( j+m) (x) ≤ 0 and (−1) j+n−1 φ( j+n) (x) ≥ 0

for all x.
(iii) T (n/m)

j,u ≥ T (n/m)

j,v for all x̃l, ̃xh, ̃xm.

(iv) N j U P (n/m)
u ≥ N j U P (n/m)

v for all x̃l , x̃h .

Given Lemma 1, the equivalence of (i), (ii), and (iii) is immediate from Liu and Meyer (2013, Theorem 1) when substituting (
(−1) j u( j), (−1) j v( j)

)
for (u, v), and the equivalence of (i), (ii), and (iv) arises similarly from Li and Liu (2014, Theorem 2). Hence, 

decision maker u is ((n + j)/(m + j))th-degree Ross more risk averse than decision maker v if and only if u’s willingness to substitute an 
(m + j)th- for an (n + j)th-degree risk increase is uniformly larger than v ’s or, alternatively, u’s normalized jth utility derivative premium 
for an nth-degree risk increase uniformly exceeds v ’s.

Although the two normalized utility derivative premium measures are closely related on formal grounds, there is mutually no implica-
tion between the two characterizations.

Remark 2 (Relation of T (n/m)

j and N j U P (n/m) in Theorem 1). A positive conversion factor links T (n/m)

j from (4a) and N j U P (n/m) from (5):

N j U P (n/m)
u

(
x̃l, x̃h

) = T (n/m)

j,u

(
x̃l, x̃h, x̃m

) · Eu( j)
(
x̃l

) − Eu( j)
(
x̃m

)
(−1)m−1 Eu( j+m)

(
x̃l

)
When applied for two decision makers u and v , the order of their conversion factors is ambiguous and need not be aligned with the order 
of their T (n/m)

j and N j U P (n/m) measures.

The conversion factor is the ratio of the two normalizers. If the order of two decision makers’ conversion factors were aligned with 
the order of one type of their normalized measures, then, knowing the order of that type would imply knowing the order of the other 
type. Remark 2 implies that such a hierarchy between the orders of the two measures is not given (see Supplemental Appendix B for a 
proof). This underlines that the two equivalent characterizations in Theorem 1 are associated with separate quantifications. The conceptual 
difference between the two normalized measures is accentuated under multiplicative risk.

3. Comparative aversion to multiplicative risk

This section turns to comparing the attitudes that determine the impact that the increase of a multiplicative risk ρ̃ to wealth x has 
on decision makers’ utility and utility derivatives. More complex tradeoffs emerge as compared to additive risk as soon as the risk effects 
concern utility derivatives. The source of the difference is the random variable’s multiplicative nature.

To measure the impact of multiplicative risk on a decision maker’s utility and utility derivatives, consider the jth utility derivative 
premium for an increase in return risk,

(−1) j
{

E
[

u( j) (
xρ̃l

)
ρ̃

j
l

]
− E

[
u( j) (

xρ̃h
)
ρ̃

j
h

]}
(6)

For j = 0, utility premium Eu 
(
xρ̃l

) − Eu 
(
xρ̃h

)
is the analog for multiplicative risk of (1). For j = 1, (6) measures the impact of the return 

risk increase on marginal utility. Bostian and Heinzel’s marginal EU premium is an application in a saving problem with interest rate risk 
(see Section 4.2). For j = 2, (6) captures the impact of the return risk increase on the slope of marginal utility, and the premium can 
represent attitudes toward the willingness to change an optimal choice in the face of the risk increase (see Section 5.4).

Signing (6) depends on the product of (−1)n+ j−1 and the nth derivative of jth utility derivative

h[ j],u (ρ) = ρ ju( j) (xρ) (7a)

(Loubergé et al., 2020). Premium (6) is positive (negative) if and only if10

(−1)n+ j−1 h(n)
[ j],u (ρ) = (−1)n+ j−1

n∑
k=0

(
n

k

) k∏
i=1

( j + 1 − i) u( j+n−k) (xρ) xn−kρ j−k > ( < ) 0 (7b)

The formula for h(n)
[ j],u (ρ) in (7b) is equivalent to the one in Loubergé et al.’s Theorem 2. That theorem shows how premia (6) apply to 

multiplicative risk apportionment.

Remark 3 (Relation to Multiplicative Risk Apportionment). Consider an mth-degree increase of the risk on wealth, with m = j, and an nth-
degree return risk increase. Any decision maker with a positive jth utility derivative premium (6) prefers a lottery that disaggregates 
the risk increases in different states of the world, 

[
x̃mρ̃l, x̃lρ̃h

]
, to a lottery that cumulates the risk increases in one state of the world, [

x̃mρ̃h, x̃lρ̃l
]
.

10 By convention, ∏0
i=1 ( j + 1 − i) = 1 for any j. The recursive formula is due to straighforward calculations.
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The preference conditions controlling the risk impact on the jth utility derivative are more involved than under additive risk. Only for 
j = 0, (7b) collapses to (−1)n−1 u(n) (xρ) > ( < ) 0, so that the utility premium for a return risk increase is positive for any nth-degree 
risk-averse decision maker, similar to (1).

For j = 1, the sign of the marginal utility premium depends on two effects associated with the right-hand terms in

(−1)n h(n)
[1],u (ρ) = (−1)n

{
u(n+1) (xρ) xnρ + nxn−1u(n) (xρ)

}
(8a)

If x, ρ > 0, the first term is positive and the second negative for any (n + 1)th- and nth-degree risk averse decision maker. Chiu et al. (2012)
motivate those counteracting effects using risk apportionment theory. Consider two 50-50 lotteries, one with high wealth x associated with 
high risk ρ̃h and low wealth x associated with low risk ρ̃l and another one with reversed associations. The decision maker’s (n + 1)th-
degree risk aversion is the basis of the preference to disaggregate – or apportion – low wealth and high risk in different states of the 
world, making the first lottery more attractive. At the same time, the decision maker’s nth-degree risk aversion makes the second lottery 
more attractive: the associations of high risk ρ̃h with low wealth x and of low risk ρ̃l with high wealth x both imply lower risk exposure. 
The relative strength of these “apportionment” and “(nth-degree) risk aversion” effects determines the overall sign of the return risk 
impact on marginal utility. In saving models, these counteracting forces have the well-known interpretation as precautionary effect and 
substitution effect (see Section 4.2).

For j = 2, the risk impact on the second utility derivative hinges on three effects associated with the right-hand terms in

(−1)n+1 h(n)
[2],u (ρ) = (−1)n+1

{
u(n+2) (xρ) xnρ2 + 2n u(n+1) (xρ) xn−1ρ + n (n − 1) u(n) (xρ) xn−2

}
(8b)

Those effects are, respectively, positive, negative, and positive for any (n + 2)th- , (n + 1)th-, and nth-degree risk averse decision maker. 
The overall impact sign reflects the net effect.11

The cases j = 0, 1, 2 illustrate a number of more general observations that signing condition (7b) entails (see Supplemental Appendix C). 
First, for any j ≥ 0, the number of different utility derivatives that jointly determine the return risk impact on the jth utility derivative 
is equal to the number of times product 

∏k
i=1 ( j + 1 − i) is positive for k = 0, . . . , n. Second, the maximum number of utility derivatives 

involved is j + 1, and that number grows with j.12 Third, the minimum number of involved utility derivatives across all j ≥ 0 is one, 
and it is attained if and only if j = 0. Finally, the risk effects always involve the (n + j)th as the highest utility derivative and depend, in 
addition, on the consecutive lower ones if two or more are activated. Remark 4 summarizes the main insights from these observations.

Remark 4 (Return Risk Effects on Utility and Utility Derivatives). Only at the level of EU ( j = 0), the sign of the impact of a return risk increase 
is completely determined by the sign of one single utility derivative, namely, the nth . For j ≥ 1, the sign of the impact on the jth utility 
derivative always reflects the net of several effects, which are counteracting for a decision maker with utility derivatives which alternate 
in sign.

The upshot is that any comparison of utility derivative premia needs to control for the net sign of the overall risk impact. Merely 
controlling for the sign of one single utility derivative, as it is convenient for j = 0, is not sufficient.

As regards the normalized preference measures I define below, the latter observation applies to all places where utility deriva-
tive premia are involved. Because the two measures differ in that regard, the characterizations hinge on two different notions of 
((n + j)/(m + j))th-degree Ross more aversion to return risk increases.

Definition 5 (((n + j)/(m + j))th-Degree Ross More Risk Aversion, Return Risk). Suppose j ≥ 0. Let u and v be such that (−1)n+ j−1 h(n)

[ j], f (ρ) >

[ < ] 0 for f ∈ {u, v} and let them have identical levels of x under reference return ρ̃l . If u and v are, in addition,

(a) such that (−1)m+ j−1 h(m)

[ j], f (ρ) > [ < ] 0 for f ∈ {u, v}, then u is ((n + j)/(m + j))th-degree Ross more risk averse than v in the first 
sense with respect to a return risk increase from ρ̃l to ρ̃h , if there exists a scalar λ > 0 such that

h(n)
[ j],u (ρa)

h(n)
[ j],v (ρa)

≥ λ ≥ h(m)
[ j],u (ρb)

h(m)
[ j],u (ρb)

for all ρa,ρb such that xρa, xρb ∈ [a,b] (9a)

(b) (m + j)th-degree risk averse, then u is ((n + j)/(m + j))th-degree Ross more risk averse than v in the second sense with respect to a 
return risk increase from ρ̃l to ρ̃h , if there exists a scalar λ > 0 such that

h(n)
[ j],u (ρa)

h(n)
[ j],v (ρa)

≥ λ ≥ u( j+m) (xρb)

v( j+m) (xρb)
for all ρa,ρb such that xρa, xρb ∈ [a,b] (9b)

Both Ross conditions (9) involve terms that account for (6)’s sign ambivalence, namely, in the form of h(k)
[ j] (ρ) from (7b) for k = n, m. 

For j = 0, the two conditions are identical and coincide with (3) applied to return risk. However, whereas the first inequalities in (9) are 
always identical, it is easy to see that, as soon as j ≥ 1, there is no necessary or sufficient condition that relates the second inequalities.

Because (9a) homogeneously involves controls for the impact signs of nth- and mth-degree risk increases, Definition 5(a) admits a 
relation analogous to Lemma 1.

11 Interpreting these effects depends on the decision context and is left for future research.
12 There is an interaction between the number of consecutive utility derivatives determining the risk impact and the degree n of the return risk increase for j ≥ 3 and low 

n. For example, if n = 2, signing condition h(2)
[3],u (ρ) only contains the terms with u(5) , u(4) , and u′′′ , instead of four terms.
28



C. Heinzel Insurance: Mathematics and Economics 111 (2023) 23–40
Lemma 2 (Relation to (n/m)th-Degree Ross More Risk Aversion, Return Risk). The ((n + j)/(m + j))th-degree Ross more risk averse order between u
and v in the first sense with respect to a return risk increase is equivalent to (−1) j h[ j],u being (n/m)th-degree Ross more risk averse than (−1) j h[ j],v .

The lemma derives by applying Liu and Meyer’s (n/m)th-degree Ross risk aversion analogously at the level of u (xρ)’s jth derivative with 
respect to x and comparing with (9a). By lack of a similar homogeneity of controls for (9b), there is no such relation for Definition 5(b).

The next two definitions adapt the normalized utility derivative premium measures from Section 2 to multiplicative risk. I start with 
the risk substitution rate.

Definition 6 (Risk Substitution Rate for jth Utility Derivative, Return Risk). Let u be such that (−1)k+ j−1 h(k)
[ j],u (ρ) > [ < ] 0 for k = n, m. The 

(n/m)th-degree risk substitution rate for return risk ρ̃ and the jth utility derivative is given by

T̂ (n/m)

j

(
ρ̃l, ρ̃h, ρ̃m

) =
E

[
u( j)

(
xρ̃l

)
ρ̃

j
l

]
− E

[
u( j)

(
xρ̃h

)
ρ̃

j
h

]
E

[
u( j)

(
xρ̃l

)
ρ̃

j
l

]
− E

[
u( j)

(
xρ̃m

)
ρ̃

j
m

] (10a)

or, alternatively, T̂ (n/m)

j is the scalar solving

E
[

u( j) (
xρ̃h

)
ρ̃

j
h

]
=

(
1 − T̂ (n/m)

j

)
E

[
u( j) (

xρ̃l
)
ρ̃

j
l

]
+ T̂ (n/m)

j E
[

u( j) (
xρ̃m

)
ρ̃

j
m

]
(10b)

In (10a), (6) is normalized by the jth utility derivative premium for an mth-degree return-risk increase. Rate T̂ (n/m)

j is positive and 
unit-free because the premia in its numerator and denominator have the same sign and are measured in the same unit. The cases with 
split signs are ruled out because a negative risk substitution rate would be hard to interpret. In light of Lemma 2, T̂ (n/m)

j is, equivalently, 
a measure of the willingness to substitute an (m + j)th- for an (n + j)th-degree return risk increase and a measure of the willingness to 
substitute an mth- for an nth-degree return risk increase at jth utility derivative level.

Dividing (6) by normalizer (−1) j+m−1 xm E
[

u( j+m)
(
xρ̃l

)
ρ̃

j
l

]
yields the normalized jth utility derivative premium for return risk.

Definition 7 (Normalized jth Utility Derivative Premium, Return Risk). Let u be (m + j)th-degree risk averse. The normalized jth utility deriva-
tive premium for a risk increase from ρ̃l to ρ̃h is defined as

̂N j U P
(n/m)

u

(
ρ̃l, ρ̃h

) =
E

[
u( j)

(
xρ̃l

)
ρ̃

j
l

]
− E

[
u( j)

(
xρ̃h

)
ρ̃

j
h

]
(−1)m−1 xm E

[
u( j+m)

(
xρ̃l

)
ρ̃

j
l

] (11)

Division by (−1) j+m−1 E
[

u( j+m)
(
xρ̃l

)
ρ̃

j
l

]
converts (6) into the unit of the mth moment of random wealth, like (5). Further division by 

xm makes ̂N j U P
(n/m)

u unit-free. Thus, (11) indicates the cost of the risk-induced pain in terms of a decrease (increase) in ρ̃l ’s mth moment, 
for m odd (even), per unit of xm . Premia (11) and (6) have the same sign.

Comparisons of two decision makers in terms of premia (10a) and (11) are each associated with one of the two kinds of Ross more 
risk aversion in Definition 5. For convenience, I consider decision makers whose successive utility derivatives alternate in sign until the 
(n + j)th starting with a positive first.13

Theorem 2 (Comparative ((n + j)/(m + j))th-Degree Ross Risk Aversion, Return Risk). Given Definition 5(a) and h(k)
[ j],φ (ρ) as in (7b) for k = m, n, 

(a.i)–(a.iii) are equivalent:

(a.i) u is ((n + j)/(m + j))th-degree Ross more risk averse than v in the sense of (9a).
(a.ii) There exist λ > 0 and φ (xρ) with φ( j) (xρ) such that u( j) (xρ) = λv( j) (xρ) + φ( j) (xρ), where (−1)m+ j−1 h(m)

[ j],φ (ρ) ≤ [ ≥ ] 0 and 

(−1)n+ j−1 h(n)
[ j],φ (ρ) ≥ [ ≤ ] 0 for all xρ .

(a.iii) T̂ (n/m)

j,u ≥ [ ≤ ] T̂ (n/m)

j,v for all ρ̃l, ρ̃h, ρ̃m.

Given Definition 5(b) and h(n)
[ j],φ (ρ) as in (7b), (b.i)–(b.iii) are equivalent:

(b.i) u is ((n + j)/(m + j))th-degree Ross more risk averse than v in the sense of (9b).
(b.ii) There exist λ > 0 and φ (xρ) with φ( j) (xρ) such that u( j) (xρ) = λv( j) (xρ) + φ( j) (xρ), where (−1)m+ j−1 φ( j+m) (xρ) ≤ 0 and 

(−1)n+ j−1 h(n)
[ j],φ (ρ) ≥ [ ≤ ] 0 for all xρ .

(b.iii) ̂N j U P
(n/m)

u ≥ ̂N j U P
(n/m)

v ≥ 0

[
̂N j U P

(n/m)

u ≤ ̂N j U P
(n/m)

v ≤ 0

]
for all ρ̃l, ρ̃h.

13 Under this assumption, the return risk impact on any utility derivative is marked by counteracting effects with a specific sign (see Remark 4). That assumption is often 
made in related literature (e.g., Courbage et al., 2018; Loubergé et al., 2020), but stronger than needed when dealing with Ekern risk increases.
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See Appendix A for a proof.
The two characterizations in Theorem 2 reflect the different properties of the two normalized premia. The differences are rooted in the 

different involvement of utility derivative premia in their definitions in conjunction with the ambiguity of return risk impact. Comprising 
the premia for nth- and mth-degree risk increases, the risk substitution rate requires a common uniform sign for those premia, but it 
does not rely on the specific sign of a utility derivative. Normalized utility derivative premia, by contrast, have no sign requirement for 
utility derivative premia, but decision makers need to be (m + j)th-degree risk averse. From a theoretical point of view, risk substitution 
rates may seem more coherent because of their equivalent representation of the willingness to face (n/m)th-degree risk tradeoffs at jth

utility derivative level and ((n + j)/(m + j))th-degree risk tradeoffs at EU level (Lemma 2). However, the different requirements for the two 
measures provide for mutual advantages and disadvantages depending on the application context. Notably, normalized utility derivative 
premia imply specific equivalences and applications that risk substitution rates do not admit, as we will see below.

4. Illustration: comparative precautionary saving

This section applies the above reasoning to a two-period consumption/saving model. The new preference measures extend the char-
acterizations of comparative precautionary saving to (n/m)th-degree risk tradeoffs with generic m ≥ 1. Characterizations in terms of the 
precautionary premium require a redefinition of the latter concept to cover m > 1. The two normalized utility premium measures differ 
regarding their equivalence with conventional representations under return risk.

Let the decision maker choose saving s out of first-period income y1 such as to maximize

u (y1 − s) + βEu
(

ỹ2 + sR̃
)

(12)

In this intertemporal objective, felicity u jointly captures consumption-smoothing preference and risk attitudes. The utility discount factor 
β reflects pure time preference. Risk may enter either through second-period income ỹ2 or gross return R̃ . Notation containing both ỹ2
and R̃ applies to each of the two risk types. By assumption, y2 ≥ 0 and R > 0 in any state of the world. If unambiguous, I abbreviate 
second-period consumption c̃2 depending on the risk type as c̃ y2

2,i = ỹ2,i + sR and c̃R
2,i = y2 + sR̃i , for i ∈ {l, h}.

According to the first-order optimality condition

u′ (y1 − s) = βE
[

u′ ( ỹ2 + sR̃
)

R̃
]

(13)

the decision maker saves until the marginal utility from foregoing consumption in period 1 (i.e., saving a marginal amount) is equal to 
the discounted marginal utility from consuming in period 2 instead. Assuming the second-order condition to hold, (13)’s unique solution 
maximizes objective (12). For consistency, I assume that incentives are such that s > 0 under return risk.

Precautionary saving is the saving reaction to future risk and depends on the risk effect on future marginal utility. When applied to 
model (12), marginal utility premia (2) and (6) for j = 1 entail a simple rule regardless of the risk type: a positive (negative) premium 
predicts that the risk increase induces higher (lower) saving. The criteria for signing the marginal utility premium depend on the risk 
type. Theorems 1 and 2 applied to model (12) provide characterizations of comparative precautionary saving for each type.

4.1. Comparative precautionary saving under income risk

Marginal utility premium Eu′
(

c̃ y2
2,h

)
− Eu′

(
c̃ y2

2,l

)
is positive if and only if (−1)n u(n+1)(c y2

2 ) > 0 (Eeckhoudt and Schlesinger, 2008). A 
conventional comparison of precautionary saving motives can use precautionary premium θ y2 , from

Eu′ ( ỹ2,l + sR − θ y2
) = Eu′ ( ỹ2,h + sR

)
(14)

(Liu, 2014). This premium measures the strength of the precautionary saving motive in terms of the safe reduction in ỹ2,l that has the 
same effect on saving as the nth-degree increase in y2 risk. Premium θ y2 is positive under the same condition as (2) for j = 1.

A precautionary premium measure that captures the tradeoff between nth- and mth-degree risk increases can be defined elaborating 
on Liu and Neilson (2019) (see Heinzel, 2021). The path-dependent mth-degree precautionary premium θ y2 arises from

Eu′ ( ỹ2

(
θ

y2
)

+ sR
)

= Eu′ ( ỹ2,h + sR
)

(15a)

where 
{

ỹ2

(
θ

y2
)}

θ
y2 ∈[0,1)

is the continuous path of mth-degree increasing risk from ỹ2,l , with ỹ2 (0) = ỹ2,l and such that ỹ2

(
θ

y2
′)

has 

more mth-degree risk than ỹ2

(
θ

y2
)

for every θ y2
′
> θ

y2 ≥ 0. Thus, θ y2 reflects the tradeoff between the impacts on marginal utility of an 

nth-degree and an mth-degree risk increase from ỹ2,l .
Another interpretation for θ y2 arises when rewriting defining equation (15a) with CDFs F , G , Hm from Section 2 applied to ỹ2. Thus, 

ỹ2

(
θ

y2
)

’s CDF can be stated as 
(

1 − θ
y2

)
F + θ

y2 Hm for all θ y2 , which leads to

(
1 − θ

y2
)

Eu′ ( ỹ2,l + sR
) + θ

y2 Eu′ ( ỹ2,m + sR
) = Eu′ ( ỹ2,h + sR

)
(15b)

When θ y2
, T (n/m)

1 ∈ (0,1), premium θ y2 in (15b) coincides with T (n/m)
1 in (4b) applied to model (12). As a result, the interpretation and 

analysis for T (n/m)
1 holds for θ y2 analogously.

The latter insight together with Theorem 1 for j = 1 imply that u’s stronger precautionary motive can alternatively be expressed in 
three ways.
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Proposition 1 (Comparative Precautionary Saving, Income Risk). Comparative precautionary saving for a ỹ2,l to ỹ2,h increase is equivalently ex-
pressed by

(i) θ
y2
u ≥ θ

y2
v for all ỹ2,l , ỹ2,h, ỹ2,m.

(ii) T (n/m)
1,u ≥ T (n/m)

1,v for all ỹ2,l , ỹ2,h, ỹ2,m.

(iii) N1U P (n/m)
u ≥ N1U P (n/m)

v for all ỹ2,l , ỹ2,h.

The proposition covers characterizations equivalent to θ y2
u ≥ θ

y2
v from Liu (2014, Theorem 3) for m = 1.14 By (i), (ii), and Lemma 1, 

those express alternatively the willingness to replace the y2 risk increase by a first-degree increase (e.g., in the form of −θ y2 ) at marginal 
utility level and the willingness to replace an (n + 1)th- by a second-degree ỹ2 increase at EU level. Similar to θ y2 , N1U P (n/1) provides a 
monetary quantification of the precautionary motive. Obviously, Proposition 1 is more general in that it admits comparisons for any m ≥ 1.

4.2. Comparative precautionary saving under return risk

Marginal utility premium E
[

u′
(

c̃R
2,h

)
R̃h

]
− E

[
u′

(
c̃R

2,l

)
R̃l

]
is positive (negative) if and only if the product of (−1)n and the nth deriva-

tive of marginal utility h[1],u (R) = Ru′ (cR
2

)
,

h(n)
[1],u (R) = u(n+1)

(
cR

2

)
sn R + nsn−1u(n)

(
cR

2

)
(16)

is positive (negative) (Eeckhoudt and Schlesinger, 2008). The sign of that product depends on two counteracting effects: for an nth -
and (n + 1)th-degree risk averse decision maker, the first term expresses the positive precautionary effect and the second expresses the 
negative substitution effect (Bostian and Heinzel, 2022). A conventional comparison of the strength of precautionary motives can refer to 
multiplicative precautionary premium θ R , from

E
[

u′ (y2 + s
(

R̃l − θ R
u

))
R̃l

]
= E

[
u′ (y2 + sR̃h

)
R̃h

]
(17)

(Bostian and Heinzel, 2018). This premium indicates the proportion of saving such that the safe change sθ R
u in c̃R

2 has the same effect on 
saving as the risk increase. Similar to (11), θ R shares the sign of (6) for j = 1 and is unit-free. The safe change sθ R

u captures the strength 
of the precautionary motive.

The path-dependent mth-degree multiplicative precautionary premium θ R
arises from

E
[

u′ (y2 + sR̃
(
θ

R
))

R̃
(
θ

R
)]

= E
[

u′ (y2 + sR̃h

)
R̃h

]
(18)

where path 
{

R̃
(
θ

R
)}

θ
R ∈[0,1)

is defined in analogy to 
{

ỹ2

(
θ

y2
)}

θ
y2 ∈[0,1)

in the previous section. Premium θ R
reflects the tradeoff between 

the impacts on marginal utility of an nth-degree and an mth-degree risk increase from R̃l . With arguments analogous to above, θ R
coincides 

with T̂ (n/m)
1 in (10b) applied to model (12) when θ R

, ̂T (n/m)
1 ∈ (0,1).

Theorem 2 for j = 1 implies further comparative precautionary saving characterizations. For convenience, I assume the decision makers 
(n + 1)th- and (m + 1)th-degree risk averse.

Proposition 2 (Comparative Precautionary Saving, Return Risk). Among decision makers u, v with identical incentives and saving amounts under R̃l

and increasing [ decreasing ] responses to any nth-degree return risk increase, u shows the stronger precautionary reaction if and only if ̂N1U P
(n/m)

u ≥
[ ≤ ] ̂N1U P

(n/m)

v for all R̃l , R̃h .
If, in addition, u, v increase [ decrease ] saving in response to any mth-degree increase, u shows the stronger precautionary reaction if and only if 

either condition holds:

(i) θ
R
u ≥ [ ≤ ] θ

R
v for all R̃l , R̃h , R̃m.

(ii) T̂ (n/m)
1,u ≥ [ ≤ ] T̂ (n/m)

1,v for all R̃l , R̃h , R̃m.

In the saving context, Theorem 2’s sign conditions on (−1)k h(k)
[1] (ρ) for k = n, m translate into conditions on u’s and v ’s common 

direction of the saving reaction to nth- and mth-degree return risk increases. Thus, expressing u’s stronger precautionary motive in terms 
of u’s higher (lower) normalized marginal utility premium only requires the common positive (negative) saving reaction to nth -degree 
risk increases. But, expressing u’s stronger motive in terms of u’s higher (lower) path-dependent multiplicative precautionary premium or 
higher (lower) risk substitution rate at marginal utility level requires the decision makers, in addition, to react in the analogous way to 
mth-degree increases.

Interestingly, for m = 1, only the characterization in terms of ̂N1U P
(n/1)

is equivalent to θ R
u ≥ [ ≤ ] θ R

v from Bostian and Heinzel (2018, 
Lemma 2); those in terms of θ R

and T̂ (n/1)
1 are not.15 For m = 1, θ R

captures the willingness to substitute a first- for an nth-degree 
return risk increase at marginal utility level, whereas θ R quantifies a saving fraction. Those two amounts would coincide only by accident. 

14 The equivalences for (ii), (iii), and θ y2
u ≥ θ

y2
v when m = 1 arise in analogy to Proposition 3 below.

15 The equivalence for ̂N1U P
(n/1)

arises in analogy to Proposition 5 below.
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Comparisons in terms of ̂N1U P
(n/m)

, T̂ (n/m)
1 , and θ R

are more general as they apply for any m ≥ 1. However, neither T̂ (n/m)
1 nor θ R

reveal 
the sign of the decision makers’ saving reaction.

5. Wealth dependence of Ross risk aversion

The normalized premia from Sections 2 and 3 help to generalize characterizations of the intrapersonal conditions for how risk aversion 
evolves with the utility argument, and yield new interpretations. Those intrapersonal conditions are instrumental to predict whether risk 
aversion of second order and higher rises with background risk.

5.1. Increases in additive risk

Sections 5.1 and 5.2 focus on decreasing shapes of absolute risk aversion.16

Definition 8 first extends Wang and Li’s (2014) decreasing (n/m)th-degree Ross risk aversion.

Definition 8 (Decreasing ((n + j)/(m + j))th-Degree Ross Absolute Risk Aversion). Utility function u (.), with (−1)k+1u(k) (.) ≥ 0 for k = m + j, 
m + 1 + j, n + j, n + 1 + j, exhibits decreasing ((n + j)/(m + j))th-degree Ross absolute risk aversion if, for all xa , xb , xa + xc , xb + xc ∈ [a, b]
with xc > 0,

(−1)n−m u(n+ j) (xa)

u(m+ j) (xb)
≥ (−1)n−m u(n+ j) (xa + xc)

u(m+ j) (xb + xc)
(19a)

In words, a decision maker is decreasingly ((n + j)/(m + j))th-degree Ross absolute risk averse if the coefficient on the left decreases 
with the utility argument. When m = 1, this definition covers Ross DARA for j = 0 and Ross DAP for j = 1.

Intrapersonal condition (19a) has a close link to ((n + j)/(m + j))th-degree Ross more risk aversion in Definition 2. Namely, for some 
scalar λ > 0, this condition is equivalent to

−u(n+1+ j) (xa)

u(n+ j) (xa)
≥ λ ≥ −u(m+1+ j) (xb)

u(m+ j) (xb)
for all xa, xb ∈ [a,b] (19b)

When replacing 
(−u′, u

)
by (u, v), (19b) is identical to (3). Thus, with Lemma 1, Ross DARA is equivalent to −u′ being nth-degree Ross 

more risk averse than u, and Ross DAP is equivalent to u′′ being nth-degree Ross more risk averse than −u′ (see also Footnote 9).
Substituting 

(−u′, u
)

for (u, v) in Theorem 1 yields characterizations in terms of risk substitution rates and normalized utility premia.

Theorem 3 (Decreasing ((n + j)/(m + j))th-Degree Ross Absolute Risk Aversion). Suppose that u is kth-degree risk averse for k = 1 + j, 2 + j, m + j, 
m + 1 + j, n + j, n + 1 + j. Then, (i)–(iv) are equivalent:

(i) (−1)1+ j u(1+ j) is (n/m)th-degree Ross more risk averse than (−1) j u( j) .
(ii) There exist λ > 0 and φ( j) (x) such that −u(1+ j) (x) = λu( j) (x) + φ( j) (x), where (−1) j+m−1 φ( j+m) (x) ≤ 0 and (−1) j+n−1 φ( j+n) (x) ≥ 0 for 

all x.
(iii) T (n/m)

j+1 ≥ T (n/m)

j for all x̃l, ̃xh, ̃xm.

(iv) N j+1U P (n/m)
u ≥ N j U P (n/m)

u for all x̃l , x̃h .

The theorem provides two new characterizations of decreasing ((n + j)/(m + j))th-degree Ross absolute risk aversion. That preference 
trait is both equivalent to the decision maker’s willingness to substitute an mth - for an nth-degree risk increase at ( j + 1)th utility derivative 
level uniformly exceeding that at jth derivative level and to u’s ( j + 1)th utility derivative premium being uniformly larger than the jth . 
As in Theorem 1, there is mutually no direct implication between (iii) and (iv).

The two criteria have an intuitive link to decreasing Ross absolute risk aversion. Noting that T (n/m)

j and N j U P (n/m) are measures of 

((n + j)/(m + j))th-degree risk aversion, the two conditions arise equivalently from T (n/m)

j ’s and N j U P (n/m) ’s nonpositive derivatives with 
respect to safe wealth x = Ex̃. Hence, those conditions are equivalent, respectively, to a risk substitution rate for the jth derivative and a 
normalized jth utility derivative premium that decreases with the level of safe wealth.

5.2. Illustrative examples for additive risk

Two examples illustrate Theorem 3. The first elaborates on saving model (12) and provides alternative criteria for a decreasing pre-
cautionary saving motive. When applied to that model, Ross DAP captures the conditions on preferences for the precautionary motive to 
decrease with the level of expected second-period income E ỹ2. The conditions compare attitudes toward the risk impacts on the second 
and first utility derivatives.

A first criterion, namely ζ y2 ≥ θ y2 , compares precautionary motive θ y2 from (14) and Keenan and Snow’s (2012) temperance premium 
ζ y2 , generalized to nth-degree risk, from17

16 The corresponding results for increasing shapes merely require reversing inequality signs, starting with defining inequalities (19). Theorem 3 (for λ > 0) and Propositions 3
and 4 then hold analogously.
17 Like all premia above, the temperance premium from (20) refers, in general, to a generic risk increase and is thus a partial premium (Denuit and Eeckhoudt, 2010). Its 

name applies literally for n = 2. Higher-order risk increases involve conditions on preferences of order higher than four.
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Eu′′ ( ỹ2,l + sR − ζ y2
) = Eu′′ ( ỹ2,h + sR

)
(20)

Generally, ζ y2 measures the maximum willingness-to-pay to avoid the risk increase impact on the slope of marginal utility. In the saving 
context, ζ y2 expresses the aversion to changing the saving decision due to the risk increase. It is positive if and only if (−1)n+1 u(n+2) > 0, 
like N2U P (n/1) . The criterion derives from Liu (2014, Theorem 3) by analogy given the definitions of Ross DAP, θ y2 , and ζ y2 .

Theorem 3 above for j = m = 1 yields two further criteria.

Proposition 3 (Decreasing Precautionary Saving Motive, Income Risk). Let m = 1. Decision maker u’s precautionary saving motive in the face of any 
risk increase from ỹ2,l to ỹ2,h decreases with E ỹ2 if and only if either condition holds:

(i) T (n/1)

2 ≥ T (n/1)
1 for all ỹ2,l, ỹ2,h, ỹ2,m.

(ii) N2U P (n/1) ≥ N1U P (n/1) for all ỹ2,l , ỹ2,h.
(iii) ζ y2 ≥ θ y2 for all ỹ2,l , ỹ2,h.

Supplemental Appendix D contains an explicit proof. Hence, the precautionary saving motive declines with the level of future labor 
income E ỹ2 if and only if, alternatively, the willingness to substitute a first- for the nth-degree risk increase at second utility derivative 
level exceeds that willingness at marginal utility level; the normalized second utility derivative premium is uniformly larger than the 
normalized marginal utility premium; and the willingness-to-pay to avoid a risk-induced saving change is uniformly higher than the 
precautionary motive. Establishing any of these relationships confirms an EU decision maker’s Ross DAP.

The second example concerns the effects of background risk increases on risk aversion of second order and higher. According to Wang 
and Li, decreasing (n/m)th-degree Ross absolute risk aversion is necessary and sufficient for any (n − m)th-degree background risk increase, 
from ε̃l to ε̃n−m , to raise (m + 1)th-degree Arrow-Pratt risk aversion (see Supplemental Appendix E for an explicit proof). The conditions 
on preferences here involve comparative risk impacts on marginal utility and plain EU.

Two criteria ensuring that relationship derive from Theorem 3 for j = 0.

Proposition 4 (Background Risk Effect on (m + 1)th-Degree ARA). An (n − m)th-degree background risk increase from ε̃l to ε̃n−m raises (m + 1)th-
degree Arrow-Pratt absolute risk aversion if and only if either condition holds:

(i) T (n/m)
1 ≥ T (n/m)

0 for all x̃l, ̃xh, ̃xm.
(ii) N1U P (n/m) ≥ NU P (n/m) for all x̃l , x̃h .

Thus, a decision maker’s (m + 1)th-degree absolute foreground risk aversion increases due to more (n − m)th-degree background risk if 
and only if the willingness to substitute mth- for nth-degree risk at marginal utility level uniformly exceeds that at EU level or, equivalently, 
the normalized marginal utility premium is uniformly larger than Li and Liu’s normalized utility premium. Those characterizations hold 
for any m ≥ 1.

5.3. Increases in return risk

The results under return risk are less clear-cut due to the sign ambivalence of risk impacts on utility derivatives (Remark 4). Relative 
risk aversion (RRA) is the appropriate measure of aversion to return risk.18 Both decreasing and increasing RRA shapes can be motivated 
empirically (Gollier, 2001; Meyer and Meyer, 2005). Yet, the representations for the two shapes are not analogous. In coherence with 
Section 5.1, this section focuses on decreasing shapes.19

I define decreasing Ross RRA in analogy to Definition 8 as follows.20

Definition 9 (Decreasing ((n + j)/(m + j))th-Degree Ross Relative Risk Aversion). Utility function u, with (−1)k+1 u(k) ≥ 0 for k = m + j, m +
1 + j, n + j, n + 1 + j, exhibits decreasing ((n + j)/(m + j))th-degree Ross relative risk aversion if, for all wa , wb , wa + wc , wb + wc ∈ [a, b]
with wc > 0,

(−1)n−m u(n+ j) (wa)

u(m+ j) (wb)
wa ≥ (−1)n−m u(n+ j) (wa + wc)

u(m+ j) (wb + wc)
(wa + wc) (21a)

In words, a decision maker is decreasingly ((n + j)/(m + j))th-degree Ross relative risk averse if the coefficient on the left decreases 
with the utility argument. When m = 1, this definition covers Ross DRRA for j = 0 and Ross DRP for j = 1.

Given some λ > 0, intrapersonal condition (21a) is equivalent to Ross condition

−u(n+1+ j) (ωa)

u(n+ j) (ωa)
ωa − 1 ≥ λ ≥ −u(m+1+ j) (ωb)

u(m+ j) (ωb)
ωb for all ωa,ωb ∈ [a,b] (21b)

18 For example, Pratt (1964) shows that the RRA coefficient is proportional to the multiplicative risk premium π̂ρ , from u (x
(

Eρ̃ − π̂ρ
)) = Eu (xρ̃

)
, for a small zero-mean 

risk added to the safe return.
19 Supplemental Appendix H states the analysis for the case with increasing shapes. Defining the IRRA case in analogs of (21) and Lemma 3’s analog merely require reversing 

the inequality signs. But, in Theorem 4’s analog, the implications reverse: the premium orderings now follow from a given preference characteristic.
20 The closest definition I am aware of, in Jokung (2013), stipulates Ross DRRA based on (21b) for (m, j) = (1,0). See Supplemental Appendix F for a proof of the equivalence 

of (21a) and (21b).
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which links the (n + j)th- and (m + j)th-degree RRA coefficients. When ωa = ωb , j = 0, and (n,m) = (2,1), (21b) expresses the well-known 
condition for DRRA, namely that relative prudence be uniformly larger than RRA plus one. The conditions for DRP and decreasing relative 
temperance are similarly covered for j = 1 and j = 2.

In the following, I will use inequalities (21) applied to the model with return risk from Section 3. Thus, w is replaced by xρ , for some 
x and all ρa, ρb, ρc > 0 such that xρa , xρb , x (ρa + ρc), x (ρb + ρc) ∈ [a, b], and similarly for ω.

Lemma 3 provides Ross conditions that order, respectively, successive risk substitution rates and normalized utility derivative premia 
for arbitrary j, n, and m.

Lemma 3 (Ross Conditions to Order Successive T̂ (n/m)

j s and ̂N j U P
(n/m)

s). Consider h(k)

[ j], f (ρ) from (7b) for f ∈ {u, φ} such that

(−1)k+ j−1 h(k)
[ j],u (ρ) > [ < ] 0 and (−1)k+ j h(k)

[ j+1],u (ρ) ≥ [ ≤ ] 0 for k = m, n. Then, (a.i)–(a.iii) are equivalent:

(a.i) −u′ is Ross more risk averse than u in the sense that

− xh(n)
[ j+1],u (ρa)

h(n)
[ j],u (ρa)

≥ λ ≥ − xh(m)
[ j+1],u (ρb)

h(m)
[ j],u (ρb)

for some x and all ρa,ρb (22a)

(a.ii) There exist λ > 0 and φ (xρ) such that −xh[ j+1],u (ρ) = λh[ j],u (ρ) + h[ j],φ (ρ), where (−1)m+ j−1 h(m)
[ j],φ (ρ) ≤ [ ≥ ] 0 and

(−1)n+ j−1 h(n)
[ j],φ (ρ) ≥ [ ≤ ] 0 for some x and all ρ .

(a.iii) T̂ (n/m)

j+1 ≥ [ ≤ ] T̂ (n/m)

j for all ρ̃l , ρ̃h, ρ̃m.

Suppose that u is kth-degree risk averse for k = 1 + j, 2 + j, m + j, m + 1 + j, n + ι with ι ∈ {0, . . . , j + 1}, and consider h(n)

[ j], f (ρ) from (7b) for 

f ∈ {u, φ} such that (−1)n+ j−1 h(n)
[ j],u (ρ) > [ < ] 0 and (−1)n+ j h(n)

[ j+1],u (ρ) ≥ [ ≤ ] 0. Then, (b.i)–(b.iii) are equivalent:

(b.i) −u′ is Ross more risk averse than u in the sense that

− xh(n)
[ j+1],u (ρa)

h(n)
[ j],u (ρa)

≥ λ ≥ −u(m+1+ j) (xρb)

u(m+ j) (xρb)
xρb for some x and all ρa,ρb (22b)

(b.ii) There exist λ > 0 and φ (xρ) such that −xh[ j+1],u (ρ) = λh[ j],u (ρ) + h[ j],φ (ρ), where (−1)m+ j−1 h(m)
[ j],φ (ρ) ≤ [ ≤ ] (−1)m+ j

{
xh(m)

[ j+1],u (ρ)

+λh(m)
[ j],u (ρ) − xmρ j

[
u(m+1+ j) (xρ) xρ + λu(m+ j) (xρ)

]}
and (−1)n+ j−1 h(n)

[ j],φ (ρ) ≥ [ ≤ ] 0 for some x and all ρ .

(b.iii) ̂N j+1U P
(n/m)

u ≥ ̂N j U P
(n/m)

u ≥ 0

[
̂N j+1U P

(n/m)

u ≤ ̂N j U P
(n/m)

u ≤ 0

]
for all ρ̃l , ρ̃h.

The equivalences of (a.i)-(a.iii) on the one hand and (b.i)-(b.iii) on the other hand arise similarly as for Theorem 2 above.
Relating the premium orderings in Lemma 3 to risk attitude characteristics is more intricate than under additive risk (see Theorem 3). 

The conditions now need to account for the counteracting effects at the levels of both the ( j + 1)th and the jth utility derivative. In (22), 
the h(k)

[ j+1],u and h(k)
[ j],u expressions for k = n, m capture those effects. In view of the increasing complexity with j, the next theorem only 

treats the two prominent cases, j = 0, 1. For j = 0, Lemma 3, and so, the premium orderings in (a.iii) and (b.iii), imply decreasing (n/m)th-

degree Ross RRA in (21). The implication follows because (21b)’s left side compares to that of (a rewriting of) (22a) as − u(n+1)(xρa)

u(n)(xρa)
xρa −1 ≥

− u(n+1)(xρa)

u(n)(xρa)
xρa − (n − m) and to (22b)’s as − u(n+1)(xρa)

u(n)(xρa)
xρa − 1 > − u(n+1)(xρa)

u(n)(xρa)
xρa −n. For j = 1, decreasing ((n + 1)/(m + 1))th-degree Ross 

RRA follows from ̂N2U P
(n/m) ≥ [ ≤ ] ̂N1U P

(n/m)
, if the decision maker has increasing [ decreasing ] ((n + 1)/n)th-degree Ross RRA; and 

T̂ (n/m)

2 ≥ [ ≤ ] T̂ (n/m)
1 follows if the decision maker’s (m + 1)th-degree Ross RRA is, in addition, sufficiently stronger [ weaker ] than the 

mth-degree one (see Appendix B). For consistency, the implications require that n − m > 1.
Theorem 4 summarizes these conditions for j = 0, 1.

Theorem 4 (Decreasing (n/m)th- and ((n + 1)/(m + 1))th-degree Ross RRA). Lemma 3 for j = 0 implies decreasing (n/m)th-degree Ross RRA. For 
j = 1 and n − m > 1, given the conditions of Lemma 3(a), ̂T (n/m)

2 ≥ [ ≤ ] T̂ (n/m)
1 implies decreasing ((n + 1)/(m + 1))th-degree Ross RRA, if (i) the 

decision maker has increasing [ decreasing ] ((n + 1)/n)-degree Ross RRA and (ii) (m + 1)th-degree Ross RRA is sufficiently stronger [ weaker ] than 
mth-degree Ross RRA, whereas, given the conditions of Lemma 3(b), the implication from ̂N2U P

(n/m) ≥ [ ≤] ̂N1U P
(n/m)

only requires (i).

When m = 1, this theorem covers Ross DRRA for j = 0 and Ross DRP for j = 1, like Definition 9. For some intuition for j = 1, consider 
the simplest feasible case, namely, (n,m) = (3,1). In that case, ̂N2U P

(3/1) ≥ [ ≤] ̂N1U P
(3/1)

implies decreasing (4/2)th-degree Ross RRA, if 
the decision maker has increasing [ decreasing ] (4/3)th-degree Ross RRA. If, in addition, second-degree Ross RRA is sufficiently stronger 
[ weaker ] than first-degree Ross RRA, then decreasing (4/2)th-degree Ross RRA holds if the decision maker’s willingness to substitute a 
third- for a fifth-degree return risk increase is uniformly higher [ lower ] than that to substitute a second- for a fourth-degree one.
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5.4. Illustrative examples for return risk

Two examples similar to Section 5.2 illustrate those findings. The first one provides criteria for the precautionary saving motive to 
decrease with the level of expected return E R̃ . Ross DRP – as in (21) for j = m = 1 – applied to model (12) captures the related conditions. 
Those compare risk impacts on the second and first utility derivatives.

The first criterion, namely ζ R ≥ θ R ≥ 0
[
ζ R ≤ θ R ≤ 0

]
, compares (17)’s multiplicative precautionary premium θ R and the multiplicative 

temperance premium ζ R , from

E
[

u′′ (s
(

R̃l − ζ R
))

R̃2
l

]
= E

[
u′′ (sR̃h

)
R̃2

h

]
(23)

As applied to saving, ζ R indicates the proportion of s such that sζ R is the maximum amount of c̃R
2 the decision maker is willing to forgo to 

avoid changing the saving decision due to the risk increase. Like ̂N2U P
(n/1)

, ζ R is positive [ negative ] if and only if (−1)n+1 h(n)
[2],u > [ < ] 0; 

and it is unit-free, like θ R and ̂N2U P
(n/1)

.

The mentioned criterion is equivalent to ̂N2U P
(n/1) ≥ [ ≤ ] ̂N1U P

(n/1)
as implied, by analogy, by the equivalence of the comparative 

precautionary saving characterizations in terms of θ R in Bostian and Heinzel (2018, Lemma 2) and ̂N1U P
(n/1)

in Proposition 2 (see 
Supplemental Appendix I for an explicit proof). By Theorem 4, thus, both criteria ensure Ross DRP for any decision maker with increasing 
[ decreasing ] ((n + 1)/n)th-degree Ross RRA in the case of an increasing [ a decreasing ] saving response, provided that n > 2.

The ζ R ≥ [ ≤ ] θ R comparison has an intuitive interpretation: the precautionary motive decreases with E R̃ , if the willingness to avoid 
changing the saving decision due to the risk increase, sζ R , uniformly exceeds [ stays below ] the precautionary motive, sθ R , for a deci-

sion maker with positive [ negative ] θ R and ζ R . The ̂N2U P
(n/1) ≥ [ ≤ ] ̂N1U P

(n/1)
criterion expresses that in that case equivalently the 

normalized second utility derivative premium exceeds [ stays below ] the normalized marginal utility premium.
Similarly based on Theorem 4, Proposition 5 adds to the latter equivalence the conditions under which an ordering of (n/1)th-degree 

risk substitution rates implies Ross DRP.

Proposition 5 (Decreasing Precautionary Saving Motive, Return Risk). Assume n > 2, and consider a decision maker with increasing [ decreasing ] 
((n + 1)/n)-degree Ross RRA in the case of an increasing [ a decreasing ] saving response. Then, given the conditions of Lemma 3(b) for j = m = 1, 
either of the following equivalent conditions implies (n/1)th-degree Ross DRP:

(i) ̂N2U P
(n/1) ≥ [ ≤ ] ̂N1U P

(n/1)
for all R̃l , R̃h .

(ii) ζ R ≥ [ ≤ ] θ R for all R̃l , R̃h .

If, in addition, the decision maker has a sufficiently stronger [ weaker ] second-degree Ross RRA than first-degree Ross RRA, then, given the conditions 
of Lemma 3(a) for j = m = 1, ̂T (n/1)

2 ≥ [ ≤ ] T̂ (n/1)
1 for all R̃l , R̃h , R̃m implies (n/1)th-degree Ross DRP.

Under the additional condition in the proposition, (n/1)th-degree Ross DRP also follows if the decision maker’s willingness to substitute 
a first- for the nth-degree return risk increase at the level of the second utility derivative uniformly exceeds [ stays below ] that willingness 
to substitute at the level of marginal utility, given a positive [ negative ] risk impact on those two utility derivatives. Based on Theorem 4, 
it is furthermore clear that, for arbitrary m, the comparisons of the appropriate normalized utility derivative premia and risk substitution 
rates imply (n/m)th-degree Ross DRP, provided that n > m ≥ 1 and n − m > 1.

The final example provides the conditions for a multiplicative background risk increase to raise (m + 1)th-degree foreground RRA. 
Convenient conditions arise now for nth-degree increases, from ρ̃l to ρ̃h , and involve comparisons of the risk impacts on the (m + 1)th

and mth utility derivatives. The result builds on Lemma 3(b) above and its analog for increasing Ross RRA (in Supplemental Appendix 
H): necessary and sufficient is that the normalized (m + 1)th uniformly exceeds the normalized mth utility derivative premium, given that 
(2m + 1)th- and (m + 1)th-degree Ross RRA compare in a certain way. It is interesting that the required premium orderings for positive 
and negative risk impacts are uniform and associated, respectively, with decision makers according to Lemma 3(b) and its increasing Ross 
RRA analog.

Proposition 6 (Background Risk Effect on (m + 1)th-Degree RRA). For a decision maker fulfilling the conditions of Lemma 3(b) { Lemma 3(b)’s analog 
for increasing Ross RRA } for j = m, with decreasing (2m/m)th-degree Ross RRA { (2m + 1)th-degree Ross RRA not exceeding (m + 1)th-degree Ross 
RRA } for (−1)n+m−1 h(n)

[m] (ρ) > {<} 0, a background risk increase from ρ̃l to ρ̃h raises (m + 1)th-degree Arrow-Pratt RRA if and only if

̂Nm+1U P
(n/m) ≥ {≥} ̂NmU P

(n/m)
for all ρ̃l, ρ̃h (24)

The proof in Appendix C leans on Keenan and Snow (2012, Theorems 4-5).
Thus, in the simplest case m = 1, a decision maker with positive { negative } ρ̃ impact on marginal utility and Ross DRRA { third-

degree Ross RRA not above second-degree Ross RRA } has a higher Arrow-Pratt foreground RRA if and only if the normalized second 
utility derivative premium is uniformly larger than the normalized marginal utility premium.

Proposition 6 extends Jokung (2013, Proposition 1), which gives for m = 1 an alternative criterion in the form of a Ross condition 
that involves (a rewriting of) (22b)’s left-hand term for j = m = 1 and second-degree Ross RRA.21 Similar Ross conditions to Jokung’s can 
readily be derived for the effects on higher-order RRA (m > 1), but do not lend themselves to characterizations in terms of premia.

21 Jokung refers to nth -degree stochastic dominance, instead of the nth-degree risk special case here.
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The comparison of (22b)’s left-hand term with (m + 1)th-degree RRA is due to the interest in the background risk effect on this latter 
attitude. Lemma 3(b) and its increasing Ross RRA analog, which both involve normalized utility derivative premia, are well suited for 
such comparisons, contrary to Lemma 3(a). Condition (24) for m = 1 can alternatively be stated in terms conventional willingness-to-pay 
premia, namely, as ζρ ≥ θρ . However, using normalized utility derivative premia enables comparisons for arbitrary m ≥ 1.

6. Conclusion

This paper develops the risk comparative statics of utility derivatives for increases in additive and multiplicative risk. Direct risk 
impacts on utility derivatives play an important role in various economic contexts, including precaution and background risk effects. Such 
risk impacts depend on the decision makers’ attitudes toward (n/m)th-degree risk tradeoffs at the level of the jth utility derivative.

To capture these attitudes, I extend two kinds of normalized utility premium measures. Under additive risk, the risk substitution rate 
for the jth utility derivative and the normalized jth utility derivative premium can equivalently characterize interpersonal comparisons of 
those attitudes, extending the EU level result. To multiplicative risk, this equivalence extends only at EU level. At utility derivative level, 
the two preference measures are associated with distinct characterizations with different properties.

Applications show that the new preference measures can characterize comparative precautionary saving in terms of attitudes toward 
(n/m)th-degree tradeoffs with m ≥ 1, whereas conventional characterizations have been restricted to m = 1. In addition, simple comparison 
of the measures at the ( j + 1)th and jth utility derivative levels determines whether a decision maker exhibits decreasing or increasing 
((n + j)/(m + j))th-degree Ross ARA, for any j ≥ 0. For j = 0, this result implies a criterion for Arrow-Pratt ARA of second order or higher 
to rise with (n − m)th-degree increases of additive background risk. Due to the nature of multiplicative risk, the conditions regarding Ross 
RRA are much more involved. A new proposition providing the conditions for Arrow-Pratt RRA of second order or higher to increase with 
multiplicative background risk involves as a necessary and sufficient condition a comparison of the normalized ( j + 1)th and jth utility 
derivative premia.
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Appendix A. Proof of Theorem 2

Part (a). (a.i) ⇒ (a.ii). From (9a), (a.ii)’s φ( j) (xρ), and (7b) applied for u, v, φ, we have for all ρ such that xρ ∈ [a, b] that 
(−1)m+ j−1 h(m)

[ j],φ (ρ) = (−1)m+ j−1
[

h(m)
[ j],u (ρ) − λh(m)

[ j],v (ρ)
]

≤ [ ≥ ] 0 and (−1)n+ j−1 h(n)
[ j],φ (ρ) = (−1)n+ j−1

[
h(n)

[ j],u (ρ) − λh(n)
[ j],v (ρ)

]
≥ [ ≤ ] 0

for all xρ .
(a.ii) ⇒ (a.iii). From Definition 6 and u( j) (xρ) = λv( j) (xρ) + φ( j) (xρ) with (7a) and (7b), (a.iii) holds because

T̂ (n/m)

j,u = Eh[ j],u
(
ρ̃l

) − Eh[ j],u
(
ρ̃h

)
Eh[ j],u

(
ρ̃l

) − Eh[ j],u
(
ρ̃m

) = Eh[ j],u
(
ρ̃l

) − [
Eh[ j],u

(
ρ̃h

)]
λ

[
Eh[ j],v

(
ρ̃l

) − Eh[ j],v
(
ρ̃m

)] + Eh[ j],φ
(
ρ̃l

) − Eh[ j],φ
(
ρ̃m

)
≥ [ ≤ ]

Eh[ j],u
(
ρ̃l

) − [
Eh[ j],u

(
ρ̃h

)]
λ

[
Eh[ j],v

(
ρ̃l

) − Eh[ j],v
(
ρ̃m

)] = λ
[

Eh[ j],v
(
ρ̃l

) − Eh[ j],v
(
ρ̃h

)] + Eh[ j],φ
(
ρ̃l

) − Eh[ j],φ
(
ρ̃h

)
λ

[
Eh[ j],v

(
ρ̃l

) − Eh[ j],v
(
ρ̃m

)]
≥ [ ≤ ]

Eh[ j],v
(
ρ̃l

) − Eh[ j],v
(
ρ̃h

)
Eh[ j],v

(
ρ̃l

) − Eh[ j],v
(
ρ̃m

) = T̂ (n/m)

j,v

where the first inequality follows because (−1) j
{

Eh[ j],φ
(
ρ̃l

) − Eh[ j],φ
(
ρ̃m

)} ≤ [ ≥ ] 0 due to (−1)m+ j−1 h(m)
[ j],φ (ρ) ≤ [ ≥ ] 0, and the second 

because (−1) j
{

Eh[ j],φ
(
ρ̃l

) − Eh[ j],φ
(
ρ̃h

)} ≥ [ ≤ ] 0 due to (−1)n+ j−1 h(n)
[ j],φ (ρ) ≥ [ ≤ ] 0.

(a.iii) ⇒ (a.i). Let F , G , Hm be the cumulative density functions (CDFs) of ρ̃l , ρ̃h , ρ̃m , respectively, defined on [ρlb, ρub], with associated 
higher-order CDFs F [k] (ρ) = ∫ ρ

ρlb
F [k−1] (q)dq, G[k] (ρ) = ∫ ρ

ρlb
G[k−1] (q)dq, H [k]

m (ρ) = ∫ ρ
ρlb

H [k−1]
m (q)dq and F [k] (ρ) = G[k] (ρ) = H [k]

m (ρ) for 

ρ = ρlb, ρub and all k = 1, . . . , n −1.22 Then, ̂T (n/m)

j,u ≥ [ ≤ ] T̂ (n/m)

j,v can be rewritten by using an n-fold integration by parts in the numerators 
and an m-fold one in the denominators as

(−1)n+ j−1 ∫ ρub
ρlb

h(n)
[ j],u (ρ)

[
G[n] (ρ) − F [n] (ρ)

]
dρ

(−1)m+ j−1 ∫ ρub
ρlb

h(m)
[ j],u (ρ)

[
H [m]

m (ρ) − F [m] (ρ)
]

dρ
≥ [ ≤ ]

(−1)n+ j−1 ∫ ρub
ρlb

h(n)
[ j],v (ρ)

[
G[n] (ρ) − F [n] (ρ)

]
dρ

(−1)m+ j−1 ∫ ρub
ρlb

h(m)
[ j],v (ρ)

[
H [m]

m (ρ) − F [m] (ρ)
]

dρ
(25a)

22 The lb and ub subscripts to ρ stand for lower bound and upper bound.
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Similar to Li and Liu (2014), the proof then proceeds by contradiction: assume that (9a) does not hold. That is, there exist some 
[ρlb, ρub], [ρlb, ρub] ∈ (ρlb, ρub) such that, for all ρa ∈ [ρlb, ρub] and all ρb ∈ [ρlb, ρub],

h(n)
[ j],u (ρa)

h(n)
[ j],v (ρa)

< μ <
h(m)

[ j],u (ρb)

h(m)
[ j],v (ρb)

(25b)

Choose F (ρ), G (ρ), Hm (ρ), such that{
G[n] (ρ) − F [n] (ρ) > 0 for all ρ ∈ (

ρlb,ρub

)
G[n] (ρ) − F [n] (ρ) = 0 for all ρ /∈ (

ρlb,ρub

) (25c)⎧⎨
⎩ H [m]

m (ρ) − F [m] (ρ) > 0 for all ρ ∈
(
ρlb,ρub

)
H [m]

m (ρ) − F [m] (ρ) = 0 for all ρ /∈
(
ρlb,ρub

)
Then, we have from (25b) that

(−1)n+ j−1

ρub∫
ρlb

h(n)
[ j],u (ρ)

[
G[n] (ρ) − F [n] (ρ)

]
dρ < [ > ] μ (−1)n+ j−1

ρub∫
ρlb

h(n)
[ j],v (ρ)

[
G[n] (ρ) − F [n] (ρ)

]
dρ

(−1)m+ j−1

ρub∫
ρlb

h(m)
[ j],u (ρ)

[
H [m]

m (ρ) − F [m] (ρ)
]

dρ > [ < ] μ (−1)m+ j−1

ρub∫
ρlb

h(m)
[ j],v (ρ)

[
H [m]

m (ρ) − F [m] (ρ)
]

dρ (25d)

which, when combined, contradicts (25a). Therefore, (9a) must be true.
Part (b). (b.i) ⇒ (b.ii). From (9b), (b.ii)’s φ( j) (xρ), and (7b), we have for all ρ such that xρ ∈ [a, b] that (−1) j+m−1 φ( j+m) (xρ) =

(−1) j+m−1 [
u( j+m) (xρ) − λv( j+m) (xρ)

] ≤ 0 and (−1)n+ j−1 h(n)
[ j],φ (ρ) = (−1)n+ j−1

[
h(n)

[ j],u (ρ) − λh(n)
[ j],v (ρ)

]
≥ [ ≤ ] 0 for all xρ .

(b.ii) ⇒ (b.iii). Note first that (−1) j
{

E
[

u
(
xρ̃l

)
ρ̃

j
l

]
− E

[
u

(
xρ̃h

)
ρ̃

j
h

]}
≥ [ ≤ ] 0 if and only if (−1)n+ j−1 h(n)

[ j],u (ρ) ≥ [ ≤ ] 0. Then, from 

Definition 7 and u( j) (xρ) = λv( j) (xρ) + φ( j) (xρ) with (7a) and (7b), (b.iii) holds because

̂N j U P
(n/m)

u = Eh[ j],u
(
ρ̃l

) − Eh[ j],u
(
ρ̃h

)
(−1)m−1 xm E

[
u( j+m)

(
xρ̃l

)
ρ̃

j
l

] = (−1) j
{

Eh[ j],u
(
ρ̃l

) − Eh[ j],u
(
ρ̃h

)}
(−1) j+m−1 xm

{
λE

[
v( j+m)

(
xρ̃l

)
ρ̃

j
l

]
+ E

[
φ( j+m)

(
xρ̃l

)
ρ̃

j
l

]}
≥ [ ≤ ]

(−1) j
{

Eh[ j]
(
ρ̃l

) − Eh[ j]
(
ρ̃h

)}
λ (−1) j+m−1 xm E

[
v( j+m)

(
xρ̃l

)
ρ̃

j
l

] = (−1) j
{
λ

[
Eh[ j],v

(
ρ̃l

) − Eh[ j],v
(
ρ̃h

)] + [
Eh[ j],φ

(
ρ̃l

) − Eh[ j],φ
(
ρ̃h

)]}
λ (−1) j+m−1 xm E

[
v( j+m)

(
xρ̃l

)
ρ̃

j
l

]
≥ [ ≤ ]

Eh[ j],v
(
ρ̃l

) − Eh[ j],v
(
ρ̃h

)
(−1)m−1 xm E

[
v( j+m)

(
xρ̃l

)
ρ̃

j
l

] = ̂N j U P
(n/m)

v

where the first inequality follows because (−1) j+m−1 φ( j+m) (xρ) ≤ 0, and the second because (−1) j
{

Eh[ j],φ
(
ρ̃l

) − Eh[ j],φ
(
ρ̃h

)} ≥ [ ≤ ] 0

due to (−1)n+ j−1 h(n)
[ j],φ (ρ) ≥ [ ≤ ] 0.

(b.iii) ⇒ (b.i). The proof is analogous to that of (a.iii) ⇒ (a.i), but focuses only on CDFs F and G . Using them and an n-fold integration 
by parts in the numerators, ̂N j U P

(n/m)

u ≥ [ ≤ ] ̂N j U P
(n/m)

v can be rewritten as

(−1)n+ j−1 ∫ ρub
ρlb

h(n)
[ j],u (ρ)

[
G[n] (ρ) − F [n] (ρ)

]
dρ

(−1)m−1 xm
∫ ρub
ρlb

h(m)
[ j],u (ρ)dF (ρ)

≥ [ ≤ ]
(−1)n+ j−1 ∫ ρub

ρlb
h(n)

[ j],v (ρa)
[
G[n] (ρ) − F [n] (ρ)

]
dρ

(−1)m−1 xm
∫ ρub
ρlb

h(m)
[ j],v (ρ)dF (ρ)

(26a)

For the proof by contradiction, assume first that (9b) does not hold. That is, there exist some [ρlb, ρub], [ρlb, ρub] ∈ (ρlb, ρub) such that, 
for all ρa ∈ [ρlb, ρub] and all ρb ∈ [ρlb, ρub],

h(n)
[ j],u (ρa)

h(n)
[ j],v (ρa)

< μ <
u( j+m) (xρb)

v( j+m) (xρb)
(26b)

The implication then follows as for (a.iii) ⇒ (a.i), when replacing (25c)’s second part by⎧⎨
⎩ dF (ρ) > 0 for all ρ ∈

(
ρlb,ρub

)
dF (ρ) = 0 for all ρ /∈

(
ρlb,ρub

)
and (25d)’s second inequality by

(−1)m−1 xm

ρub∫
h(m)

[ j],u (ρ)dF (ρ) < [ > ] μ (−1)m−1 xm

ρub∫
h(m)

[ j],v (ρ)dF (ρ) �

ρlb ρlb
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Appendix B. Theorem 4: proof of sufficiency for j = 1

For j = 1, sufficiency of Lemma 3 for conditions (21) follows in two steps. First, it is to be shown that (21b)’s and (22)’s expressions 
on the left compare as

−u(n+2) (xρ)

u(n+1) (xρ)
xρ − 1 ≥ − xh(n)

[2],u (ρ)

h(n)
[1],u (ρ)

(27a)

By inserting from (7b) and given that (−1)n h(n)
[1],u (ρ) > [ < ] 0, (27a) is equivalent to23

−u(n+2) (xρ)

u(n+1) (xρ)
xρ − 1 ≤ [ ≥ ] − 2n − 1

n
· u(n+1) (xρ)

u(n) (xρ)
xρ − (n − 1) (27b)

Comparing (27b)’s right-hand side with that of increasing [ decreasing ] ((n + 1)/n)th-degree Ross RRA, i.e., − u(n+2)(xρ)

u(n+1)(xρ)
xρ − 1 ≤ [ ≥ ] −

u(n+1)(xρ)

u(n)(xρ)
xρ , yields a sufficient condition, namely,

−u(n+1) (xρ)

u(n) (xρ)
xρ ≤ [ ≥ ] − 2n − 1

n
· u(n+1) (xρ)

u(n) (xρ)
xρ − (n − 1) (27c)

for some x and all ρ , which is, in turn, equivalent to

−u(n+1) (xρ)

u(n) (xρ)
xρ ≥ [ ≤ ]n (27d)

Note that (−1)n h(n)
[1],u (ρ) > [ < ] 0 ⇔ − u(n+1)(xρ)

u(n)(xρ)
xρ > [ < ]n ensures (27d) to hold, if n − m > 1: for (−1)n h(n)

[1],u (ρ) > 0, the decreasing 

((n + 1)/n)th-degree Ross RRA claim from (21) (for m = n − 1) and the increasing ((n + 1)/n)th-degree Ross RRA claim – for the impli-
cation to hold in that case – mutually exclude each other; and for (−1)n h(n)

[1],u (ρ) < 0, decreasing ((n + 1)/n)th-degree Ross RRA would 
otherwise be claim and implication. With this qualification, this proof part establishes for Theorem 4(a) the left-hand side comparison and 
Theorem 4(b) fully.

Second, the right-hand side comparison for Theorem 4(a) requires (21b)’s and (22a)’s expressions on the right to compare as

−u(m+2) (xρ)

u(m+1) (xρ)
xρ ≤ − xh(m)

[2],u (ρ)

h(m)
[1],u (ρ)

(27e)

By inserting from (7b) and given that (−1)m h(m)
[1],u (ρ) > [ < ] 0, (27e) is equivalent to

−u(m+2) (xρ)

u(m+1) (xρ)
xρ − 1 ≥ [ ≤ ] − 2 · u(m+1) (xρ)

u(m) (xρ)
xρ − m (27f)

Comparing the right-hand side of decreasing [ increasing ] ((m + 1)/m)th-degree Ross RRA, i.e., − u(m+2)(xρ)

u(m+1)(xρ)
xρ − 1 ≥ [ ≤ ] − u(m+1)(xρ)

u(m)(xρ)
xρ , 

with (27f)’s shows that the former is only necessary; for, sufficiency requires −2 · u(m+1)(xρ)

u(m)(xρ)
xρ −m ≤ [ ≥ ]− u(m+1)(xρ)

u(m)(xρ)
xρ ⇔ − u(m+1)(xρ)

u(m)(xρ)
xρ ≤

[ ≥ ] m, which contradicts (−1)m h(m)
[1],u (ρ) > [ < ] 0. As a result, for (27e) to hold, (m + 1)th-degree Ross risk aversion must be sufficiently 

stronger [ weaker ] than mth-degree Ross risk aversion. Then, jointly with the first proof part, Lemma 3(a) implies (21). �

Appendix C. Proof of Proposition 6

It is to be shown that, under the given conditions, ̂Nm+1U P
(n/m) ≥ { ≥ } ̂NmU P

(n/m)
for (−1)n+m−1 h(n)

[m] (ρ) > { < } 0 is necessary and 
sufficient for an nth-degree risk increase from ρ̃l to ρ̃h to increase (m + 1)th-degree RRA in the sense that

−
E

[
u(m+1)

(
xρ̃h

)
ρ̃m+1

h

]
E

[
u(m)

(
xρ̃h

)
ρ̃m

h

] x ≥ −
E

[
u(m+1)

(
xρ̃l

)
ρ̃m+1

l

]
E

[
u(m)

(
xρ̃l

)
ρ̃m

l

] x for all x (28)

Sufficiency. To relate ̂Nm+1U P
(n/m) ≥ { ≥ } ̂NmU P

(n/m)
to (28), rewrite (28) first by multiplying by (−1)m+1 E

[
u(m)

(
xρ̃h

)
ρ̃m

h

]
and adding 

(−1)m+1 x E
[

u(m+1)
(
xρ̃l

)
ρ̃m+1

l

]
,

23 Note that (27a)’s right-hand side − xh(n)
[2],u (ρ)

(n) = − xh(n)
[2],u (ρ)−h(n)

[1],u (ρ)

(n) − 1.

h[1],u (ρ) h[1],u (ρ)
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(−1)m x
{

E
[

u(m+1)
(
xρ̃h

)
ρ̃m+1

h

]
− E

[
u(m+1)

(
xρ̃l

)
ρ̃m+1

l

]}
≥ (29a)

−
E

[
u(m+1)

(
xρ̃l

)
ρ̃m+1

l

]
E

[
u(m)

(
xρ̃l

)
ρ̃m

l

] x (−1)m+1
{

E
[

u(m)
(
xρ̃h

)
ρ̃m

h

]
− E

[
u(m)

(
xρ̃l

)
ρ̃m

l

]}
Using E ’s definition and formula (7a) for j = m, m + 1, (29a) can be rewritten as

(−1)m x

∫
h[m+1] (ρ)d [G (ρ) − F (ρ)] ≥ −

E
[

u(m+1)
(
xρ̃l

)
ρ̃m+1

l

]
E

[
u(m)

(
xρ̃l

)
ρ̃m

l

] x (−1)m+1
∫

h[m] (ρ)d [G (ρ) − F (ρ)] (29b)

Applying an n-fold integration by parts to the integrals yields

(−1)n+m x

∫
h(n)

[m+1] (ρ)
[

G[n] (ρ) − F [n] (ρ)
]

dρ ≥ −
E

[
u(m+1)

(
xρ̃l

)
ρ̃m+1

l

]
E

[
u(m)

(
xρ̃l

)
ρ̃m

l

] x (−1)n+m+1
∫

h(n)
[m] (ρ)

[
G[n] (ρ) − F [n] (ρ)

]
dρ

and, when combining,

(−1)n+m−1
∫ ⎡

⎣− xh(n)
[m+1] (ρ)

h(n)
[m] (ρ)

+
E

[
u(m+1)

(
xρ̃l

)
ρ̃m+1

l

]
E

[
u(m)

(
xρ̃l

)
ρ̃m

l

] x

⎤
⎦h(n)

[m] (ρ)
[

G[n] (ρ) − F [n] (ρ)
]

dρ ≥ 0 (29c)

where the second term in square brackets is nonnegative because G[n] (ρ) − F [n] (ρ) is an nth-degree risk increase; moreover, 
(−1)n+m−1 h(n)

[m] (ρ) > { < } 0. As a result, the equivalent inequalities (29) hold if (29c)’s first term in square brackets is nonnegative 
{ nonpositive } for all x and ρ , that is,

− xh(n)
[m+1] (ρ)

h(n)
[m] (ρ)

≥ { ≤ } −
E

[
u(m+1)

(
xρ̃l

)
ρ̃m+1

l

]
E

[
u(m)

(
xρ̃l

)
ρ̃m

l

] x (30)

Sufficient conditions for (30) derive in three steps. First, note that, from Lemma 3 { Lemma 3’s analog for increasing Ross RRA } for 
j = m, ̂Nm+1U P

(n/m) ≥ { ≥ } ̂NmU P
(n/m)

is equivalent to

− xh(n)
[m+1] (ρ)

h(n)
[m] (ρ)

≥ { ≤ } − u(2m+1) (xρ)

u(2m) (xρ)
xρ (31a)

Second, for “ ≥ ”, given decreasing (2m/m)th-degree Ross RRA, and, for “ ≤ ”, equivalently to u’s (2m + 1)th-degree Ross RRA not exceeding 
u’s (m + 1)th-degree Ross RRA,24 we have that (31a)’s right side

− u(2m+1) (xρa)

u(2m) (xρa)
xρa ≥ { ≤ } − u(m+1) (xρb)

u(m) (xρb)
xρb for all ρa,ρb (31b)

Finally, compare M̂max (x) = maxρ

[
− u(m+1)(xρ)

u(m)(xρ)
xρ

]
and M̂min (x) = minρ

[
− u(m+1)(xρ)

u(m)(xρ)
xρ

]
with − E

[
u(m+1)

(
xρ̃l

)
ρ̃m+1

l

]
E
[
u(m)

(
xρ̃l

)
ρ̃m

l

] x = −x 
∫

ρ u(m+1)(xρ)

u(m)(xρ)
·

u(m)(xρ) f (ρ)∫
u(m)(xρ)dF (ρ)

dρ , where the integrand’s second ratio, with f (ρ) being F (ρ)’s density, can be interpreted as a probability density, so 
that

M̂max (x) ≥ −
E

[
u(m+1)

(
xρ̃l

)
ρ̃m+1

l

]
E

[
u(m)

(
xρ̃l

)
ρ̃m

l

] x ≥ M̂min (x) (31c)

Sufficiency follows since conditions (31) jointly imply, for “ ≥ ” {“ ≤ ”}, that

− xh(n)
[m+1] (ρ)

h(n)
[m] (ρ)

≥ M̂max (x) ≥ { ≤ M̂min (x) ≤ } −
E

[
u(m+1)

(
xρ̃l

)
ρ̃m+1

l

]
E

[
u(m)

(
xρ̃l

)
ρ̃m

l

] x

for all x and ρ , so that (30) and, hence, conditions (29) hold, implying (28).
Necessity. The proof proceeds by contradiction. Suppose (22b) from Lemma 3 { (22b)’s analog from Lemma 3’s analog for increasing 

Ross RRA } for j = m does not hold at some x0, ρ0
a , and ρ0

b , that is,

24 Note that decreasing [ increasing ] (2m/m)th -degree Ross RRA is equivalent to

− u(2m+1) (xρa)

u(2m) (xρa)
xρa − 1 ≥ [ ≤ ] − u(m+1) (xρb)

u(m) (xρb)
xρb for all ρa,ρb

The condition for “ ≤ ” implies increasing (2m/m)th -degree Ross RRA and is thus stricter.
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− x0h(n)
[m+1]

(
ρ0

a

)
h(n)

[m]
(
ρ0

a
) ≤ { ≥ } − u(m+1)

(
x0ρ0

b

)
u(m)

(
x0ρ0

b

) x0ρ0
b (32a)

Assume that F (ρ) concentrates probability around ρ = ρ0
a , so that − E

[
u(m+1)

(
xρ̃l

)
ρ̃m+1

l

]
E
[
u(m)

(
xρ̃l

)
ρ̃m

l

] x can be made arbitrarily close to (32a)’s right-hand 

side. Now, observe that (29c) evaluated at x0 and divided by (−1)n+m+1 ∫
h(n)

[m] (ρ)
[
G[n] (ρ) − F [n] (ρ)

]
dρ

∣∣∣
x=x0

> 0 yields, after rearranging,

−
∫ x0h(n)

[m+1] (ρ)

h(n)
[m] (ρ)

· h(n)
[m] (ρ)

[
G[n] (ρ) − F [n] (ρ)

]
∫

h(n)
[m] (ρ)

[
G[n] (ρ) − F [n] (ρ)

]
dρ

dρ ≥ { ≤ } −
E

[
u(m+1)

(
x0ρ̃l

)
ρ̃m+1

l

]
E

[
u(m)

(
x0ρ̃l

)
ρ̃m

l

] x0 (32b)

where G[n] (ρ) can be chosen so that (32b)’s left side approximates (32a)’s left side, while (32b)’s right already approximates (32a)’s right 
side. Since (32b) then contradicts (32a), the supposition that (22b) { (22b)’s analog } for j = m need not hold must be false. �

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .insmatheco .2023 .02 .006.

References

Barro, Robert J., 2015. Environmental protection, rare disasters and discount rates. Economica 82 (325), 1–23.
Bostian, AJ A., Heinzel, Christoph, 2018. Comparative precautionary saving under higher-order risk and recursive utility. Geneva Risk and Insurance Review 43 (1), 95–114.
Bostian, AJ A., Heinzel, Christoph, 2022. Precautionary Saving Under Recursive Preferences. Working paper.
Bramoullé, Yann, Treich, Nicolas, 2009. Can uncertainty alleviate the commons problem? Journal of the European Economic Association 7 (5), 1042–1067.
Broll, Udo, Wong, Kit P., 2013. The firm under uncertainty: real and financial decisions. Decisions in Economics and Finance 36 (2), 125–136.
Chiu, W. Henry, Eeckhoudt, Louis, 2010. The effects of stochastic wages and non-labor income on labor supply: update and extensions. Journal of Economics 100 (1), 69–83.
Chiu, W. Henry, Eeckhoudt, Louis, Rey, Béatrice, 2012. On relative and partial risk attitudes: theory and implications. Economic Theory 50 (1), 151–167.
Courbage, Christophe, Loubergé, Henri, Rey, Béatrice, 2018. On the properties of high-order non-monetary measures for risks. Geneva Risk and Insurance Review 43 (1), 

77–94.
Crainich, David, Eeckhoudt, Louis, 2008. On the intensity of downside risk aversion. Journal of Risk and Uncertainty 36 (3), 267–276.
Denuit, Michel M., Eeckhoudt, Louis, 2010. Stronger measures of higher-order risk attitudes. Journal of Economic Theory 145 (5), 2027–2036.
Eeckhoudt, Louis, Kimball, Miles, 1992. Background risk, prudence, and the demand for insurance. In: Dionne, Georges (Ed.), Contributions to Insurance Economics. Kluwer 

Academic Publishers, pp. 239–254.
Eeckhoudt, Louis, Schlesinger, Harris, 2006. Putting risk in its proper place. American Economic Review 96 (1), 280–289.
Eeckhoudt, Louis, Schlesinger, Harris, 2008. Changes in risk and the demand for saving. Journal of Monetary Economics 55 (7), 1329–1336.
Eeckhoudt, Louis, Schlesinger, Harris, 2009. On the utility premium of Friedman and Savage. Economics Letters 105 (1), 46–48.
Eeckhoudt, Louis, Gollier, Christian, Schlesinger, Harris, 1996. Changes in background risk and risk taking behavior. Econometrica 64 (3), 683–689.
Ekern, Steinar, 1980. Increasing Nth degree risk. Economics Letters 6 (4), 329–333.
Fleurbaey, Marc, Zuber, Stéphane, 2021. Fair utilitarianism. American Economic Journal: Microeconomics 13 (2), 370–401.
Franke, Günter, Schlesinger, Harris, Stapleton, Richard C., 2006. Multiplicative background risk. Management Science 52 (1), 146–153.
Franke, Guenter, Schlesinger, Harris, Stapleton, Richard C., 2011. Risk taking with additive and multiplicative background risks. Journal of Economic Theory 146 (4), 1547–1568.
Friedman, Milton, Savage, L.J., 1948. The utility analysis of choices involving risk. Journal of Political Economy 56 (4), 279–304.
Gollier, Christian, 2001. The Economics of Risk and Time. MIT Press, Cambridge, MA.
Gollier, Christian, 2015. Discounting, inequality and economic convergence. Journal of Environmental Economics and Management 69, 53–61.
Gollier, Christian, Pratt, John W., 1996. Risk vulnerability and the tempering effect of background risk. Econometrica 64 (5), 1109–1123.
Heinzel, Christoph, 2021. The Risk Substitution Rate as a Fundamental Risk Aversion Measure. Working paper.
Huang, James, Stapleton, Richard, 2015. The utility premium of Friedman and Savage, comparative risk aversion, and comparative prudence. Economics Letters 134, 34–36.
Jindapon, Paan, Neilson, William S., 2007. Higher-order generalizations of Arrow-Pratt and Ross risk aversion: a comparative statics approach. Journal of Economic Theory 136 

(1), 719–728.
Jokung, Octave, 2013. Changes in multiplicative background risk and risk-taking behavior. Theory and Decision 74 (1), 127–149.
Keenan, Donald C., Snow, Arthur, 2012. Ross risk vulnerability for introductions and changes in background risk. Journal of Mathematical Economics 48 (4), 197–206.
Keenan, Donald C., Rudow, Donald C., Snow, Arthur, 2008. Risk preferences and changes in background risk. Journal of Risk and Uncertainty 36 (2), 139–152.
Kimball, Miles S., 1990. Precautionary saving in the small and in the large. Econometrica 58 (1), 53–73.
Kimball, Miles S., 1993. Standard risk aversion. Econometrica 61 (3), 589–611.
Li, Jingyuan, 2009. Comparative higher-degree Ross risk aversion. Insurance. Mathematics & Economics 45 (3), 333–336.
Li, Jingyuan, Liu, Liqun, 2014. The monetary utility premium and interpersonal comparisons. Economics Letters 125 (2), 257–260.
Liu, Liqun, 2014. Precautionary saving in the large: nth degree deteriorations in future income. Journal of Mathematical Economics 52, 169–172.
Liu, Liqun, Meyer, Jack, 2013. Substituting one risk increase for another: a method for measuring risk aversion. Journal of Economic Theory 148 (6), 2706–2718.
Liu, Liqun, Neilson, William S., 2019. Alternative approaches to comparative nth-degree risk aversion. Management Science 65 (8), 3824–3834.
Loubergé, Henri, Rey, Béatrice, 2022. On the Shape of High Order Additive and Multiplicative Utility Premiums. Working paper.
Loubergé, Henri, Malevergne, Yannick, Rey, Béatrice, 2020. New results for additive and multiplicative risk apportionment. Journal of Mathematical Economics 90, 140–151.
Menezes, Carmen E., Geiss, Charles, Tressler, John, 1980. Increasing downside risk. American Economic Review 70 (5), 921–932.
Menezes, Carmen F., Wang, X. Henry, 2005. Increasing outer risk. Journal of Mathematical Economics 41 (7), 875–886.
Meyer, Donald J., Meyer, Jack, 2005. Relative risk aversion: what do we know? Journal of Risk and Uncertainty 31 (3), 243–262.
Pratt, John W., 1964. Risk aversion in the small and in the large. Econometrica 32 (1–2), 122–136.
Ross, Stephen A., 1981. Some stronger measures of risk aversion in the small and the large with applications. Econometrica 49 (3), 621–638.
Rothschild, Michael, Stiglitz, Joseph E., 1970. Increasing risk: I. A definition. Journal of Economic Theory 2 (3), 225–243.
Rothschild, Michael, Stiglitz, Joseph E., 1971. Increasing risk II: its economic consequences. Journal of Economic Theory 3 (1), 66–84.
Schlesinger, Harris, 2013. The theory of insurance demand. In: Dionne, Georges (Ed.), Handbook of Insurance. Springer, pp. 167–184. Chapter 7.
Wang, Jianli, Li, Jingyuan, 2014. Decreasing Ross risk aversion: higher-order generalizations and implications. Journal of Mathematical Economics 55, 136–142.
Wong, Kit P., 2018. Comparative higher-order risk aversion and higher-order prudence. Economics Letters 169, 38–42.
40

https://doi.org/10.1016/j.insmatheco.2023.02.006
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib5992757EEE0A0D63392B9FC203C217C9s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib26DE6AB43BD5F0B4148C8AC1661C5142s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibA2E3844759F369ECBE6B825FE6D5A198s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib3A13DDF0CC3A8FA5005F6D5AA3B05770s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib9C0B231FAA7F33C3BF556C2EAE48CCEBs1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib9FE12B39F739BCEDE7925E320E234F90s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibA094FFB88D7191442EAEACCA069AF45Ds1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibA094FFB88D7191442EAEACCA069AF45Ds1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib6F2105E03E8F11EADDF21C314E58A7E9s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibBCC92FF256EEB922D85C0CC71DB3FAFAs1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib9817FEFA66FD8820619F393C7B0F46C0s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib9817FEFA66FD8820619F393C7B0F46C0s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib2F1137AB44C45625B455D117E6920545s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib8375785C407B18404A5D1045CD4F265Fs1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib0889991E2456867BCFC3F2CACD666C31s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibDB6299595BE61800FF971EB85EF52156s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib9C93990BCC637652E5FB441BFCD7DCDEs1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib76501212D3203629D3F306D265E52B03s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib72AD720328B0F2124BCDE48CE67FD108s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibD3F65B96B8A0D959A63DBD2A7FA3D3F6s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib5F62C9F2B26D6420FF6C3AB63C0DB196s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib342285530F92035C5FD7FD227FFEB127s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibB8A347C178ECC46E39BA1470D579FB1Fs1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibCA84ECC900970C5AF5935E18FA40CAE5s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibBDD3F40A95F1B212E315F900A994DCD7s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibC4B8484C43BC9237E8E6E50D1B5DCF37s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibC4B8484C43BC9237E8E6E50D1B5DCF37s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib6A0D5485AD12B734585DF37BF454D1EEs1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib7BD23B4A2214B2F8F590FCA5482A16ACs1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibCA98C599BCBE17B054914728B6668B23s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib45277BB1676D7E90ADB916B7ECA97867s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibE5645E38B099F9DABD120CAF1C564E5Es1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib97D156B2A012169551CEAC30169987E7s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib1FC1622E80DE7AC32D51053484E58A04s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibF59A0BB34A6E49C73DAB9FE8A97A23E2s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib928668AB98E4AD37513394182C7F1AAAs1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib19FC5334F4370B85267C63B8F4123037s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib4B8BB002BE3804B78AFAC2ED5DF50B45s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibF77084E21D7CB9EBA68F598DFD344C3Es1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibAC3AE0B2685F259C6A1EA965253DF1CAs1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib7EA37C85D214BCD9D54BD8927D062C5Cs1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib6810FE231D0EA032810E6D143062DE01s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib1D87BF8373A32BA7F948A346325076A8s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib357607B9B01FBF1AB99695FE68DC75B6s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib1C951359AE6A91250DB80D3603D32C49s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib686E3CF7165CD546A8A800EDCC58E3EAs1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bib4A2FBD011F79F843E17FD2F4714E6AB3s1
http://refhub.elsevier.com/S0167-6687(23)00022-7/bibC6D1585757B9B2996860525383E8084Cs1

	Comparing utility derivative premia under additive and multiplicative risks
	1 Introduction
	2 Utility derivative premia for additive risk
	3 Comparative aversion to multiplicative risk
	4 Illustration: comparative precautionary saving
	4.1 Comparative precautionary saving under income risk
	4.2 Comparative precautionary saving under return risk

	5 Wealth dependence of Ross risk aversion
	5.1 Increases in additive risk
	5.2 Illustrative examples for additive risk
	5.3 Increases in return risk
	5.4 Illustrative examples for return risk

	6 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Proof of Theorem 2
	Appendix B Theorem 4: proof of sufficiency for j=1
	Appendix C Proof of Proposition 6
	Appendix D Supplementary material
	References


