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Consider a by-claim risk model with a constant force of interest, where each main claim may induce 
a by-claim after a random time. We propose a time-claim-dependent framework, that incorporates 
dependence between not only the waiting time and the claim but also the main claim and the 
corresponding by-claim. Based on this framework, we derive some asymptotic estimates for the finite-
time ruin probabilities in the case of subexponential claims. We also provide examples and verify the 
assumptions on dependence. Numerical studies are conducted to examine the performance of these 
asymptotic formulas.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In the insurance practice, disasters such as earthquakes, storms, and severe accidents can lead to not only direct property losses and 
medical compensations but also consequential losses that are causally linked. For example, a major earthquake may result in an outbreak 
of fire or even strong aftershocks several years later. Continued high temperatures can lead to fatalities, while also resulting in loss 
of agricultural yield. As such, catastrophic events may trigger two types of claims with different distributions. The first type is called 
the main claim, which involves immediate settlement of losses such as direct property damages and immediate death compensation. 
The second type is the by-claim, which may occur gradually in an uncertain period of time after the settlement of the main claim and 
includes claims related to subsequent treatment or secondary perils. It is natural to consider that dependence may exist between the main 
claim, the by-claim, and the corresponding waiting time. Some researchers believe that ignoring potential dependence may have serious 
repercussions for practical use (see, for example, Garrido et al. (2016)). Therefore, we use a by-claim model that considers dependence 
when modeling an insurer against catastrophic events.

Concretely speaking, let {(Xi, Yi); i ∈ N+} be a sequence of independent and identically distributed (i.i.d.) non-negative random pairs. 
For each i ∈N+ , Xi describes the i-th main claim arriving at time τi , and Yi describes the corresponding by-claim at time τi + Di , where 
Di denotes an uncertain delay time. Assume that the arrival times τi , i ∈N constitute a renewal sequence such that the inter-arrival times 
θi = τi − τi−1, i ∈N+ are non-negative i.i.d. random variables, non-degenerate at zero. The corresponding counting process {Nt; t ≥ 0} is a 
renewal process with a finite mean function λt = ENt = ∑∞

i=1 P (τi ≤ t). The delay time {Di; i ∈N} is a sequence of non-negative (possibly 
degenerate at 0) i.i.d. random variables. Moreover, denote by x the initial reserve, by r ≥ 0 the constant force of interest, and by C(t)
the premium accumulation process. Assume that the process C(t) is non-negative and non-decreasing, satisfying C(0) = 0 and C(t) < ∞
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almost surely (a.s.) for 0 < t < ∞. Besides, C(t) is independent of the other sources of randomness. Accordingly, the surplus process of the 
insurer can be described as:

Ut = xert +
tˆ

0

er(t−s)C(ds) −
Nt∑

i=1

Xie
r(t−τi) −

Nt∑
i=1

Yie
r(t−τi−Di) I{τi+Di≤t} t ≥ 0, (1.1)

where I A denotes the indicator function for an event A. For such a model, the finite-time ruin probability with a finite-horizon t > 0 can 
be formulated as

ψ(x, t) = P

(
inf

0≤s≤t
U (s) < 0

∣∣∣∣U (0) = x

)
. (1.2)

The region of the variable t needs to be restricted to the range of � = {t : 0 < λt < ∞} with t = inf {t : P (θ1 ≤ t) > 0}. Clearly, � = [t, ∞)

if P 
(
θ1 = t

)
> 0 while � = (t, ∞) if P 

(
θ1 = t

) = 0. Denote �T = [0, T ] ∩ � for every fixed T ∈ �.
The study of the above by-claim model can be traced back to the work of Waters and Papatriandafylou (1985) where the authors 

considered a discrete-time risk model allowing for the delay in claims settlements. Since then, this topic has been studied extensively in 
insurance mathematics and applied probability. See Yuen and Guo (2001), Xiao and Guo (2007), and Li and Wu (2015) for discrete-time 
models; see Yuen et al. (2005), Xie and Zou (2010, 2011), Meng and Wang (2012), Zou and Xie (2013) for continuous-time versions, 
among many others. The references mentioned above focused on the light-tailed case, which is suitable for small claims. However, it is 
worth noting that small claims are no longer sufficient to meet the current demands of the insurance practice. For catastrophe insurance, 
heavy-tailed claims might be more appropriate for better modeling. Additionally, various extensions to the renewal risk model have been 
proposed to relax assumptions on independence. See some relevant studies including Li (2013), Fu and Li (2016), Gao et al. (2019), Zhang 
et al. (2021), and Lu and Yuan (2022) for ruin estimation of dependent main claims and by-claims under heavy-tailed conditions.

On the other hand, originating from Albrecher and Teugels (2006), a clear trend of the mainstream study focuses on time-dependent 
problems of an extended renewal risk model, in which (Xi, θi), i ∈ N+ are assumed to be i.i.d. copies of a generic pair (X, θ) with 
dependent components X and θ . Asimit and Badescu (2010) introduced a general dependence structure for (X, θ), via the conditional 
tail probability of X given θ . They studied the tail behavior of discounted aggregate claims in the compound Poisson risk model in the 
presence of a constant force of interest and heavy-tailed claim sizes. Later, Li et al. (2010) used the same dependence structure in Asimit 
and Badescu (2010), that is,

P(X > x | θ = t) ∼ P(X > x)h(t), x → ∞, (1.3)

uniformly for t , where the function h(·) : [0, ∞) → (0, ∞) is measurable. Under the time-dependent structure, they derived the asymptotic 
estimates for discounted aggregate claims with subexponential tails and verified the assumptions on the dependence structure through 
copulas. For the study on this so-called time-dependent risk model, we refer readers to Li (2012), Fu and Ng (2014), Jiang et al. (2015), 
and Li (2016) among many others. Especially, Jiang et al. (2015) and Li (2016) considered certain general dependence between the claim 
vector and inter-arrival time as well as dependence among the claim sizes from different lines of businesses. Recently, Liu et al. (2021)
applied the time-dependent assumption mentioned above to a by-claim model. They introduced (1.3) to the main claim and its waiting 
time, and proposed a similar time-dependent structure for the by-claim Y , via the conditional tail probability of Y given θ + D .

Most of the references cited above focus on either time-claim-dependence or inter-claim-dependence while ruling out the other one. 
However, dependence may exist among different types of accident frequency, claim frequency, and claim severity due to various factors 
such as weather conditions, seasonal effects, business cycles, and queuing bottlenecks in claims processing. In the context of insurance and 
finance, risk assessment calls on the priority topic in the interplay of different factors shaping claim events in reinsurance or catastrophe 
insurance. Therefore, pricing models need to be flexible enough to incorporate dependence to enhance their capabilities when calibrated 
against historical data and economic factors. Our goal in this paper is to extend the existing work to a more general framework, in 
which dependence allows between not only the claim and its waiting time but also the main claim and the corresponding by-claim. We 
introduce the time-dependent assumption as (1.3), to the pair of the main claim and the inter-arrival time (X, θ). Accordingly, a similar 
time-dependent structure for the by-claim Y , via the conditional tail probability of Y given (θ, D), is proposed. Under the impact of 
dependence between the main claim and the corresponding by-claim, an asymptotic study of the ruin probability (1.2) for the case of 
subexponential claims is conducted.

The rest of this paper is organized as follows: Section 2 introduces some necessary preliminaries and states the main results. Section 3
proposes some examples and verification of the assumptions on dependence. Section 4 implements numerical studies on the accuracy of 
the obtained asymptotic results. The proofs of lemmas and the main results are relegated to the Appendix.

2. Preliminaries and main results

For convenience, we introduce the following notation that is used throughout this paper. For two positive functions f (·) and g(·), 
we write f (x) � g(x) or g(x) � f (x) if lim supx→∞ f (x)/g(x) ≤ 1, write f (x) ∼ g(x) if both f (x) � g(x) and f (x) � g(x), and write 
f (x) = o(g(x)) if limx→∞ f (x)/g(x) = 0 and write f (x) 
 g(x) if 0 < lim infx→∞ f (x)/g(x) ≤ lim supx→∞ f (x)/g(x) < ∞. Hereafter, unless 
otherwise stated, all limit relationships hold as x → ∞.

Now we give a brief review of some heavy-tailed distribution classes that will appear later. Let V = 1 − V be a distribution on [ 0,∞ )

with an infinite upper endpoint, i.e., V (x) > 0 for all x ≥ 0. The distribution V on [0, ∞) is said to belong to the long-tailed class, denoted 
by V ∈L, if for all x ≥ 0 and the relation

lim
x→∞

V (x + y) = 1, y ∈ (−∞,∞)

V (x)
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holds. An elementary property of the class L is that, if V ∈L, there exists a function l(x) ∈H(V ) such that V (x − Kl(x)) ∼ V (x) for every 
K > 0, where

H(V ) =
{

lon [0,∞) : l(x) ↑ ∞,
l(x)

x
↓ 0and V (x − l(x)) ∼ V (x)

}
.

Furthermore, for any fixed n ≥ 1, if V i ∈ L and li(x) ∈ H (V i) for 1 ≤ i ≤ n, we have V i(x − l(x)) ∼ V i(x) for all 1 ≤ i ≤ n, where l(x) =
∧n

i=1li(x), and write l(x) ∈ H(V 1, . . . , Vn).
A natural and tractable subclass of L is the subexponential class S . By definition, V ∈ S if the relation

lim
x→∞

V n∗(x)

V (x)
= n

holds for all (or, equivalently, for some) n = 2, 3, . . ., where V n∗ is the n-fold convolution of V with itself.
One of the useful subclasses of S is the class C of distributions with consistently varying tails, and we write V ∈ C if

lim
y↓1

lim inf
x→∞

V (xy)

V (x)
= 1.

In particular, the class C covers the famous class R of regular variation. The distribution V is said to have a regularly varying tail with an 
index α ≥ 0, denoted by V ∈R−α if

lim
x→∞

V (xy)

V (x)
= y−α

holds for every y > 0. In addition, we need to mention the class D of dominated variation, which is not contained in the class L. The 
distribution V is said to have a dominatedly varying tail, denoted by V ∈D if the relation

lim sup
x→∞

V (xy)

V (x)
< ∞

holds for every (or, equivalently, for some) 0 < y < 1. The intersection L ∩ D also forms a useful subclass of the class S . The aforemen-
tioned classes satisfy the following proper inclusion relations:

R ⊂ C ⊂ L∩D ⊂ S ⊂ L.

2.1. Main results

Recall the by-claim risk model constructed in (1.1). From now on, assume that {(Xi , Yi, θi, Di); i ∈N+} is a sequence of i.i.d. copies of 
a generic vector (X, Y , θ, D) with generic marginal distributions F , G, Hθ , H D , respectively. Moreover, let D be independent of (X, θ).

In what follows, we introduce a time-dependent structure through the following assumption, in which relation (2.2) was initiated by 
Asimit and Badescu (2010) and revisited by many researchers afterwards.

Assumption 2.1. There exist a univariate measurable function h(·) : [0, ∞) → (0, ∞) and a bivariate measurable function ϕ(·, ·) : [0, ∞)2 → (0, ∞)

satisfying

0 < inf
s∈�T

h(s) ≤ sup
s∈�T

h(s) < ∞, 0 < inf
s,u∈�T

ϕ(s, u) ≤ sup
s,u∈�T

ϕ(s, u) < ∞, (2.1)

such that the random vector (X, Y , θ, D) fulfills the relations:

P(X > x | θ = s) ∼ P(X > x)h(s) (2.2)

and

P(Y > x | θ = s, D = u) ∼ P(Y > x)ϕ(s, u), (2.3)

uniformly for s, u ∈ �T .

Remark 2.1. When s, u are not a possible value of θ and D , the conditional probabilities shown in (2.2) and (2.3) are understood as 
unconditional. Therefore, h(s) = 1 and ϕ(s, u) = 1. The time-dependent structure adapts to some commonly-used copulas such as the 
Farlie–Gumbel–Morgenstern copula (FGM copula), the Ali-Mikhail-Haq copula and the Frank copula. See Asimit and Badescu (2010) and Li 
et al. (2010) for a detailed discussion on (2.2). For discussion on (2.3), see examples and verification in Section 3.

Now we are ready to state our main results. In what follows, we introduce a general framework for (X, Y , θ, D) shown in relation (2.4)
to capture the dependence among the main claim, the by-claim and their corresponding waiting time.
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Theorem 2.1. Consider the by-claim model given by (1.1) with F , G ∈ S . Assume that Assumption 2.1 is fulfilled, P (τ1 ≤ t) > 0 for any t ∈ �T , and 
P 
(´ t

0 e−rsC(ds) > x
)

= o 
(

F (x/a)
)

for any fixed t, r > 0 and some a > 0. For any positive bounded measurable functions g1(x) : (0, ∞) → (0, ∞), 

g2(x, y) : (0, ∞)2 → (0, ∞) satisfying inf
x∈�T

g1(x) > 0 and inf
x,y∈�T

g2(x, y) > 0, if the relation

P(g1(θ)X + g2(θ, D)Y > x | θ = s, D = u) ∼ P(g1(θ)X > x)h(s) + P(g2(θ, D)Y > x)ϕ(s, u) (2.4)

holds uniformly for s, u ∈ �T , then
(i) for F (x) 
 G(x), it holds uniformly for t ∈ �T that

ψ(x, t) ∼
tˆ

0−
F

(
xers) dλ̃s +

tˆ

0−

t−uˆ

0−
G

(
xer(s+u)

)
dλ̂s,u H D (du) , (2.5)

where λ̃s = ´ s
0− (1 + λs−s∗ )h (s∗) Hθ (ds∗) and λ̂s,u = ´ s

0− (1 + λs−s∗ )ϕ (s∗, u) Hθ (ds∗);

(ii) for G(x) = o 
(

F (x)
)
, it holds uniformly for t ∈ �T that

ψ(x, t) ∼
tˆ

0−
F

(
xers) dλ̃s. (2.6)

Remark 2.2. We should note that relation (2.4) is insensitive to the specific form of functions g1 and g2. Provided that g1, g2 ∈ [a, b] for 
some 0 < a < b < ∞, relation (2.4) holds uniformly for g1 and g2.

Remark 2.3. The restriction that D should be independent of (X, θ) is not an essential condition when seeking asymptotic results of 
ψ(x, t). The methodology used to prove Theorem 2.1 can also be applied to obtain asymptotic estimates without this restriction. Nev-
ertheless, the asymptotic estimates may be more intricate than that in Theorem 2.1 due to the unknown joint distribution of θ and 
D .

Now we aim to provide further insight into relation (2.4). In the context of the time-dependent structure in Assumption 2.1, relation 
(2.4) incorporates dependence among claims as well as the waiting time. Nevertheless, (2.4) may appear to contain some uncertain 
requirements of X and Y . We recommend first characterizing the tail behavior of g1(θ)X + g2(θ, D)Y . For example, when X, Y , θ and 
D are mutually independent, it follows from Theorem 1 of Tang and Yuan (2014) that (2.4) holds. Then our results can then be used to 
derive asymptotic estimates of the ruin probability. Specially, we propose an appropriate dependence structure satisfying (2.4):

lim
x∧y→∞ sup

s,u∈�T

P(Y > y | X > x, θ = s, D = u) = lim
x∧y→∞ sup

s,u∈�T

P(X > x | Y > y, θ = s, D = u) = 0. (2.7)

This structure can be seen as a conditional and non-negative version of the so-called pairwise strongly quasi-asymptotic independence 
(PSQAI), shown as

lim
x∧y→∞ P(|ξ | > x | η > y) = lim

x∧y→∞ P(|η| > y | ξ > x) = 0

for real-valued random variables ξ and η. See Geluk and Tang (2009) and Li (2013) for more details of the PSQAI case which covers a 
wide range of dependence structures. A detailed discussion and verification of (2.7) are postponed to Section 3.

On the other hand, we should point out that (2.4) largely applies to cases of asymptotic independence. Further investigation into cases 
of asymptotic dependence is expected for future projects. Existing research, such as Fougeres and Mercadier (2012), Chen and Yuan (2017), 
and Chen and Yang (2019) may shed some light on this topic using the multivariate regular variation framework. With more restrictive 
conditions that G(x) = o 

(
F (x)

)
and F ∈ C , the corollary below considers the arbitrary dependence structure between the main claim and 

the corresponding by-claim. The asymptotic formula is fully consistent with (2.6) in Theorem 2.1.

Corollary 2.1. Consider the by-claim risk model given by (1.1). Assume that (X, Y , θ, D) fulfills Assumption 2.1 where X and Y are arbitrarily depen-
dent. If F ∈ C and G(x) = o 

(
F (x)

)
, then (2.6) holds uniformly for t ∈ �T .

3. Examples and verification of the assumptions on dependence

This section aims to verify the assumptions on the dependence structure of (X, Y , θ, D) and provide examples to illustrate our results. 
In view of Assumption 2.1, we use the dependence structure shown in (2.7) to illustrate Theorem 2.1, and the scale mixture for X and Y
to illustrate Corollary 2.1. Moreover, we verify Assumption 2.1 and relation (2.7) using some well-known copulas.

3.1. Examples

Example 3.1. Consider the by-claim risk model given by (1.1). Assume that (X, Y , θ, D) fulfills Assumption 2.1 and relation (2.7). If F , G ∈
L ∩D and F (x) 
 G(x), we can verify that relation (2.4) is satisfied in the above setup with the help of Lemma A.5 in Appendix. Hence, 
Theorem 2.1 is applicable.
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Example 3.2. Consider that (X, θ) fulfills relation (2.2) with X distributed as F ∈R−α for some 0 < α < ∞, and Y = W
√

X where W is a 
non-negative random variable independent of (X, θ) with EW p < ∞ for some p > 2α. Assume that there exists some univariate function 
h̃ : [0, ∞) → (0, ∞) satisfying

0 < inf
u∈�T

h̃(u) ≤ sup
u∈�T

h̃(u) < ∞ (3.1)

such that the relation

P(W > x | D = u) ∼ P(W > x)h̃(u) (3.2)

holds uniformly for u ∈ �T . By Lemma 3.7 of Tang and Tsitsiashvili (2003), there is some positive function l(x) satisfying l(x) → ∞ and 
l(x) = o(x) such that P(W > l(x)) = o(P(

√
X > x)). Let F̃ denote the distribution of 

√
X and note that F̃ ∈ R−2α . By the well-known 

Breiman’s theorem (see Breiman (1965)),

P(Y > x) ∼ EW 2αP(
√

X > x) = o(F (x)).

Referring to the proof given in Example 3.1 in Li (2016), we have

P(Y > x | θ = s, D = u) ∼ h(s)h̃(u)P(Y > x).

Denote ϕ(s, u) = h(s)h̃(u), then Assumption 2.1 is fulfilled. Recall that R−α ⊂ C . By Corollary 2.1, we can derive (2.6).

3.2. Verification of Assumption 2.1 and relation (2.7)

In the following parts, we consider the FGM family and the Frank family for the verification of Assumption 2.1 and relation (2.7). 
What needs to be pointed out is that some parameters of the FGM copula need to be set to 0 to ensure the condition that D should 
be independent of (X, θ). The one-parameter Frank copula cannot guarantee this independence restriction by adjusting its parameter. 
Nevertheless, recalling Remark 2.3 which mentions that independence can be relaxed, we provide the verification of the Frank copula as 
an extension. For a detailed discussion of some concrete copulas satisfying the dependence assumptions, see Asimit and Badescu (2010), 
Li et al. (2010), and Jiang et al. (2015).

According to Sklar’s theorem, if all of the marginal distributions F1, . . . , Fn of (X1, . . . , Xn) are continuous, then there is a unique 
n-copula C such that, for all (x1, . . . , xn) ∈ [−∞, ∞]n ,

P (X1 ≤ x1, . . . , Xn ≤ xn) = C (F1 (x1) , . . . , Fn (xn)) .

The corresponding survival copula is defined as

P (X1 > x1, . . . , Xn > xn) = Ĉ
(

F 1 (x1) , . . . , F n (xn)
)
.

Let Ĉ be the survival copula of (X, Y , θ, D). The functions h(·) and ϕ(·, ·) mentioned in Assumption 2.1, if it exists, can be calculated 
through the following equations:

h(s) = lim
u1→0+

∂ Ĉ(u1,1, u3,1)/∂u3

u1

∣∣∣∣∣
u3=Hθ (s)

and

ϕ(s, u) = lim
u2→0+

∂ Ĉ(1, u2, u3, u4)/∂u3∂u4

u2∂ Ĉ(1,1, u3, u4)/∂u3∂u4

∣∣∣∣∣ u3=Hθ (s)
u4=H D (u)

.

Then the uniformity of (2.2) and (2.3) in Assumption 2.1 can be restated as

lim
u1→0+ sup

u3∈[δ,1]

∣∣∣∣∣∂ Ĉ(u1,1, u3,1)/∂u3

u1h(s)
− 1

∣∣∣∣∣ = 0 (3.3)

and

lim
u2→0+ sup

u3,u4∈[δ,1]

∣∣∣∣∣∂ Ĉ(1, u2, u3, u4)/∂u3∂u4

∂ Ĉ(1,1, u3, u4)/∂u3∂u4
· 1

u2ϕ(s, u)
− 1

∣∣∣∣∣ = 0, (3.4)

for δ ∈ (0, 1), respectively. In terms of the survival copula Ĉ , the verification of relation (2.7) can be restated as

lim
x∧y→∞ sup

s,u∈�T

P(X > x | Y > y, θ = s, D = u)

= lim sup
u1,u2→0+

sup
u3,u4∈[δ,1]

∂ Ĉ(u1, u2, u3, u4)/∂u3∂u4

∂ Ĉ(1, u2, u3, u4)/∂u3∂u4

∣∣∣∣∣ u3=Hθ (s)
= 0

(3.5)
u4=H D (u)
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and

lim
x∧y→∞ sup

s,u∈�T

P(Y > y | X > x, θ = s, D = u)

= lim sup
u1,u2→0+

sup
u3,u4∈[δ,1]

∂ Ĉ(u1, u2, u3, u4)/∂u3∂u4

∂ Ĉ(u1,1, u3, u4)/∂u3∂u4

∣∣∣∣∣ u3=Hθ (s)
u4=H D (u)

= 0.
(3.6)

3.2.1. FGM copula
Let the survival copula Ĉ belong to the FGM family, written as

Ĉ (u1, . . . , u4) = u1 · · · u4

⎡⎣1 +
4∑

l=2

∑
1≤ j1<···< jl≤4

ϑ j1··· jl

l∏
k=1

(
1 − u jk

)⎤⎦ , (3.7)

where the parameters satisfy the following constraints:

1 +
4∑

l=2

∑
1≤ j1<···< jl≤4

ε j1 · · ·ε jlϑ j1··· jl > 0, ε1 = ±1, . . . , ε4 = ±1. (3.8)

In addition, we need to set parameters ϑ14, ϑ34 and ϑ134 to 0 to ensure the condition that D should be independent of (X, θ). It is easy 
to verify that relation (3.3) holds when the parameters satisfy the constraints shown in (3.8), which is consistent with the one obtained 
by Li et al. (2010). For verification of ϕ , it follows from the constraints shown in (3.8) that

ϕ(s, u) = 1 + ϑ23(1 − 2u3) + ϑ24(1 − 2u4) + ϑ34(1 − 2u3)(1 − 2u4) + ϑ234(1 − 2u3)(1 − 2u4)

1 + ϑ34(1 − 2u3)(1 − 2u4)
> 0

and

lim
u2→0+ sup

u3,u4∈[δ,1]

∣∣∣∣∣∂ Ĉ(1, u2, u3, u4)/∂u3∂u4

∂ Ĉ(1,1, u3, u4)/∂u3∂u4
· 1

u2ϕ(s, u)
− 1

∣∣∣∣∣
= lim

u2→0+ sup
u3,u4∈[δ,1]

∣∣∣∣∣∣∣
∂ Ĉ(1,u2,u3,u4)/∂u3∂u4

u2∂ Ĉ(1,1,u3,u4)/∂u3∂u4
− ϕ(s, u)

ϕ(s, u)

∣∣∣∣∣∣∣
= lim

u2→0+ sup
u3,u4∈[δ,1]

∣∣∣∣ϑ23(1 − 2u3) + ϑ24(1 − 2u4) + ϑ234(1 − 2u3)(1 − 2u4)

(1 + ϑ34(1 − 2u3)(1 − 2u4))ϕ(s, u)

∣∣∣∣ |u2| = 0,

which implies that relation (3.4) holds.
In terms of the FGM copula, we carry on the verification of relation (2.7). Note that

∂ Ĉ(u1, u2, u3, u4)

∂u3∂u4

=u1u2

⎛⎝1 + ϑ12

2∏
i=1

(1 − ui) + ϑ34

4∏
j=3

(1 − 2u j) +
2∑

i=1

ϑi3(1 − 2u3)(1 − ui)

+
2∑

i=1

ϑi4(1 − 2u4)(1 − ui) + ϑ123(1 − 2u3)

2∏
i=1

(1 − ui) + ϑ124(1 − 2u4)

2∏
i=1

(1 − ui)

+
2∑

i=1

ϑi34(1 − ui)

4∏
j=3

(1 − 2u j) + ϑ1234

2∏
i=1

(1 − ui)

4∏
j=3

(1 − 2u j)

⎞⎠ .

A direct calculation shows that (3.5) and (3.6) hold, which implies (2.7).

3.2.2. Frank copula
Let the survival copula Ĉ belong to the Frank family, written as

Ĉ (u1, . . . , un) = − 1

ϑ
log

(
1 +

∏n
i=1

(
e−ϑui − 1

)(
e−ϑ − 1

)n−1

)
, ϑ > 0.

It is easy to verify that relation (3.3) holds, which is consistent with the one obtained by Li et al. (2010). For verification of ϕ , a direct 
calculation shows

ϕ(s, u) = ϑ
(
e−ϑ − 1 + (

e−ϑu3 − 1
) (

e−ϑu4 − 1
))2(

1 − e−ϑ
)3

> 0
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Fig. 1. Comparision of Simulation and Approximation of Ruin Probabilities when F (x) 
 G(x)

and

lim
u2→0+ sup

u3,u4∈[δ,1]

∣∣∣∣∣∂ Ĉ(1, u2, u3, u4)/∂u3∂u4

∂ Ĉ(1,1, u3, u4)/∂u3∂u4
· 1

u2ϕ(s, u)
− 1

∣∣∣∣∣
= lim

u2→0+ sup
u3,u4∈[δ,1]

∣∣∣∣∣∣∣
(
e−ϑ − 1

)4 (
1 − e−ϑu2

)
ϑu2

((
e−ϑ − 1

)2 + ∏4
i=2

(
e−ϑui − 1

))2
− 1

∣∣∣∣∣∣∣ = 0,

which implies that (3.4) holds. In terms of the Frank copula, we carry on the verification of relation shown in (2.7). Direct calculation 
shows that

∂ Ĉ(u1, u2, u3, u4)

∂u3∂u4
= −ϑe−ϑu3 e−ϑu4

(
e−ϑ − 1

)3 ∏2
i=1

(
e−ϑui − 1

)((
e−ϑ − 1

)3 + ∏4
i=1

(
e−ϑui − 1

))2
.

It follows that

lim sup
u1,u2→0+

sup
u3,u4∈[δ,1]

∣∣∣∣∣∂ Ĉ(u1, u2, u3, u4)/∂u3∂u4

∂ Ĉ(1, u2, u3, u4)/∂u3∂u4

∣∣∣∣∣ u3=Hθ (s)
u4=H D (u)

= lim sup
u1,u2→0+

sup
u3,u4∈[δ,1]

∣∣∣∣∣∣∣
(
e−ϑ − 1

) (
e−ϑu1 − 1

)((
e−ϑ − 1

)2 + ∏4
i=2

(
e−ϑui − 1

))2

((
e−ϑ − 1

)3 + ∏4
i=2

(
e−ϑui − 1

))2

∣∣∣∣∣∣∣ u3=Hθ (s)
u4=H D (u)

= 0,

(3.9)

which implies that (3.5) holds. Similarly, we have (3.6). Thus, we have verified (2.7).

4. Numerical studies

In this section, we examine the accuracy of asymptotic estimates obtained in Theorem 2.1 and Corollary 2.1. To this end, the crude 
Monte Carlo (CMC) method is used to compare the simulated ruin probabilities with the asymptotic estimates.

We consider the by-claim given in (1.1). For the simulated estimation ψ̂ , given the finite-horizon [0, T ], we divide the time interval 
[0, T ] into n equally-spaced partitions. Let tk = kT /n, k = 1, . . . , n. The ruin probability ψ(x, T ) can be estimated by

ψ̂(x; T ) = 1

N

N∑
j=1

I{
min

k=1,...,n
U ( j)

tk
<0

}

where U ( j)
tk

is the surplus at time tk for path j. Throughout this section, the simulation is conducted with n = 200.
As for Theorem 2.1(i), let the main claim X follow a Pareto distribution

F (x) = 1 −
(

γ
)α

, x > 0,

x + γ
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Fig. 2. Comparision of Simulation and Approximation of Ruin Probabilities when G(x) = o(F (x))

where the shape parameter is specified to α = 1.5 and the scale parameter is specified to γ = 1, written as X ∼ Pareto(1.5, 1). Let 
Y ∼ Pareto(1.5, 2). Assume that both the inter-arrival time θ and the delay time D follow an exponential distribution with rate 1 such 
that the corresponding counting process Nt is a Poisson process with rate λ = 1. The dependence of (X, Y , θ, D) is characterized via the 
FGM copula given in (3.7), in which all parameters are specified to 0.1 except that ϑ14 = ϑ34 = ϑ134 = 0. The premium accumulation 
process C(t) = ct where the constant premium rate is specified to c = 10 > EX + EY . The remaining parameters are set to be T = 100 and 
r = 0.05. In Fig. 1, the asymptotic estimation obtained from (2.5) and the simulation based on N = 107 are compared on the left, and the 
ratios are shown on the right.

As for Corollary 2.1, we employ the framework mentioned in Example 3.2. Assume that X still follows the Pareto distribution 
Pareto(1.5, 1). The inter-arrival time θ and the delay time D still follow an exponential distribution with rate 1. The dependence of 
(X, θ) is characterized via the FGM copula with parameter ϑ = 0.25. Let W follow the Uniform distribution U (0, 1.2). The dependence 
of (W , D) is also characterized via the FGM copula with parameter ϑ = 0.25. The constant premium rate is specified as c = 5 and other 
parameters remain unchanged. In Fig. 2, we compare the asymptotic estimation obtained from Corollary 2.1 with the simulation based on 
N = 107, and the ratios are shown on the right.

Figs. 1 and 2 show that the approximation fits well with the simulation, indicating the accuracy of the asymptotic estimation. The 
ratios stay around 0 and the errors are less than 3%. We should point out that fluctuation is due to the poor performance of the CMC 
method and a larger sample size is required in order to offset the negative effect of the ruin probability ψ(x, T ) being extremely small.
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Appendix A. Proofs

A.1. Lemmas

We start with several lemmas in the following. The proof of Theorem 2.1 leans heavily on Lemmas A.1-A.4. Particularly, Lemma A.5 is 
applied in Example 3.1.

Lemma A.1. Assume that non-negative random vectors (X, θ) and (Y ∗, θ∗, D∗) satisfy relations (2.2) and (2.3), respectively. Besides, (X, θ) is inde-
pendent of (Y ∗, θ∗, D∗) where θ∗ is independent of D∗ . Let the distributions of X and Y ∗ be F and G, respectively. If F , G ∈ S and F (x) 
 G(x), for 
positive bounded measurable functions g1(x), g2(x, y) ∈ [a, b] where 0 < a < b < ∞, we have

P
(

X g1(θ) + Y ∗g2(θ
∗, D∗) > x | θ = s, θ∗ = s∗, D∗ = u∗)

∼P (X g (θ) > x | θ = s) + P
(
Y ∗g (θ∗, D∗) > x | θ∗ = s∗, D∗ = u∗) (A.1)
1 2
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holds uniformly for s, s∗, u∗ ∈ �T .

Proof. Relation (A.1) amounts to the conjunction of

P
(

X g1(θ) + Y ∗g2(θ
∗, D∗) > x | θ = s, θ∗ = s∗, D∗ = u∗)

�P (X g1(θ) > x | θ = s) + P
(
Y ∗g2(θ

∗, D∗) > x | θ∗ = s∗, D∗ = u∗) (A.2)

and

P
(

X g1(θ) + Y ∗g2(θ
∗, D∗) > x | θ = s, θ∗ = s∗, D∗ = u∗)

�P (X g1(θ) > x | θ = s) + P
(
Y ∗g2(θ

∗, D∗) > x | θ∗ = s∗, D∗ = u∗) (A.3)

uniformly for s, s∗, u∗ ∈ �T . Firstly, we shall verify (A.2). According to the value of X g1(θ) belonging to (0, l(x)], (x − l(x), ∞) and (l(x), x −
l(x)] for some function l(x) ∈ H(F , G), we split the following probability into three parts as

P
(

X g1(θ) + Y ∗g2(θ
∗, D∗) > x | θ = s, θ∗ = s∗, D∗ = u∗)

=P
(

X g1(θ) + Y ∗g2(θ
∗, D∗) > x,0 < X g1(θ) ≤ l(x) | θ = s, θ∗ = s∗, D∗ = u∗)

+ P
(

X g1(θ) + Y ∗g2(θ
∗, D∗) > x, X g1(θ) > x − l(x) | θ = s, θ∗ = s∗, D∗ = u∗)

+ P
(

X g1(θ) + Y ∗g2(θ
∗, D∗) > x, l(x) < X g1(θ) ≤ x − l(x) | θ = s, θ∗ = s∗, D∗ = u∗)

:=I1 + I2 + I3.

(A.4)

Note that G ∈ S ⊂L. Applying relation (2.3) leads to

I1 ≤ P
(
Y ∗g2(θ

∗, D∗) > x − l(x) | θ∗ = s∗, D∗ = u∗) ∼ P
(
Y ∗g2(θ

∗, D∗) > x | θ∗ = s∗, D∗ = u∗) (A.5)

uniformly for s∗, u∗ ∈ �T . In a similar way, it holds uniformly for s ∈ �T that

I2 � P (X g1(θ) > x | θ = s) . (A.6)

Now we deal with I3. Recall that (X, θ) is independent of (Y ∗, θ∗, D∗). Applying Assumption 2.1 in the third step, we have, for sufficiently 
large x and every ε = ε(a, b) > 0,

I3 =P
(

X g1(θ) + Y ∗g2(θ
∗, D∗) > x, l(x) < X g1(θ) ≤ x − l(x) | θ = s, θ∗ = s∗, D∗ = u∗)

=
x−l(x)ˆ

l(x)

P
(
Y ∗g2(θ

∗, D∗) > x − t | θ∗ = s∗, D∗ = u∗) P (X g1(θ) ∈ dt | θ = s)

≤(1 + ε)h(s)ϕ(s∗, u∗)
x−l(x)ˆ

l(x)

P
(
Y ∗g2(s∗, u∗) > x − t

)
P (X g1(s) ∈ dt)

(A.7)

holds uniformly for s, s∗, u∗ ∈ �T . Without loss of generality we can assume that g1(s) ≥ g2(s∗, u∗) uniformly for s, s∗, u∗ ∈ �T because 
otherwise we may use the value of Y ∗ g2(θ

∗, D∗) to split the probability on the left side in (A.4). Recall that F (x) 
 G(x) and g1, g2 ∈ [a, b]. 
Then there exists a constant M , irrespective of s that

x−l(x)ˆ

l(x)

P
(
Y ∗g2(s∗, u∗) > x − t

)
P (X g1(s) ∈ dt)

≤
x−l(x)ˆ

l(x)

P
(
Y ∗g1(s) > x − t

)
P (X g1(s) ∈ dt)

≤M

x−l(x)ˆ

l(x)

P
(

X∗g1(s) > x − t
)

P (X g1(s) ∈ dt)

=MP
(

X g1(s) + X∗g1(s) > x, l(x) < X∗g1(s) ≤ x − l(x)
)
,

where X∗ is an i.i.d. copy of X . Note that, for sufficiently large x and every ε∗ = ε∗(a, b) > 0 (irrespective of s),

P
(

X g1(s) + X∗g1(s) > x, l(x) < X∗g1(s) ≤ x − l(x)
)

≤P
(

X g1(s) + X∗g1(s) > x
) − P

(
X g1(s) > x, X∗g1(s) ≤ l(x)

) − P
(

X∗g1(s) > x, X g1(s) ≤ l(x)
)

≤(1 + ε∗)
(
P (X g1(s) > x) + P

(
X∗g1(s) > x

)) − P (X g1(s) > x)P
(

X∗g1(s) ≤ l(x)
)

− P
(

X∗g1(s) > x
)

P (X g1(s) ≤ l(x))

≤4ε∗P (X g (s) > x) ,
1
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where the second step is due to Proposition 5.1 of Tang and Tsitsiashvili (2003). Then we have

x−l(x)ˆ

l(x)

P
(
Y ∗g2(s∗, u∗) > x − t

)
P (X g1(s) ∈ dt) ≤ ε∗4MP (X g1(s) > x) . (A.8)

Substituting (A.8) into (A.7) and using Assumption 2.1, we have

I3 = o (P (X g1(s) > x)) = o (P (X g1(θ) > x | θ = s)) . (A.9)

Thus, combining relations (A.5), (A.6) and (A.9) leads to (A.2).
Next we turn to verify the relation (A.3). Recalling that (X, θ) is independent of (Y ∗, θ∗, D∗), we have, uniformly for s, s∗, u∗ ∈ �T ,

P
(

X g1(θ) + Y ∗g2(θ
∗, D∗) > x | θ = s, θ∗ = s∗, D∗ = u∗)

≥P
({X g1(θ) > x} ∪ {Y ∗g2(θ

∗, D∗) > x} | θ = s, θ∗ = s∗, D∗ = u∗)
=P (X g1(θ) > x | θ = s) + P

(
Y ∗g2(θ

∗, D∗) > x | θ∗ = s∗, D∗ = u∗)
− P (X g1(θ) > x | θ = s)P

(
Y ∗g2(θ

∗, D∗) > x | θ∗ = s∗, D∗ = u∗)
�P (X g1(θ) > x | θ = s) + P

(
Y ∗g2(θ

∗, D∗) > x | θ∗ = s∗, D∗ = u∗) ,

which implies (A.3). This completes the proof. �
In addition, going along the same lines as the proof of Lemma A.1 with obvious modifications, we obtain

P
(

X g1(θ) + X̃ g1(θ̃) > x | θ = s, θ̃ = s̃
)

∼ P (X g1(θ) > x | θ = s) + P
(

X̃ g1(θ̃ ) > x | θ̃ = s̃
)

(A.10)

uniformly for s, ̃s ∈ �T when ( X̃, θ̃ ) is an i.i.d. copy of (X, θ), and

P
(

Y g2(θ, D) + Ỹ g2(θ̃ , D̃) > x | θ = s, θ̃ = s̃, D = u, D̃ = ũ
)

∼P (Y g2(θ, D) > x | θ = s, D = u) + P
(

Ỹ g2(θ̃ , D̃) > x | θ̃ = s̃, D̃ = ũ
) (A.11)

uniformly for s, ̃s, u, ̃u ∈ �T when (Ỹ , θ̃ , D̃) is an i.i.d. copy of (Y , θ, D). The above two relations (A.10) and (A.11) will be used in the 
proof of Lemma A.2 below. The following lemma deals with the tail probability of the aggregate claims conditioning on the waiting time, 
which forms the basis for Lemma A.4. For notational convenience, we write tn = ∑n

i=1 si and �n = {1, . . . , n} for every n ∈N+ hereafter.

Lemma A.2. Under the conditions of Theorem 2.1, for every n ∈N+ , it holds uniformly for si, ui ∈ �T , 1 ≤ i ≤ n and t ∈ �T that
(i) for F (x) 
 G(x),

P

(
n∑

i=1

Xie
−rτi +

n∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x | θi = si, Di = ui, i ∈ �n

)

∼
n∑

i=1

P
(

Xie
−rti > x | θi = si

) +
n∑

i=1

P
(

Yie
−r(ti+ui) I{ti+ui<t} > x | θi = si, Di = ui

)
;

(A.12)

(ii) for G(x) = o 
(

F (x)
)
,

P

(
n∑

i=1

Xie
−rτi +

n∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x | θi = si, Di = ui, i ∈ �n

)

∼
n∑

i=1

P
(

Xie
−rti > x | θi = si

)
.

(A.13)

Proof. We proceed by the induction method to prove (A.12). Firstly, we shall prove that the assertion holds for n = 1. Note that 
e−rθ1 , e−r(θ1+D1) ∈ [e−rT , 1]. By (2.4) in the last step, it holds uniformly for s1, u1, t ∈ �T that

P
(

X1e−rθ1 + Y1e−r(θ1+D1) I{θ1+D1≤t} > x | θ1 = s1, D1 = u1

)
=P

(
X1e−rs1 > x | θ1 = s1

)
I{s1+u1>t} + P

(
X1e−rs1 + Y1e−r(s1+u1) > x | θ1 = s1, D1 = u1

)
I{s1+u1≤t}

∼P
(

X1e−rs1 > x | θ1 = s1
) + P

(
Y1e−r(s1+u1) I{s1+u1≤t} > x | θ1 = s1, D1 = u1

)
,

which implies that (A.12) holds for n = 1. Next, assume that assertion (A.12) holds for some positive integer n = m − 1. We aim to show 
that the assertion holds for n = m, that is, it holds uniformly for si, ui ∈ �T , i ∈ �m and t ∈ �T that
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P

(
m∑

i=1

Xie
−rτi +

m∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x | θi = si, Di = ui, i ∈ �m

)

∼
m∑

i=1

P
(

Xie
−rti > x | θi = si

) +
m∑

i=1

P
(

Yie
−r(ti+ui) I{ti+ui≤t} > x | θi = si, Di = ui

)
.

(A.14)

According to the value of 
∑m−1

i=1 Xie−rτi + ∑m−1
i=1 Yie−r(τi+Di) I{τi+Di≤t} belonging to (0, l(x)], (x − l(x), ∞) and (l(x), x − l(x)] for some 

function l(x) ∈ H(F , G), we split the probability on the left side in (A.14) into three parts as

P

(
m∑

i=1

Xie
−rτi +

m∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x | θi = si, Di = ui, i ∈ �m

)
:= I1 + I2 + I3.

For I1,

I1 =P

(
m−1∑
i=1

(
Xie

−rti + Yie
−r(ti+ui) I{ti+ui≤t}

)
≤ l(x),

m∑
i=1

(
Xie

−rti + Yie
−r(ti+ui) I{ti+ui≤t}

)
> x | θi = si, Di = ui, i ∈ �m

)

≤P
(

Xme−rtm + Yme−r(tm+um) I{tm+um≤t} > x − l(x) | θm = sm, Dm = um

)
.

Referring to the proof for n = 1, by the fact that F , G ∈ L, it holds uniformly for si, ui ∈ �T , i ∈ �m and t ∈ �T that

I1 � P
(

Xme−rtm > x | θm = sm
) + P

(
Yme−r(tm+um) I{tm+um≤t} > x | θm = sm, Dm = um

)
. (A.15)

For I2, by the induction assumption and the fact that F , G ∈ L, we have, uniformly for si, ui ∈ �T , i ∈ �m−1 and t ∈ �T ,

I2 ≤P

(
m−1∑
i=1

Xie
−rτi +

m−1∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x − l(x) | θi = si, Di = ui, i ∈ �m−1

)

�
m−1∑
i=1

P
(

Xie
−rti > x | θi = si

) +
m−1∑
i=1

P
(

Yie
−r(ti+ui) I{ti+ui≤t} > x | θi = si, Di = ui

)
.

(A.16)

Now we deal with I3.

I3 =P

(
l(x) <

m−1∑
i=1

(
Xie

−rτi + Yie
−r(τi+Di) I{τi+Di≤t}

)
≤ x − l(x),

m∑
i=1

(
Xie

−rτi + Yie
−r(τi+Di) I{τi+Di≤t}

)
> x | θi = si, Di = ui, i ∈ �m

)

≤P

(
m∑

i=1

(
Xie

−rti + Yie
−r(ti+ui) I{ti+ui≤t}

)
> x,

m−1∑
i=1

(
Xie

−rti + Yie
−r(ti+ui) I{ti+ui≤t}

)
> l(x),

Xme−rtm + Yme−r(tm+um) I{tm+um≤t} > l(x) | θi = si, Di = ui, i ∈ �m

)
=

∞̂

l(x)

P

(
m−1∑
i=1

(
Xie

−rti + Yie
−r(ti+ui) I{ti+ui≤t}

)
> (x − y) ∨ l(x) | θi = si, Di = ui, i ∈ �m−1

)

P
(

Xme−rtm + Yme−r(tm+um) I{tm+um≤t} ∈ dy | θm = sm, Dm = um

)
.

Then applying the induction assumption and relation (2.4), uniformly for si , ui ∈ �T , i ∈ �m and t ∈ �T ,

I3 �
∞̂

l(x)

m−1∑
i=1

(
P
(

Xie
−rti > (x − y) ∨ l(x) | θi = si

)
+ P

(
Yie

−r(ti+ui) I{ti+ui≤t} > (x − y) ∨ l(x) | θi = si, Di = ui

))
(

h(sm)P
(

Xme−rtm ∈ dy
) + ϕ(sm, um)P

(
Yme−r(tm+um) I{tm+um≤t} ∈ dy

))
:= I31 + I32 + I33 + I34,

(A.17)

where
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I31 =
m−1∑
i=1

∞̂

l(x)

P
(

Xie
−rti > (x − y) ∨ l(x) | θi = si

)
h(sm)P

(
Xme−rtm ∈ dy

)
,

I32 =
m−1∑
i=1

∞̂

l(x)

P
(

Xie
−rti > (x − y) ∨ l(x) | θi = si

)
ϕ(sm, um)P

(
Yme−r(tm+um) I{tm+um≤t} ∈ dy

)
,

I33 =
m−1∑
i=1

∞̂

l(x)

P
(

Yie
−r(ti+ui) I{ti+ui≤t} > (x − y) ∨ l(x) | θi = si, Di = ui

)
h(sm)P

(
Xme−rtm ∈ dy

)
,

I34 =
m−1∑
i=1

∞̂

l(x)

P
(

Yie
−r(ti+ui) I{ti+ui≤t} > (x − y) ∨ l(x) | θi = si, Di = ui

)
· ϕ(sm, um)P

(
Yme−r(tm+um) I{tm+um≤t} ∈ dy

)
.

We deal with I32 first. By (2.3) in Assumption 2.1, it holds uniformly for si, ui ∈ �T , i ∈ �m and t ∈ �T that

I32 ∼
m−1∑
i=1

P
(

Xie
−rti + Yme−r(tm+um) I{tm+um≤t} > x, Xie

−rti > l(x),

Yme−r(tm+um) I{tm+um≤t} > l(x) | θi = si, θm = sm, Dm = um

)
≤

m−1∑
i=1

(
P
(

Xie
−rti + Yme−r(tm+um) I{tm+um≤t} > x | θi = si, θm = sm, Dm = um

)
− P

(
Xie

−rti > x, Yme−r(tm+um) I{tm+um≤t} ≤ l(x) | θi = si, θm = sm, Dm = um

)
− P

(
Xie

−rti ≤ l(x), Yme−r(tm+um) I{tm+um≤t} > x | θi = si, θm = sm, Dm = um

))
�

m−1∑
i=1

(
P
(

Xie
−rti > x | θi = si

) + P
(

Yme−r(tm+um) I{tm+um≤t} > x | θm = sm, Dm = um

)
− P

(
Xie

−rti > x | θi = si
)

P
(

Yme−r(tm+um) I{tm+um≤t} ≤ l(x) | θm = sm, Dm = um

)
− P

(
Xie

−rti ≤ l(x) | θi = si
)

P
(

Yme−r(tm+um) I{tm+um≤t} > x | θm = sm, Dm = um

))
=o

(
m−1∑
i=1

P
(

Xie
−rti > x | θi = si

) + (m − 1)P
(

Yme−r(tm+um) I{tm+um≤t} > x | θm = sm, Dm = um

))
,

(A.18)

where in the third step we used Lemma A.1 and the fact that (Xi, θi) is independent of (Ym, θm, Dm) for i �= m. Going along the similar 
lines of I32, it holds uniformly for si, ui ∈ �T , i ∈ �m and t ∈ �T that

I31 = o

(
m−1∑
i=1

P
(

Xie
−rti > x | θi = si

) + (m − 1)P
(

Xme−rtm > x | θm = sm
))

, (A.19)

I33 = o

(
m−1∑
i=1

P
(

Yie
−r(ti+ui) I{ti+ui≤t} > x | θi = si, Di = ui

)
+ (m − 1)P

(
Xme−rtm > x | θm = sm

))
(A.20)

and

I34 =o

(
m−1∑
i=1

P
(

Yie
−r(ti+ui) I{ti+ui≤t} > x | θi = si, Di = ui

)
+(m − 1)P

(
Yme−r(tm+um) I{tm+um≤t} > x | θm = sm, Dm = um

))
.

(A.21)

Substituting (A.18)-(A.21) back into (A.17), we have, uniformly for si, ui ∈ �T , i ∈ �m and t ∈ �T ,

I3 = o

(
m∑

i=1

P
(

Xie
−rti > x | θi = si

) +
m∑

i=1

P
(

Yie
−r(ti+ui) I{ti+ui≤t} > x | θi = si, Di = ui

))
. (A.22)

Then combining relations (A.15), (A.16) and (A.22) leads to the upper bound version of (A.14):
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P

(
m∑

i=1

Xie
−rτi +

m∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x | θi = si, Di = ui, i ∈ �m

)

�
m∑

i=1

P
(

Xie
−rti > x | θi = si

) +
m∑

i=1

P
(

Yie
−r(ti+ui) I{ti+ui<t} > x | θi = si, Di = ui

)
,

(A.23)

uniformly for si, ui ∈ �T , i ∈ �m and t ∈ �T .
Now we turn to the lower bound version of (A.14). We have

P

(
m∑

i=1

Xie
−rτi +

m∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x | θi = si, Di = ui, i ∈ �m

)

≥P

(
m−1∑
i=1

Xie
−rti +

m−1∑
i=1

Yie
−r(ti+ui) I{ti+ui≤t} > x | θi = si, Di = ui, i ∈ �m−1

)

+ P
(

Xme−rtm + Yme−r(tm+um) I{tm+um≤t} > x | θm = sm, Dm = um

)
− J1,

(A.24)

where

J1 =P

(
m−1∑
i=1

Xie
−rti +

m−1∑
i=1

Yie
−r(ti+ui) I{ti+ui≤t} > x | θi = si, Di = ui, i ∈ �m−1

)

· P
(

Xme−rtm + Yme−r(tm+um) I{tm+um≤t} > x | θm = sm, Dm = um

)
.

Applying the induction assumption yields that

J1 ∼
m−1∑
i=1

(
P
(

Xie
−rti > x | θi = si

) + P
(

Yie
−r(ti+ui) I{ti+ui≤t} > x | θi = si, Di = ui

))
· P

(
Xme−rtm + Yme−r(tm+um) I{tm+um≤t} > x | θm = sm, Dm = um

)
=o

(
m−1∑
i=1

(
P
(

Xie
−rti > x | θi = si

) + P
(

Yie
−r(ti+ui) I{ti+ui≤t} > x | θi = si, Di = ui

))) (A.25)

holds uniformly for si, ui ∈ �T , i ∈ �m and t ∈ �T . Then, substituting (A.25) back into (A.24) yields that

P

(
m∑

i=1

Xie
−rτi +

m∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x | θi = si, Di = ui, i ∈ �m

)

�
m∑

i=1

P
(

Xie
−rti > x | θi = si

) +
m∑

i=1

P
(

Yie
−r(ti+ui) I{ti+ui<t} > x | θi = si, Di = ui

) (A.26)

holds uniformly for si, ui ∈ �T , i ∈ �m and t ∈ �T . Combining (A.26) and (A.23) leads to (A.12).
Finally, we turn to prove (A.13). Note that e−r(ti+ui) I{ti+ui≤t} ≤ e−rti . By Assumption 2.1 and the fact that G(x) = o(F (x)), for i ∈ �m and 

every εi > 0,

P
(

Yie
−r(ti+ui) I{ti+ui≤t} > x | θi = si, Di = ui

)
�ϕ(si, ui)P

(
Yie

−rti > x
)

≤h(si)εiP
(

Xie
−rti > x

)
sup

si ,ui∈�T

ϕ(si, ui)

h(si)

=o
(
P
(

Xie
−rti > x | θi = si

))
holds uniformly for si, ui ∈ �T , i ∈ �m and t ∈ �T . Note that

P
(

Xme−rtm + Yme−r(tm+um) I{tm+um≤t} > x | θm = sm, Dm = um

)
≥ P

(
Xme−rtm > x | θm = sm

)
.

Then proceeding in a similar way as we did for the proof of (A.12), we derive (A.13). This completes the proof. �
In what follows we establish a Kesten-type upper bound, which is a useful means to deal with the tail probability of randomly weighted 

sums of infinitely many terms. See Lemma 1.3.5(c) of Embrechts et al. (1997) for more details on the well-known Kesten’s inequality.

Lemma A.3. Under the conditions of Theorem 2.1, for every ε > 0 and T ∈ �, there exists some constant K = Kr,ε,T > 0 such that, for all n ∈ N+ , 
x ≥ 0, and t ∈ �T ,
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(i) if F (x) 
 G(x),

P

(
n∑

i=1

(
Xie

−rθi + Yie
−r(θi+Di) I{θi+Di≤t}

)
> x, τn ≤ t

)

≤K (1 + ε)n
(

P
(

X1e−rθ1 > x, τn ≤ t
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x, τn ≤ t

))
;

(ii) if G(x) = o 
(

F (x)
)
,

P

(
n∑

i=1

(
Xie

−rθi + Yie
−r(θi+Di) I{θi+Di≤t}

)
> x, τn ≤ t

)
≤ K (1 + ε)nP

(
X1e−rθ1 > x, τn ≤ t

)
.

Proof. For notational convenience, write Zi = Xie−rθi + Yie−r(θi+Di) I{θi+Di≤t} for i ∈ �n+1 and

αn = sup
x≥0,t∈�T

P
(∑n

i=1 Xie−rθi + Yie−r(θi+Di) I{θi+Di≤t} > x, τn ≤ t
)

P
(

X1e−rθ1 > x, τn ≤ t
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x, τn ≤ t

)
= sup

x≥0,t∈�T

P
(∑n

i=1 Zi > x, τn ≤ t
)

P
(

X1e−rθ1 > x, τn ≤ t
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x, τn ≤ t

) .

By (2.4), for every ε > 0 (irrespective of s1, u1), there exists some constant x0 > 0 such that, for all x > x0,

P (Z1 > x | θ1 = s1, D1 = u1)

≤(1 + ε)
(

P
(

X1e−rθ1 > x | θ1 = s1
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x | θ1 = s1, D1 = u1

)) (A.27)

holds uniformly for s1, u1 ∈ �T . By (2.2) in Assumption 2.1, the constant x0 above can be chosen so large that, for all t ∈ �T ,

P
(

X1e−rθ1 > x0 | θ1 = s1
) ≥ 1

2
F

(
x0erT

)
h(s1). (A.28)

Now we start by evaluating αn+1 and focus on the denominator in αn+1:

P

(
n+1∑
i=1

Zi > x, τn+1 ≤ t

)
= P

(
n+1∑
i=1

Zi > x, Zn+1 ≤ x, τn+1 ≤ t

)
+ P (Zn+1 > x, τn+1 ≤ t) .

For all x > x0, conditioning on (θn+1, Dn+1) and using (A.27) yields

P (Zn+1 > x, τn+1 ≤ t)

=
tˆ

0−

tˆ

0−
P (Zn+1 > x | θn+1 = sn+1, Dn+1 = un+1)P (τn ≤ t − sn+1) Hθ (dsn+1)H D(dun+1)

=
tˆ

0−

tˆ

0−
P (Z1 > x | θ1 = s, D1 = u)P (τn ≤ t − s) Hθ (ds)H D(du)

≤(1 + ε)

tˆ

0−

tˆ

0−

(
P
(

X1e−rθ1 > x | θ1 = s
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x | θ1 = s, D1 = u

))
· P (τn ≤ t − s) Hθ (ds)H D(du)

≤(1 + ε)
(

P
(

X1e−rθ1 > x, τn+1 ≤ t
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x, τn+1 ≤ t

))
,

(A.29)

where in the last step we used the fact that {θi; i ∈N+} is a sequence of i.i.d. copies of θ . Conditioning on (Zn+1, θn+1, Dn+1), we have
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P

(
n+1∑
i=1

Zi > x, Zn+1 ≤ x, τn+1 ≤ t

)

=
tˆ

0−

tˆ

0−

xˆ

0−
P

(
n∑

i=1

Zi > x − w, τn ≤ t − sn+1

)
P (Zn+1 ∈ dw, θn+1 ∈ dsn+1, Dn+1 ∈ dun+1)

=
tˆ

0−

tˆ

0−

xˆ

0−

P
(∑n

i=1 Zi > x − w, τn ≤ t − sn+1
)

P
(

X1e−rθ1 > x − w, τn ≤ t − sn+1
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x − w, τn ≤ t − sn+1

)
·
(

P
(

X1e−rθ1 > x − w, τn ≤ t − sn+1
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x − w, τn ≤ t − sn+1

))
· P (Zn+1 ∈ dw, θn+1 ∈ dsn+1, Dn+1 ∈ dun+1)

≤αn
(
P
(

X1e−rθ1 + Zn+1 > x, Zn+1 ≤ x, τn+1 ≤ t
)

+P
(

Y1e−r(θ1+D1) I{θ1+D1≤t} + Zn+1 > x, Zn+1 ≤ x, τn+1 ≤ t
))

:=αn(I1 + I2).

(A.30)

For all x > x0 and t ∈ �T ,

I1 =P
(

X1e−rθ1 + Zn+1 > x, Zn+1 ≤ x, τn+1 ≤ t
)

=P
(

X1e−rθ1 + Zn+1 > x, τn+1 ≤ t
) − P (Zn+1 > x, τn+1 ≤ t)

=
tˆ

0−

tˆ

0−

tˆ

0−

(
P
(

X1e−rθ1 + Zn+1 > x | θ1 = s1, θn+1 = sn+1, Dn+1 = un+1
)

−P (Zn+1 > x | θn+1 = sn+1, Dn+1 = un+1))

· P

(
n∑

i=2

θi ≤ t − s1 − sn+1

)
Hθ (ds1) Hθ (dsn+1) H D (dun+1) .

(A.31)

Following the same lines as the proof of Lemma A.2 with some obvious modifications, we have, for every ε1 > 0 (irrespective of 
s, sn+1, un+1) and all x > x0,

P
(

X1e−rθ1 + Zn+1 > x | θ1 = s1, θn+1 = sn+1, Dn+1 = un+1
)

≤(1 + ε1)
(
P
(

X1e−rθ1 > x | θ1 = s1
) + P (Zn+1 > x | θn+1 = sn+1, Dn+1 = un+1)

) (A.32)

holds uniformly for s1, sn+1, un+1 ∈ �T . Recall that {(Xi, Yi, θi, Di); i ∈ N+} is a sequence of i.i.d. copies of a generic vector (X, Y , θ, D). 
Thus, combining (A.27) and (A.32) yields

P
(

X1e−rθ1 + Zn+1 > x | θ1 = s1, θn+1 = sn+1, Dn+1 = un+1
) − P (Zn+1 > x | θn+1 = sn+1, Dn+1 = un+1)

≤(1 + ε1)P
(

X1e−rθ1 > x | θ1 = s1
) + (1 + ε)ε1P

(
Xn+1e−rθn+1 > x | θn+1 = s+1

)
+ (1 + ε)ε1P

(
Yn+1e−r(θn+1+Dn+1) I{θn+1+Dn+1≤t} > x | θn+1 = sn+1, Dn+1 = un+1

)
.

Substituting the above relation back into (A.31) leads to

I1 ≤(1 + ε1)P
(

X1e−rθ1 > x, τn+1 ≤ t
) + (1 + ε)ε1P

(
Xn+1e−rθn+1 > x, τn+1 ≤ t

)
+ (1 + ε)ε1P

(
Yn+1e−r(θn+1+Dn+1) I{θn+1+Dn+1≤t} > x, τn+1 ≤ t

)
=(1 + 2ε1 + ε1ε)P

(
X1e−rθ1 > x, τn+1 ≤ t

)
+ (1 + ε)ε1P

(
Yn+1e−r(θn+1+Dn+1) I{θn+1+Dn+1≤t} > x, τn+1 ≤ t

)
,

which can be rewritten to the form: for every ̃ε1 > 0, all x > x0 and t ∈ �T ,

I1 ≤ (1 + ε̃1)P
(

X1e−rθ1 > x, τn+1 ≤ t
) + ε̃1P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x, τn+1 ≤ t

)
. (A.33)

Similarly, for every ̃ε2 > 0, all x > x0 and t ∈ �T ,

I2 ≤ (1 + ε̃2)P
(

Y1e−r(θ1+D1) I{θ1+D1≤t} > x, τn+1 ≤ t
)

+ ε̃2P
(

X1e−rθ1 > x, τn+1 ≤ t
)
. (A.34)

Plugging (A.33) and (A.34) into (A.30), we have, for every ̃ε > 0, all x > x0 and t ∈ �T ,
134



M. Yuan and D. Lu Insurance: Mathematics and Economics 112 (2023) 120–141
P

(
n+1∑
i=1

Zi > x, Zn+1 ≤ x, τn+1 ≤ t

)

≤(1 + ε̃)αn

(
P
(

X1e−rθ1 > x, τn+1 ≤ t
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x, τn+1 ≤ t

))
.

Thus, together with (A.29), we have

sup
x>x0,t∈�T

P
(∑n+1

i=1 Zie−rθi > x, τn+1 ≤ t
)

P
(

X1e−rθ1 > x, τn+1 ≤ t
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x, τn+1 ≤ t

) ≤ (1 + ε̃)αn + 2. (A.35)

By (A.28), it holds for all t ∈ �T and x ≤ x0 that

P
(∑n+1

i=1 Zi > x, τn+1 ≤ t
)

P
(

X1e−rθ1 > x, τn+1 ≤ t
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x, τn+1 ≤ t

) ≤ P (τn+1 ≤ t)

P
(

X1e−rθ1 > x0, τn+1 ≤ t
) .

Going the same lines as the proof for (4.14) in Li et al. (2010), for some 0 < L < ∞, we have

sup
x≤x0,t∈�T

P
(∑n+1

i=1 Zie−rθi > x, τn+1 ≤ t
)

P
(

X1e−rθ1 > x, τn+1 ≤ t
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x, τn+1 ≤ t

) ≤ L.

Thus, together with (A.35), we obtain the recursive inequality:

αn+1 ≤ (1 + ε)αn + 2 + L.

Note that we can obtain α1 ≤ 2 + L by proceeding in the same way as we did in above. We can deduce the Kesten-type upper bound with 
a suitably chosen constant Kr,ε,T . The proof under the condition G(x) = o 

(
F (x)

)
follows from the deduction above with some obvious 

modifications. This completes the proof. �
The next lemma plays a crucial role in the proof of Theorem 2.1. Considering the convenience and simplicity of the discussion, we 

merge the two assertions in Theorem 2.1 as one, namely, it holds that

ψ(x, t) ∼
tˆ

0−
F

(
xers) dλ̃s +

tˆ

0−

t−u∗ˆ

0−
G

(
xer

(
s+u∗))

dλ̂s,u∗ H D
(
du∗) · I{β>0} := φ(x, t, β),

where β = lim sup
G(x)

F (x)
.

Lemma A.4. Under the conditions of Theorem 2.1, it holds uniformly for t ∈ �T that

P

(
Nt∑

i=1

Xie
−rτi +

Nt∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x

)
∼ φ(x, t, β).

Proof. Arbitrarily choose some large integer M ,

P

(
Nt∑

i=1

Xie
−rτi +

Nt∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x

)

=
(

M∑
n=1

+
∞∑

n=M+1

)
P

(
n∑

i=1

Xie
−rτi +

n∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x, Nt = n

)
:=I1 + I2.

(A.36)

Recall that �n = {1, . . . , n} for every n ∈N+ and tn = ∑n
i=1 si . By Lemma A.2,
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I1 =
M∑

n=1

ˆ

�n,t

P

(
n∑

i=1

Xie
−rti +

n∑
i=1

Yie
−r(ti+ui) I{ti+ui≤t} > x | θi = si, Di = ui, i ∈ �n

)

· Hθ (t − tn)

n∏
i=1

Hθ (dsi)H D(dui)

∼
M∑

n=1

ˆ

�n,t

(
n∑

i=1

P
(

Xie
−rti > x | θi = si

) +
n∑

i=1

P
(

Yie
−r(ti+ui) I{ti+ui≤t} > x | θi = si, Di = ui

)
· I{β>0}

)

· Hθ (t − tn)

n∏
i=1

Hθ (dsi)H D(dui)

=
M∑

n=1

(
n∑

i=1

P
(

Xie
−rτi > x, Nt = n

) +
n∑

i=1

P
(

Yie
−r(τi+Di) I{τi+Di≤t} > x, Nt = n

)
· I{β>0}

)

=
( ∞∑

n=1

−
∞∑

n=M+1

)(
n∑

i=1

P
(

Xie
−rτi > x, Nt = n

) +
n∑

i=1

P
(

Yie
−r(τi+Di) I{τi+Di≤t} > x, Nt = n

)
· I{β>0}

)
:=I11 − I12,

(A.37)

where �n,t = {si ∈ [0, t], ui ∈ [0, t], i ∈ �n : tn ≤ t}. By interchanging the order of the sums and then conditioning on (τi−1, θi, Di),

I11 =
∞∑

n=1

(
n∑

i=1

P
(

Xie
−rτi > x, Nt = n

) +
n∑

i=1

P
(

Yie
−r(τi+Di) I{τi+Di≤t} > x, Nt = n

)
· I{β>0}

)

=
∞∑

i=1

P
(

Xie
−rτi > x, τi ≤ t

) +
∞∑

i=1

P
(

Yie
−r(τi+Di) I{τi+Di≤t} > x, τi ≤ t

)
· I{β>0}

(A.38)

holds uniformly for t ∈ �T . Then it follows from (4.18) in Li et al. (2010) that, uniformly for t ∈ �T ,

∞∑
i=1

P
(

Xie
−rτi > x, τi ≤ t

) ∼
tˆ

0−
F

(
xers)dλ̃s, (A.39)

where λ̃s = ´ s
0− (1 + λs−s∗ )h (s∗) Hθ (ds∗). In a similar way, by (2.3) in Assumption 2.1 and integrating by parts with possible jumps (see 

Klebaner (2005)), uniformly for t ∈ �T ,

∞∑
i=1

P
(

Yie
−r(τi+Di) I{τi+Di≤t} > x, τi ≤ t

)
=

∞∑
i=1

˚

�t

P
(

Yie
−r(v+u+s) > x | θi = s, Di = u

)
P (τi−1 ∈ dv) Hθ (ds) H D (du)

∼
∞∑

i=1

˚

�t

G
(

xer(v+s+u)
)

P (τi−1 ∈ dv)ϕ (s, u) Hθ (ds) H D (du)

=
tˆ

0−

t−uˆ

0−
G

(
xer(s+u)

)
ϕ (s, u) Hθ (ds) H D (du)

+
˚

�t

G
(

xer(v+s+u)
)

P (τi−1 ∈ dv)ϕ (s, u) Hθ (ds) H D (du)

=
tˆ

0−

t−uˆ

0−

⎛⎝G
(

xer(s+u)
)

+
t−u−sˆ

0−
G

(
xer(v+s+u)

)
λv

⎞⎠ϕ (s, u) Hθ (ds) H D (du)

:=
tˆ

0−

t−uˆ

0−
G

(
xer(s+u)

)
dλ̂s,u H D (du) ,

(A.40)

where �t = {v, u, s ∈ [0, t] : v + u + s ≤ t} and λ̂s,u = ´ s
0− (1 + λs−s∗ )ϕ (s∗, u) Hθ (ds∗). Plugging (A.39) and (A.40) into (A.38), we have, 

uniformly for t ∈ �T ,
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I11 ∼ φ(x, t, β). (A.41)

For I12, by Assumption 2.1 in the second step,

I12 =
∞∑

n=M+1

n∑
i=1

(
P
(

Xie
−rτi > x, Nt = n

) + P
(

Yie
−r(τi+Di) I{τi+Di≤t} > x, Nt = n

)
· I{β>0}

)

≤
∞∑

n=M+1

n∑
i=1

⎛⎝ tˆ

0−
P
(

Xie
−rθi > x | θi = s

)
P (Nt−s = n − 1) Hθ (ds)

+
tˆ

0−

t−uˆ

0−
P
(

Yie
−r(θi+Di) > x | θi = s, Di = u

)
P (Nt−s = n − 1) Hθ (ds)H D (du) · I{β>0}

⎞⎠
∼

∞∑
n=M+1

n

⎛⎝ tˆ

0−
F

(
xers)P (Nt−s = n − 1)h(s)Hθ (ds)

+
tˆ

0−

t−uˆ

0−
G

(
xer(s+u)

)
P (Nt−s = n − 1)ϕ (s, u) Hθ (ds)H D (du) · I{β>0}

⎞⎠
≤E (NT + 1) I{NT ≥M}

⎛⎝ tˆ

0−
F

(
xers)h(s)Hθ (ds) +

tˆ

0−

t−uˆ

0−
G

(
xer(s+u)

)
ϕ (s, u) Hθ (ds)H D (du) · I{β>0}

⎞⎠ .

Note that E (NT + 1) I{NT ≥M} → 0 as M → ∞ (see e.g. Stein (1946)). For every δ > 0, we can find some large positive integer M such that, 
uniformly for t ∈ �T ,

I12 � δφ(x, t, β). (A.42)

Next, we turn to I2. By Lemma A.3 in the third step, for every ε > 0, there exists some constant K such that, uniformly for t ∈ �T ,

I2 =
∞∑

n=M+1

P

(
n∑

i=1

(
Xie

−rτi + Yie
−r(τi+Di) I{τi+Di≤t}

)
> x, Nt = n

)

≤
∞∑

n=M+1

P

(
n∑

i=1

(
Xie

−rθi + Yie
−r(θi+Di) I{θi+Di≤t}

)
> x, τn ≤ t

)

≤
∞∑

n=M+1

K (1 + ε)n
(

P
(

X1e−rθ1 > x, τn ≤ t
) + P

(
Y1e−r(θ1+D1) I{θ1+D1≤t} > x, τn ≤ t

)
· I{β>0}

)

∼
∞∑

n=M+1

K (1 + ε)n

⎛⎝ tˆ

0−
F (xers)P (Nt−s ≥ n − 1)h(s)Hθ (ds)

+
tˆ

0−

t−uˆ

0−
G(xer(s+u))P (Nt−s ≥ n − 1)ϕ(s, u)Hθ (ds)H D(du)

⎞⎠
≤

∞∑
n=M

K (1 + ε)n+1P (NT ≥ n)

⎛⎝ tˆ

0−
F (xers)h(s)Hθ (ds) +

tˆ

0−

t−uˆ

0−
G(xer(s+u))ϕ(s, u)Hθ (ds)H D(du)

⎞⎠ ,

where in the fourth step we used Assumption 2.1. By Theorem 1 of Kočetova et al. (2009), 
∑∞

n=M(1 + ε)n+1P (NT ≥ n) → 0 as M → ∞. 
Thus, for every δ′ > 0, we can find some large positive integer M such that, uniformly for t ∈ �T ,

I2 � δ′φ(x, t, β). (A.43)

A combination of (A.36), (A.37) and (A.41)-(A.43) gives that, uniformly for all t ∈ �T ,

(1 − δ)φ(x, t, β) � P

(
Nt∑

i=1

Xie
−rτi +

Nt∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x

)
� (1 + δ′)φ(x, t, β).

Noting the arbitrariness of δ and δ′ , we complete the proof. �
The following lemma is used to verify relation (2.4) such that Theorem 2.1 is applicable in Example 3.1.
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Lemma A.5. Assume that (X, Y , θ, D) fulfills Assumption 2.1 and relation (2.7). If F , G ∈L ∩D and F (x) 
 G(x), relation (2.4) is satisfied for positive 
bounded measurable functions g1(x), g2(x, y) ∈ [a, b] for 0 < a < b < ∞.

Proof. According to the value of Y g2(θ, D) belonging to (0, l(x)], (x − l(x), ∞) and (l(x), x − l(x)] for some function l(x) ∈H(F , G), we split 
the following probability into three parts as

P (X g1(θ) + Y g2(θ, D) > x | θ = s, D = u) := I1 + I2 + I3, (A.44)

where

I1 =P (X g1(θ) + Y g2(θ, D) > x,0 < Y g2(θ, D) ≤ l(x) | θ = s, D = u) ,

I2 =P (X g1(θ) + Y g2(θ, D) > x, Y g2(θ, D) > x − l(x) | θ = s, D = u) ,

I3 =P (X g1(θ) + Y g2(θ, D) > x, l(x) < Y g2(θ, D) ≤ x − l(x) | θ = s, D = u) .

By Assumption 2.1 and the fact that F , G ∈ L,

I1 ≤ P (X g1(s) > x − l(x) | θ = s) ∼ h(s)P (X g1(s) > x) ∼ P (X g1(s) > x | θ = s) (A.45)

and

I2 � P (Y g2(s, u) > x | θ = s, D = u) (A.46)

uniformly for s, u ∈ �T . For I3,

I3 ≤P (X g1(s) > l(x), Y g2(s, u) > l(x), X g1(s) + Y g2(s, u) > x | θ = s, D = u)

≤P (X g1(s) > l(x), Y g2(s, u) > x/2 | θ = s, D = u) + P (X g1(s) > x/2, Y g2(s, u) > l(x) | θ = s, D = u)

≤P (X g1(s) > l(x) | Y g2(s, u) > x/2, θ = s, D = u)P (Y g2(s, u) > x/2 | θ = s, D = u)

+ P (Y g2(s, u) > l(x) | X g1(s) > x/2, θ = s, D = u)P (X g1(s) > x/2 | θ = s) .

Applying relation (2.7), Assumption 2.1 and the fact that F , G ∈ D in the above inequality, we have

I3 = o(P (X g1(s) > x | θ = s) + P (Y g2(s, u) > x | θ = s, D = u)) (A.47)

holds uniformly for s, u ∈ �T . Plugging (A.45)–(A.47) into (A.44), we know that

lim sup
x→∞

sup
s,u∈�T

P (X g1(θ) + Y g2(θ, D) > x | θ = s, D = u)

P (X g1(s) > x | θ = s) + P (Y g2(s, u) > x | θ = s, D = u)
≤ 1.

On the other hand,

P (X g1(s) + Y g2(s, u) > x | θ = s, D = u)

=P (X g1(s) > x | θ = s) + P (Y g2(s, u) > x | θ = s, D = u)

− P (X g1(s) > x, Y g2(s, u) > x | θ = s, D = u) .

By (2.7), we have

P (X g1(s) > x, Y g2(s, u) > x | θ = s, D = u)

≤P (X g1(s) > x | Y g2(s, u) > x, θ = s, D = u)P (Y g2(s, u) > x | θ = s, D = u)

=o(P (X g1(s) > x | θ = s) + P (Y g2(s, u) > x | θ = s, D = u))

holds uniformly for s, u ∈ �T . Thus,

lim inf
x→∞ inf

s,u∈�T

P (X g1(θ) + Y g2(θ, D) > x | θ = s, D = u)

P (X g1(s) > x | θ = s) + P (Y g2(s, u) > x | θ = s, D = u)
≥ 1.

This completes the proof. �
A.2. Proof of main results

After the preliminaries above, we are now in the position to prove our main results.
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Proof of Theorem 2.1. For the asymptotic upper bound, we have

ψ(x, t) =P

(
inf

0≤s≤t
U (s) < 0

∣∣∣∣U (0) = x

)
=P

(
inf

0≤s≤t
e−rsU (s) < 0

∣∣∣∣U (0) = x

)

≤P

(
Nt∑

i=1

Xie
−rτi +

Nt∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x

)

∼
tˆ

0−
F

(
xers) dλ̃s +

tˆ

0−

t−u∗ˆ

0−
G

(
xer

(
s+u∗))

dλ̂s,u∗ H D
(
du∗) · I{β>0},

where in the last step we used Lemma A.4 and β = lim sup
G(x)

F (x)
. On the other hand, recall that C(t) is non-negative and independent 

of the other sources of randomness. By conditioning on 
´ T

0 e−rsC(ds), the dominated convergence argument and Lemma A.4, it holds 
uniformly for t ∈ �T that

ψ(x, t) ≥P

⎛⎝ Nt∑
i=1

Xie
−rτi +

Nt∑
i=1

Yie
−r(τi+Di) I{τi+Di≤t} > x +

Tˆ

0

e−rsC(ds)

⎞⎠
∼

tˆ

0−
P

⎛⎝Xe−rs −
Tˆ

0

e−rzC(dz) > x

⎞⎠dλ̃s

+
tˆ

0−

t−u∗ˆ

0−
P

⎛⎝Y e−r
(
s+u∗)

−
Tˆ

0

e−rzC(dz) > x

⎞⎠dλ̂s,u∗ H D
(
du∗) · I{β>0}

∼
tˆ

0−
F

(
xers)dλ̃s +

tˆ

0−

t−u∗ˆ

0−
G

(
xer

(
s+u∗))

dλ̂s,u∗ H D
(
du∗) · I{β>0},

where in the last step we used the assumption that P 
(´ t

0 e−rsC(ds) > x
)

= o 
(

F (x/a)
)

for any fixed t, r > 0 and some a > 0, and Lemma 
3.2 of Li (2017). Combining the above two estimates, we complete the proof. �
Proof of Corollary 2.1. We apply the idea of the deduction of Lemma 3.3 in Yang et al. (2018). Without loss of generality we can assume 
that g1, g2 ∈ [a, b] for some 0 < a < b < ∞. For any 0 < v < 1, by the fact that F ∈ C ⊂D,

P(g1(θ)X + g2(θ, D)Y > x | θ = s, D = u)

P(g1(θ)X > x | θ = s)

=P(g1(θ)X + g2(θ, D)Y > x, g2(θ, D)Y > vx | θ = s, D = u)

P(g1(θ)X > x | θ = s)

+ P(g1(θ)X + g2(θ, D)Y > x, g2(θ, D)Y ≤ vx | θ = s, D = u)

P(g1(θ)X > x | θ = s)

≤P(g2(θ, D)Y > vx | θ = s, D = u)

P(g1(θ)X > x | θ = s)
+ P(g1(θ)X > (1 − v)x | θ = s)

P(g1(θ)X > x | θ = s)

:=I1 + I2.

By Assumption 2.1 and the fact that G(x) = o 
(

F (x)
)

and F ∈ C ⊂D, for any 0 < v < 1,

lim sup
x→∞

sup
s,u∈�T

I1

≤ lim sup
x→∞

sup
s,u∈�T

P(bY > vx | θ = s, D = u)

P(b X > vx | θ = s)

P(b X > vx | θ = s)

P(aX > x | θ = s)

≤ lim sup
x→∞

sup
s,u∈�T

ϕ(s, u)G(vx/b)

h(s)F (vx/b)

F (vx/b)

F (x/a)
= 0.

(A.48)

By Assumption 2.1 and the fact that F ∈ C ,

lim sup lim sup
x→∞

sup I2 = 1. (A.49)

v↓0 s,u∈�T
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Combining (A.48) and (A.49) leads to

lim sup
v↓0

lim sup
x→∞

sup
s,u∈�T

P(g1(θ)X + g2(θ, D)Y > x | θ = s, D = u)

P(g1(θ)X > x)h(s)
≤ 1.

Note that

P(g1(θ)X + g2(θ, D)Y > x | θ = s, D = u) ≥ P(g1(θ)X > x | θ = s)

holds uniformly for s, u ∈ �T . We have

P(g1(θ)X + g2(θ, D)Y > x | θ = s, D = u) ∼ P(g1(θ)X > x | θ = s) (A.50)

holds uniformly for s, u ∈ �T . Relation (A.50) can be seen as a special form of (2.4). Thus, it follows from (ii) of Theorem 2.1 that (2.6)
holds uniformly for t ∈ �T . This completes the proof. �
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