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1. Introduction

A number of problems in mathematical finance and insurance 
rely on risk measures, a large number of which are quantile based. 
Many of them are weighted integrals, or other functionals, of the 
underlying quantile functions, also known as Values-at-Risk (VaR). 
A few illustrative examples are:
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• Distortion (spectral) risk measures (e.g., McNeil et al., 2015, 
Section 8.2.1).

• Expected Shortfall (ES), also known as the Tail Conditional Ex-
pectation, in addition to a number of other names.

• Range-Value-at-Risk (RVaR) (Cont et al., 2010), which is the 
average of quantiles that bridges the ES and the VaR.

• Gini Shortfall (GS) (Furman et al., 2017).
• Inter-ES (Bellini et al., 2022), which is a variability measure 

defined as the difference of the ES’s at different levels.

Standard references for the mathematical theory of risk measures 
are Pflug and Römisch (2007), Rüschendorf (2013), McNeil et al. 
(2015), and Föllmer and Schied (2016).

Formally, let X be a real-valued random variable, whose cumu-
lative distribution function (cdf) we denote by F . Suppose for the 
sake of illustration that we are interested in developing a large-
sample non-parametric statistical inference for the integral
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1∫
p

F −1(u)du (1.1)

for some probability level p ∈ (0, 1), where

F −1(u) = inf{x ∈R : F (x) ≥ u}
is the uth quantile of the cdf F , that is, the VaR at the level u.

Before we proceed further, we need to introduce additional no-
tation. Namely, let F+

1 denote the set of all cdf’s F for which 
integral (1.1) is finite. This is equivalent to saying that F+

1 is the 
set of all cdf’s F such that the random variables X ∼ F satisfy 
E(X+) < ∞, where X+ = max{X, 0}. Obviously, F+

1 ⊃ F1, where 
F1 is the set of all cdf’s F for which integral (1.1) is finite when 
p = 0, that is, consists of all those cdf’s F such that the ran-
dom variables X ∼ F have finite first moments E(X). (Recall that 
E(X) is finite if and only if E(X+) < ∞ and E(X−) < ∞, where 
X− = max{−X, 0}.) The class of all cdf’s is denoted by F .

We shall now introduce yet another cdf, which in Section 2 be-
low will be a generic cdf denoted by G , but presently, to initiate 
the reader’s intuition and to also connect the topic of the present 
paper to what is already known in the literature, we choose to 
work with the empirical cdf Fn defined by

Fn(x) = 1

n

n∑
i=1

1{Xi ≤ x}, (1.2)

where, for illustrative purposes, we assume that the random 
variables X1, . . . , Xn are independent copies of X . Hence, non-
parametric statistical inference for F −1(u) is based on the em-
pirical uth quantile

F −1
n (u) = inf{x ∈R : Fn(x) ≥ u}.

Establishing the limiting distribution for the appropriately normal-
ized difference F −1(u) − F −1

n (u) is challenging because it is not the 
average of transformed random variables X1, . . . , Xn , although un-
der some assumptions (e.g., absolute continuity of the cdf F plus 
other minor assumptions on the probability density function, pdf), 
the difference F −1(u) − F −1

n (u) is, asymptotically when n → ∞, 
such an average (Bahadur, 1966). For more details on the topic, we 
refer to, e.g., Serfling (1980, Sections 2.5 and 2.8.3). Hence, it is 
tempting to conclude that under the same assumptions, the inte-
gral

1∫
p

(
F −1(u) − F −1

n (u)
)
du (1.3)

is also, asymptotically when n → ∞, the average of certain trans-
formations of X1, . . . , Xn . This is indeed true but, very interest-
ingly, such an asymptotic representation of integral (1.3) holds un-
der much weaker assumptions than those required for F −1(u) −
F −1

n (u).
To see why integration improves the situation, we set p = 0 and 

write the equations

1∫
0

(
F −1(u) − F −1

n (u)
)
du =

∞∫
−∞

(
Fn(x) − F (x)

)
dx

= 1

n

n∑
i=1

∞∫
−∞

(
1{Xi ≤ x} − F (x)

)
dx,

(1.4)
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with an illuminating proof of the first equation given in Lemma A.1. 
Hence, except for the inevitable requirement that F has a finite 
first moment, that is, F ∈ F1, no other assumption is required for 
equation (1.4) to hold, and this has inspired our current considera-
tions, developed in full generality in next Section 2 and illustrated 
throughout the rest of this paper with examples spanning areas 
well beyond statistical inference.

Indeed, the first equation of (1.4) naturally leads us to the topic 
of the next section where, for two arbitrary cdf’s F and G , we 
assess the magnitude of the “gap”

�p(F , G) :=
1∫

p

(
F −1(u) − G−1(u)

)
du −

∞∫

F −1(p)

(
G(x) − F (x)

)
dx

(1.5)

between the two integrals on the right-hand side of equation (1.5). 
Obviously, our earlier illustration concerns with the special case 
G = Fn , but our main results hold for generic cdf’s G and are 
therefore formulated and discussed in this way in Section 2. Apart 
from the traditional in the mathematical sciences strive to obtain 
as general results as possible, the generality of our arguments in 
the next section is welcome from several perspectives:

1. Having the main results only in the case G = Fn would poten-
tially mislead the reader into thinking that the empirical cdf 
Fn is necessary for our arguments, which is not the case as 
only the very basic properties of cdf’s are actually needed.

2. The usefulness of our arguments is much wider than the mere 
case of Fn and includes prominent scenarios such as model 
uncertainty, misspecified distributions (think of the mixture of 
the underlying cdf F and some other cdf H), and various para-
metric, non-parametric and other estimators of F , depending 
on sampling designs, which could, and in practice are, rather 
complex. We shall elaborate on these topics in concluding Sec-
tion 5, when all the required for such a discussion results have 
been established.

Foundational results for �p(F , G) in the case of generic pairs 
(F , G) of cdf’s, and also for other related to �p(F , G) quantities, are 
formulated and discussed in Section 2. Section 3 contains several 
corollaries in the special case G = Fn that illustrate how statistical 
inference for integrated quantile (1.1) and its various functionals 
can almost effortlessly be derived from the results of Section 2. As 
a further illustration of the power of our general results of Sec-
tion 2, in Section 4 we shall discuss coherent distortion (spectral) 
risk measures, including the ES. Section 5 concludes the paper with 
additional notes and afterthoughts. Proofs and other technicalities 
are in Appendix A.

2. Foundational results

For the sake of symmetry and thus added mathematical beauty, 
in the following theorem we consider the difference

�p,z(F , G) =
1∫

p

(F −1(u) − G−1(u))du −
∞∫

z

(G(x) − F (x))dx

(2.1)

between the two integrals for arbitrary p ∈ (0, 1) and z ∈ R. Of 
course, setting z = F −1(p) brings us back to the original task of 
assessing the magnitude of �p(F , G) because

�p(F , G) = �p,F −1(p)(F , G). (2.2)
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Fig. 2.1. The “difference” function (p, z) 
→ �p,z(F , G) (left-hand panels) and its contour plots (right-hand panels) when F ∼ Lomax(10, 1) and G ∼ Lomax(α2, 1) with α2 = 8
(top panels) and α2 = 12 (bottom panels). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
Theorem 2.1. Let p ∈ (0, 1) and z ∈R. Then

(
F (z) − p

)(
F −1(p) − z

) ≤ �p,z(F , G) ≤ (
G(z) − p

)(
z − G−1(p)

)
.

(2.3)

The “difference” functional �p,z : F+
1 × F+

1 → R is antisym-
metric, that is, �p,z(F , G) = −�p,z(G, F ) for all F , G ∈ F+

1 . Fur-
thermore, given F , G ∈ F+

1 , the real-valued function (p, z) 
→
�p,z(F , G) is well defined on the strip (0, 1) ×R, is always finite, 
and vanishes when the pair (p, z) is equal to (0, −∞) or (1, ∞).

Note that the product on the left-hand side of bound (2.3) is 
always non-positive, whereas the product on the right-hand side 
of bound (2.3) is always non-negative, because for every cdf H , 
and thus for F and G in particular, the bound H(z) ≥ p holds if 
and only if z ≥ H−1(p).

It is also important to note that when z = F −1(p), the differ-
ence �p,z(F , G), which is equal to �p(F , G), is non-negative for ev-
ery p ∈ (0, 1), and when z = G−1(p), the difference is non-positive 
for every p ∈ (0, 1). We shall see the value of these observations 
later in this section.

To illustrate the “difference” function (p, z) 
→ �p,z(F , G), let 
F ∼ Lomax(α1, 1) and G ∼ Lomax(α2, 1) be two Lomax cdf’s with 
the shape parameters α1 > 0 and α2 > 0, and the same scale pa-
rameter λ = 1. We have

�p,z(F , G) = α1

α1 − 1
(1 − p)1−1/α1 − α2

α2 − 1
(1 − p)1−1/α2

− 1

α1 − 1
(1 + z)1−α1 + 1

α2 − 1
(1 + z)1−α2 , (2.4)
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which is depicted in Fig. 2.1. Recall that the Lomax distribution 
Lomax(α, λ), whose cdf is x 
→ 1 − (1 + x/λ)−α , has a finite first 
moment when the shape parameter α > 1, and it has a finite vari-
ance when α > 2. In the two panels of Fig. 2.1 we have depicted 
some of these cases.

The following corollary to Theorem 2.1 plays a fundamental role 
in the development of statistical inference for integral (1.1) in the 
following section, where we shall set G = Fn . Throughout the rest 
of the current section, however, we keep on working with generic 
cdf’s F and G , which belong to either F+

1 or F , depending on the 
results considered.

Corollary 2.1. For any p ∈ (0, 1), we have

0 ≤ �p(F , G) ≤ (
G(xp) − p

)(
F −1(p) − G−1(p)

)
, (2.5)

where xp := F −1(p). If the cdf F is continuous at the pth quantile xp , 
then

0 ≤ �p(F , G) ≤ (
G(xp) − F (xp)

)(
F −1(p) − G−1(p)

)
. (2.6)

Hence, when F , G ∈ F+
1 , the “gap” function p 
→ �p(F , G) is 

well defined on the unit interval (0, 1), is always finite, non-
negative, and vanishes at p = 0 and p = 1. From the definition 
of �p(F , G) we notice the lack of symmetry between the cdf’s F
and G , and this is actually beneficial when developing statistical 
inference, as we shall see in the following sections.

Remark 2.1. As a little curiosity that immediately follows from 
Corollary 2.1, we note that if F −1(p) = G−1(p), then �p(F , G) =
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Fig. 2.2. The “gap” function p 
→ �p(F , G) when F ∼ Lomax(10,1) and G ∼ Lomax(α2,1) with α2 = 6,7,8, 9 (left-hand panel) and α2 = 11,12,13, 14 (right-hand panel).
−�p(G, F ), and since both �p(F , G) and �p(G, F ) are non-
negative, they are equal to 0. Of course, the latter statement also 
immediately follows from the right-most bound of (2.6).

To illustrate �p(F , G), let F ∼ Lomax(α1, 1) and G ∼
Lomax(α2, 1). We have

�p(F , G) =(1 − p)(α1−1)/α1 + α2

1 − α2
(1 − p)(α2−1)/α2

− 1

1 − α2
(1 − p)(α2−1)/α1 , (2.7)

which, as a function of p, is depicted in Fig. 2.2 for various shape 
parameter values. Note that �p(F , G) = 0 for all p ∈ (0, 1) when 
F = G , which says that the horizontal axis depicts the function 
p 
→ �p(F , G) when G ∼ Lomax(α2, 1) with the same shape pa-
rameter α2 = 10 as that of F .

Although the definition of �p(F , G) requires a finite (upper) 
first moment, the left-hand side of equation (2.7) is well-defined 
even when the Lomax shape parameters are below 1, meaning that 
the cdf’s F and G do not have finite first moments. We shall next 
explain this phenomenon in an illuminating way via an extension 
of the functional �p : F+

1 × F+
1 → R to the largest-possible do-

main F×F , where F is the set of all cdf’s, irrespective of whether 
they have finite moments or not. This makes the contents of the 
following theorem.

Theorem 2.2. Let p ∈ (0, 1), and let �∗
p :F ×F →R be the functional 

defined by

�∗
p(F , G) :=

G−1(p)∫

F −1(p)

(
p − G(x)

)
dx. (2.8)

We have the following statements:

1) If F , G ∈F , then

0 ≤ �∗
p(F , G) ≤ (

G(xp) − p
)(

F −1(p) − G−1(p)
)
, (2.9)

and if, additionally, the cdf F is continuous at the pth quantile xp :=
F −1(p), then

0 ≤ �∗
p(F , G) ≤ (

G(xp) − F (xp)
)(

F −1(p) − G−1(p)
)
. (2.10)

2) If F , G ∈F+
1 , then

�∗
p(F , G) = �p(F , G). (2.11)
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Hence, p 
→ �∗
p(F , G) is an extended “gap” function defined on 

the unit interval (0, 1), always non-negative, taking finite values 
whenever p ∈ (0, 1), and finite or infinite at the end-points p = 0
and p = 1 of its domain of definition. To illustrate, the left-hand 
panel of Fig. 2.3 depicts

�∗
p(F , G) =(1 − p)(α1−1)/α1 + α2

1 − α2
(1 − p)(α2−1)/α2

− 1

1 − α2
(1 − p)(α2−1)/α1 (2.12)

as a function of p when F ∼ Lomax(0.5, 1) and G ∼ Lomax(α2, 1)

with various parameter α2 values strictly below 1. Hence, the two 
cdf’s F and G are ultra-heavily tailed, because they do not possess 
finite first moments. Technically, therefore, �p(F , G) does not exist, 
although �∗

p(F , G) does exist. Since �∗
p(F , G) = 0 for all p ∈ (0, 1)

when F = G , the horizontal axis depicts p 
→ �∗
p(F , G) in the case 

G ∼ Lomax(α2, 1) with the same shape parameter α2 = 0.5 as that 
of F .

In summary, therefore, it is not �p(F , G) as the whole that im-
poses moment-type conditions on the underlying cdf’s F and G
but the very basic objects that do so, which are the two integrals 
whose difference makes up the definition of �p(F , G) and which 
require such conditions. This insight, by the way, may potentially 
lead to the development of ES-type risk measures in situations 
when the first moments of underlying risks are infinite, and such 
situations do exist (e.g., Nešlehová et al., 2006).

3. An excursion into statistical inference

There are extensive studies devoted to statistical estimation of 
the ES and other risk measures. Common approaches include para-
metric methods such as the maximum likelihood and the method 
of trimmed moments (e.g., Brazauskas et al., 2009), semiparametric 
methods such as those based on Extreme Value Theory (e.g., Em-
brechts et al., 1997; Necir et al., 2010; Goegebeur et al., 2022), and 
non-parametric methods (e.g., Jones and Zitikis, 2003; Brazauskas 
et al., 2008; Chen, 2008; Peng et al., 2012). In terms of condition 
minimality, the study of Brazauskas et al. (2008) is perhaps the 
closest one to our current study, although this comment applies to 
only the ES. Indeed, in the case of the Tail Capital Allocation (TCA), 
which generalizes the ES, a non-parametric methodology has been 
developed by Gribkova et al. (2022a,b). It should be noted at this 
point that although the complexities of the latter two studies are 
unavoidable when dealing with the TCA, they almost vanish in the 
case of the ES, as we shall soon see.

Hence, let X1, . . . , Xn be any random variables, and let Fn be 
their empirical cdf. By setting G = Fn in Corollary 2.1, we readily 
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Fig. 2.3. The extended “gap” function p 
→ �∗
p(F , G) when F ∼ Lomax(0.5, 1) and G ∼ Lomax(α2, 1) with α2 = 0.1, 0.2, 0.3, 0.4 (left-hand panel) and α2 = 0.6, 0.7, 0.8, 0.9

(right-hand panel).
arrive at the following corollary that plays a pivotal role through-
out the rest of this section.

Corollary 3.1. Let p ∈ (0, 1) and F ∈ F+
1 . Furthermore, let Fn be the 

empirical cdf based on X1, . . . , Xn. Then

0 ≤ �p(F , Fn) ≤ (
Fn(xp) − p

)(
F −1(p) − F −1

n (p)
)
. (3.1)

If, additionally, the cdf F is continuous at xp := F −1(p), then

0 ≤ �p(F , Fn) ≤ (
Fn(xp) − F (xp)

)(
F −1(p) − F −1

n (p)
)
. (3.2)

To appreciate Corollary 3.1, assume that X1, . . . , Xn are inde-
pendent copies of X whose cdf is F ∈ F+

1 . If the quantile function 
F −1 is continuous at the point p, meaning that the cdf F is strictly 
increasing at the point xp , then F −1(p) − F −1

n (p) = oP (1), and 
since Fn(xp) − p = OP (1), we therefore have

�p(F , Fn) = oP (1) (3.3)

when n → ∞. If, on the other hand, F is continuous at the point 
xp , then p = F (xp) and so, by the classical law of large num-
bers, Fn(xp) →P p = F (xp). Since F −1(p) ∈ R and thus F −1

n (p) =
OP (1), we therefore again have statement (3.3). Since any cdf F
is either strictly increasing or continuous, or both, at the point xp , 
we therefore have the asymptotic representation

1∫
p

(
F −1(u) − F −1

n (u)
)
du = 1

n

n∑
i=1

Yi,p + oP (1)

for every cdf F ∈F+
1 , where

Yi,p =
∞∫

F −1(p)

(
1{Xi ≤ x} − F (x)

)
dx. (3.4)

The iid random variables Y1,p, . . . , Yn,p have finite first moments 
because F ∈ F+

1 . Since their means are zero, by the law of large 
numbers we have n−1 ∑n

i=1 Yi,p = oP (1) and thus, in turn, we ar-
rive at the following consistency result.

Corollary 3.2. Let p ∈ (0, 1) and F ∈ F+
1 . Furthermore, let Fn be the 

empirical cdf based on iid random variables X1, . . . , Xn ∼ F . Then, when 
n → ∞,

1∫
F −1

n (u)du →P

1∫
F −1(u)du. (3.5)
p p
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Of course, this corollary can be established in a myriad of other 
ways and under the same conditions (e.g., Bellini et al., 2022), but 
the way we have used to prove it here provides an important il-
lustration of how Corollary 3.1 actually works.

Remark 3.1. We have seen that statement (3.2) implies state-
ment (3.5) for every p ∈ (0, 1) such that F −1(p) − F −1

n (p) = oP (1). 
The latter statement holds for almost every p ∈ (0, 1), which is 
a well-known property of empirical quantiles (e.g., Shorack and 
Wellner, 1986, p. 10). Therefore, statement (3.5) holds for almost 
every p ∈ (0, 1). Since p 
→ ∫ 1

p F −1(u)du and p 
→ ∫ 1
p F −1

n (u)du are 
both concave and continuous functions, and since statement (3.5)
holds on a dense subset of (0, 1), we conclude with the help of 
Rockafellar (1970, Theorem 10.8) that statement (3.5) holds also 
on the entire (0, 1).

The following CLT-type result is much more useful from the sta-
tistical inference point of view than the previous LLN-type result. 
When reading the following corollary, note the absence of any con-
dition that would involve a pdf of F , which is not needed, and is 
not therefore required to even exist. This is useful and sometimes 
even crucial because in a number of real-life situations, good cdf 
models incorporate discrete components, due to the presence of, 
e.g., many identical values such as claim amounts transformed by 
insurance deductibles, policy limits, etc. (e.g., Brazauskas and Rat-
nam, 2022, and references therein).

Corollary 3.3. Let p ∈ (0, 1) and F ∈ F+
1 . Furthermore, let Fn be the 

empirical cdf based on iid random variables X1, . . . , Xn ∼ F . If the cdf F
is continuous and strictly increasing at xp := F −1(p), and if the variance 
σ 2

F ,p of the random variable 
∫ ∞

F −1(p)

(
1{X ≤ x} − F (x)

)
dx is finite, then, 

when n → ∞, we have the asymptotic normality result

√
n

⎛
⎝

1∫
p

F −1
n (u)du −

1∫
p

F −1(u)du

⎞
⎠ →d N

(
0,σ 2

F ,p

)
. (3.6)

Hence, we now require F to be continuous and strictly increas-
ing at xp . To see why we need the latter (strict monotonicity) 
condition, note that the empirical quantile F −1

n (p) is equal in dis-
tribution to F −1(E−1

n (p)), where E−1
n (p) is the empirical quantile 

based on independent and uniformly on the interval [0, 1] dis-
tributed random variables U1, . . . , Un , which may be defined on 
a different probability space if the original one is not rich enough 
to support such uniform random variables. (When F is continu-
ous, such uniform random variables always exist in the original 
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space.) It is well known (e.g., Shorack and Wellner, 1986, p. 10) 
that E−1

n (p) converges in probability to p, and so for F −1(E−1
n (p))

to converge in probability to F −1(p), we need continuity of F −1

at the point p, which is equivalent to the assumption that F is 
strictly increasing at xp . This, by the way, helps us to understand, 
and appreciate, why Bellini et al. (2022), who assume the existence 
of a pdf of F , require the pdf to be strictly positive in their CLT-
type results, as this requirement implies that the cdf F is strictly 
increasing.

To discuss the variance σ 2
F ,p , we need additional notation. 

Namely, let F+
2 denote the set of all cdf’s F such that any random 

variable X ∼ F satisfies E((X+)2) < ∞. Obviously, F+
2 consists of 

all cdf’s F for which 
∫ 1

p

(
F −1(u)

)2
du < ∞ for every p ∈ (0, 1). As 

we shall show in Lemma A.3 in Appendix A, the variance σ 2
F ,p

is finite whenever F ∈ F+
2 . Furthermore, we shall also show in 

the same lemma that when F ∈ F+
2 , the variance σ 2

F ,p can be ex-
pressed as

σ 2
F ,p =

∞∫

F −1(p)

∞∫

F −1(p)

(
F (x ∧ y) − F (x)F (y)

)
dxdy, (3.7)

where x ∧ y denotes the minimum of x and y.
To see how Corollary 3.3 almost effortlessly follows from Corol-

lary 3.1, we first rewrite the definition of �p(F , Fn) as follows:

√
n

1∫
p

(
F −1(u)− F −1

n (u)
)
du = 1√

n

n∑
i=1

Yi,p +√
n�p(F , Fn), (3.8)

where Y1,p, . . . , Yn,p are the random variables defined by equa-
tion (3.4). Obviously, under the conditions of Corollary 3.3, we have

1√
n

n∑
i=1

Yi,p →d N
(
0,σ 2

F ,p

)
,

and so Corollary 3.3 follows provided that
√

n�p(F , Fn) = oP (1). (3.9)

Bound (3.2) plays a pivotal role in establishing statement (3.9), as 
we shall now demonstrate: First, the classical CLT for iid Bernoulli 
random variables implies 

√
n
(

F (xp) − Fn(xp)
) = OP (1), whereas 

the assumption that the cdf F is strictly increasing at the point 
xp = F −1(p) implies F −1

n (p) →P F −1(p) (it is helpful to now 
recall the discussion in the paragraph that immediately follows 
Corollary 3.3). Hence, statement (3.9) holds, and so does Corol-
lary 3.3. In summary, we almost effortlessly established the 
asymptotic normality of the appropriately normalized integral ∫ 1

p F −1
n (u)du under minimal conditions on the cdf F .

4. Coherent distortion risk measures and beyond

We can equally successfully and almost effortlessly tackle more 
complicated integrals, such as

ρ(F ) :=
1∫

0

ESp(F )μ(dp),

where μ is a measure determined by the context of a specific ap-
plication, or a theory, and

ESp(F ) = 1

1 − p

1∫
F −1(u)du
p

168
is the Expected Shortfall (ES), whose pivotal role in finance and 
insurance has been amply discussed, with the first-of-its-kind ax-
iomatic foundation provided by Wang and Zitikis (2021).

All coherent distortion risk measures can be expressed as ρ(F )

(McNeil et al., 2015, Proportion 8.18), and the class of these risk 
measures coincides with the class of all comonotonic-additive co-
herent risk measures (Kusuoka, 2001). Note also that the point 
measure μ({p}) = 1 gives ρ(F ) = ESp(F ), which up to the con-
stant 1/(1 − p) is equal to integral (1.1). In fact, μ can be any 
signed measure as long as ρ(F ) is finite (e.g., Wang et al., 2020), 
because in what follows we shall only need the linearity property 
of the integral with respect to the integrand (e.g., with respect to 
the quantile function) and not its positivity.

Establishing consistency and asymptotic normality of ρ(F ) re-
duces to establishing the corresponding properties of linear com-
binations of integrals of the types that appear in the above consid-
erations. Indeed, with the empirical ES defined by

ESp,n(F ) = 1

1 − p

1∫
p

F −1
n (u)du,

we have

1∫
0

(
ESp(F ) − ESp,n(F )

)
μ(dp)

=
1∫

0

(
1

n

n∑
i=1

Yi,p + �p(F , Fn)

)
1

1 − p
μ(dp)

= 1

n

n∑
i=1

1∫
0

Yi,p

1 − p
μ(dp) +

1∫
0

�p(F , Fn)

1 − p
μ(dp), (4.1)

where the random variables Y1,p, . . . , Yn,p are defined by equa-
tion (3.4). Clearly, under appropriate conditions on the cdf F and 
measure μ, the random variables

Zi,p :=
1∫

0

Yi,p

1 − p
μ(dp), 1 ≤ i ≤ n,

are iid, centred at 0, and have finite second moments, thus satisfy-
ing the CLT. To verify that the right-most integral in equation (4.1)
converges in probability to 0, we first bound it:

1∫
0

�p(F , Fn)

1 − p
|μ|(dp)

≤
1∫

0

(
F −1(p) − F −1

n (p)
)(

Fn(xp) − F (xp)
)

1 − p
|μ|(dp), (4.2)

where |μ| is the variation of the (possibly signed) measure μ. 
(Note that the variation and the measure itself are different only in 
the case of signed measures.) In summary, under the simple ran-
dom sampling design, from equation (4.1) we immediately deduce 
the following CLT result

√
n

1∫
0

(
ESp(F ) − ESp,n(F )

)
μ(dp) →d N

(
0,σ 2

F ,μ

)
, (4.3)

where the asymptotic variance σ 2 is given by the formula
F ,μ
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σ 2
F ,μ =

1∫
0

1∫
0

E
(
Y1,p Y1,q

)
(1 − p)(1 − q)

μ(dp)μ(dq)

with

E
(
Y1,p Y1,q

) =
∞∫

F −1(p)

∞∫

F −1(q)

(
F (x ∧ y) − F (x)F (y)

)
dxdy.

The use the second half of Corollary 3.1 to establish bound (4.2)
may at first glance give the impression that F has to be con-
tinuous at xp for every p ∈ (0, 1), but this is true only if we 
ignore the role of μ. To illustrate how important it is to take 
the measure μ into account, we start with the simplest example 
μ({p∗}) = 1 with any fixed p∗ ∈ (0, 1), in which case the validity 
of bound (4.2) follows if we assume that F is continuous at xp∗
for the given p∗ . In the case of discrete mixtures of ES’s, we would 
have μ(∪i{pi}) = ∑

i μ({pi}) = 1 and thus bound (4.2) would hold 
whenever the cdf F is continuous at xp for every p ∈ ∪i{pi}. For 
continuous measures, the matter is simpler because the cdf F and 
the quantile function F −1 can be discontinuous only on at most 
countable number of points.

Hence, coming back to bound (4.2) and assuming its validity 
(i.e., assuming appropriate conditions on F and μ), we can em-
ploy weighted LLN- and CLT-type results for general quantile and 
empirical processes (e.g., Shorack and Wellner, 1986) in order to 
show that the right-hand side of bound (4.2) converges in proba-
bility to 0 when n → ∞. These are standard technicalities, whose 
choices are contingent on the available information (or lack of it) 
about the measure μ and the cdf F , and, also very importantly, on 
how the two interact.

To illustrate, consider a simple (in the context of the present 
paper) but very important case of the Expected Shortfall at any 
given probability level p∗ ∈ (0, 1), which we briefly mentioned 
above but will now tackle with rigour and in full detail. Hence, 
with μ being the probability measure induced by the degenerate 
at the point p∗ ∈ (0, 1) random variable, we have the equation

√
n

1∫
0

(
ESp(F ) − ESp,n(F )

)
μ(dp) = √

n
(

ESp∗(F ) − ESp∗,n(F )
)

and, in view of statement (4.3) and the surrounding it discussion, 
we have the asymptotic normality result

√
n
(

ESp∗(F ) − ESp∗,n(F )
)

→d N
(
0,σ 2

F

)
with the asymptotic variance

σ 2
F = 1

(1 − p∗)2

∞∫

F −1(p∗)

∞∫

F −1(p∗)

(
F (x ∧ y) − F (x)F (y)

)
dxdy, (4.4)

provided that the following two conditions hold: first, E((X+)2) <
∞, and second, the cdf F is continuous and strictly increasing at 
the quantile F −1(p∗). In the current context, these are truly mini-
mal conditions.

It now becomes instructive to recall the work of Bellini et al. 
(2022, Section 5) whose expression

σ 2
F = 1

(1 − p∗)2

1∫
p∗

1∫
p∗

s ∧ t − st

f (F −1(s)) f (F −1(t))
dsdt (4.5)

of the asymptotic variance σ 2
F is of course equivalent to that given 

by equation (4.4), provided that the cdf F has a density f , which 
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we do not require due to our technique of proof. The reason 
Bellini et al. (2022) need absolute continuity of the cdf F is that 
their proof, which is quite different from ours, relies on reduc-
ing the asymptotic behaviour of 

√
n(F −1(u) − F −1

n (u)) to that of a 
weighted Brownian bridge (Bahadur, 1966), thus inevitably requir-
ing the existence of f .

Finally, note the following alternative way of writing equa-
tion (4.5):

σ 2
F = 1

(1 − p∗)2

1∫
p∗

1∫
p∗

(s ∧ t − st)dF −1(s)dF −1(t).

It does not rely on the existence of f , and this alternative ex-
pression of the asymptotic variance σ 2

F in the form of a Lebesgue-
Stieltjes integral serves a strong indication that absolute continuity 
of the cdf F is not needed, and we have indeed established this 
fact in the present paper.

5. Concluding notes

The main goal of this paper has been to show that under very 
mild assumptions, integrated quantiles can be converted into inte-
grated cdf’s with an error term for which theoretically and practi-
cally useful bounds have been derived and illustrated. Apart from 
being an interesting mathematical result, one of the biggest ben-
efits of such a conversion is statistical, which could be at the 
population level (e.g., assessing model uncertainty or misspecifica-
tion) or at the data level (e.g., assessing the performance of various 
estimators).

Consider first a problem at the population level, inspired by 
Cont et al. (2010). Specifically, the results that we have derived in 
the previous sections can be used to assess model uncertainty of 
the tail behaviour of risks by considering, e.g., a set H of misspec-
ified cdf’s such that each F ∈ H is only a small perturbation away 
from the true cdf. Let F0 denote the (unknown) true cdf of the 
population whose ES at a level p ∈ (0, 1) we wish to assess. The 
expert’s subject-matter knowledge may suggest some cdf F ∈ H
as a proxy for F0. Given this information, the resulting ESp(F ) is 
known, but what can we say about the “ideal” ESp(F0), assuming 
that the expert believes – with confidence – that F is within a 
certain distance from F0?

It should be noted at this point that the closeness of F and F0

on their domains of definition R does not automatically imply the 
closeness of the corresponding values-of-risk, that is, of the quan-
tiles on their domains of definition (0, 1). Hence the challenge, and 
bound (2.5) with F0 instead of G gives a helping hand in sorting 
out the problem:

ESp(F )−ESp(F0) = 1

1 − p

∞∫

F −1(p)

(
F0(x)− F (x)

)
dx+remp(F , F0),

(5.1)

where the (non-negative) remainder term remp(F , F0) satisfies the 
bound

remp(F , F0) ≤ 1

1 − p

(
F0(F −1(p)) − p

)(
F −1(p) − F −1

0 (p)
)
.

(5.2)

The main term on the right-hand side of equation (5.1) is tractable, 
given the expert’s subject-matter knowledge of the quantile 
F −1(p) and an estimate of the distance between the cdf’s F and 
F0. In view of this knowledge, the right-hand side of bound (5.2) is 
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also tractable, provided that, additionally, we can assess the close-
ness of the pth quantiles (i.e., values-at-risk) F −1(p) and F −1

0 (p). 
In summary, therefore, to assess the distance between ESp(F ) and 
ESp(F0), in addition to what is already known to the expert, we 
also need to assess the distance between the quantiles F −1(p) and 
F −1

0 (p). This is a considerably lesser problem than assessing the 
distance between the two quantile functions on their domains of 
definition (0, 1).

Consider now a basic though quite illuminating “statistical” ex-
ample. Namely, by their very definition (recall equation (1.2)), em-
pirical cdf’s are sums of random variables, and thus integrals of 
empirical cdf’s are also sums of random variables. This linearity 
plays a pivotal role when establishing desired statistical inference 
results for integrated quantiles and thus, in turn, for various risk 
measures of insurance and finance. Elaborating on this statistical 
aspect, in the previous sections we have shown the validity of the 
following results:

• If F ∈ F+
1 , then 

∫ 1
p F −1

n (u)du is a consistent estimator of ∫ 1
p F −1(u)du.

• If the cdf F ∈ F+
2 is continuous and strictly increasing at xp , 

then 
∫ 1

p F −1
n (u)du is asymptotically normal.

These results have been established under the iid assumption on 
X1, . . . , Xn , but this assumption can be relaxed, and thus the two 
results can be established in various non-iid scenarios (e.g., under 
α-mixing, etc.), as required by specific applications.

Of course, when working with profit-and-loss (P&L) distribu-
tions, the left-hand version 

∫ p
0 F −1(u)du of integral (1.1) is also of 

interest, and for it, we have the following analogs of the above 
statements:

• If F ∈ F−
1 , then 

∫ p
0 F −1

n (u)du is a consistent estimator of ∫ p
0 F −1(u)du.

• If F ∈ F−
2 and the cdf F is continuous and strictly increasing 

at xp , then 
∫ p

0 F −1
n (u)du is asymptotically normal.

The sets F−
1 and F−

2 are defined like F+
1 and F+

2 , respectively, 
but now using the negative part X− = max{−X, 0} instead of X+ .

We can of course equally successfully and almost effortlessly 
tackle more complicated integrals such as 

∫
�

F −1
n (u)du, as long 

as � is the union of some disjoint subintervals of (0, 1). Indeed, 
establishing consistency and asymptotic normality for such inte-
grals reduces to establishing the corresponding properties of linear 
combinations of integrals of the types that we have extensively 
discussed in the current paper, and the results such as those dis-
cussed by Serfling (1980, Section 3.3) make the task almost effort-
less.
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Appendix A. Proofs

Before proving Theorems 2.1 and 2.2, we shall first establish 
two auxiliary lemmas: the first one will confirm the validity of the 
first equation of (1.4), whereas the second lemma will be used in 
the proof of Theorem 2.1. Note that in the two lemmas, as well as 
when proving the two theorems and establishing other technical 
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results, we shall avoid the classical formulas of integration-by-
parts and change-of-variables. Instead, we shall rely on Fubini’s 
theorem, which is perfectly suited for our purpose, especially in 
view of the fact that, in general, the cdf’s and their quantile func-
tions are not, strictly speaking, the ordinary inverses of each other.

Lemma A.1. If F ∈F1 , that is, if the first moment of X is finite, then

1∫
0

(
F −1(u) − F −1

n (u)
)
du =

∞∫
−∞

(
Fn(x) − F (x)

)
dx. (A.1)

Proof. We begin with the obvious equations

1∫
0

(
F −1(u) − F −1

n (u)
)
du =

1∫
0

F −1(u)du −
1∫

0

F −1
n (u)du

= E(X) − X̄, (A.2)

where X̄ denotes the sample mean of X1, . . . , Xn . To show that 
the right-hand sides of equations (A.1) and (A.2) are equal, we 
shall employ Fubini’s theorem. To avoid notational confusion, we 
shall use x1, . . . , xn instead of X1, . . . , Xn , that is, we shall prove 
the equation

1

n

n∑
i=1

∞∫
−∞

(
1{xi ≤ x} − F (x)

)
dx = E(X) − x̄ (A.3)

We now write a string of equations:

∞∫
−∞

(
1{xi ≤ x} − F (x)

)
dx

=
∞∫

−∞
1{xi ≤ x}(1 − F (x)

)
dx +

∞∫
−∞

1{xi > x}( − F (x)
)
dx

=E

( ∞∫
−∞

1{xi ≤ x}1{X > x}dx

)

−E

( ∞∫
−∞

1{xi > x}1{X ≤ x}dx

)

=E
(
(X − xi)+

) −E
(
(xi − X)+

)
=E

(
(X − xi)+

) −E
(
(X − xi)−

)
=E(X) − xi, (A.4)

where a+ and a− denote, respectively, the positive and negative 
parts of any a ∈ R and satisfy the equation a+ − a− = a. Equa-
tion (A.4) obviously leads to equation (A.3), thus concluding the 
proof of Lemma A.1. �
Lemma A.2. If F ∈F+

1 , that is, if E(X+) < ∞, then the equation

∞∫
z

(1 − F (x))dx =
∫
R

(x − z)+dF (x) (A.5)

holds for every z ∈R.

Proof. Just like in the proof of the previous lemma, we rely on 
Fubini’s theorem and have the equations
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∞∫
z

(1 − F (x))dx = E

( ∞∫
−∞

1{x > z}1{X > x}dx

)

= E
(
(X − z)+

)
=

∫
R

(x − z)+dF (x).

This concludes the proof of Lemma A.2. �
Proof of Theorem 2.1. For any H ∈ F+

1 , and thus for F , G ∈ F+
1 in 

particular, let mH (z) be the function defined by

mH (z) :=(1 − p)z +
∞∫

z

(1 − H(x))dx

=(1 − p)z +
∫
R

(x − z)+dH(x),

where we used Lemma A.2. Hence,

−
∞∫

z

(G(x) − F (x))dx =
∞∫

z

(1 − G(x))dx −
∞∫

z

(1 − F (x))dx

=
∫
R

(x − z)+dG(x) −
∫
R

(x − z)+dF (x)

= mG(z) − mF (z). (A.6)

Using the ES formula of Rockafellar and Uryasev (2002, Theo-
rem 10), we have

1∫
p

F −1(u)du = min
y∈R

⎧⎨
⎩(1 − p)y +

∫
R

(x − y)+dF (x)

⎫⎬
⎭

= min
y∈R

mF (y). (A.7)

Similarly, equation (A.7) holds with F replaced by G . Putting equa-
tions (A.6) and (A.7) together, we arrive at

�p,z(F , G) = min
y∈R

mF (y) − min
y∈R

mG(y) + mG(z) − mF (z)

≤ mG(z) − min
y∈R

mG(y).

Note that the function mG (z) is convex and its right-hand deriva-
tive is D+mG(z) = G(z) − p. Since G−1(p) ∈ arg miny∈R mG(y), we 
therefore have (e.g., Williams, 1991, p. 61)

mG(z) − min
y∈R

mG(y) ≤ D+mG(z)(z − G−1(p))

= (G(z) − p)(z − G−1(p)).

This establishes the right-hand bound of (2.3). For the left-hand 
bound, we apply the just established result on �p,z(G, F ) and have

−�p,z(F , G) = �p,z(G, F )

≤ (F (z) − p)(z − F −1(p)).

This establishes the left-hand bound of (2.3) and completes the 
proof of Theorem 2.1. �
Proof of Theorem 2.2. We start by proving statement (2.11), that 
is, we first show that �p(F , G) coincides with �∗

p(F , G) whenever 
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F , G ∈ F+
1 . Note that �p(F , G) is finite due to F , G ∈ F+

1 , and so 
we write the equation

∞∫

F −1(p)

(
F (x) − G(x)

)
dx =

∞∫

G−1(p)

(
1 − G(x)

)
dx

−
∞∫

F −1(p)

(
1 − F (x)

)
dx

+
G−1(p)∫

F −1(p)

(
1 − G(x)

)
dx.

Fubini’s theorem implies

∞∫

F −1(p)

(
1 − F (x)

)
dx = E

( ∞∫

F −1(p)

1{X > x}dx

)

= E
((

X − F −1(p))+
)

=
1∫

0

(
F −1(u) − F −1(p)

)
+du

=
1∫

p

F −1(u)du − (1 − p)F −1(p). (A.8)

Of course, the same equations hold when F is replaced by G . Com-
bining the equations, we obtain

�p(F , G) = (1 − p)
(

F −1(p) − G−1(p)
) +

G−1(p)∫

F −1(p)

(
1 − G(x)

)
dx

=
G−1(p)∫

F −1(p)

(
p − G(x)

)
dx, (A.9)

which establishes statement (2.11).
We next prove statement (2.10), and thus work with arbi-

trary cdf’s F , G ∈ F . To show that �∗
p(F , G) is non-negative, we 

start with the case F −1(p) < G−1(p). Consequently, the integra-
tion variable x in the definition of �∗

p(F , G) satisfies the inequal-

ity x < G−1(p), which is equivalent to G(x) < p. This implies ∫ G−1(p)

F −1(p)

(
p − G(x)

)
dx ≥ 0.

When F −1(p) ≥ G−1(p), on the other hand, �∗
p(F , G) is equal 

to 
∫ F −1(p)

G−1(p)

(
G(x) − p

)
dx, and since the integration variable x is such 

that x ≥ G−1(p), we have G(x) ≥ p and thus 
∫ F −1(p)

G−1(p)

(
G(x) − p

)
dx ≥

0. This concludes the proof that �∗
p(F , G) ≥ 0.

It remains to establish the right-most bounds of statements (2.9)
and (2.10). We start with the case F −1(p) < G−1(p) and have

G−1(p)∫

F −1(p)

(
p − G(x)

)
dx ≤

G−1(p)∫

F −1(p)

(
p − G(F −1(p))

)
dx

= (
G−1(p) − F −1(p)

)(
p − G(F −1(p))

)
,

(A.10)
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where the inequality holds because x ≥ F −1(p) and thus G(x) ≥
G(F −1(p)). This establishes statement (2.9). Statement (2.10) im-
mediately follows from bound (A.10) because F (F −1(p)) ≥ p al-
ways holds.

When F −1(p) ≥ G−1(p), we have

F −1(p)∫

G−1(p)

(
G(x) − p

)
dx ≤

F −1(p)∫

G−1(p)

(
G(F −1(p)) − p

)
dx

= (
F −1(p) − G−1(p)

)(
G(F −1(p)) − p

)
,

(A.11)

where the inequality holds because x ≤ F −1(p) and so G(x) ≤
G(F −1(p)). This establishes statement (2.9). Statement (2.10) fol-
lows from bound (A.11) because the continuity of F at xp = F −1(p)

implies F (F −1(p)) = p. This finishes the entire proof of Theo-
rem 2.2. �
Lemma A.3. Let p ∈ (0, 1) and F ∈F+

2 . Then the variance σ 2
F ,p is finite 

and can be expressed by formula (3.7).

Proof. To show that the variance is finite, we need to check that

E

⎛
⎜⎝

∞∫

F −1(p)

∞∫

F −1(p)

∣∣1{X ≤ x} − F (x)
∣∣∣∣1{X ≤ y} − F (y)

∣∣dxdy

⎞
⎟⎠<∞.

(A.12)

This is the same as showing that

E

⎛
⎜⎝

∞∫

F −1(p)

∞∫

F −1(p)

∣∣1{X > x} − S(x)
∣∣∣∣1{X > y} − S(y)

∣∣dxdy

⎞
⎟⎠<∞,

(A.13)

where S = 1 − F is the survival function. Since p ∈ (0, 1) and thus 
F −1(p) ∈ R, the assumption F ∈ F+

2 (which implies F ∈ F+
1 ) to-

gether with equation (A.8) implies that the integral 
∫ ∞

F −1(p)

(
1 −

F (x)
)
dx is finite. This reduces checking statement (A.13) to prov-

ing

E

⎛
⎜⎝

∞∫

F −1(p)

∞∫

F −1(p)

1{X > x}1{X > y}dxdy

⎞
⎟⎠ < ∞. (A.14)

The double integral is separable, and each of the two integrals 
is equal to (X − F −1(p))+ . Consequently, statement (A.14) holds 
whenever the expectation E 

(
(X − F −1(p))2+

)
is finite, and the lat-

ter holds because F ∈F+
2 . Consequently, σ 2

F ,p < ∞.
To prove equation (3.7), we start with statement (A.13), which 

we have already established. Fubini’s theorem can now be applied, 
thus yielding the equations

E

⎛
⎜⎝

∞∫

F −1(p)

∞∫

F −1(p)

(
1{X ≤ x} − F (x)

)(
1{X ≤ y} − F (y)

)
dxdy

⎞
⎟⎠

=
∞∫

F −1(p)

∞∫

F −1(p)

E
((
1{X ≤ x} − F (x)

)(
1{X ≤ y} − F (y)

))
dxdy

=
∞∫ ∞∫

Cov
(
1{X ≤ x},1{X ≤ y})dxdy

=
∞∫

F −1(p)

∞∫

F −1(p)

(
F (x ∧ y) − F (x)F (y)

)
dxdy.

This completes the proof of equation (3.7). �
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