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We study a general risk measure called the generalized shortfall risk measure, which was first introduced 
in Mao and Cai (2018). It is proposed under the rank-dependent expected utility framework, or 
equivalently induced from the cumulative prospect theory. This risk measure can be flexibly designed 
to capture the decision maker’s behavior toward risks and wealth when measuring risk. In this paper, 
we derive the first- and second-order asymptotic expansions for the generalized shortfall risk measure. 
Our asymptotic results can be viewed as unifying theory for, among others, distortion risk measures and 
utility-based shortfall risk measures. They also provide a blueprint for the estimation of these measures 
at extreme levels, and we illustrate this principle by constructing and studying a quantile-based estimator 
in a special case. The accuracy of the asymptotic expansions and of the estimator is assessed on several 
numerical examples.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study extreme value properties of a general risk measure, called the generalized shortfall risk measure and defined as 
follows. Let u1, u2 be (strictly) increasing functions on R+ with u1(0) = u2(0) = 0, and h1 and h2 be two distortion functions on [0, 1], 
supposed to be right-continuous and increasing throughout, such that hi(0) = 0 and hi(1) = 1 with no jumps at 0 and 1. For a random 
variable X with distribution function F , the generalized shortfall risk measure, denoted by xτ = xτ (X, u1, h1, u2, h2), is defined as the 
solution to the following equation:

τ Hu1,h1((X − x)+) = (1 − τ )Hu2,h2((X − x)−), (1.1)

where Hu1,h1((X − x)+) =
∞∫

x

u1(y − x)dh1(F (y)),

and Hu2,h2((X − x)−) =
x∫

−∞
u2(x − y)dh2(F (y)).

This problem is written under the appropriate regularity and integrability assumptions making both sides in (1.1) finite and ensuring that 
the solution is indeed unique; see Section 3 below for a discussion. The generalized shortfall risk measure was first introduced in Mao and 
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Cai (2018) as an extension of the generalized quantile risk measure. The quantile of random variable X , or generalized (left-continuous) 
inverse function at level τ ∈ (0, 1), or Value-at-Risk (VaR), is defined as F ←(τ ) = inf{x ∈ R, F (x) � τ }. It is well known that F ←(τ ) can 
also be represented as

F ←(τ ) = arg min
x∈R

{τE[(X − x)+] + (1 − τ )E[(X − x)−]} ,

where x+ = max{x, 0} and x− = max{−x, 0} = − min{x, 0}, provided E|X | < ∞. By transforming the shortfall risk (X − x)+ to φ1((X − x)+)

and the (in the terminology of Mao and Cai, 2018) over-required capital risk (X − x)− to φ2((X − x)−), where φ1, φ2 are increasing convex 
functions, the generalized quantile was proposed in Bellini et al. (2014) as

arg min
x∈R

{τE[φ1((X − x)+)] + (1 − τ )E[φ2((X − x)−)]} . (1.2)

When φ1(x) = φ2(x) = x2, the generalized quantile (1.2) reduces to the well-known expectile, which was proposed in Newey and Powell 
(1987). Since both the shortfall risk and over-required capital risk are evaluated under the original probability measure, the generalized 
quantile is defined in the sense of the classical expected utility. Mao and Cai (2018) further generalized it by using the rank-dependent 
expected utility (RDEU) to evaluate risks and wealth (see e.g. Quiggin, 1993). To be more specific, letting φ1 and φ2 be two nondegenerate 
increasing convex functions on [0, ∞), the so-called generalized quantile based on RDEU theory is defined as

arg min
x∈R

{
τHφ1,h1((X − x)+) + (1 − τ )Hφ2,h2((X − x)−)

}
. (1.3)

In Mao and Cai (2018), Proposition 2.2 (ii) shows that if u1(x) = φ′
1(x) and u2(x) = φ′

2(x), then the generalized quantile based on RDEU 
theory defined in (1.3) coincides with the generalized shortfall risk measure in (1.1). This shows that besides the utility functions that 
can be selected, the generalized shortfall risk measure allows decision makers to choose the appropriate distorted probability measure to 
describe their behavior towards risks and wealth. This brings great flexibility in measuring the risk.

Further, Theorem 3.1 of Mao and Cai (2018) showed that the generalized shortfall risk measure is equivalent to the so-called generalized 
shortfall induced by cumulative prospect theory (CPT) defined in (1.4) below when v , h1 and h2 are chosen properly. CPT was proposed 
by Tversky and Kahneman (1992) and has been applied in various areas such as portfolio selection and pricing insurance contracts; see 
e.g. Schmidt and Zank (2007), Kaluszka and Krzeszowiec (2012a), Kaluszka and Krzeszowiec (2012b) and Jin and Zhou (2013). For an 
increasing continuous function v on R, the generalized shortfall induced by CPT is defined as

inf{x ∈R, H v,h1,h2(X − x) � 0}, (1.4)

where

H v,h1,h2(X) =
0∫

−∞
v(y)dh1(F (y)) +

∞∫
0

v(y)dh2(F (y)).

The generalized shortfall risk measure understood in the form of (1.4) contains utility-based shortfall risk measures (Föllmer and Schied, 
2016) as special cases.

The study of tail risks and their disastrous consequences in finance has attracted substantial attention and many empirical studies 
have shown that asset returns in finance and large losses in insurance exhibit heavy tails: see, for example, Loretan and Phillips (1994), 
Gabaix et al. (2003), and Gabaix (2009). Moreover, regulators such as Basel III have recommended to estimate VaR with a confidence level 
very close to 1. In the same spirit, we are interested in the behavior of the generalized shortfall risk measure for heavy-tailed risks when 
the confidence level τ is close to 1. However, since the generalized shortfall risk measure extends in particular the expectile, for which 
no closed form is available in general, no simple explicit expression of xτ is available, which makes the study of the risk measure for 
heavy-tailed risks difficult. Asymptotic expansions of risk measures, in terms of the quantile of the random variable of interest (viewed 
as a well-understood risk measure), provide an intuitive way to study extreme risk measures for heavy-tailed risks; see for example, the 
asymptotic expansions of the Haezendonck–Goovaerts risk measure in Tang and Yang (2012) and Mao and Hu (2012), the conditional 
tail expectation in Hua and Joe (2011) and Hua and Joe (2014), the expectiles in Bellini et al. (2014) and Mao et al. (2015), the risk 
concentration based on expectiles in Mao and Yang (2015).

It is precisely the objective of this paper to study the first- and second-order asymptotic expansions of xτ for a heavy-tailed random 
variable X as the confidence level τ converges to 1. From the technical point of view, the methodology used in this paper to derive the 
expansions is very general, in the sense that it can be applied to derive the asymptotic expansions of other quantile-based risk measures. 
A potential statistical benefit of such results is that, while the lack of a simple explicit expression of xτ makes the estimation and practical 
use of xτ difficult, an asymptotic expansion in terms of extreme quantiles is helpful in studying the asymptotic behavior of simple plug-in 
estimators of xτ at extreme levels (see the so-called indirect estimator of Daouia et al., 2018). Such expansions also allow to quantify bias 
terms and are fundamental in the derivation of asymptotic normality results for estimators at extreme levels. This estimation approach 
of an extreme risk measure has been adopted for, among others, the estimation of the marginal expected shortfall in Cai et al. (2015), 
expectiles in Daouia et al. (2018), M-quantiles in Daouia et al. (2019) and the Haezendonck–Goovaerts risk measure in Zhao et al. (2021). 
We illustrate that in this article by studying the asymptotic properties of an estimator of xτ (with τ = τn ↑ 1 as the size n of the available 
sample of data tends to infinity) based on extreme quantiles of a distorted version of the underlying distribution. Our high-level result 
may be valid even when serial dependence is present in the data, as long as the observations come from a strictly stationary sequence.

The rest of the paper is organized as follows. Section 2 provides necessary technical background on regular variation. In Sections 3
and 4, we derive the first- and second-order expansions of the generalized shortfall risk measure, respectively. Section 5 discusses the 
estimation of the generalized shortfall risk measure at extreme levels. In Section 6, we give a couple of examples where our theory applies 
and we discuss a small-scale simulation study illustrating the performance of our estimator. All the proofs are relegated to Section 7.
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2. Regular variation

We start by introducing regular variation conditions that will be the backbone of our model on risk variables.

Definition 2.1. An eventually nonnegative measurable function f (·) is said to be regularly varying at ∞ with index α ∈R, if for all x > 0,

lim
t→∞

f (tx)

f (t)
= xα. (2.1)

We write f (·) ∈ RVα .

For a random variable X with distribution function F , we say that X is regularly varying with extreme value index γ > 0 if its survival 
function F = 1 − F is regularly varying with index −1/γ . This is also denoted by X ∈ RV−1/γ .

For a distribution function F , its (left-continuous inverse) quantile function is defined as F ←(p) = inf{x ∈ R : F (x) � p} for p ∈ (0, 1). 
The tail quantile function U (·) of F is defined as

U (t) =
(

1

F

)←
(t) = F ←

(
1 − 1

t

)
, t > 1.

The RV definition of a survival function F = 1 − F can be equivalently presented in terms of the tail quantile function U by requiring that 
U ∈ RVγ , that is,

∀x > 0, lim
t→∞

U (tx)

U (t)
= xγ .

This assumption connects tail quantiles to arbitrarily extreme quantiles further away in the right tail through the approximation F ←(p′) ≈
[(1 − p′)/(1 − p)]−γ F ←(p), for 0 < p < p′ < 1 both close to 1.

In practice it is necessary to quantify the bias incurred through the use of this approximation. This is typically done thanks to a 
second-order regular variation condition, itself most easily written using the concept of extended regular variation, which we recall below.

Definition 2.2. A measurable function f (·) on (0, ∞) is said to be extended regularly varying at ∞, with an index γ ∈R and an auxiliary 
function a(·) having constant sign, if for all x > 0,

lim
t→∞

f (tx) − f (t)

a(t)
= xγ − 1

γ
. (2.2)

When γ = 0, the limit (xγ − 1)/γ is understood as log x. Denote this by f (·) ∈ ERVγ .

Compared to the definition of extended regular variation in Section B.2 of de Haan and Ferreira (2006), we absorb the potential 
multiplicative constant appearing in the right-hand side into the function a. This results in a simpler limit, but the auxiliary function is 
allowed to be negative.

This allows us to introduce second-order regular variation as a special case of extended regular variation through the following defini-
tion.

Definition 2.3. A regularly varying function f (·) is said to be second-order regularly varying at ∞ with first-order index γ ∈R and second-
order index ρ � 0, if there exists a measurable function A(·), which does not change sign eventually and converges to 0, such that 
t �→ t−γ f (t) ∈ ERVρ with auxiliary function a : t �→ t−γ f (t)A(t). In other words,

lim
t→∞

f (tx)/ f (t) − xγ

A(t)
= xγ xρ − 1

ρ
=: Jγ ,ρ(x). (2.3)

When ρ = 0, Jγ ,ρ(x) is understood as xγ log x. We write f (·) ∈ 2RVγ ,ρ and A is called (second-order) auxiliary function.

It is worth noting that each of the convergences in (2.1), (2.2) and (2.3) is uniform with respect to x in any compact subset of (0, ∞): 
see, for example, Theorem B.1.4 and Theorem B.2.9 of de Haan and Ferreira (2006). In our specific context of heavy-tailed distributions, 
Theorem 2.3.9 of de Haan and Ferreira (2006) shows that for γ > 0 and ρ � 0, U (·) ∈ 2RVγ ,ρ with an auxiliary function A(·) if and only 
if F (·) ∈ 2RV−1/γ ,ρ/γ with an auxiliary function A(1/F (·)). In this case necessarily A(·) ∈ RVρ .

Lastly, we present two useful expansions of a 2RV function and its inverse function, when the second-order parameter is negative; see 
the proof of Lemma 3 in Hua and Joe (2011) for Lemma 2.1 (i) and Proposition 2.5 of Mao and Hu (2012) for Lemma 2.1 (ii).

Lemma 2.1. Let γ ∈R, ρ < 0 and A be a measurable function having constant sign.

(i) Then h ∈ 2RVγ ,ρ with auxiliary function A(·) if and only if there exists a constant c > 0 such that

h(t) = ctγ
[

1 + 1
A(t) + o(A(t))

]
, t → ∞.
ρ
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(ii) Then, when γ > 0 and with the notation of (i), h← has the following representation:

h←(t) = c−1/γ t1/γ

[
1 − 1

γρ
A(h←(t)) + o(A(h←(t)))

]
, t → ∞.

In particular h← ∈ 2RV1/γ ,ρ/γ .

3. First-order expansions of generalized shortfall risk measures

In this section, we study the first-order asymptotics of generalized shortfall risk measures. All the proofs are relegated to Section 7.
The first key observation is that, in the heavy-tailed setting, the risk measure xτ is an increasing function of τ and diverges to +∞. 

Along with mild conditions for existence and uniqueness of xτ as a solution of (1.1), this is the essential message of the following result, 
in which we say that a random variable X is nondegenerate if it is not constant.

Proposition 3.1. Let x� = inf{x ∈R, F (x) > 0} and x� = inf{x ∈R, F (x) � 1} denote the left and right endpoints of X, assumed to be a nondegenerate 
random variable, so that x� < x� .

(i) If the quantities Hu1,h1((X − x)+) and Hu2,h2((X − x)−) define continuous finite functions of x ∈ (x�, x�) then, for any τ ∈ (0, 1), Equation (1.1)
has a unique and finite solution xτ .

(ii) If the quantities Hu1,h1 ((X − x)+) and Hu2,h2 ((X − x)−) are finite when x ∈ (x�, x�) and Equation (1.1) has a unique and finite solution xτ , then 
xτ < x� when τ < 1, τ ∈ (0, 1) �→ xτ ∈R is nondecreasing, and limτ↑1 xτ = x� .

(iii) Suppose that:
• F ∈ RV−1/γ with γ > 0,
• u1 is continuous on [0, ∞) and u1 ∈ RVα1 with α1 > 0,
• 1 − h1(1 − 1/·) ∈ RV−β1 with β1 > 0,
• u2 is continuous on [0, ∞) and u2 ∈ RVα2 with α2 > 0.
Assume further that β1/γ > α1 and 

∫ ∞
−∞ |z|α2+δ dh2(F (z)) < ∞ for some δ > 0. Then xτ exists and is unique for any τ ∈ (0, 1), τ ∈ (0, 1) �→

xτ ∈R is nondecreasing, and limτ↑1 xτ = +∞.

Remark 3.1. Under the regular variation conditions in (iii) above, β1/γ � α1 is a necessary condition for the existence of Hu1,h1((X − x)+). 
Indeed

Hu1,h1((X − x)+) = −
∞∫

z=0

u1(z)d(1 − h1(1 − 1/(1/F (x + z)))).

Since u1 ∈ RVα1 and 1 − h1(1 − 1/(1/F (x + ·))) ∈ RV−β1/γ , it follows that Hu1,h1 ((X − x)+) can only be finite if α1 − β1/γ � 0, that is, 
β1/γ � α1.

Besides, the assumption that 
∫ ∞
−∞ |z|α2+δ dh2(F (z)) < ∞ is required to control the left tail behavior of the function F . An inspection of 

the proof of Lemma 3.1(ii) reveals that this assumption can be weakened to 
∫ ∞
−∞ |z|α2 dh2(F (z)) < ∞ if u2(y) is asymptotically equivalent 

to a multiple of yα2 as y → ∞. For u2(y) = y and h2(x) = x, we find the condition E(|X |) < ∞, which is exactly the condition necessary 
and sufficient for the existence of expectiles.

In the remainder of this paper we implicitly assume that the problem of which xτ is solution is indeed well-defined and has a unique 
finite solution; by Proposition 3.1, if appropriate regular variation conditions on the functions involved are met, this will be guaranteed 
by simply assuming that u1 and u2 are continuous on [0, ∞). We proceed by deriving, under this regularity assumption, the asymptotic 
expansions of each side of (1.1), as x → ∞.

Lemma 3.1. Assume that F ∈ RV−1/γ with γ > 0 and denote by B(·, ·) the Beta function, that is, B(a, b) = ∫ 1
0 za−1(1 − z)b−1 dz for any a, b > 0.

(i) Assume u1 ∈ RVα1 for α1 > 0, 1 − h1(1 − 1/·) ∈ RV−β1 with β1 > 0, and β1/γ > α1 . Then

lim
x→∞

Hu1,h1((X − x)+)

(1 − h1(F (x))) u1(x)
= β1

γ
B(β1/γ − α1,α1 + 1) =: 
0.

(ii) Assume u2 ∈ RVα2 with α2 > 0, and 
∫ ∞
−∞ |z|α2+δ dh2(F (z)) < ∞ for some δ > 0. Then

lim
x→∞

Hu2,h2((X − x)−)

u2(x)
= 1.

We are now in position to state the first-order asymptotic expansion of the generalized shortfall risk measure.

Theorem 3.1. Assume that u1 ∈ RVα1 with α1 > 0, 1 − h1(1 − 1/·) ∈ RV−β1 with β1 > 0, u2 ∈ RVα2 with α2 > 0, F ∈ RV−1/γ with γ > 0. Define a 
function ϕ as

ϕ(x) = u2(x)
.

u1(x)(1 − h1(F (x)))
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Then ϕ ∈ RVs , with s = α2 − α1 + β1/γ . Assume henceforth that s > 0. Then ϕ(x) diverges to +∞ as x → +∞ and its generalized inverse function

ϕ← : q �→ inf{x : ϕ(x) � q}, q ∈ (0,1) (3.1)

is well-defined. Further assume that β1/γ > α1 and 
∫ ∞
−∞ |z|α2+δ dh2(F (z)) < ∞ for some δ > 0. Then the first-order expansion of the shortfall risk 

measure is

xτ =
[

β1

γ
B(β1/γ − α1,α1 + 1)

]1/s

ϕ←((1 − τ )−1)(1 + o(1)) = 
1ϕ
←((1 − τ )−1)(1 + o(1)).

[In other words, 
1 = 

1/s
0 , with 
0 defined in Lemma 3.1(i).]

Remark 3.2. When u1 = u2 and h1(x) = x, the function ϕ← is nothing but the tail quantile function U . In this case Theorem 3.1 directly 
connects xτ to extreme quantiles of X . This is reminiscent of the kind of asymptotic proportionality relationships obtained for L p -quantiles, 
see e.g. Daouia et al. (2019).

4. Second-order expansions of generalized shortfall risk measures

In this section, we study the second-order asymptotics of generalized shortfall risk measures. Again, all the proofs are relegated to 
Section 7. We first prepare a few assumptions and lemmas. The first lemma is regarding a set of uniform inequalities for 2RV functions. It 
plays a key role in the later proofs. Moreover, it is also an interesting result on its own as it is a complement to the usual inequalities on 
2RV by providing uniform inequalities in a neighborhood of 0.

Lemma 4.1. Assume that g ∈ 2RVγ ,ρ , with γ > 0, ρ < 0 and auxiliary function B, is such that t−γ g(t) is bounded on intervals of the form (0, t0], 
with t0 > 0. There exists ̃B ∼ B such that for any ε > 0 and δ > 0, there exists c > 0 and t0 such that for all t � t0 and 0 < v < δ,∣∣∣∣∣

g(vt)
g(t) − vγ

B̃(t)

∣∣∣∣∣ � − vγ

ρ
(1 + cvρ−ε).

[A fixed choice of c > 0 is possible for δ ∈ (0, 1).]

We next present the second-order conditions about U , u1, u2 and h1 that we require to obtain the second-order asymptotics of xτ .

Assumption 4.1. U ∈ 2RVγ ,ρ for γ > 0 and ρ < 0 with auxiliary function A(t).

Assumption 4.2. For i = 1, 2, ui ∈ 2RVαi ,ηi for αi > 0 and ηi < 0 with auxiliary function Bi(t), and t−αi ui(t) is bounded on intervals of the 
form (0, t0], for t0 > 0.

Assumption 4.3. 1 − h1(1 − 1/·) ∈ 2RV−β1,ς for β1 > 0 and ς < 0 with auxiliary function C(t), and 1 − h2(1 − 1/·) ∈ RV−β2 for β2 > 0.

Under Assumptions 4.1, 4.2, and 4.3, by Lemma 2.1, and Propositions 2.6 and 2.9 in Lv et al. (2012), we immediately obtain the 
following useful results.

Lemma 4.2. Under Assumptions 4.1, 4.2, and 4.3,

(i) U has the representation, as x → ∞,

U (x) = cxγ

[
1 + 1

ρ
A(x) + o(A(x))

]
, where c > 0.

Consequently, F (·) ∈ 2RV−1/γ ,ρ/γ with auxiliary function A F (t) = γ −2 A(1/F (t)), and F (·) has the representation, as x → ∞,

F (x) = c1/γ x−1/γ

[
1 + 1

γρ
A(1/F (x)) + o(A(1/F (x)))

]
.

(ii) For i = 1, 2, ui has the representation, as x → ∞,

ui(x) = ai x
αi

[
1 + 1

ηi
Bi(x) + o(Bi(x))

]
, where ai > 0.

(iii) 1 − h1(1 − 1/·) has the representation, as x → ∞,

1 − h1

(
1 − 1

)
= bx−β1

[
1 + 1

C(x) + o(C(x))

]
, where b > 0.
x ς
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(iv) 1 − h1(F (·)) has the representation, as x → ∞,

1 − h1(F (x)) = bcβ1/γ x−β1/γ

[
1 + β1

γρ
A(1/F (x))(1 + o(1)) + 1

ς
C(1/F (x))(1 + o(1))

]
.

In particular, if C(x)/A(x) → κ ∈ [−∞, +∞] as x → ∞ with κ 
= −β1/γ , then Ah(·) = γ −1((β1/γ )A(1/F (·)) + C(1/F (·))) is nonzero and 
has constant sign in a neighborhood of infinity, |Ah(·)| is regularly varying with index ρh = max {ρ,ς}/γ , and 1 − h1(F (·)) ∈ 2RV−β1/γ ,ρh for 
ρh = max {ρ,ς}/γ with auxiliary function Ah.

(v) 1 − h2(F (·)) ∈ RV−β2/γ .

Remark 4.1. Condition C(x)/A(x) → κ ∈ [−∞, +∞] as x → ∞ with κ 
= −β1/γ in Lemma 4.2(iv) is very mild. It is in particular satisfied 
as soon as ρ 
= ς , corresponding to the case when either A or C dominates in Ah . When ρ = ς , in typical second-order regularly varying 
models A and C will be proportional to the same negative power function t �→ tρ , and the condition simply says that the proportionality 
constants should not cancel in the calculation of Ah . If this condition is not satisfied, then 1 −h1(F (·)) would typically still be second-order 
regularly varying, but the second-order parameter and auxiliary function would depend on the third-order regular variation properties of 
F and 1 − h1(1 − 1/·).

The next lemma analyzes the second-order regular variation properties of the left-continuous inverse function ϕ← defined in (3.1) and 
its connection with extreme quantiles of the distribution function F . It will be used in the proof of the main result of this section.

Lemma 4.3. Under Assumptions 4.1, 4.2, and 4.3, and if there is a regularly varying function D such that A(1/F (x))/D(x) → a ∈ R, Bi(x)/D(x) →
bi ∈R and C(x)/D(x) → κ ∈R as x → ∞, with b2/η2 − b1/η1 − (aβ1/γ + κ)/(γρh) 
= 0, we have, as τ → 1,

ϕ←((1 − τ )−1) = c∗(1 − τ )−1/s
(

1 − 1

s
A∗(ϕ←((1 − τ )−1))(1 + o(1))

)
where s = α2 − α1 + β1/γ as in Theorem 3.1, and c∗ =

(
a2

bcβ1/γ a1

)−1/s
and A∗(t) = 1

η2
B2(t) − 1

η1
B1(t) − 1

ρh
Ah(t) is regularly varying with index 

η∗ = max{η1, ρh, η2}, with the notation of Lemma 4.2. In particular, ϕ← ∈ 2RV1/s,η∗/s and

ϕ←((1 − τ )−1)

(F ←(τ ))1/(γ s)
= c0

(
1 − cη∗

0

s
A∗((F ←(τ ))1/(γ s))(1 + o(1)) − 1

γ sρ
A((1 − τ )−1)(1 + o(1))

)
where c0 = c∗c−1/(γ s) . In the specific setting when u1 = u2 , the condition linking A, the Bi , C and a, b1 , b2 and κ can be replaced by supposing that 
C(x)/A(x) → κ ∈ [−∞, +∞] as x → ∞ with κ 
= −β1/γ , in which case A∗ = − 1

ρh
Ah.

To derive the second-order asymptotic expansions for the generalized shortfall risk measure, we proceed by analyzing the two sides of 
(1.1) separately.

Lemma 4.4. Under Assumptions 4.1, 4.2, and 4.3, further assume that C(x)/A(x) → κ ∈ [−∞, +∞] as x → ∞ with κ 
= −β1/γ , as well as β1/γ >

α1 and α1 + η1 > 0. Then as x → ∞,

Hu1,h1((X − x)+)

(1 − h1(F (x))) u1(x)
= 
0 + �1 B1(x)(1 + o(1)) + �2 Ah(x)(1 + o(1))

with

�1 = β1

γ
× 1

η1
(B(β1/γ − α1 − η1,α1 + η1 + 1) − B(β1/γ − α1,α1 + 1))

and

�2 = 1

ρh

((
β1

γ
− ρh

)
B(β1/γ − α1 − ρh,α1 + 1) − β1

γ
B(β1/γ − α1,α1 + 1)

)
.

Now we turn to the right-hand side of (1.1).

Lemma 4.5. Assume that u2 is differentiable and u′
2 ∈ RVα2−1 is bounded on finite intervals of the form (0, t0] (t0 > 0), with either α2 > 1 or α2 = 1

and u′
2 nondecreasing, and F ∈ RV−1/γ with γ > 0. Suppose 

∫ ∞
−∞ |z|α2+δ dh2(F (z)) < ∞ for some δ > 0. Then as x → ∞,

Hu2,h2((X − x)−)

u2(x)
= 1 − (1 − h2(F (x))) − x−1(α2E[Z ] + o(1)),

where E[Z ] = ∫ ∞
−∞ z dh2(F (z)). [The random variable Z has distribution function h2(F (·)).]

Remark 4.2. In Lemma 4.5, the tail index α2 is restricted to be greater than 1. This is because if α2 < 1, then additional conditions 
are needed to ensure h2(F (·)) is regularly varying at 0. For simplicity, we omit this case. The assumption that u′

2 is bounded on finite 
intervals of the form (0, t0] essentially amounts to assuming that t �→ t−α2 u2(t) = L2(t) is smooth in a neighborhood of 0 and t �→ L2(t)/t
is bounded. It therefore intuitively represents a strengthened version of part of Assumption 4.2.
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Next, we present the second-order expansion of xτ in terms of ϕ←((1 − τ )−1), obtained essentially by combining Lemmas 4.4 and 4.5.

Theorem 4.1. Under Assumptions 4.1, 4.2, and 4.3, further assume that there is a regularly varying function D such that A(1/F (x))/D(x) → a ∈ R, 
Bi(x)/D(x) → bi ∈R and C(x)/D(x) → κ ∈R as x → ∞, with b2/η2 −b1/η1 − (aβ1/γ +κ)/(γρh) 
= 0. Suppose also that u2 is differentiable and 
u′

2 ∈ RVα2−1 is bounded on finite intervals of the form (0, t0], with either α2 > 1 or α2 = 1 and u′
2 nondecreasing. Suppose β1/γ > α1 , α1 + η1 > 0

and 
∫ ∞
−∞ |z|α2+δ dh2(F (z)) < ∞ for some δ > 0. We have, as τ → 1,

xτ


1ϕ←((1 − τ )−1)
− 1

= 1

s

(
�1



1−η1/s
0

B1(ϕ
←((1 − τ )−1))(1 + o(1)) + �2



1−ρh/s
0

Ah(ϕ
←((1 − τ )−1))(1 + o(1))

+ 

−β2/(γ s)
0 (1 − h2(F (ϕ←((1 − τ )−1))))(1 + o(1)) + α2


−1/s
0

ϕ←((1 − τ )−1)
(E[Z ] + o(1))

−(

η∗/s
0 − 1)A∗(ϕ←((1 − τ )−1))(1 + o(1)) − (1 − τ )(1 + o(1))

)
with the notation of the above lemmas.

Combining Lemma 4.3 and Theorem 4.1, we finally obtain the desired second-order expansion of xτ in terms of F ←(τ ).

Theorem 4.2. Under the conditions of Theorem 4.1, we have, as τ → 1 and with c0 as in Lemma 4.3,

xτ

c0
1(F ←(τ ))1/(γ s)
− 1

= 
2 B1((F ←(τ ))1/(γ s))(1 + o(1)) + 
3 Ah((F ←(τ ))1/(γ s))(1 + o(1))

+ 
4(1 − h2(F ((F ←(τ ))1/(γ s))))(1 + o(1)) + (F ←(τ ))−1/(γ s)(
5 + o(1))

− 
6 A∗((F ←(τ ))1/(γ s))(1 + o(1)) − 1

γ sρ
A((1 − τ )−1)(1 + o(1)) − 1

s
(1 − τ )(1 + o(1)),

with 
2 = s−1�1cη1
0 


η1/s−1
0 , 
3 = s−1�2cρh

0 

ρh/s−1
0 , 
4 = s−1c−β2/γ

0 

−β2/(γ s)
0 , 
5 = s−1c−1

0 α2E[Z ]
−1/s
0 , and 
6 = s−1cη∗

0 

η∗/s
0 .

Remark 4.3. The auxiliary function A(t) in (2.3) of Definition 2.3 is of course only unique up to asymptotic equivalence. Given a distribution 
function F or tail quantile function U of a random variable X , a reasonable choice of auxiliary function, readily computed, would be the 
function A0 in Theorem 2.3.9 of de Haan and Ferreira (2006), which guarantees a uniform kind of second-order regular variation. That 
being said, the asymptotic expansions in Theorems 4.1 and 4.2 hold true for any other choice of A asymptotically equivalent to this 
function A0, and similarly for the choices of B1, B2 and C .

Corollary 4.1. Under the conditions of Theorem 4.1, we have, as τ → 1,

xτ = 
1ϕ
←((1 − τ )−1)

(
1 + O ((1 − τ )1/max(s,1)) + O (1 − h2(F ((1 − τ )−1/s)))

+O (A((1 − τ )−1/(γ s))) + O (B1((1 − τ )−1/s)) + O (B2((1 − τ )−1/s)) + O (C((1 − τ )−1/(γ s)))
)
.

Remark 4.4. Theorems 4.1 and 4.2 and Corollary 4.1 also hold if either of the functions U , ui or 1 − hi(1 − 1/·) is a multiple of a pure 
power function, with corresponding conditions on the second-order parameter(s) dropped and the corresponding auxiliary function(s) 
involved taken identically equal to 0. Such examples are considered in Section 6 below. In Corollary 4.1, the first term O ((1 − τ )1/ max(s,1))

should in practice be understood as O (1 −τ ) + O (1/ϕ←((1 −τ )−1)); when u1 = u2, corresponding to the a priori reasonable setting in risk 
management when the (non-distorted) cost of a deviation of the predictor from below or above X is the same, then ϕ← is nothing but the 
tail quantile function of the (distorted) distribution function h1(F (·)). Terms proportional to the reciprocal of a tail quantile function are 
standard in asymptotic expansions of risk measures, see e.g. Daouia et al. (2018) and Daouia et al. (2019) in the expectile and Lp-quantile 
setting. In this case, note that, as in Lemma 4.3, the condition linking A, the Bi , C and a, b1, b2 and κ can be replaced by supposing that 
C(x)/A(x) → κ ∈ [−∞, +∞] as x → ∞ with κ 
= −β1/γ .

5. Estimation

Theorem 3.1 provides an asymptotic equivalent of the non-explicit shortfall risk measure xτ (at extreme levels) in terms of the gen-
eralized inverse of the function ϕ , which is obtained by simple operations on the functions u1, u2 and h1 chosen by the user, and the 
unknown distribution function F . An estimator of xτ at extreme levels can thus essentially be constructed by estimating the function F
at extreme levels and inverting the resulting estimated version of ϕ . Since the main statistical difficulty resides in the estimation of F , 
we illustrate this principle in the particular situation when u1 = u2 = u, and h1, h2 are continuous and strictly increasing functions with 
1 − h1(1 − 1/·) ∈ RV−1. This results in the simpler setting when ϕ(·) = 1/(1 − h1(F (·))), making it possible to avoid technicalities due to 
the (different) regular variation properties of u1, u2, h1 and h2, and contains not only the case when h1 = h2 is the identity function, 
for which ϕ← is nothing but the tail quantile function of X , but also the interesting case when 1 − h1(1 − 1/x) and 1 − h2(1 − 1/x) are 
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equivalent to a multiple of 1/x as x → ∞. The former situation contains the example of L p -quantiles and the latter encompasses the 
example of generalized expectiles, both of which will be considered in Section 6. The general case is of course handled in much the same 
way, at the price of further burdensome calculations.

When u1 = u2 = u is regularly varying with index α > 0 and h1 is such that 1 − h1(1 − 1/·) ∈ RV−1, Theorem 3.1 suggests that

xτ =
(

1

γ
B(1/γ − α,α + 1)

)γ

ϕ←((1 − τ )−1)(1 + o(1)) as τ ↑ 1.

Since ϕ(·) = 1/(1 − h1(F (·))), ϕ←((1 − τ )−1) is nothing but the quantile of level τ of the random variable having distribution function 
h1(F (·)), that is,

xτ =
(

1

γ
B(1/γ − α,α + 1)

)γ

F ←(h−1
1 (τ ))(1 + o(1))

=
(

γ

B(1/γ − α,α + 1)

)−γ

F ←(h−1
1 (τ ))(1 + o(1)) as τ ↑ 1.

Since h−1
1 (τ ) ↑ 1 as τ ↑ 1, the above identity shows that the problem of estimating xτ for τ large reduces to estimating γ and extreme 

quantiles of F .
Suppose then that X1, . . . , Xn is a sample of data from a distribution function F such that F (·) ∈ 2RV−1/γ ,ρ/γ . The data X1, . . . , Xn are 

allowed to be serially dependent. Let also τn ↑ 1 be an extreme level: typical interesting cases are those when n(1 − τn) is bounded in 
n, such as τn = 1 − 1/n. A standard way to estimate the extreme quantile qτn ≡ F ←(τn) is to use the estimator due to Weissman (1978), 
defined as

q̂τn ≡ q̂τn(kn) =
(

kn

n(1 − τn)

)γ̂n

Xn−kn,n

where (kn) is a sequence of integers tending to infinity, with kn/n → 0 and n(1 − τn)/kn → 0, X1,n � X2,n � · · · � Xn,n are the order 
statistics of the sample (X1, . . . , Xn) arranged in increasing order, and γ̂n is an estimator of the parameter γ . A reasonable choice of γ̂n is 
the estimator of Hill (1975):

γ̂n = 1

kn

kn∑
i=1

log Xn−i+1,n − log Xn−kn,n.

We may then define the following estimator of xτn :

x̂τn ≡ x̂τn (kn) =
(

1

γ̂n
B(1/γ̂n − α,α + 1)

)γ̂n

q̂h−1
1 (τn)

(kn)

=
(

kn

n(1 − h−1
1 (τn))

)γ̂n
{(

1

γ̂n
B(1/γ̂n − α,α + 1)

)γ̂n

Xn−kn,n

}
.

This is also a Weissman-type estimator of xτn . We have the following convergence result for ̂xτn .

Theorem 5.1. Assume that:

• U ∈ 2RVγ ,ρ for γ > 0 and ρ < 0 with auxiliary function A,
• u1 = u2 = u ∈ 2RVα,η for α > 0 and η < 0 with auxiliary function B, and t−αu(t) is bounded on intervals of the form (0, t0], for t0 > 0,
• u is differentiable and u′ ∈ RVα−1 is bounded on finite intervals of the form (0, t0], with either α > 1, or α = 1 and u′ nondecreasing,
• 1 − h1(1 − 1/·) ∈ 2RV−1,ς for ς < 0 with auxiliary function C.

Assume also that C(x)/A(x) → κ ∈ [−∞, +∞] as x → ∞ with κ 
= −1/γ , and that 1/γ > α, α + η > 0 and 
∫ ∞
−∞ |z|α+δ dh2(F (z)) < ∞ for some 

δ > 0. Let (kn) be a sequence of integers and (τn) be a sequence converging to 1 such that kn → ∞, kn/n → 0, n(1 − τn)/kn → 0, log(kn/(n(1 −
τn)))/

√
kn → 0 and 

√
kn(kn/n + |A(n/kn)| + |B(q1−kn/n)| + |C(n/kn)| + 1/q1−kn/n) = O(1) as n → ∞. If√

kn(γ̂n − γ )
d−→ N and

√
kn

(
Xn−kn,n

q1−kn/n
− 1

)
d−→ N ′

where N and N ′ are nondegenerate distributions, then
√

kn

log(kn/(n(1 − τn)))

(
x̂τn

xτn

− 1

)
d−→ N.

Note that, following Remark 4.4, if either of the functions U , u or 1 − h1(1 − 1/·) is a multiple of a pure power function, then 
Theorem 5.1 holds with corresponding conditions on the second-order parameter(s) dropped and the corresponding auxiliary function(s) 
involved taken identically equal to 0. For instance, if u(x) is proportional to xα , then B can be taken equal to 0 and condition α + η > 0
disappears.
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An important subcase in which Theorem 5.1 applies is when the Xi are independent. In this setting, it is known that when √
kn A(n/kn) → λ ∈R,√

kn

(
γ̂n − γ ,

Xn−kn,n

q1−kn/n
− 1

)
d−→

(
λ

1 − ρ
,0

)
+ γ (�,�) (5.1)

where � and � are independent standard normal random variables, as can be seen by combining Lemma 3.2.3 and Theorem 3.2.5 
in de Haan and Ferreira (2006). Then, by Theorem 5.1,

√
kn

log(kn/(n(1 − τn)))

(
x̂τn

xτn

− 1

)
d−→ N

(
λ

1 − ρ
,γ 2

)
.

Extensions of convergence (5.1) to the case when the Xi are serially dependent, such as when the Xi are strongly mixing (namely, 
α-mixing) or absolutely regular (namely, β-mixing), thus covering standard linear time series or conditionally heteroskedastic random 
processes, are examined in e.g. Hsing (1991) and Drees (2003). In such models, just like γ̂n , the estimator ̂xτn will still be asymptotically 
Gaussian but with an enlarged variance, due to the loss of information entailed by the presence of serial dependence in the data.

6. Examples and numerical illustrations

In this section, we discuss two interesting examples of generalized shortfall risk measures, and we briefly examine the finite-sample 
performance of the estimator presented in Section 5.

Example 6.1. (Lp-quantiles) Let u1(x) = u2(x) = pxp−1, p � 1, and h1(x) = h2(x) = x. Then xτ is reduced to the Lp -quantile in Daouia et 
al. (2019), denoted by xLp

τ . We examine the first- and second-order expansions of xLp
τ arising from our results when F ∈ 2RV−1/γ ,ρ/γ with 

γ > 0 and ρ < 0.
Clearly ui ∈ RVp−1 and 1 − hi(1 − 1/·) ∈ RV−1 for i = 1, 2. Conditions 1/γ > p − 1 and 

∫ ∞
−∞ |z|p−1+δdh2(F (z)) < ∞ for some δ > 0

reduce to γ < 1/(p − 1) and E(| min(X, 0)|p−1+δ) < ∞ (the latter can be replaced by E(| min(X, 0)|p−1) < ∞, see Remark 3.1). The 
function ϕ is nothing but 1/F , so ϕ((1 − τ )−1) = F ←(τ ). By Theorem 3.1, the first-order asymptotic expansion of xLp

τ is

xLp
τ = 
1 F ←(τ )(1 + o(1)) =

(
1

γ
B(1/γ − p + 1, p)

)γ

F ←(τ )(1 + o(1)) as τ ↑ 1.

This recovers Corollary 1 of Daouia et al. (2019).
We now analyze the second-order expansion provided by Theorem 4.1 when p � 2, in which case X has a finite moment of order 

1 under our assumptions. Obviously the ui and 1 − hi(1 − 1/·) are multiples of pure power functions, and 1 − h1(F (·)) = 1 − F (·) ∈
2RV−1/γ ,ρ/γ with auxiliary function γ −2 A(1/F (·)). In other words, with the notation of Theorem 4.1, B1 = B2 ≡ 0, Ah(·) = γ −2 A(1/F (·))
is regularly varying with index ρh = ρ/γ , α1 = α2 = p − 1, β1 = β2 = 1, E[Z ] =E[X], η∗ = ρh = ρ/γ , A∗(·) = −(γρ)−1 A(1/F (·)), and

�2 = 1

ρ
((1 − ρ)B((1 − ρ)/γ − p + 1, p) − B(1/γ − p + 1, p)).

It follows that the second-order expansion of xLp
τ is

xLp
τ


1 F ←(τ )
= 1 + γ (p − 1)


1 F ←(τ )
(E[X] + o(1)) + γ

((
1

γ
B(1/γ − p + 1, p)

)−1

− 1

)
(1 − τ )(1 + o(1))

+ 1

ρ

(
((1 − ρ)B((1 − ρ)/γ − p + 1, p) − B(1/γ − p + 1, p)) × 1

γ

(
1

γ
B(1/γ − p + 1, p)

)ρ−1

+
(

1

γ
B(1/γ − p + 1, p)

)ρ

− 1 + o(1)

)
A((1 − τ )−1)

This matches expansion (A14) of Stupfler and Usseglio-Carleve (2023), itself a corrected version of Proposition 3 of Daouia et al. (2019): 
note that, despite the fact that the term in (1 − τ ) is not reported as being the same in this Proposition 3, the proof of their Proposition 2 
indeed shows that there are two contributions proportional to (1 − τ ), due to (with the notation therein) a term called I1(q; p) in their 
Equation (A.10) and the F (q) term in their Equation (A.11). In the current setting γ < 1/(p − 1) < 1, so any term in (1 − τ ) is negligible 
with respect to 1/F ←(τ ). It follows that

xLp
τ


1 F ←(τ )

= 1 + 1

ρ

(
((1 − ρ)B((1 − ρ)/γ − p + 1, p) − B(1/γ − p + 1, p)) × 1

γ

(
1

γ
B(1/γ − p + 1, p)

)ρ−1

+
(

1
B(1/γ − p + 1, p)

)ρ

− 1 + o(1)

)
A((1 − τ )−1) + γ (p − 1)

← (E[X] + o(1)).

γ 
1 F (τ )
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Example 6.2. (Generalized expectiles) Recall Example 3.4 of Mao and Cai (2018) in which the coherent generalized expectile is defined as 
the unique solution to the equation

τ TVaRp((X − x)+) + (1 − τ )TVaRq(−(X − x)−) = 0, x ∈R, (6.1)

satisfying p � q and τ/(1 − τ ) � (1 − p)/(1 − q). This is an example of the generalized Dutch type II risk measures introduced in Cai 
and Mao (2020). In fact, when ui(x) = 2x for x > 0, and h1(x) = (x − p)+/(1 − p) and h2(x) = (x − q)+/(1 − q) with p, q ∈ [0, 1), the 
generalized shortfall risk measure coincides with the coherent generalized expectile in (6.1), denoted by xe

τ . Next, we make explicit the 
first- and second-order expansions of xe

τ when F ∈ 2RV−1/γ ,ρ/γ with γ > 0 and ρ < 0. For the sake of simplicity, we assume that F is 
continuous.

Obviously ui ∈ RV1 and, for x large enough, 1 −h1(1 −1/x) = x−1/(1 − p), so 1 −h1(1 −1/·) ∈ RV−1 and similarly 1 −h2(1 −1/·) ∈ RV−1. 
Again the conditions of Theorem 3.1 reduce to γ < 1 and E(| min(X, 0)|) < ∞, and since ϕ←(t) = U (t/(1 − p)) for large t , the first-order 
expansion of xe

τ reads

xe
τ = 
1(1 − p)−γ F ←(τ )(1 + o(1)) = (γ −1B(γ −1 − 1,2))γ (1 − p)−γ F ←(τ )(1 + o(1))

= (γ −1 − 1)−γ (1 − p)−γ F ←(τ )(1 + o(1)) as τ ↑ 1.

This can be viewed as an extension of the standard asymptotic equivalent for expectiles in terms of their quantile counterparts.
Then clearly ui are multiples of pure power functions, so B1 = B2 ≡ 0, and 1 − h1(F (x)) = F (x)/(1 − p), 1 − h2(F (x)) = F (x)/(1 − q)

for x large enough, so 1 − h1 (F (·)) ∈ 2RV−1/γ ,ρ/γ with auxiliary function γ −2 A(1/F (·)). Recall also that ϕ←(t) = U (t/(1 − p)) for large 
t (and then ϕ←((1 − τ )−1) = F ←(p + (1 − p)τ )). This means that with the notation of Theorem 4.1, B1 = B2 ≡ 0, Ah(·) = γ −2 A(1/F (·))
is regularly varying with index ρh = ρ/γ , α1 = α2 = β1 = β2 = 1, E[Z ] =E[X1{X > F ←(q)}]/(1 − q) =E[X |X > F ←(q)], η∗ = ρh = ρ/γ , 
A∗(·) = −(γρ)−1 A(1/F (·)), and

�2 = 1

ρ
((1 − ρ)B((1 − ρ)/γ − 1,2) − B(1/γ − 1,2)) = γ 2

(1 − γ )(1 − γ − ρ)
.

Then, after straightforward calculations

xe
τ


1 F ←(p + (1 − p)τ )

= 1 + (1 − p)γ
γ (γ −1 − 1)γ

F ←(τ )
(E[X |X > F ←(q)] + o(1)) +

(
(1 − γ )

1 − p

1 − q
− 1

)
(1 − τ )(1 + o(1))

+ (1 − p)−ρ

(
(γ −1 − 1)−ρ

1 − γ − ρ
+ (γ −1 − 1)−ρ − 1

ρ
+ o(1)

)
A((1 − τ )−1).

Since

F ←(p + (1 − p)τ )

F ←(τ )
= U ((1 − τ )−1/(1 − p))

U ((1 − τ )−1)
= (1 − p)−γ

(
1 + (1 − p)−ρ − 1

ρ
A((1 − τ )−1)(1 + o(1))

)
and γ < 1, one may finally conclude that

xe
τ


1(1 − p)−γ F ←(τ )

= 1 + (1 − p)γ
γ (γ −1 − 1)γ

F ←(τ )
(E[X |X > F ←(q)] + o(1))

+
(

(1 − p)−ρ

(
(γ −1 − 1)−ρ

1 − γ − ρ
+ (γ −1 − 1)−ρ − 1

ρ

)
+ (1 − p)−ρ − 1

ρ
+ o(1)

)
A((1 − τ )−1).

This coincides with the second-order asymptotic expansion of expectiles when p = q = 0, see Proposition 1 in Daouia et al. (2020).
We examine the accuracy of this expansion when F is the generalized Pareto distribution function F (x) = 1 − (θ/(x + θ))1/γ for x > 0, 

where γ , θ > 0. In this setting, U (t) = θ(tγ − 1), and then U ∈ 2RVγ ,−γ with auxiliary function A(t) = γ t−γ . We take γ = 1/3, 1/5 and 
θ = 1, p = q = 0.95. In Fig. 1, by varying τ from 0.95 to 0.9999, we plot the values obtained through the use of the first- and second-order 
expansions of xe

τ . For comparison, the true values of xe
τ are also plotted, which are calculated using the uniroot function in R. From 

Fig. 1, it can be seen that the second-order expansion improves the first-order expansion significantly, especially in the lighter-tailed case.

We now examine the finite-sample performance of the estimator ̂xτn = x̂e
τn

of Section 5 in this last example. We consider the following 
distributions:

• The pure Pareto distribution with distribution function F (x) = 1 − x−1/γ , x > 1,
• The Fréchet distribution with distribution function F (x) = exp(−x−1/γ ), x > 0,
• The Burr distribution with distribution function F (x) = 1 − (1 + x−ρ/γ )1/ρ , x > 0 (here ρ is the negative second-order parameter of 

the distribution).
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Fig. 1. Comparison of first- and second-order expansions with the true values of the generalized shortfall risk measure of a generalized Pareto distribution. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

For each of these three distributions we take γ = 1/5 or 1/3, and for the Burr distribution we use ρ = −2. In each case, we simulate 
N = 10,000 replications of an independent sample of size n ∈ {500, 1,000}, for which the true generalized expectile risk measure xe

τn
with 

p = q = 0.95 and τn = 1 − 1/n ∈ {0.998, 0.999} has been calculated numerically. This was done using the R function uniroot in order 
to find the solution of (6.1), where the function cubintegrate from the R package cubature has been used beforehand in order to 
calculate the distorted Tail-Value-at-Risk. In each replication we estimate this risk measure with the estimator introduced in Section 5, 
where the intermediate level k = kn is allowed to vary between n/50 and 2n/3 (corresponding respectively to 2% and 66.7% of the total 
sample size). This produces estimates ̂xe( j)

τn (k), j = 1, 2, . . . , N , which are used to calculate the Monte-Carlo approximation to the relative 
Mean Squared Error (relative MSE) of the estimator ̂xe

τn
, that is,

rMSE(k) = 1

N

N∑
j=1

(
x̂e( j)
τn (k)

xe
τn

− 1

)2

.

These errors are represented as a function of k in Figs. 2 and 3 in the twelve situations considered. The MSE tends to be high when k is 
low, due to the variance of the extreme value estimators dominating in that region, and it also tends to be high when k is large because 
their bias then dominates, except in the Pareto example for which bias due to the extreme value procedures is exactly 0. Bias is lower 
in the Burr example than in the Fréchet example: this is due to the second-order parameter ρ = −2 being further away from 0 in the 
Burr example than it is in the Fréchet example, where it is equal to −1. Solving the bias-variance tradeoff produces a stability region for 
moderately large values of k where MSE is comparatively lower, and this stability region tends to be larger as the second-order parameter 
gets away from 0. Since the Hill estimator is used in the extrapolation, the asymptotic variance of ̂xe

τn
is asymptotically proportional to γ 2

by Theorem 5.1, so the higher the extreme value index, the higher the MSE should be, just as can be observed by comparing the top and 
bottom rows in each figure.

7. Proofs

Proof of Proposition 3.1. Note first that the quantities

Hu1,h1((X − x)+) =
∞∫

x

u1(y − x)dh1(F (y)) and Hu2,h2((X − x)−) =
x∫

−∞
u2(x − y)dh2(F (y))

are always well-defined, because u1, u2 are positive on [0, ∞) and h1 ◦ F , h2 ◦ F are distribution functions, so that Hu1,h1 ((X − x)+) and 
Hu2,h2 ((X − x)−) are integrals of a positive measurable function with respect to a probability measure.

(i) We note that x �→ Hu1,h1 ((X − x)+) and x �→ Hu2,h2 ((X − x)−) are (strictly) decreasing and increasing positive functions on (x�, x�), 
respectively. Indeed, if x ∈ (x�, x�) and ε > 0 is such that x + ε < x� ,

Hu1,h1((X − x)+) − Hu1,h1((X − (x + ε))+)

=
x+ε∫
x

u1(y − x)dh1(F (y)) +
∞∫

x+ε

(u1(y − x) − u1(y − x − ε))dh1(F (y)) > 0 (7.1)
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Fig. 2. Relative Mean Squared Error of the estimator ̂xe
τn

, for n = 500 and τn = 1 −1/n = 0.998. Left panels: Fréchet distribution, middle panels: Burr distribution with ρ = −2, 
right panels: Pareto distribution. Top panels: γ = 1/5, bottom panels: γ = 1/3.

since u1 is increasing, u1(0) = 0 (meaning that the first integral is nonnegative), and x + ε < x� (meaning that the second integral is 
positive). The proof that x �→ Hu2,h2((X − x)−) is increasing is similar; the above identity also shows that x �→ Hu1,h1((X − x)+) and 
x �→ Hu2,h2((X − x)−) define nonincreasing and nondecreasing functions on R, respectively. Moreover, in the specific case when x� < ∞, 
one has, for any x � x� ,

Hu1,h1((X − x)+) =
∞∫

x

u1(y − x)dh1(F (y)) = 0

due to the fact that F is constant equal to 1 on [x�, ∞) and h1 does not have a jump at 1. Similarly Hu2,h2((X − x)−) = 0 for any x � x�

when x� > −∞. Conclude by the intermediate value theorem that, since x �→ Hu1,h1((X − x)+) and x �→ Hu2,h2 ((X − x)−) are continuous 
on (x�, x�), the equation

τ Hu1,h1((X − x)+) − (1 − τ )Hu2,h2((X − x)−) = 0

has a unique solution which necessarily lies in the interval (x�, x�).

(ii) Recall that x �→ Hu1,h1 ((X − x)+) and x �→ Hu2,h2 ((X − x)−) are nonincreasing and nondecreasing, respectively, and that xτ < x� for any 
τ < 1. Suppose now that there are 0 < τ < τ ′ < 1 such that xτ > xτ ′ . Then

(1 − τ ′)Hu2,h2((X − xτ ′)−) < (1 − τ )Hu2,h2((X − xτ )−) = τHu1,h1((X − xτ )+) < τ ′Hu1,h1((X − xτ ′)+).

This is a contradiction because the left- and right-most terms are equal. Hence xτ � xτ ′ and τ ∈ (0, 1) �→ xτ ∈ R is nondecreasing, and 
in particular x1 = limτ↑1 xτ is well-defined. If x1 = +∞ then obviously x� is infinite too and x1 = x�; otherwise, we clearly have, for any 
τ ∈ (0, 1),

τHu1,h1((X − x1)+) � τHu1,h1((X − xτ )+) = (1 − τ )Hu2,h2((X − xτ )−) � (1 − τ )Hu2,h2((X − x1)−).

Let τ ↑ 1 to find Hu1,h1((X − x1)+) � 0 and therefore Hu1,h1((X − x1)+) = 0. This implies that x1 � x� and then x1 = x� .
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Fig. 3. Relative Mean Squared Error of the estimator ̂xe
τn

, for n = 1000 and τn = 1 − 1/n = 0.999. Left panels: Fréchet distribution, middle panels: Burr distribution with 
ρ = −2, right panels: Pareto distribution. Top panels: γ = 1/5, bottom panels: γ = 1/3.

(iii) Clearly x� = +∞ because F ∈ RV−1/γ with γ > 0. Combine (i) and (ii) to find that it is enough to show the continuity and finiteness 
of x �→ Hu1,h1 ((X − x)+) and x �→ Hu2,h2 ((X − x)−) on (x�, +∞). We start by finiteness. Fix x ∈ (x�, +∞). Then

Hu1,h1((X − x)+) = lim
T →+∞−

T∫
z=0

u1(z)d(1 − h1(1 − 1/(1/F (x + z)))).

Recall that u1 ∈ RVα1 and u1 is bounded on finite intervals of [0, ∞). Then, for any arbitrary δ > 0 we have, if z is chosen large enough, 
that u1(z) is bounded from above by a multiple of zα1+δ using Potter bounds (see, e.g. Proposition B.1.9.5 of de Haan and Ferreira (2006)). 
Moreover, 1 − h1(1 − 1/(1/F (x + ·))) ∈ RV−β1/γ . Use the assumption β1/γ > α1 and Theorem 1.6.5 of Bingham et al. (1987) to find that 
Hu1,h1 ((X − x)+) is indeed finite. The argument for Hu2,h2 ((X − x)−) is slightly different: write

Hu2,h2((X − x)−) =
x/2∫

−∞
u2(x − z)dh2(F (z)) +

x∫
x/2

u2(x − z)dh2(F (z)).

The first term is shown to be finite using Potter bounds and the assumption 
∫ ∞
−∞ |z|α2+δ dh2(F (z)) < ∞ for some δ > 0. The second 

term is obviously finite because it is bounded from above by u2(x/2). Hence the finiteness of Hu2,h2((X − x)−). We turn to continuity. 
Recall (7.1): the first term therein clearly converges to 0 as ε ↓ 0 because h1 ◦ F is a distribution function and is therefore right-continuous. 
The second term, meanwhile, converges to 0 by the dominated convergence theorem, because of the continuity of u1 and 0 � (u1(y −
x) − u1(y − x − ε))1{y � x + ε} � u1(y − x)1{y � x} with the right-hand side being integrable with respect to dh1(F (y)). The continuity 
of x �→ Hu2,h2 ((X − x)−) is shown similarly. �
Proof of Lemma 3.1. (i) First note that for any ε0 > 0,

Hu1,h1((X − x)+) =
∫ ∞

x u1(y − x)dh1(F (y))
u1(x) (1 − h1(F (x))) u1(x) (1 − h1(F (x)))
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=
∞∫

1

u1(xy − x)

u1(x)
d

h1(F (xy))

1 − h1(F (x))
(7.2)

=
⎛⎜⎝ ∞∫

1+ε0

+
1+ε0∫
1

⎞⎟⎠ u1(xy − x)

u1(x)
d

h1(F (xy))

1 − h1(F (x))

:= I1(x) + I2(x).

Since u1 ∈ RVα1 with α1 > 0 and 1 − h1(1 − 1/·) ∈ RV−β1 with β1 > 0, and β1/γ > α1, using Potter bounds (see, e.g. Proposition B.1.9.5 of 
de Haan and Ferreira (2006)), for any ε1, δ1 > 0, one has, for x large enough,

I1(x) �
∞∫

1+ε0

(1 + ε1) (y − 1)α1±δ1 d
h1(F (xy))

1 − h1(F (x))

= (1 + ε1)

⎛⎜⎝εα1±δ1
0

1 − h1(F (x(1 + ε0))

1 − h1(F (x))
+

∞∫
1+ε0

1 − h1(F (xy))

1 − h1(F (x))
d (y − 1)α1±δ1

⎞⎟⎠ .

Now 1 − h1(F (·)) = 1 − h1(1 − 1/(1/F (·))) ∈ RV−β1/γ and therefore, by Proposition B.1.10 in de Haan and Ferreira (2006),

lim sup
x→∞

I1(x) � (1 + ε1)

⎛⎜⎝εα1±δ1
0 (1 + ε0)

−β1/γ +
∞∫

1+ε0

y−β1/γ d (y − 1)α1±δ1

⎞⎟⎠
A similar lower bound applies with ε1 replaced by −ε1. Conclude, since ε1 and δ1 are arbitrarily small, that

lim
x→∞ I1(x) = εα1

0 (1 + ε0)
−β1/γ +

∞∫
1+ε0

y−β1/γ d (y − 1)α1 .

Now we turn to I2. Since u1 ∈ RVα1 with α1 > 0, by Proposition B.1.9.6 of de Haan and Ferreira (2006), there exists c > 0 such that for 
large enough x,

0 � I2(x) �
1+ε0∫
1

c d
h1(F (xy))

1 − h1(F (x))
= c

(
1 − 1 − h1(F (x(1 + ε0))

1 − h1(F (x))

)
.

[The constant c can be chosen sufficiently large so that it is universal for small values of ε0, see the proof of Proposition B.1.9.6 of de Haan 
and Ferreira (2006).] Hence the bound

0 � lim inf
x→∞ I2(x) � lim sup

x→∞
I2(x) � c(1 − (1 + ε0)

−β1/γ ).

Taking limits as x → ∞ and letting ε0 → 0, the desired result follows as

lim
x→∞

Hu1,h1((X − x)+)

u1(x) (1 − h1(F (x)))
=

∞∫
1

y−β1/γ d (y − 1)α1 (7.3)

= α1B(β1/γ − α1,α1) = β1

γ
B(β1/γ − α1,α1 + 1).

[Recall the recurrence formula (x + y)B(x, y + 1) = yB(x, y) valid for any x, y > 0.]
For (ii), let

Uh2(x) =
(

1

1 − h2(F )

)←
(x), x > 1.

Then Uh2 ∈ RVγ /β2 . Again, if W ∼ Uniform[0, 1] then Uh2 (1/W ) d= Z ∼ h2(F ). Then we have

Hu2,h2((X − x)−) =
x∫

−∞
u2(x − z)dh2(F (y)) = E[u2((Z − x)−)].

Consider the split
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E[u2((Z − x)−)]
u2(x)

=
x/2∫

−∞

u2(x − z)

u2(x)
dh2(F (z)) +

x∫
x/2

u2(x − z)

u2(x)
dh2(F (z)) := I1(x) + I2(x).

To control I1(x), write

I1(x) =
∫
R

u2(x − z)

u2(x)
1{z � x/2}dh2(F (z))

where we extend the definition of u2 on R by deciding that u2(y) = 0 for y < 0. Clearly, since u2 is regularly varying, (u2(x −
z)/u2(x))1{z � x/2} → 1 pointwise in z as x → ∞. Pick now δ > 0 with 

∫ ∞
−∞ |z|α2+δ dh2(F (z)) < ∞. Since u2 ∈ RVα2 , Potter bounds 

yield, for x large enough,

u2(x − z)

u2(x)
1{z � x/2} � (1 + δ)

(
x − z

x

)α2+δ

1{z � x/2} � Cδ(1 + |z|)α2+δ

where Cδ is a positive constant. This is an integrable function with respect to the measure dh2(F (z)), so the dominated convergence 
theorem yields

lim
x→∞ I1(x) = 1.

To control I2(x), note that u2(x) � u2(x − z) � 0 when x/2 � z � x because u2 is increasing. Therefore

0 � I2(x) �
x∫

x/2

dh2(F (z)) = h2(F (x)) − h2(F (x/2)) → 0

as x → ∞. Thus,

lim
x→∞

E[u2((Z − x)−)]
u2(x)

= 1.

The desired result follows. �
Proof of Theorem 3.1. The assertions on the regular variation property of ϕ and the existence of the generalized inverse ϕ← are imme-
diate, see for example Definition B.1.8 p.366 of de Haan and Ferreira (2006). Combine Equation (1.1) and the first-order expansions in 
Lemma 3.1 to get


0(1 − h1(F (xτ )))u1(xτ ) ∼ (1 − τ )u2(xτ ),

as τ → 1. This is readily seen to be equivalent to ϕ(xτ ) ∼ 
0(1 − τ )−1. When s > 0, ϕ← ∈ RV1/s , see Proposition B.1.9.9 p.367 of de Haan 
and Ferreira (2006). It immediately follows, by this same proposition, that

xτ ∼ ϕ←(ϕ(xτ )) ∼ ϕ←(
0(1 − τ )−1) ∼ 

1/s
0 ϕ←((1 − τ )−1)

as τ → 1. This is the required result. �
Proof of Lemma 4.1. Note that for any v > 0,

lim
t→∞ v−γ

g(vt)
g(t) − vγ

B(t)
= lim

t→∞
(tv)−γ g(vt) − t−γ g(t)

t−γ g(t)B(t)
= vρ − 1

ρ
.

This implies that t−γ g(t) ∈ ERVρ . Since ρ < 0, by Theorem B.2.2 of de Haan and Ferreira (2006), g0 = limt→∞ t−γ g(t) exists, and h(t) :=
g0 − t−γ g(t) ∈ RVρ . Besides, by Theorem B.2.18 of de Haan and Ferreira (2006), there exists B̃(t) ∼ B(t) (which may be chosen bounded 
on intervals of the form (0, t0]) such that t−γ g(t)B̃(t) = −ρh(t). We have

v−γ

g(vt)
g(t) − vγ

B̃(t)
= h(t) − h(tv)

−ρh(t)
= − 1

ρ

(
1 − h(tv)

h(t)

)
.

Conclude, by Proposition B.1.9.7 of de Haan and Ferreira (2006), that for any ε, δ > 0, there exist c > 0 and t0 such that for all t � t0 and 
0 < v < δ,∣∣∣∣∣

g(vt)
g(t) − vγ

B̃(t)

∣∣∣∣∣ = − vγ

ρ

∣∣∣∣h(tv)

h(t)
− 1

∣∣∣∣ � − vγ

ρ

(
1 +

∣∣∣∣h(tv)

h(t)

∣∣∣∣) � − vγ

ρ
(1 + cvρ−ε).

This is the desired result. �
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Proof of Lemma 4.3. Set ch = bcβ1/γ . By Lemma 4.2 (ii) and (iv), we have

ϕ(x) = u2(x)

u1(x)(1 − h1(F (x)))

=
a2xα2

[
1 + 1

η2
B2(x) + o(B2(x))

]
a1xα1

[
1 + 1

η1
B1(x) + o(B1(x))

]
chx−β1/γ

[
1 + 1

ρh
Ah(x) + o(Ah(x))

]
= a2

a1ch
xs

[
1 + 1

η2
B2(x)(1 + o(1)) − 1

η1
B1(x)(1 + o(1)) − 1

ρh
Ah(x)(1 + o(1))

]
= a2

a1ch
xs

[
1 +

(
1

η2
B2(x) − 1

η1
B1(x) − 1

ρh
Ah(x)

)
(1 + o(1))

]
=: a2

a1ch
xs [1 + A∗(x)(1 + o(1))

]
.

[In the penultimate line the condition linking a, the bi and κ was used to “merge” the o(1) terms.] By Lemma 2.1 (ii), we have

ϕ←(x) =
(

a2

cha1

)−1/s

x1/s
(

1 − 1

s
A∗(ϕ←(x))(1 + o(1))

)
and ϕ← ∈ 2RV1/s,η∗/s , where η∗ = max{η1, ρh, η2}. The desired representation of ϕ←((1 − τ )−1) follows.

Then, from the representation of F ←(τ ) = U ((1 − τ )−1) in Lemma 4.2, we have

ϕ←((1 − τ )−1)

(F ←(τ ))1/(γ s)
= c∗(1 − τ )−1/s

(
1 − 1

s A∗(ϕ←((1 − τ )−1))(1 + o(1))
)(

c(1 − τ )−γ
[

1 + 1
ρ A

(
1

1−τ

)
(1 + o(1))

])1/(γ s)

= c∗

c1/(γ s)

(
1 − 1

s
A∗(ϕ←((1 − τ )−1))(1 + o(1)) − 1

γ sρ
A

(
1

1 − τ

)
(1 + o(1))

)
.

It follows that ϕ←((1 − τ )−1) is asymptotically equivalent to c0(F ←(τ ))1/(γ s) and then

ϕ←((1 − τ )−1)

(F ←(τ ))1/(γ s)
= c0

(
1 − 1

s
A∗(c0 (F ←(τ ))1/(γ s))(1 + o(1)) − 1

γ sρ
A

(
1

1 − τ

)
(1 + o(1))

)
.

The proof is complete. �
Proof of Lemma 4.4. Recall (7.2) and write, for x > 0,

Hu1,h1((X − x)+)

u1(x) (1 − h1(F (x)))
− 
0 = −

⎛⎝ ∞∫
1

u1(xy − x)

u1(x)
d

1 − h1(F (xy))

1 − h1(F (x))
−

∞∫
1

(y − 1)α1 dy−β1/γ

⎞⎠
= −

∞∫
1

(
u1(xy − x)

u1(x)
− (y − 1)α1

)
d

1 − h1(F (xy))

1 − h1(F (x))

−
⎛⎝ ∞∫

1

(y − 1)α1 d
1 − h1(F (xy))

1 − h1(F (x))
−

∞∫
1

(y − 1)α1 dy−β1/γ

⎞⎠
= −

∞∫
1

(
u1(xy − x)

u1(x)
− (y − 1)α1

)
d

1 − h1(F (xy))

1 − h1(F (x))

+
∞∫

1

(
1 − h1(F (xy))

1 − h1(F (x))
− y−β1/γ

)
d (y − 1)α1

:= −
∞∫

1

I1(x, y) d
1 − h1(F (xy))

1 − h1(F (x))
+

∞∫
1

I2(x, y)d (y − 1)α1 ,

where in the third step we used integration by parts.
We first analyze I1(x, y). Since u1 ∈ 2RVα1,η1 with auxiliary function B1, there is B̃1 ∼ B1 such that for any (henceforth fixed) ε, δ > 0, 

there is x0 > 0 such that the following inequality holds for all x > x0 and xy > x0,∣∣∣∣∣
u1(x(y−1))

u1(x) − (y − 1)α1

B̃ (x)
− Jα1,η1(y − 1)

∣∣∣∣∣ � ε(y − 1)α1+η1±δ,

1
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where yα±δ = yα max(yδ, y−δ) (and recall that Jγ ,ρ(x) = xγ xρ−1
ρ ). In particular, if ε0 ∈ (0, 1) is fixed, then for x large enough,

∀y � 1 + ε0, Jα1,η1(y − 1) − ε(y − 1)α1+η1±δ � I1(x, y)

B̃1(x)
� Jα1,η1(y − 1) + ε(y − 1)α1+η1±δ.

By integration by parts and since 1 − h1(F (·)) ∈ RV−β1/γ , a lim sup / lim inf argument similar to that used in Lemma 3.1 yields,

lim
x→∞

− ∫ ∞
1+ε0

I1(x, y)d 1−h1(F (xy))
1−h1(F (x))

B̃1(x)
= Jα1,η1(ε0)(1 + ε0)

−β1/γ +
∞∫

1+ε0

y−β1/γ d Jα1,η1(y − 1).

Besides, by Lemma 4.1, there is a constant C = C(ε) > 0 such that for x large enough,

1 < y < 1 + ε0 ⇒
∣∣∣∣ I1(x, y)

B̃1(x)

∣∣∣∣ � − (y − 1)α1

η1

(
1 + C(y − 1)η1−ε

)
.

Then, as in the proof of Lemma 3.1, one finds

lim sup
x→∞

∣∣∣∣∣∣
∫ 1+ε0

1 I1(x, y)d 1−h1(F (xy))
1−h1(F (x))

B̃1(x)

∣∣∣∣∣∣ � −εα1
0

η1

(
1 + Cε

η1−ε
0

)
(1 + ε0)

−β1/γ −
1+ε0∫
1

y−β1/γ d

{
(y − 1)α1

η1

(
1 + C(y − 1)η1−ε

)}
.

Recall that α1 + η1 > 0, so that the right-hand side above is well-defined and finite for ε > 0 small enough, and tends to 0 as ε0 → 0. 
Adding up the contributions from 1 to 1 + ε0 and beyond 1 + ε0, and letting ε0 → 0, we get

lim
x→∞

− ∫ ∞
1 I1(x, y)d 1−h1(F (xy))

1−h1(F (x))

B̃1(x)
=

∞∫
1

y−β1/γ d Jα1,η1(y − 1)

= 1

η1

1∫
0

uβ1/γ
(
(α1 + η1)(u−1 − 1)α1+η1−1 − α1(u−1 − 1)α1−1) du

u2

= 1

η1
((α1 + η1)B(β1/γ − α1 − η1,α1 + η1) − α1B(β1/γ − α1,α1))

= β1

γ
× 1

η1
(B(β1/γ − α1 − η1,α1 + η1 + 1) − B(β1/γ − α1,α1 + 1)).

We turn to controlling I2(x, y). By Lemma 4.2 (iv),

∀y > 0, lim
x→∞

I2(x, y)

Ah(x)
= J−β1/γ ,ρh (y)

and for any δ > 0, there exist Ãh ∼ Ah and x0 > 0 such that for all x > x0 and y � 1,∣∣∣∣ I2(x, y)

Ãh(x)

∣∣∣∣ (y − 1)α1−1 � (y − 1)α1−1( J−β1/γ ,ρh (y) + y−β1/γ +ρh+δ).

If δ > 0 is chosen sufficiently small then the right-hand side defines an integrable function on (1, ∞). The dominated convergence theorem 
then entails

lim
x→∞

∫ ∞
1 I2(x, y) d (y − 1)α1

Ãh(x)
=

∞∫
1

J−β1/γ ,ρh (y)d (y − 1)α1

= α1

ρh

1∫
0

(
v−ρh − 1

)
(1 − v)α1−1 vβ1/γ −α1−1 dv

= α1

ρh
(B(β1/γ − α1 − ρh,α1) − B(β1/γ − α1,α1))

= 1

ρh

((
β1

γ
− ρh

)
B(β1/γ − α1 − ρh,α1 + 1) − β1

γ
B(β1/γ − α1,α1 + 1)

)
.

The proof is complete. �
Proof of Lemma 4.5. Recall from the proof of Lemma 3.1 that if Z ∼ h2(F ),

Hu2,h2((X − x)−) =
x∫

u2(x − z)dh2(F (z)) = E[u2((Z − x)−)].

−∞
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Note now that for any z < x,

u2(x) − u2(x − z)

u′
2(x)

= u′
2(ξ)

u′
2(x)

z, (7.4)

where ξ ∈ (x − z, x) if 0 � z < x and ξ ∈ (x, x − z) if z < 0. Also, from (7.4),

lim
x→∞

u2(x) − u2(x − z)

u′
2(x)

= z

holds for any z ∈R, because regular variation is locally uniform. Since

Hu2,h2((X − x)−) = u2(x) − u2(x)(1 − h2(F (x)) − u′
2(x)

x∫
−∞

u2(x) − u2(x − z)

u′
2(x)

dh2(F (z)),

we are left to show that

lim
x→∞

x∫
−∞

u2(x) − u2(x − z)

u′
2(x)

dh2(F (z)) =
∞∫

−∞
z dh2(F (z)), (7.5)

that is, the integral and the limit are interchangeable. By Proposition B.1.9.6 of de Haan and Ferreira (2006), there exist C > 0, x0 > 0 such 
that for x � x0, 0 < ξ/x � 1,

u′
2(ξ)

u′
2(x)

� C . (7.6)

Note that (7.6) holds for the case of α2 = 1 since in this case by assumption u′
2 is nondecreasing. Moreover, by Proposition B.1.9.5 of 

de Haan and Ferreira (2006), for any δ > 0, there is x1 > 0 such that for x � x1 and ξ/x � 1,

u′
2(ξ)

u′
2(x)

� 2

(
ξ

x

)α2−1+δ

.

Conclude that, with ξ as in (7.4), that for x large enough,

∀z < x,

∣∣∣∣u′
2(ξ)

u′
2(x)

z

∣∣∣∣ �
{

C1{0 � z < x} + 2

(
x − z

x

)α2−1+δ

1{z < 0}
}

|z|

�
{

C + 2(1 − z)α2−1+δ1{z < 0}} |z|.
By the assumption that 

∫ ∞
−∞ |z|α2+δ dh2(F (z)) < ∞ for some δ > 0 and the dominated convergence theorem, (7.5) holds and therefore, as 

x → ∞,

Hu2,h2((X − x)−)

u2(x)
= 1 − (1 − h2(F (x))) − u′

2(x)

u2(x)
(E[Z ] + o(1)).

The final identity is obtained by applying Theorem B.1.5 in de Haan and Ferreira (2006). �
Proof of Theorem 4.1 and Theorem 4.2. Combining Equation (1.1) with Lemmas 4.4 and 4.5, the shortfall risk measure xτ satisfies

(1 − h1(F (xτ ))) u1(xτ ) (
0 + �1 B1(xτ )(1 + o(1)) + �2 Ah(xτ )(1 + o(1)))

= (1 − τ )u2(xτ )
(
1 − (1 − h2(F (xτ ))) − x−1

τ (α2E[Z ] + o(1)) + (1 − τ )(1 + o(1))
)
,

where Z is a random variable having the distribution h2(F ). After some rearrangements, taking ϕ← on both sides above yields

ϕ←
(
ϕ(xτ )

1 − (1 − h2(F (xτ ))) − x−1
τ (α2E[Z ] + o(1)) + (1 − τ )(1 + o(1))


0 + �1 B1(xτ )(1 + o(1)) + �2 Ah(xτ )(1 + o(1))

)
= ϕ←((1 − τ )−1). (7.7)

The left-hand side in Equation (7.7) can be further rewritten as

ϕ←
(


−1
0 ϕ(xτ )

[(
1 − �1


0
B1(xτ )(1 + o(1)) − �2


0
Ah(xτ )(1 + o(1))

−(1 − h2(F (xτ )))(1 + o(1)) − α2E[Z ] 1

xτ
(1 + o(1)) + (1 − τ )(1 + o(1))

)])
.

Then by Lemma 2.1 and Lemma 4.3, with some calculations we obtain
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ϕ←((1 − τ )−1)

xτ
= ϕ←((1 − τ )−1)

ϕ←(ϕ(xτ ))(1 + o(A∗(xτ )))

= 

−1/s
0

(
1 −

(
�1

s
0
B1(xτ )(1 + o(1)) + �2

s
0
Ah(xτ )(1 + o(1)) + 1

s
(1 − h2(F (xτ ))(1 + o(1))

+α2E[Z ]
s

1

xτ
(1 + o(1)) − 1 − 


−η∗/s
0

s
A∗(xτ )(1 + o(1)) − 1

s
(1 − τ )(1 + o(1))

))
.

Applying Theorem 3.1, we have xτ ∼ 

1/s
0 ϕ←((1 − τ )−1), and therefore B1(xτ ) ∼ 


η1/s
0 B1(ϕ

←((1 − τ )−1)), Ah(xτ ) ∼ 

ρh/s
0 Ah(ϕ←((1 −

τ )−1)), 1 − h2(F (xτ )) ∼ 

−β2/(γ s)
0 (1 − h2(F (ϕ←((1 − τ )−1)))) and A∗(xτ ) ∼ 


η∗/s
0 A∗(ϕ←((1 − τ )−1)). The result of Theorem 4.1 follows. 

Theorem 4.2 is then obtained by applying Lemma 4.3. �
Proof of Theorem 5.1. By Lemma 2.1(ii), 1/(1 − h−1

1 (1 − 1/·)), the inverse of 1/(h1(1 − 1/·)), is 2RV1,ς , and therefore, by Lemma 2.1(i),

1 − τn

1 − h−1
1 (τn)

= 1 − τn

1 − h−1
1 (1 − 1/(1 − τn)−1)

→ K ∈ (0,∞) as n → ∞.

We then break down log(̂xτn /xτn ) in the following fashion:

log
x̂τn

xτn

= log

(
1

qτn

(
kn

n(1 − τn)

)γ̂n

Xn−kn,n

)
+ log

�(γ̂n)

�(γ )
+ (γ̂n − γ ) log

(
1 − τn

1 − h−1
1 (τn)

)

+ log

((
1 − τn

1 − h−1
1 (τn)

)γ
qτn

qh−1
1 (τn)

)
+ log

((
1

γ
B(1/γ − α,α + 1)

)γ qh−1
1 (τn)

xτn

)
with �(γ ) =

(
1
γ B(1/γ − α,α + 1)

)γ
, a continuously differentiable function on the positive half-line. Now,

√
kn

log(kn/(n(1 − τn)))
log

(
1

qτn

(
kn

n(1 − τn)

)γ̂n

Xn−kn,n

)
d−→ N

by Theorem 4.3.8 p.138 of de Haan and Ferreira (2006). It only remains to show that the four other terms in the above decomposition of 
log(̂xτn /xτn ) are asymptotically negligible. We start by writing

√
kn

log(kn/(n(1 − τn)))
log

�(γ̂n)

�(γ )
= oP

(√
kn log

�(γ̂n)

�(γ )

)
= oP (1)

by the delta-method. Likewise,
√

kn

log(kn/(n(1 − τn)))
(γ̂n − γ ) log

(
1 − τn

1 − h−1
1 (τn)

)
= OP

( √
kn

log(kn/(n(1 − τn)))
(γ̂n − γ )

)
= oP (1).

The final two terms in the decomposition of log(̂xτn /xτn ) are bias terms. First of all, using assumption U ∈ 2RVγ ,ρ ,

log

((
1 − τn

1 − h−1
1 (τn)

)γ
qτn

qh−1
1 (τn)

)
= O (A((1 − τn)

−1)) = o(A(n/kn))

so that
√

kn

log(kn/(n(1 − τn)))
log

((
1 − τn

1 − h−1
1 (τn)

)γ
qτn

qh−1
1 (τn)

)
= o(1).

Finally, since qh−1
1 (τn)

= ϕ←((1 − τn)−1),

√
kn

log(kn/(n(1 − τn)))
log

((
1

γ
B(α,1/γ − α + 1)

)γ qh−1
1 (τn)

xτn

)
= o(1)

by Corollary 4.1 and the assumption 
√

kn(kn/n + |A(n/kn)| + |B(q1−kn/n)| + |C(n/kn)| + 1/q1−kn/n) = O (1). The proof is complete. �
Declaration of competing interest

There is no competing interest.

Data availability

No data was used for the research described in the article.
191



T. Mao, G. Stupfler and F. Yang Insurance: Mathematics and Economics 111 (2023) 173–192
Acknowledgements

The authors gratefully acknowledge two anonymous referees for their helpful comments which resulted in a substantially improved 
version of this article, as well as Antoine Usseglio-Carleve for pointing us to the cubature package in R for numerical integration tasks. 
T. Mao gratefully acknowledges the financial support from Natural Science Foundation of Anhui Province (No. 2208085MA07) and the 
National Natural Science Foundation of China (No. 71921001). G. Stupfler gratefully acknowledges support from the French ANR (grant 
ANR-19-CE40-0013, the EUR CHESS under grant ANR-17-EURE-0010, and the Centre Henri Lebesgue under grant ANR-11-LABX-0020-01), 
from an AXA Research Fund Award on “Mitigating risk in the wake of the COVID-19 pandemic”, and from the TSE-HEC ACPR Chair. F. Yang 
gratefully acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (Grant Number: 04242).

References

Bellini, F., Klar, B., Müller, A., Gianin, E.R., 2014. Generalized quantiles as risk measures. Insurance. Mathematics & Economics 54, 41–48.
Bingham, N.H., Goldie, C.M., Teugels, J.L., 1987. Regular Variation. Cambridge University Press.
Cai, J., Mao, T., 2020. Risk measures derived from a regulator’s perspective on the regulatory capital requirements for insurers. ASTIN Bull. J. IAA 50 (3), 1065–1092.
Cai, J.-J., Einmahl, J.H.J., de Haan, L., Zhou, C., 2015. Estimation of the marginal expected shortfall: the mean when a related variable is extreme. Journal of the Royal Statistical 

Society, Series B, Statistical Methodology 77 (2), 417–442.
Daouia, A., Girard, S., Stupfler, G., 2018. Estimation of tail risk based on extreme expectiles. Journal of the Royal Statistical Society, Series B, Statistical Methodology 80 (2), 

263–292.
Daouia, A., Girard, S., Stupfler, G., 2019. Extreme M-quantiles as risk measures: from L1 to Lp optimization. Bernoulli 25 (1), 264–309.
Daouia, A., Girard, S., Stupfler, G., 2020. Tail expectile process and risk assessment. Bernoulli 25 (1), 531–556.
de Haan, L., Ferreira, A., 2006. Extreme Value Theory: An Introduction. Springer.
Drees, H., 2003. Extreme quantile estimation for dependent data, with applications to finance. Bernoulli 9 (4), 617–657.
Föllmer, H., Schied, A., 2016. Stochastic Finance: An Introduction in Discrete Time, 4th edition. De Gruyter.
Gabaix, X., 2009. Power laws in economics and finance. Annual Review of Economics 1 (1), 255–294.
Gabaix, X., Gopikrishnan, P., Plerou, V., Stanley, H.E., 2003. A theory of power-law distributions in financial market fluctuations. Nature 423 (6937), 267–270.
Hill, B.M., 1975. A simple general approach to inference about the tail of a distribution. The Annals of Statistics 3 (5), 1163–1174.
Hsing, T., 1991. On tail index estimation using dependent data. The Annals of Statistics 19 (3), 1547–1569.
Hua, L., Joe, H., 2011. Second order regular variation and conditional tail expectation of multiple risks. Insurance. Mathematics & Economics 49 (3), 537–546.
Hua, L., Joe, H., 2014. Strength of tail dependence based on conditional tail expectation. Journal of Multivariate Analysis 123, 143–159.
Jin, H., Zhou, X.Y., 2013. Greed, leverage, and potential losses: a prospect theory perspective. Mathematical Finance 23 (1), 122–142.
Kaluszka, M., Krzeszowiec, M., 2012a. Mean-value principle under cumulative prospect theory. ASTIN Bull. J. IAA 42 (1), 103–122.
Kaluszka, M., Krzeszowiec, M., 2012b. Pricing insurance contracts under cumulative prospect theory. Insurance. Mathematics & Economics 50 (1), 159–166.
Loretan, M., Phillips, P.C.B., 1994. Testing the covariance stationarity of heavy-tailed time series: an overview of the theory with applications to several financial datasets. 

Journal of Empirical Finance 1 (2), 211–248.
Lv, W., Mao, T., Hu, T., 2012. Properties of second-order regular variation and expansions for risk concentration. Probability in the Engineering and Informational Sciences 26 

(4), 535–559.
Mao, T., Cai, J., 2018. Risk measures based on behavioural economics theory. Finance and Stochastics 22 (2), 367–393.
Mao, T., Hu, T., 2012. Second-order properties of the Haezendonck–Goovaerts risk measure for extreme risks. Insurance. Mathematics & Economics 51 (2), 333–343.
Mao, T., Ng, K.W., Hu, T., 2015. Asymptotic expansions of generalized quantiles and expectiles for extreme risks. Probability in the Engineering and Informational Sciences 29 

(3), 309–327.
Mao, T., Yang, F., 2015. Risk concentration based on expectiles for extreme risks under FGM copula. Insurance. Mathematics & Economics 64, 429–439.
Newey, W.K., Powell, J.L., 1987. Asymmetric least squares estimation and testing. Econometrica 55 (4), 819–847.
Quiggin, J., 1993. Generalized Expected Utility Theory: The Rank-Dependent Model. Kluwer Academic Publishers, Boston.
Schmidt, U., Zank, H., 2007. Linear cumulative prospect theory with applications to portfolio selection and insurance demand. Decisions in Economics and Finance 30 (1), 

1–18.
Stupfler, G., Usseglio-Carleve, A., 2023. Composite bias-reduced Lp -quantile-based estimators of extreme quantiles and expectiles. Canadian Journal of Statistics 51 (2), 

704–742.
Tang, Q., Yang, F., 2012. On the Haezendonck–Goovaerts risk measure for extreme risks. Insurance. Mathematics & Economics 50 (1), 217–227.
Tversky, A., Kahneman, D., 1992. Advances in prospect theory: cumulative representation of uncertainty. Journal of Risk and Uncertainty 5 (4), 297–323.
Weissman, I., 1978. Estimation of parameters and large quantiles based on the k largest observations. Journal of the American Statistical Association 73 (364), 812–815.
Zhao, Y., Mao, T., Yang, F., 2021. Estimation of the Haezendonck–Goovaerts risk measure for extreme risks. Scandinavian Actuarial Journal 2021 (7), 599–622.
192

http://refhub.elsevier.com/S0167-6687(23)00039-2/bibEE06F2C3D0D4207992A5C7568260C405s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib9F46403705CFB7E631BF95C9DA2065A5s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibCC7CA35F14162EB127FBA92AC2BE33B9s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibEB189839E5649F6ECDE219CA08D6D423s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibEB189839E5649F6ECDE219CA08D6D423s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib1B02F475324FEE8AF0341A8CD046679Ds1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib1B02F475324FEE8AF0341A8CD046679Ds1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibBC2D5BA2D51EA53A5D0794E99EE0194Es1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibE43A5383CFC9FDED43DDF873C6EB7F64s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibCC178A96D8E9034134D76DD0F0DCEBAAs1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibD2018182D23487C0ACF628DB6F4EFA92s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib5281AEE0A900DCB365463676251DCB74s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibDA52BB6EDC5B19A09DD402D836EC2C29s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib6330C750880B43F32C2B43CBDE1A7AADs1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibC83EDB91C79EE8BD9367CB8113E832D6s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib4B99FC0F3D8EEA8037E2EDE6B5A8C834s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibBC9062ACE18CFD5C84A7159D81537443s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibB3F01D963AABC88CCFE32C2AE8ACD1E9s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibC0951602C5C439A0FE7F4E00C1F96880s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib50E0B471DEDF78629B0C6172DB543FB7s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib6CE639887F61F960758693ED87E27997s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibBE9B59A5FE8994D67ADB99B0A92D1A25s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibBE9B59A5FE8994D67ADB99B0A92D1A25s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib4A28EE95BE82A3B43B08FA7B9EDA9F4Bs1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib4A28EE95BE82A3B43B08FA7B9EDA9F4Bs1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib7C8CC9D398C7C09B42E3DA531BCD440Bs1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib4569C639558B217D6B01EF29751B6620s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib1CAB30C3C034C619D791FF63C808C533s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib1CAB30C3C034C619D791FF63C808C533s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib0F4828590348679FFACEA76BD94F7884s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib0CAB7121C56967F6E93A1C55FB65D150s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib4A0CAD1D9B62DBE0ED8A11BC1A801328s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib3E02CA73AA798C8DDB9B46B6790AA97Es1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib3E02CA73AA798C8DDB9B46B6790AA97Es1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibF9225A65926D631B2202F7975E5A7D8Es1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibF9225A65926D631B2202F7975E5A7D8Es1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib8CA2335361D611261F41363A76FE5076s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bibF409F2E2AB34646AC338D125359A3EE3s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib5DDFE8B236EF82A6868D5E03258D4F40s1
http://refhub.elsevier.com/S0167-6687(23)00039-2/bib97F92EE7F497385426494645039E5722s1

	Asymptotic properties of generalized shortfall risk measures for heavy-tailed risks
	1 Introduction
	2 Regular variation
	3 First-order expansions of generalized shortfall risk measures
	4 Second-order expansions of generalized shortfall risk measures
	5 Estimation
	6 Examples and numerical illustrations
	7 Proofs
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


