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We minimize the probability of lifetime ruin in a deterministic financial and insurance model, although 
the investor’s time of death is random, with an age-dependent force of mortality. By contrast with 
the traditional anything-anytime annuitization model (that is, individuals can annuitize any fraction of 
their wealth at anytime), the individual only purchases life annuity income gradually, using a bounded, 
absolutely continuous rate. As in the anything-anytime annuitization case, we find that it is optimal 
for the individual not to purchase additional annuity income when her wealth is less than a specific 
linear function of her existing annuity income, which we call the buy boundary. Interestingly, we find 
the buy boundary in our model is identical to the one in the anything-anytime annuitization model. 
However, there is a separate threshold, which we call the safe level. (This threshold degenerates to the 
buy boundary in the anything-anytime annuitization model.) When wealth is greater than the safe level, 
the minimum probability of lifetime ruin is zero; when wealth lies between the buy boundary and the 
safe level, the individual’s best choice is to purchase annuity income at the maximum allowable rate.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The probability of lifetime ruin is an important criterion in measuring the risk that individuals outlive their wealth; it was first 
proposed by Milevsky and Robinson (2000). Young (2004) extended their model by allowing individuals to optimally invest in a Black-
Scholes financial market to minimize the probability of lifetime ruin. Bayraktar and Young (2007) further explored the problem by adding 
borrowing constraints. Bayraktar and Zhang (2015a) considered model ambiguity in the drift of the risky asset. Bayraktar et al. (2011)
minimized the probability of lifetime ruin under stochastic volatility. Bayraktar and Zhang (2015b) applied Stochastic Perron’s Method to 
analyze the lifetime ruin problem under transaction costs. Liang and Young (2019) simplified the model in Bayraktar and Zhang (2015b)
by considering two riskless assets and found explicit solutions for an age-dependent force of mortality. Liang and Young (2020) extended 
the original model of Young (2004) by replacing ruin with exponential Parisian ruin.

In recent decades, pensions have changed from defined-benefit to defined-contribution schemes or to a hybrid blend of them. Thus, 
individuals are more responsible for the management of their pension funds, in particular, to converting those funds into lifetime income 
when they retire. Also, the quickly growing proportion of older people in many countries means that governments face unprecedented 
financial difficulties to provide enough government pension income; therefore, many governments encourage their citizens to purchase 
individual pensions to complement government pensions. In view of these changes, we expect more people to purchase life annuities to 
provide retirement income. However, voluntary annuity purchasing is less than predicted by many models. Some research proposed that 
the reason for this phenomenon might be the absence of bequest motives, market imperfections, and frictions; see, for example, Mitchell 
et al. (1999), Brown (2001), Bütler and Teppa (2007), Brown et al. (2008), and Lockwood (2012). To further understand this so-called 
annuity puzzle, a number of researchers minimized the individuals’ probability of lifetime ruin by purchasing annuities and investing in a 
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risky financial market. For example, Milevsky et al. (2006) found the optimal asset allocation and annuity-purchase strategies to minimize 
the probability of lifetime ruin. Bayraktar and Young (2009) further explored the minimum probability of lifetime ruin by allowing the 
individual to purchase deferred life annuities. Wang and Young (2012) investigated commutable annuities to minimize the probability of 
lifetime ruin.

In this paper, we consider an optimal annuity-purchasing problem. Unlike the “all or nothing” or “anything anytime” annuitization 
framework of Milevsky and Young (2007), we assume the individual purchases annuity income gradually with an absolutely continuous 
rate, in which the per-unit-time annuity purchasing rate is restricted to a bounded interval. We propose three advantages of purchas-
ing annuity income in this manner. First, because annuity purchasing is an irreversible transaction, an individual might be reluctant to 
purchase life annuity income with a lump sum payment, or she might delay that purchase. Instead, an individual might find it more 
acceptable to purchase annuity income gradually to reduce the perceived risk from this commitment, as individuals in the U.S. do when 
depositing money into their 401(k)s, 403(b)s, and IRAs. Horneff et al. (2008a,b) considered optimal gradually annuitization and asset 
allocation in a discrete-time framework. Horneff et al. (2015) extended their work by further investigating the optimal investment and 
consumption strategies with guaranteed minimum withdrawal benefit variable annuities. Second, buying annuity income gradually gives 
an individual more chances to evaluate how much annuity income she needs. As time passes, if she realizes she has enough annuity 
income for her lifestyle, she can stop altogether or wait before continuing. Third, purchasing annuity income gradually also addresses 
concerns about interest rates by making it less likely to invest money as a lump sum at today’s low rate because future purchases might 
be made at a higher rate. Quoting from Warshawsky (2011), “Timing risk... may deter investors from the purchase of life annuities unless 
it is... managed through, for example, gradual purchases, that is ladders, of smaller immediate life annuities.”

In our model, the individual aims to minimize her probability of lifetime ruin (that is, the probability that the individual runs out of 
money before she dies, which consuming at a pre-fixed level), and we assume that her future lifetime is governed by an age-dependent 
mortality intensity. First, we observe that when the individual’s wealth is greater than or equal to (c − A)/r, and if the individual does 
not purchase additional annuity income, then consumption can be covered by interest income and existing annuity income.3 Thus, the 
minimum probability of lifetime ruin is zero. By further analyzing the dynamics of the wealth and cumulative annuity processes between 
0 and (c − A)/r, we find two additional boundaries which we call the buy boundary and the safe level. We show that the annuity’s buy 
boundary is identical to that of the “anything anytime” annuitization model in Milevsky et al. (2006), which can be seen as the limiting 
case when the maximum allowable rate of buying annuity income goes to infinity. Our results show that it is optimal for the individual 
not to purchase additional annuity income when wealth is less than the buy boundary. On the other hand, we find when wealth becomes 
greater than the safe level, then the minimum probability of lifetime ruin is zero. When wealth lies between the buy boundary and the 
safe level, it is optimal for the individual to purchase annuity income at the maximum allowable rate till wealth decreases to the buy 
boundary.

The rest of the paper is organized as follows. In Section 2.1, we formulate the model, introduce the annuity structure in which the 
cumulative annuitization process accrues according to an absolutely continuous rate, and define admissible strategies. In Section 2.2, we 
summarize the main results and contributions of this paper. In Section 3, first, we prove two lemmas to analyze the trajectories of the 
wealth and the accumulated annuity processes and, then, provide a verification theorem. After the verification theorem, we hypothesize 
that the optimal annuitization strategy is a barrier strategy, in which the barrier equals the buy boundary in the anything-anytime 
annuitization model in Milevsky et al. (2006). Based on our hypothesis, we construct a candidate strategy and the associated probability of 
lifetime ruin. We find there is another barrier for our problem, the safe level, and when wealth is greater than the safe level, the minimum 
probability of lifetime ruin is zero. By using the verification theorem, we show that the constructed candidate probability of lifetime ruin 
is, indeed, equal to the minimum probability of lifetime ruin. Thus, our hypothesized annuitization strategy is optimal. We also provide 
several numerical examples to illustrate our results. Section 4 concludes the paper.

2. Problem formulation and main contributions

2.1. Model formulation

In this section, we present the financial ingredients that affect the individual’s wealth, namely, consumption, income, a riskless asset, 
and a life annuity. We assume that the individual buys annuities in order to minimize the probability that her wealth reaches zero before 
she dies. Let (�, F , P ) be a complete probability space with a filtration {Ft}t≥0. Let τd be the random future lifetime random variable of 
the individual, with deterministic force of mortality λ(t). τd is defined on the probability space (�, F , P ).

We assume the individual invests her wealth in a riskless asset that earns a constant, positive, continuous rate of interest r. The 
individual consumes at a continuous rate c. As an aside, if the individual receives income other than from her life annuity, then we 
interpret c as the rate of consumption net of that non-annuity income.

The lump-sum price of an immediate life annuity that pays $1 per year continuously until the insured’s death equals

āo(t) = Ẽ

⎡
⎣ τd∫

t

e−r(s−t)ds
∣∣∣τd > t

⎤
⎦=

∞∫
t

e− ∫ s
t (r+λo(u))du ds, (2.1)

in which Ẽ is an expectation defined on a probability space (�, F , P̃ ). In this probability space, τd has a deterministic force of mortality 
λo(t). We also call it the objective force of mortality that the insurance company uses to price annuities.

We assume that λo(t) is a continuous and non-decreasing function of t; the latter is a reasonable assumption because the force 
of mortality is usually increasing for people over age 30 or so, and younger people are generally not interested in purchasing annuity 
income. Note that we do not assume that the function λo and λ are equal. In other words, at time t , in return for each āo(t) the individual 

3 c, A, and r are the rates of consumption, existing annuity income, and return on the riskless investment, respectively.
81



X. Liang and V.R. Young Insurance: Mathematics and Economics 112 (2023) 80–96
pays for an immediate life annuity, she receives $1 per year of continuous annuity income until she dies. However, we assume that the 
individual buys annuity income at an absolutely continuous rate, so she accrues annuity income gradually.

Let W (t) denote the individual’s wealth at time t , and let A(t) denote the cumulative amount of (immediate) life annuity income 
purchased at or before time t . Let q(t) ≥ 0 denote the rate at which the individual purchases annuity income at time t . In this paper, we 
require q(t) ∈ [0, ̄q] for all t ≥ 0, in which q̄ > 0 is the maximum allowable annuitization rate.4 This maximum rate could arise because the 
individual might only have āo(t)q̄ of disposable income for buying annuities.5 The individual’s wealth evolves according to the following 
dynamics:⎧⎪⎨

⎪⎩
dW (s) = (

rW (s) − c + A(s)
)
ds − āo(s)q(s)ds, s ≥ t,

dA(s) = q(s)ds, s ≥ t,

W (t) = w ≥ 0, A(t) = A ≥ 0.

(2.2)

Define a hitting time τ0 associated with the wealth process by τ0 = inf{t ≥ 0 : W (t) < 0}. This hitting time is the time of ruin. By 
probability of lifetime ruin, we mean the probability that wealth reaches 0 before the individual dies at time τd . We minimize this probability 
over the set of admissible annuity purchasing strategies. We call a strategy Q = {q(s)}t≤s<τd ∈ A(t) admissible if the annuitization rate 
process Q is non-negative, right-continuous, adapted to the filtration {Fs}s≥t , and satisfies q(s) ∈ [0, ̄q] for all t ≤ s < τd .

Note that, if w ≥ (c − A)/r, and if the individual does not buy additional annuity income, then consumption is covered by interest 
income and existing annuity income, which implies that the minimum probability of lifetime ruin is zero. Therefore, it remains for us to 
study the minimum probability of lifetime ruin on the domain

D �
{
(t, w, A) ∈R3+ : 0 ≤ w <

c − A

r
, 0 ≤ A ≤ c

}
.

Denote the minimum probability of lifetime ruin by ψ ; then, for (t, w, A) ∈ D,

ψ(t, w, A) = inf
Q ∈A(t)

P
[
τ0 < τd

∣∣W (t) = w, A(t) = A,min(τd, τ0) > t
]

= inf
Q ∈A(t)

e− ∫ τ0
t λ(s)ds. (2.3)

2.2. Main results and contributions

We summarize the main results and associated optimal annuitization strategy for our model in this section. Please refer to Fig. 1 for 
graphs of the important curves in (w, A)-space.

1. When the individual’s wealth is greater than or equal to (c − A)/r, and if the individual does not purchase additional annuity income, 
then consumption can be covered by interest income and existing annuity income. Thus, the minimum probability of lifetime ruin is 
zero.

2. When the individual’s wealth lies between 0 and the buy boundary (c − A)āo(t), it is optimal for the individual not to purchase any 
additional annuity income (Theorem 3.2 and Proposition 3.2).

3. When wealth lies between the buy boundary (c − A)āo(t) and the safe level w̄(t, A) (to be defined), it is optimal for the individual to 
purchase annuities at the maximum allowable rate till wealth decreases to the buy boundary (Theorem 3.2 and Proposition 3.2).

4. When wealth lies between the safe level w̄(t, A) and (c − A)/r, then it is optimal for the individual to purchase annuity income at the 
maximum allowable rate till annuity income plus interest income reaches c, after which the individual does not purchase additional 
annuity income. Via this strategy, ruin does not occur and the minimum probability of lifetime ruin is zero (Proposition 3.1).

5. As q̄ → ∞, the model degenerates to the anything-anytime annuitization model. For this model, it is optimal for individual not to 
purchase any annuity income when wealth 0 < w < (c − A)āo(t) and to purchase an amount of c − A annuity income if wealth is 
greater than (c − A)āo(t). That is, the safe level approaches the buy boundary as q̄ → ∞ (Proposition 3.4).

In analyzing the model, we find two “crossing-only-once” phenomena. First, if wealth plus the wealth equivalence of the annuity 
income āo(t)A is less than c āo(t), then subsequent wealth plus the wealth equivalence of the annuity income is less than c āo(s), for 
all s ≥ t , regardless of whether q(s) is constrained (Lemma 3.2). The other similar phenomenon is if wealth lies below the safe level 
w̄(t, A), then future wealth will also be less than w̄(s, A(s)), for all s ≥ t (Lemma 3.3). Moreover, if wealth lies between the buy boundary 
(c − A)āo(t) and the safe level w̄(t, A), then the individual’s wealth subject to the maximum allowable annuity rate W q̄ will eventually 
cross the buy boundary into the no-buy region. Otherwise, if the initial wealth w is greater than the safe level w̄(t, A), then W q̄ will 
never cross the buy boundary (Lemma 3.4), so ruin cannot occur.

We find it surprising that the individual does not purchase annuity income until her wealth reaches (c − A)āo(t), the same level that 
triggers annuity buying when she is allowed to purchase annuity income via lump-sum payments. Before we analyzed the problem, we 
expected the individual to start buying annuity income at some wealth level less than (c − A)āo(t) because of the constraint on how 
much she can spend on annuities during any time period. That said, we have seen this myopia in other problems related to goal-seeking 
problems. For example, Bayraktar and Young (2007) found the optimal investment strategy to minimize the probability of lifetime ruin 
under constant consumption and under a no-borrowing constraint on investment. Under the no-borrowing constraint, when the constraint 

4 The limiting result when q̄ goes to infinity is given in Proposition 3.4, which is identical to the anything-anytime result in Milevsky et al. (2006) assuming no stochastic 
investment return.

5 In the discrete-time case of Horneff et al. (2008a,b), individuals are allowed to purchase annuities with a certain part of their wealth several times during retirement.
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did not bind (that is, at greater wealth levels), then the individual invested as if the constraint did not exist. Also, Bayraktar et al. (2016)
and Bayraktar and Young (2016) determined the optimal investment strategy to maximize the probability of reaching a bequest goal with 
and without life insurance, respectively. In the wealth regions for which it is optimal not to buy life insurance (that is, at lower wealth 
levels), then the individual invested as if life insurance were not available. Finally, Angoshtari et al. (2015) found the optimal investment 
strategy to minimize the time spent in drawdown; they found that, when not in drawdown, individuals invest identically to those who 
seek to minimize the probability of drawdown. We conjecture that this myopia concerning constraints and opportunities is the rule, rather 
than the exception, in goal-seeking problems.

3. Minimum probability of lifetime ruin

In this section, we first prove three lemmas to analyze the behavior of the wealth process, then we prove a verification theorem that 
we use to find the optimal annuitization strategy.

Lemma 3.1. āo is a non-increasing function on R+ with

dāo(t)

dt
= −1 + (r + λo(t))āo(t). (3.1)

Proof. By differentiating āo(t) in (2.1) with respect to t , we obtain

dāo(t)

dt
= −1 + (r + λo(t))

∞∫
t

e− ∫ s
t (r+λo(u))du ds

≤ −1 + (r + λo(t))

∞∫
t

e−(r+λo(t))(s−t) ds

= 0,

in which the inequality follows from the fact that λo(t) is non-decreasing with respect to t . Also, (3.1) follows immediately from the first 
expression for dāo(t)

dt . �
Lemma 3.2. Suppose Q = {q(s)}t≤s<τd is an admissible strategy in A(t). Then, the corresponding wealth and annuity processes are such that W (s) −
(c − A(s))āo(s) decreases until time sr defined by

sr = inf

{
s ≥ t : W (s) ≥ c − A(s)

r

}
, (3.2)

with inf∅ = ∞. Note that, after time sr , the individual can avoid ruin by setting q(s) = 0 for all sr ≤ s < τd. Thus, if (t, W (t), A(t)) = (t, w, A) ∈ D
satisfies the inequality

w < (c − A)āo(t),

then

W (s) < (c − A(s))āo(s),

for all t ≤ s < sr ∧ τd.

Proof. Define the function h by

h(s) = W (s) − (c − A(s))āo(s), (3.3)

for all t ≤ s < sr . By using (2.2) and (3.1), we compute h’s derivative as follows:

h′(s) = W ′(s) + A′(s)āo(s) − (c − A(s))
dāo(s)

ds

= (
rW (s) − c + A(s)

)− āo(s)q(s) + q(s)āo(s) − (c − A(s))
dāo(s)

ds
= rW (s) − c + A(s) − (c − A(s))

(− 1 + (r + λo(s))āo(s)
)

= rW (s) − (c − A(s))(r + λo(s))āo(s)

= rh(s) − (c − A(s))λo(s)āo(s) < rh(s), (3.4)

for all t ≤ s < sr . Hence, if h(s) < 0, then h′(s) < 0.
We claim that h(s) < 0 for all t ≤ s < sr . On the contrary, suppose h(s) ≥ 0 for some t ≤ s < sr , and let s̄ = inf{t < s < sr : h(s) ≥ 0}. 

Because h(t) < 0, it follows from (3.4) that h′(t) < 0. Moreover, because h′ is continuous and h(t) < h(s̄), there exists a point ŝ ∈ (t, ̄s) with 
h′(ŝ) ≥ 0. Again, from (3.4), we observe that, if h′(s) ≥ 0, then h(s) > 0; therefore, we deduce h(ŝ) > 0, a contradiction to the definition of 
s̄ and ŝ < s̄. �
83



X. Liang and V.R. Young Insurance: Mathematics and Economics 112 (2023) 80–96
Remark 3.1. āo(s)A(s) is the so-called wealth equivalence of the annuity income at time s because āo(s)A(s) is the amount of wealth 
required to purchase annuity income of A(s). Lemma 3.2 tells us that if wealth at time t plus wealth equivalence of the annuity income 
at that time, namely, w + āo(t)A, is less than c āo(t), then all subsequent wealth plus wealth equivalence of the annuity income is less 
than cāo(s), for s ≥ t regardless of the constraint on q(s). Intuitively, because there are no risky investments—investments with possibly 
large returns—if the individual’s existing wealth is less than the threshold (c − A)āo(t), then future wealth of the individual remains below 
that threshold. Lemma 3.2 also tells us that if wealth plus wealth equivalence of the annuity income begins above c āo(t), it crosses that 
dynamic boundary at most once. �

We also have the following lemma that further describes the trajectory of (s, W (s), A(s)) for s ≥ t .

Lemma 3.3. Suppose Q = {q(s)}t≤s<τd is an admissible strategy in A(t) with (t, W (t), A(t)) = (t, w, A) ∈D. If w < w̄(t, A), in which

w̄(t, A) = c − A

r
− q̄

r2

(
1 − e− r

q̄ (c−A)
)

+ q̄

t+ c−A
q̄∫

t

āo(u)e−r(u−t)du , (3.5)

then W (s) < w̄(s, A(s)) for all t ≤ s < τd. Moreover, w̄(t, A) ∈ ((c − A)āo(t), (c − A)/r
)

for 0 ≤ A < c.

Proof. Suppose w < w̄(t, A), and define the function j by

j(s) = w̄(s, A(s)) − W (s), (3.6)

for all t ≤ s < τd . Use (2.2) to compute j’s derivative:

j′(s) = ∂ w̄(s, A(s))

∂s
+ ∂ w̄(s, A(s))

∂ A
A′(s) − W ′(s)

= q̄

{
āo
(

s + c − A(s)

q̄

)
e− r

q̄ (c−A(s)) − āo(s)

}
+ rq̄

s+ c−A(s)
q̄∫

s

āo(u)e−r(u−s)du

+ q(s)

r

{
−1 +

(
1 − rāo

(
s + c − A(s)

q̄

))
e− r

q̄ (c−A(s))
}

− (
rW (s) − (c − A(s))

)+ āo(s)q(s)

= q̄

{
āo
(

s + c − A(s)

q̄

)
e− r

q̄ (c−A(s)) − āo(s)

}
+ rq̄

s+ c−A(s)
q̄∫

s

āo(u)e−r(u−s)du

− q(s)

r

{
1 − rāo(s) −

(
1 − rāo

(
s + c − A(s)

q̄

))
e− r

q̄ (c−A(s))
}

− (
rW (s) − (c − A(s))

)
.

The coefficient of q(s) is positive. Indeed, define ζ(t) = (1 − rāo(t))e−rt , then

ζ ′(t) = −r
dāo(t)

dt
· e−rt − (1 − rāo(t))re−rt

∝ − dāo(t)

dt
− (1 − rāo(t))

= −λo(t)āo(t) < 0,

in which the last equality follows from (3.1) in Lemma 3.1. Thus, ζ(s) − ζ
(
s + c−A(s)

q̄

)
> 0 for all s > 0; note that ers

(
ζ(s) − ζ

(
s + c−A(s)

q̄

))
equals the coefficient of q(s).

Also, q(s) ≤ q̄, so we have

j′(s) ≥ q̄

{
āo
(

s + c − A(s)

q̄

)
e− r

q̄ (c−A(s)) − āo(s)

}
+ rq̄

s+ c−A(s)
q̄∫

s

āo(u)e−r(u−s)du

− q̄

r

{
1 − rāo(s) −

(
1 − rāo

(
s + c − A(s)

q̄

))
e− r

q̄ (c−A(s))
}

− (
rW (s) − (c − A(s))

)
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= − q̄

r

(
1 − e− r

q̄ (c−A(s))
)

+ rq̄

s+ c−A(s)
q̄∫

s

āo(u)e−r(u−s)du + (
c − A(s) − rW (s)

)
= r

(
w̄(s, A(s)) − W (s)

)= r j(s).

Hence, if j(s) > 0, then j′(s) > 0.
We assert that j(s) > 0 for all t ≤ s < τd . Indeed, suppose j(s) > 0, for all t ≤ s < τd , is not true, and let s1 = inf{s > t : j(s) ≤ 0}. Because 

j(t) > 0 and j′(s) = r j(s), it follows that j′(t) > 0. Moreover, because j′ is continuous, there exists a point sc , such that t < sc < s1, with 
j′(sc) ≤ 0. Recall that j(s) > 0 implies j′(s) > 0; by the contrapositive, we deduce j(sc) ≤ 0, a contradiction to the definition of s1 and 
sc < s1.

To show w̄(t, A) ∈ ((c − A)āo(t), (c − A)/r
)
, we compute

w̄(t, A) > (c − A)āo(t)

⇐⇒ c − A

r
− q̄

r2

(
1 − e− r

q̄ (c−A)
)

+ q̄

t+ c−A
q̄∫

t

āo(u)e−r(u−t)du > (c − A)āo(t)

⇐⇒ c − A

r

(
1 − rāo(t)

)− q̄

r2

(
1 − e− r

q̄ (c−A)
)

+ q̄

t+ c−A
q̄∫

t

āo(u)e−r(u−t)du > 0

⇐⇒ 1 − rāo(t)

r
· c − A

q̄
− 1

r2

(
1 − e− r

q̄ (c−A)
)

+
t+ c−A

q̄∫
t

āo(u)e−r(u−t)du > 0. (3.7)

Define a function β on R+ by

β(x) = 1 − āo(t)r

r
x − 1

r2

(
1 − e−rx)+

t+x∫
t

āo(u)e−r(u−t)du.

We compute β(0) = 0,

β ′(x) = 1 − rāo(t)

r
− 1

r
e−rx + āo(t + x)e−rx = 1

r

(
1 − rāo(t)

)− 1

r
e−rx(1 − rāo(t + x)

)
,

β ′(0) = 0, and

β ′′(x) = e−rx(1 − rāo(t + x)
)+ e−rx dāo(t + x)

dx
= e−rt

(
1 − rāo(t + x) + dāo(t + x)

dx

)
> 0,

in which we used (3.1) in Lemma 3.1 to deduce β ′′(x) > 0 for x ≥ 0. Thus, β is an increasing, convex function on R+ , which implies (3.7)
holds for 0 ≤ A < c.

Moreover,

w̄(t, A) <
c − A

r

⇐⇒ c − A

r
− q̄

r2

(
1 − e− r

q̄ (c−A)
)

+ q̄

t+ c−A
q̄∫

t

āo(u)e−r(u−t)du <
c − A

r

⇐⇒ − 1

r2

(
1 − e− r

q̄ (c−A)
)

+
t+ c−A

q̄∫
t

āo(u)e−r(u−t)du < 0.

Because āo(t) is non-increasing with respect to t , we have

t+ c−A
q̄∫

t

āo(u)e−r(u−t)du ≤
t+ c−A

q̄∫
t

āo(t)e−r(u−t)du

= rāo(t) · 1

r2

(
1 − e− r

q̄ (c−A)
)

;

thus, w̄(t, A) < c−A holds if the following stronger inequality is true:
r
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− 1

r2

(
1 − e− r

q̄ (c−A)
)(

1 − rāo(t)
)
< 0,

which holds because r
q̄ (c − A) > 0. �

Theorem 3.1. Let f = f (t, w, A) be a non-negative function on D, in which

D =
{
(t, w, A) ∈R3+ : 0 ≤ w <

c − A

r
, 0 ≤ A ≤ c

}
,

that satisfies the following properties:

1. f is continuous on D, except possibly along the surfaces

L = {
(t, w, A) ∈ D : w = (c − A)āo(t)

}
and

C = {
(t, w, A) ∈ D : w = w̄(t, A)

}
.

2. f is continuously differentiable with respect to t on the domain D and is continuously differentiable with respect to w and A in the interior of D, 
except possibly on L and C. On L and C , f has right- and left-partial derivatives with w and A.

3. f satisfies the following Hamilton-Jacobi (HJ) equation in the interior of D \ (L ∪ C):

min
q∈[0,q̄]

{
ft + (rw − c + A) f w − λ(t) f + ( f A − āo(t) f w)q

}= 0, (3.8)

with boundary conditions

f (t,0, A) = 1, if 0 ≤ A < c, (3.9)

and

f

(
t,

c − A

r
, A

)
= 0, if 0 ≤ A ≤ c. (3.10)

Then,

f ≤ ψ,

on D. �
Proof. Suppose {q(s)}s≥t ∈ A(t) is an admissible strategy for purchasing life annuities for some t ≥ 0, and suppose f is a function that 
satisfies the conditions of this theorem. Then, associated with this strategy, define τb = inf

{
s ≥ t : W (s) < (c − A(s))āo(s)

}
and τ = inf

{
s ≥

t : W (s) < w̄(s, A(s))
}

, either of which might equal infinity. By choosing a constant n sufficiently large, we can write

e− ∫ τ0∧n
t λ(u)du f

(
τ0 ∧ n, W (τ0 ∧ n), A(τ0 ∧ n)

)
= f (t, w, A) −

τ0∧n∫
t

λ(s)e− ∫ s
t λ(u)du f

(
s, W (s), A(s)

)
ds

+
τ0∧n∫
t

e− ∫ s
t λ(u)du {(rW (s) − c + A(s)

)
f w
(
s, W (s), A(s)

)+ ft
(
s, W (s), A(s)

)}
dt

+
τ0∧n∫
t

e− ∫ s
t λ(u)du( f A

(
s, W (s), A(s)

)− āo(s) f w
(
s, W (s), A(s)

))
q(s)ds, (3.11)

in which we interpret the integrals as being split into two or three integrals if τ < τb < τ0 ∧ n or if τb < τ0 ∧ n. From Lemmas 3.2 and 3.3, 
we know that the processes 

{
W (s) − (c − A(s))āo(s)

}
and 

{
W (s) − w̄(s, A(s))

}
cross 0 at most once and only from above; therefore, (1) 

τ = τb = ∞ if w < (c − A)āo(t), (2) τb ≤ τ = ∞ if (c − A)āo(t) ≤ w < w̄(t, A), and (3) τ < τb if w ≥ w̄(t, A). Note that the projection of 
surface C onto (w, A)-space lies to the northeast of the projection of surface L; see Fig. 1 for an illustration.

By using the HJ equation in (3.8), we obtain

e− ∫ τ0∧n
t λ(u)du f (τ0 ∧ n, W (τ0 ∧ n), A(τ0 ∧ n)) ≥ f (t, w, A). (3.12)

By letting n go to infinity in (3.12) and noting that f
(
τ0, W (τ0), A(τ0)

)= 1, we obtain

e− ∫ τ0
t λ(u)du ≥ f (t, w, A).
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Fig. 1. Projections of surfaces L and C in (w, A)-space at a fixed value of time, along with the line w = c−A
r .

By taking the infimum of the left side over admissible strategies and by referring to the expression for ψ in (2.3), we obtain

ψ ≥ f

on D. �
We state a corollary that follows immediately from Theorem 3.1.

Corollary 3.1. Suppose a function f satisfies the conditions of Theorem 3.1. Moreover, if f equals the probability of lifetime ruin associated with an 
admissible strategy for purchasing life annuity income, then the minimum probability of lifetime ruin ψ equals f on D. �

In the remainder of this section, we construct a function φ that satisfies the conditions of Theorem 3.1 and that equals the probability 
of lifetime ruin associated with an admissible strategy for purchasing life annuity income; then, Corollary 3.1 allows us to deduce that φ
equals the minimum probability of lifetime ruin.

Recall that when an individual can invest in a Black-Scholes financial market, Milevsky et al. (2006) show that the individual will 
not buy additional annuity income until her wealth is large enough to cover all her consumption. One can show that the same result 
holds when an individual can invest only in a riskless asset, as in this paper, but is allowed to purchase annuity income with a lump-
sum payment. Specifically, if w < (c − A)āo(t), then it is optimal for the individual not to buy any life annuity income. However, if 
w ≥ (c − A)āo(t), then it is optimal for her to spend the lump-sum amount (c − A)āo(t) to buy an annuity that will pay at the continuous 
rate c − A for the rest of her life. This additional annuity income, together with the prior annuity income of A, will cover her desired 
consumption rate c. Based on this finding, we propose the following hypothesis for purchasing life annuity income at an absolutely 
continuous rate. Recall that wealth and annuity income at time t equal (W (t), A(t)) = (w, A) ∈D.

Hypothesis 3.1.

1. If w < (c − A)āo(t), then it is optimal for the individual not to purchase any additional annuity income. We call the surface w =
(c − A)āo(t) the buy boundary, and we call the region in D such that w < (c − A)āo(t) the no-buy region.

2. If w ≥ (c − A)āo(t), then it is optimal for the individual to purchase annuity income at the maximum allowable rate q̄, unless W (s)
equals (c − A(s))/r, after which time the individual will not purchase additional annuity income and will not ruin. We call the region 
in D such that w ≥ (c − A)āo(t) the buy region. �

Let φ denote the probability of lifetime ruin under the strategy given in Hypothesis 3.1. Via a verification theorem similar to Theo-
rem 3.1, if we find a suitably continuous and differentiable solution of

ft + (rw − c + A) f w − λ(t) f + ( f A − āo(t) f w)q̄1{w≥(c−A)āo(t)} = 0 (3.13)

in the interior of D that satisfies the boundary conditions in Item 3 of Theorem 3.1, then that solution equals φ.
Lemma 3.2 shows that if wealth W (t) at time t lies below the surface w = (c − A)āo(t), then it remains below that surface thereafter. 

Thus, for w ∈ (0, (c − A)āo(t)
)
, under Item 1 of Hypothesis 3.1, φ solves the equation

φt + (rw − c + A)φw − λ(t)φ = 0, (3.14)

with φ(t, 0, A) = 1 if 0 ≤ A < c. By solving this boundary-value problem, we get

φ(t, w, A) = e− ∫ s0
t λ(s)ds, (3.15)

in which

s0 = t − 1
ln

(
1 − rw

)
(3.16)
r c − A
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equals the time when wealth reaches 0 under the strategy in Hypothesis 3.1, assuming w ∈ (0, (c − A)āo(t)
)
.

Before computing φ for w ≥ (c − A)āo(t), we first analyze the behavior of (s, W (s), A(s)) under Item 2 of Hypothesis 3.1. Let (
W q̄(s), Aq̄(s)

)
denote the wealth and annuity income processes when q(s) ≡ q̄ for all s ≥ t . Clearly,

Aq̄(s) = A + q̄(s − t), (3.17)

from which it follows

W q̄(s) = er(s−t)

⎛
⎝w − c − A

r
+ q̄

r2
− q̄

s∫
t

āo(u)e−r(u−t)du

⎞
⎠+ c − A

r
− q̄

r
(s − t) − q̄

r2
. (3.18)

We present the following lemma that describes the trajectory of W q̄ . Let sb denote the minimum time when W q̄ (for w ≥ (c − A)āo(t)) 
crosses the buy boundary, that is,

sb = inf
{

s ≥ t : W q̄(s) <
(
c − Aq̄(s)

)
āo(s)

}
, (3.19)

in which we use the subscript b for buy.

Lemma 3.4. Let w̄(t, A) denote the function of A defined in (3.5), and assume that 0 ≤ A < c. If (c − A)āo(t) ≤ w < w̄(t, A), then W q̄ in (3.18)
eventually crosses the buy boundary into the no-buy region. Moreover, sb increases with w, and

lim
w→w̄(t,A)−

sb = te, (3.20)

in which te = t + (c − A)/q̄. Otherwise, if w ≥ w̄(t, A), then W q̄ never crosses the buy boundary and sb = ∞.

Proof. For t ≤ s < τd , define the function g by

g(s) = W q̄(s) − (
c − Aq̄(s)

)
āo(s)

= er(s−t)

⎛
⎝w − c − A

r
+ q̄

r2
− q̄

s∫
t

āo(u)e−r(u−t)du

⎞
⎠+ c − Aq̄(s)

r

(
1 − rāo(s)

)− q̄

r2
, (3.21)

that is, g measures the (signed) distance from W q̄ to the buy boundary. Equivalently, g equals the function h in (3.3) when q(s) ≡ q̄ for 
all t ≤ s < τd .

If g becomes negative, then W q̄ has crossed the buy boundary into the no-buy region, which it will never leave; see Lemma 3.2. 
Moreover, by direct calculation, we obtain

g(te) = e
r
q̄ (c−A) (w − w̄(t, A)

)
,

which implies

g(te) < 0 ⇐⇒ w < w̄(t, A). (3.22)

Therefore, if (c − A)āo(t) ≤ w < w̄(t, A), then sb is finite and less than te . In words, we have shown that W q̄ in (3.18) eventually crosses 
the buy boundary into the no-buy region.

Furthermore, if w < w̄(t, A), then from the definitions of sb and g in (3.19) and (3.21), respectively, we see that g(sb) = 0. By fully 
differentiating this equation with respect to w (and by using the second expression for g in (3.21)), we obtain

g′(sb)
∂sb

∂ w
+ er(sb−t) = 0. (3.23)

Moreover, by further careful calculation and using (3.1), one can show that

g′(sb) = −(c − Aq̄(sb)
)((

1 − rāo(sb)
)+ dāo(s)

ds

∣∣∣∣
s=sb

)

= −(c − Aq̄(sb)
)
λo(sb)ā

o(sb) < 0. (3.24)

g′(sb) < 0 and (3.23) imply ∂sb
∂ w is strictly positive, that is, sb increases with respect to w .

To show the limit in (3.20), note that (because sb < te when (c − A)āo(t) ≤ w < w̄(t, A))

s̃ := lim
w→w̄(t,A)−

sb ≤ te.

If the above inequality is strict, that is, if s̃ < te , then (as shown in Lemma 3.3) once wealth drops below the buy boundary, the future 
wealth of the individual will always lie below the buy boundary, which implies limw→w̄(t,A)− g(te) < 0. However, from (3.22), we observe 
that limw→w̄(t,A)− g(te) = 0, a contradiction. Hence, s̃ = te , and we have proved (3.20).
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Fig. 2. sb as a function of w .

We claim that if w ≥ w̄(t, A), then W q̄ never crosses the buy boundary. Otherwise, there must exist a point ŝ > t , such that g(ŝ) < 0, 
which is equivalent to

w <
c − A

r
− q̄

r2
+ q̄

ŝ∫
t

āo(u)e−r(u−t)du − e−r(ŝ−t)

{
c − Aq̄(ŝ)

r

(
1 − rāo(ŝ)

)− q̄

r2

}
. (3.25)

Define a function 
 via the right side of (3.25), that is, for s ≥ t ,


(s) = c − A

r
− q̄

r2
+ q̄

s∫
t

āo(u)e−r(u−t)du − e−r(s−t)

{
c − Aq̄(s)

r

(
1 − rāo(s)

)− q̄

r2

}
,

then, by using (3.1), we compute


′(s) = e−r(s−t)(c − Aq̄(s)
)((

1 − rāo(s)
)+ dāo(s)

ds

)
= e−r(s−t)(c − Aq̄(s)

)
λo(s)āo(s).

Thus, 
′(s) > 0 for all t < s < te , and 
′(s) ≤ 0 for all s ≥ te . Hence, 
(te) = w̄(t, A) is a global maximum, and for all ŝ ≥ t , we have 
(ŝ) ≤
w̄(t, A). Inequality (3.25), then, implies w < w̄(t, A), which contradicts our original assumption w ≥ w̄(t, A). Therefore, if w ≥ w̄(t, A), 
then sb = ∞. �

In the following proposition, we use Lemma 3.4 to show that, if w ≥ w̄(t, A), then the probability of lifetime ruin under Item 2 of 
Hypothesis 3.1 is zero. We, therefore, call w̄(t, A) the safe level.

Proposition 3.1. If w̄(t, A) ≤ w ≤ (c − A)/r and 0 ≤ A ≤ c, then the probability of lifetime ruin φ equals zero.

Proof. Lemma 3.4 shows that, if w ≥ w̄(t, A), then the wealth process W q̄ never drops below the buy boundary into the no-buy region; 
thus, sb = ∞. In this case, wealth W q̄(s) reaches (c − Aq̄(s))/r (at time sr ) before time sb = ∞, after which the individual does not 
purchase additional annuity income (according to Item 2 of Hypothesis 3.1) and does not ruin. �
Remark 3.2. Recall that sr , defined in (3.2), is the time wealth and annuity income reach W (s) = (c − A(s))/r, and te = t + (c − A)/q̄ is 
the time annuity income reaches c when annuities are purchased at the maximum possible rate. To see the relationship between sr and 
te under the strategy given in Hypothesis 3.1, note that if wealth lies between the buy boundary (c − A)āo(t) and the safe level w̄(t, A), 
and if the individual purchases annuity income at rate q̄, then wealth decreases to the buy boundary, sr is infinite, and annuity income 
never reaches c. However, if wealth is greater than the safe level w̄(t, A), then at time te annuity income equals c, and sr occurs before 
time te . Also, Lemma 3.4 and Proposition 3.1 imply that once wealth w is greater than the safe level w̄(t, A), then subsequent wealth will 
never down cross the safe level. �
Example 3.1. Suppose the individual’s force of mortality and the objective force of mortality used to price annuities are the same, both of 
which follow Makeham’s law, that is, λ(t) = λo(t) = a + Bebt , in which a = 0.03, B = 0.001, and b = 0.01. Moreover, we set t = 0, r = 0.02, 
λo = 0.04, c = 10, q̄ = 0.5, and A(0) = 0. It follows that the per-dollar price of the immediate life annuity at time 0 equals āo(0) = 19.52, 
and

āo(t) =
∞∫

e−0.05u−0.1e0.01t (e0.01u−1)du.
0
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At time 0, the buy boundary (c − A(0))āo(0) = 195.16, and the safe level w̄(0, A(0)) = 248.37. In Fig. 2, we plot the graph of sb as a 
function of w ∈ [195.16, 248.37]. As expected from Lemma 3.4, we see that sb increases from 0 to te = 20 as w increases from the buy 
boundary to the safe level. �

Based on our analysis of W q̄ , we present the following proposition that gives a (semi-) explicit expression for φ in D.

Proposition 3.2. The probability of lifetime ruin associated with the annuitization strategy in Hypothesis 3.1 equals

φ(t, w, A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e− ∫ s0
t λ(s)ds, 0 ≤ w < (c − A)āo(t),

e− ∫�b
t λ(s)ds, (c − A)āo(t) ≤ w < w̄(t, A),

0, w̄(t, A) ≤ w ≤ c − A

r
,

(3.26)

in which �b = sb − 1
r ln

(
1 − rāo(sb)

)
, and s0 and sb are defined in (3.16) and (3.19), respectively. Moreover, φ is continuous and continuously 

differentiable in the interior of D\C.

Proof. Note that, if w = (c − A)āo(t) and 0 ≤ A < c, then sb = 0 because W q̄ will immediately cross the buy boundary into the no-buy 
region. Thus, φ is continuous across the buy boundary in the interior of D. However, as w → w̄(t, A)− , the hitting time sb approaches te; 
thus, φ is not continuous across w = w̄(t, A).

By construction, φ in (3.26) satisfies the differential equation in (3.13) when 0 < w < (c − A)āo(t).
We wish to show that φ satisfies the differential equation in (3.13) when (c − A)āo(t) ≤ w < w̄(t, A). To that end, when (c − A)āo(t) ≤

w < w̄(t, A), sb is finite and solves the equation g(sb) = 0, or equivalently,

er(sb−t)

⎛
⎝w − c − A

r
+ q̄

r2
− q̄

sb∫
t

āo(u)e−r(u−t)du

⎞
⎠+ c − Aq̄(sb)

r

(
1 − rāo(sb)

)− q̄

r2
= 0. (3.27)

By differentiating g(sb) = 0 with respect to t (refer to (3.27) and recall that Aq̄(s) depends on t), we obtain

g′(sb)
∂sb

∂t
− rer(sb−t)

(
w − c − A

r
+ q̄

r2

(
1 − rāo(t)

))+ q̄

r

(
1 − rāo(sb)

)= 0.

Again, differentiate (3.27) with respect to w and A, respectively, to obtain

g′(sb)
∂sb

∂ w
+ er(sb−t) = 0,

as in (3.23), and

g′(sb)
∂sb

∂ A
+ 1

r
er(sb−t) − 1

r

(
1 − rāo(sb)

)= 0.

By differentiating φ in (3.26), we get

φt = λ(t)φ − λ(�b)φ
∂�b

∂t
= λ(t)φ − λ(�b)φ

∂sb

∂t

(
1 + 1

1 − rāo(sb)

dāo(s)

ds

∣∣∣∣
s=sb

)

= λ(t)φ − λ(�b)φ
∂sb

∂t
· λo(sb)āo(sb)

1 − rāo(sb)
, (3.28)

φw = −λ(�b)φ
∂sb

∂ w
· λo(sb)āo(sb)

1 − rāo(sb)
, (3.29)

and

φA = −λ(�b)φ
∂sb

∂ A
· λo(sb)āo(sb)

1 − rāo(sb)
. (3.30)

By substituting φ in (3.26) into the left side of (3.13), and by substituting the derivatives of φ in (3.28)-(3.30), we obtain

φt + (rw − c + A)φw − λ(t)φ + (φA − āo(t)φw)q̄

= −λ(�b)φ
λo(sb)āo(sb)

1 − rāo(sb)

(
∂sb

∂t
+ (

rw − c + A − q̄ āo(t)
) ∂sb

∂ w
+ q̄

∂sb

∂ A

)
= 0.

Thus, we have shown that φ satisfies the differential equation in (3.13) when (c − A)āo(t) ≤ w < w̄(t, A).
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When w̄(t, A) ≤ w ≤ c−A
r , clearly φ = 0 satisfies the differential equation in (3.13) and satisfies the boundary condition in (3.10).

Finally, it is straightforward to show (by using some of the above computations) that

lim
w→(c−A)āo(t)−

φt(t, w, A) = lim
w→(c−A)āo(t)+

φt(t, w, A) = (λ(t) − λ(s̄0))e− ∫ s̄0
t λ(u)du,

lim
w→(c−A)āo(t)−

φw(t, w, A) = lim
w→(c−A)āo(t)+

φw(t, w, A) = − λ(s̄0)

(c − A)(1 − rāo(t))
e− ∫ s̄0

t λ(u)du,

and

lim
w→(c−A)āo(t)−

φA(t, w, A) = lim
w→(c−A)āo(t)+

φA(t, w, A) = − λ(s̄0)āo(t)

(c − A)(1 − rāo(t))
e− ∫ s̄0

t λ(u)du,

in which s̄0 = t − 1
r ln

(
1 − rāo(t)

)
. Thus, φ is continuous and continuously differentiable with respect to t, w , and A in the interior of D\C , 

and this proposition follows from a verification theorem similar to Theorem 3.1. �
In the following theorem, we show that φ equals the minimum probability of lifetime ruin ψ .

Theorem 3.2. The minimum probability of lifetime ruin ψ in (2.3) equals φ in (3.26). Moreover, the corresponding rate of annuitization is given in 
feedback form by

q∗(s) =

⎧⎪⎨
⎪⎩

q̄, (c − A∗(s))āo(s) ≤ W ∗(s) <
c − A∗(s)

r
,

0, otherwise,
(3.31)

in which (W ∗(s), A∗(s))s≥t denotes optimally controlled wealth and annuity income after time t.

Proof. From Propositions 3.1 and 3.2, to prove this theorem, all that remains is to show

arg minq∈[0,q̄](φA − āo(t)φw)q =
{

0, 0 < w < (c − A)āo(t),

q̄, (c − A)āo(t) ≤ w < w̄(t, A),
(3.32)

or equivalently,

φA − āo(t)φw > 0 ⇐⇒ w < (c − A)āo(t). (3.33)

If w < (c − A)āo(t), then

φw = − λ(s0)

c − A

(
1 − rw

c − A

)−1

φ,

and

φA = − λ(s0)w

(c − A)2

(
1 − rw

c − A

)−1

φ,

which implies

φA − āo(t)φw = (
(c − A)āo(t) − w

) λ(s0)

(c − A)2

(
1 − rw

c − A

)−1

φ > 0.

If (c − A)āo(t) ≤ w < w̄(t, A), then from (3.29) and (3.30),

φA − āo(t)φw = λ(�b)φ

(
āo(t)

∂sb

∂ w
− ∂sb

∂ A

)
λo(sb)āo(sb)

1 − rāo(sb)

= − λ(�b)φ

g′(sb)
· λo(sb)āo(sb)

1 − rāo(sb)
· 1

r

((
1 − rāo(sb)

)− (
1 − rāo(t)

)
er(sb−t)

)
≤ 0,

in which the inequality follows from g′(sb) < 0 in (3.24) and from(
1 − rāo(sb)

)
e−rsb ≤ (

1 − rāo(t)
)
e−rt . (3.34)

Indeed, to prove (3.34), define a function � on R+ by �(t) = (
1 − rāo(t)

)
e−rt , then

�′(t) = −re−rt
(

1 − rāo(t) + dāo(t)

dt

)
= −re−rtλo(t)āo(t) < 0.

Thus, �(t) decreases with respect to t , and (3.34) holds because sb ≥ t .
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Fig. 3. W ∗(s) as a function of time when w = 100.

Fig. 4. W ∗(s) as a function of time when w = 230.

Therefore, we have proved (3.33), and from Theorem 3.1 and Corollary 3.1, we deduce ψ = φ on D. �
Note that the annuitization strategy when wealth lies above the safe level is not unique. As long as the individual keeps her wealth 

above the safe level (and there are uncountably many admissible annuitization strategies that will do so), then she will not ruin. However, 
the minimum probability of lifetime ruin itself is unique, due to the verification theorem and its corollary, namely, Theorem 3.1 and 
Corollary 3.1, respectively.

Example 3.2. For this example, we use the same parameters as in Example 3.1. In Figs. 3–5, we graph optimal wealth W ∗(s) as a function 
of s when wealth at time t = 0 lies in one of three intervals: 0 ≤ w < (c − A(0))āo(0) = 195.16, (c − A(0))āo(0) ≤ w < w̄(0, A(0)) = 248.37, 
and w̄(0, A(0)) ≤ w ≤ (c − A(0))/r = 500, respectively. In the scenario reflected in Fig. 3, it is optimal for the individual not to purchase 
any additional annuity income because w = 100 lies below the buy boundary. In this case, ruin occurs at τ0 = 11.1572, and the probability 
of lifetime ruin equals 0.7071.

In Fig. 4, initial wealth w = 230 lies between (c − A)āo(0) = 195.16 and w̄(0, A(0)) = 248.37, so it is optimal for the individual to first 
purchase annuity income at the maximum allowable rate q̄ till the wealth reaches the buy boundary at time sb = 7.6221, after which the 
individual does not purchase additional annuity income. Ruin occurs at τ0 = 32.3034, and the probability of lifetime ruin equals 0.3652.

In Fig. 5, initial wealth w = 280 is greater than the safe level, and we see that optimally controlled wealth W ∗(s) never drops below 
w̄(s, A∗(s)), as we expect from Lemma 3.4. Hence, lifetime ruin will not occur. In this case, it is optimal for the individual to purchase 
annuity income at the maximum allowable rate q̄ till time sr = 17.0032, the time at which W ∗(s) equals (c − A∗(s))/r; see (3.2).

In Fig. 6, we plot the graph of the minimum probability of lifetime ruin as a function of w for (t, A) = (0, 0). We assume the individual’s 
mortality hazard rate follows Makeham’s law and plot the graphs in three cases when λ1(t) = 0.01 + 0.0001e0.001t < λo(t), λ2(t) =
0.03 + 0.001e0.01t = λo(t), and λ3(t) = 0.06 + 0.01e0.02t > λo(t). We see that ψi(0, w, 0) for i = 1, 2, 3 decreases with respect to w , as 
expected, and appears to be first convex, then concave under these parameters.

Finally, in Fig. 7, we compare the minimum probability of lifetime ruin when the forces of mortality follow Makeham’s law, that is, 
λo(t) = 0.03 + 0.001e0.01t and λ(t) = 0.06 + 0.01e0.02t , with the minimum probability of lifetime ruin when the forces of mortality are 
constants (with equal expected values of τd), that is, λo = 0.0314 and λ = 0.0734. We use ψc(0, w, 0) to denote the minimum probability 
of lifetime ruin with the constant mortality hazard rate, and we observe the values of ψ and ψc are quite close under these specific 
parameters. �
92



X. Liang and V.R. Young Insurance: Mathematics and Economics 112 (2023) 80–96
Fig. 5. W ∗(s) as a function of time when w = 280.

Fig. 6. ψ(0, w,0) as a function of w .

We end this section with an analysis of the minimum probability of lifetime ruin ψ as q̄ changes. Note that ψ depends on q̄ when 
(c − A)āo(t) ≤ w < w̄(t, A); also, the safe level w̄(t, A) depends on q̄. We expect ψ to decrease as q̄ increases because larger q̄ more 
closely resembles the lump-sum purchase of annuity income c − A when wealth reaches (c − A)āo(t), the optimal strategy when annuity 
purchases are not constrained. This relationship is, indeed, the case, as we prove in the following proposition.

Proposition 3.3. The minimum probability of lifetime ruin ψ on D is non-increasing with respect to q̄.

Proof. First, note that ψ(t, w, A) is independent of q̄ when 0 ≤ w < (c − A)āo(t). Second, differentiate w̄(t, A) in (3.5) with respect to q̄:

∂ w̄(t, A)

∂q̄
= − 1

r2

(
1 − e− r

q̄ (c−A)
)

+ c − A

rq̄
e− r

q̄ (c−A)(1 − rāo(te)
)+

te∫
t

āo(u)e−r(u−t)du,

in which te = t + (c − A)/q̄. Define a function ϑ on R+ as follows:

ϑ(s) = − 1

r2

(
1 − e−rs)+ s

r
e−rs(1 − rāo(t + s)

)+
t+s∫
t

āo(u)e−r(u−t)du.

Then, we see ϑ(0) = 0 and

ϑ ′(s) = −se−rs
((

1 − rāo(t + s)
)+ dāo(u)

du

∣∣∣∣
u=t+s

)
= −se−rsλo(t + s)āo(t + s) < 0,

in which we use (3.1) to compute dāo(u)
du . Therefore, ϑ(s) decreases with s, which implies ϑ

(
c−A

q̄

)
< ϑ(0) = 0. Also, note that

∂ w̄(t, A)

∂q̄
= ϑ

(
c − A

q̄

)
< 0.

Hence, the safe level w̄(t, A) decreases with respect to q̄.
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Fig. 7. ψ(0, w,0) and ψc(0, w,0) as functions of w .

Third, for (c − A)āo(t) ≤ w < w̄(t, A), differentiate g(sb) = 0 with respect to q̄, in which g is defined in (3.21):

∂ g

∂q̄
+ g′(sb)

∂sb

∂q̄
= 0,

or equivalently,

1

r2

(
er(sb−t) − 1

)
− sb − t

r

(
1 − rāo(sb)

)− er(sb−t)

sb∫
t

āo(u)e−r(u−t)du + g′(sb)
∂sb

∂q̄
= 0.

From (3.24), we know that g′(sb) < 0; thus, ∂sb
∂q̄ is positively proportional to ς(t; sb), in which

ς(t; s) = 1

r2

(
er(s−t) − 1

)
− s − t

r

(
1 − rāo(s)

)− er(s−t)

s∫
t

āo(u)e−r(u−t)du.

By further computation, one can show that ς(sb; sb) = 0, and

∂ς(t; s)

∂t
= ers

r

((
1 − rāo(s)

)
e−rs − (

1 − rāo(t)
)
e−rt)≤ 0,

for t ≤ s, in which the last inequality can be derived similarly as (3.34). Thus, ς(t; sb) ≥ ς(sb; sb) = 0 because t ≤ sb . Hence, sb is non-
decreasing with respect to q̄, which implies that ψ(t, w, A) is non-increasing with respect to q̄ when (c − A)āo(t) ≤ w < w̄(t, A). �

An alternative, shorter proof of Proposition 3.3 is to observe that, if we increase q̄, then we expand the allowable set of rates for 
purchasing annuity income (namely, [0, ̄q]), which implies that the minimum probability of lifetime ruin will (weakly) decrease with 
increasing q̄.

We also present the following limiting result.

Proposition 3.4. As q̄ approaches infinity, the minimum probability of lifetime ruin approaches

ψ∞(t, w, A) =
⎧⎨
⎩

e− ∫ s0
t λ(s)ds, 0 ≤ w < (c − A)āo(t),

0, (c − A)āo(t) ≤ w ≤ c − A

r
,

(3.35)

in which s0 is defined in (3.16). Furthermore, ψ∞ is identical to the probability of lifetime ruin when the individual is allowed to purchase annuity 
income via lump-sum payments.

Proof. From (3.5), we write the safe level w̄(t, A) in powers of q̄:

w̄(t, A) = c − A

r
− q̄

r2

(
1 − e− r

q̄ (c−A)
)

+ q̄

t+ c−A
q̄∫

t

āo(u)e−r(u−t)du

= c − A

r
− q̄

r2

(
1 − e− r

q̄ (c−A)
)

+ q̄ · c − A

q̄
āo(t)e− r

q̄ (c−A) +O(1/q̄)

= c − A

r
− q̄

r2

(
1 −

{
1 − r

q̄
(c − A) +O

(
1/q̄2)})+ (c − A)āo(t) +O(1/q̄)

= (c − A)āo(t) +O(1/q̄),
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which approaches (c − A)āo(t) as q̄ → ∞. Thus, ψ (= φ) in (3.26) approaches ψ∞ in (3.35) as q̄ goes to infinity.
To show that ψ∞ equals the minimum probability of lifetime ruin when an individual is allowed to purchase annuity income via lump-

sum payments, we rely on a verification theorem similar to Theorem 3.1. In place of Item 3 in Theorem 3.1, the minimum probability of 
lifetime ruin solves the following HJ variational inequality on the interior of D\L (see, for example, Wang and Young, 2012):

min
{

ft + (rw − c + A) f w − λ(t) f , f A − āo(t) f w
}= 0, (3.36)

with the same boundary conditions. Clearly, ψ∞(t, w, A) = 0 satisfies this variational inequality when (c − A)āo(t) < w < (c − A)/r. When 
0 < w < (c − A)āo(t), ψ∞(t, w, A) = e− ∫ s0

t λ(s)ds satisfies 
(
∂t + (rw − c + A)∂w − λ(t)

)
ψ∞ = 0. Therefore, we only need to show that (

∂A − āo(t)∂w
)
ψ∞ ≥ 0 in this case, which is true from (3.33). We deduce that ψ∞ equals the minimum probability of lifetime ruin when 

the individual is allowed to purchase annuity income in lump sums. �
In Milevsky et al. (2006), individuals are allowed to invest in both a risky and a riskless asset. If one were to restrict investment to a 

riskless asset only in the anything-anytime annuitization model of Milevsky et al. (2006), then the minimum probability of lifetime ruin 
would equal ψ∞ in Proposition 3.4.

4. Conclusions

In this paper, we solved an individual’s optimal annuitization problem to minimize her probability of lifetime ruin with age-dependent 
forces of mortality, both for pricing annuities and for the individual’s mortality. We considered a deterministic financial model in which 
the individual purchases annuity income gradually under a bounded, absolutely continuous rate. In our model, we found that the annuity’s 
buy boundary is identical to the one in the anything-anytime annuitization model of Milevsky et al. (2006). Specifically, we found that 
it is optimal for the individual not to purchase additional annuity income when her wealth is less than (c − A)āo(t). There is another 
barrier w̄(t, A), which we call the safe level; when wealth is above the safe level, lifetime ruin is preventable. When wealth lies between 
(c − A)āo(t) and w̄(t, A), it is optimal for the individual to purchase annuity income at the maximum allowable rate q̄ till the wealth 
decreases to the buy boundary (c − A)āo(t). We provided numerical examples to illustrate our results.

For future research, we plan to incorporate investment factors into our model, that is, we will allow the individual to invest in a 
financial market consisting of one risky asset and one riskless asset. We will consider the individual’s optimal annuitization purchasing 
strategy and optimal investment strategy in this stochastic environment framework, and compare them with the strategies in the deter-
ministic model in our paper and in the anything-anytime annuitization model. We also plan to consider the problem in this paper when 
the insurer might default on its annuities.
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