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We study actuarial fairness in tontines with heterogeneous cohorts. For a given tontine, we show that 
both collective and individual actuarial fairness can be achieved. While it is impossible to design a 
tontine scheme with mixed cohorts that is optimal (utility-maximizing) for each single cohort (Milevsky 
and Salisbury (2016), Chen et al. (2021d)), we design a socially optimal tontine that maximizes the 
collective’s expected utility which is characterized through a weighted sum of individual utility functions. 
In particular, we compare the resulting collectively optimal tontine to existing schemes in the literature, 
and identify similarities and differences as well as potential (dis-)advantages.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Societal challenges with ageing have generated a growing stream of literature on innovative retirement products providing random, 
mortality-linked benefits to pensioners. Such products are known as pooled annuity funds, group self-annuitization schemes and tontines 
(cf. Piggott et al. (2005), Sabin (2010), Donnelly et al. (2014), Milevsky and Salisbury (2015)). Although they carry different names, all these 
products have the similarity that a pool of pensioners shares mortality risks. Given a sufficiently large pool, the idiosyncratic mortality 
risk can be diversified, while the pool shares the systematic mortality risk. Among the main challenges of these products lies the fact that 
pensioners with different age and wealth typically cannot be simply joint in one and the same scheme without discriminating at least 
some pensioners. While the majority of the literature in this field assumes a homogeneous pool for analytical convenience (e.g. Milevsky 
and Salisbury (2015), Chen et al. (2019, 2020)), there is also some literature dealing with heterogeneous cohorts (e.g. Sabin (2010), 
Donnelly et al. (2014), Milevsky and Salisbury (2016), Denuit (2019) and Chen et al. (2021d)). Milevsky and Salisbury (2016) come up 
with the concept equitability, a weaker concept than fairness, which states that each individual loses an identical fraction of their wealth 
if participating in the tontine with mixed cohorts. Chen et al. (2021d) determine the optimal payment design for a given policyholder 
in a tontine with mixed cohorts, and do not find a unique withdrawal rate which satisfies the fairness condition simultaneously for all 
the individuals. In contrast to the equitable result obtained in Milevsky and Salisbury (2016), we show in this article that both collective 
and individual actuarial fairness are achievable in a closed scheme applying the heterogeneous cohorts of Milevsky and Salisbury (2016). 
Due to the inadequate documentation of actuarial fairness for tontines with mixed cohorts, there is hardly literature addressing optimal 
tontines with mixed cohorts in terms of utility maximization. In the present paper, we come up with an optimal tontine scheme designed 
by a social planner, which takes account of various risk aversion levels of all the participants. We determine this socially optimal tontine 
in such a way that it ensures at least collective fairness and compare it to existing schemes in the literature.
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Actuarially fair annuities are typically considered to be the optimal source of retirement income (Yaari (1965)). However, the inclusion 
of safety loadings in annuity premiums opens a market for mortality risk-carrying products like tontines, which require no safety loadings 
because providers do not promise guaranteed benefits (cf. Piggott et al. (2005), Stamos (2008), Sabin (2010), Hanewald et al. (2013), Don-
nelly et al. (2014) and Milevsky and Salisbury (2015)). Thus, if tontines can be designed fairly for each participant, they could be offered 
at actuarially fair prices, which represents a huge advantage for any retiree who is not fond of full annuitization.1 We therefore believe 
that it is important to extend the article Milevsky and Salisbury (2016) for mixed cohorts to actuarially fair tontines for heterogeneous 
groups.

In this article, we distinguish between collective and individual fairness. In the latter one, we postulate that, for each policyholder, 
the expected present value of future benefits shall be equal to the single up-front premium paid by this policyholder. Collective fairness 
is a weaker requirement as it only requires the present value of future benefits that the pool receives to be equal to the sum of the 
initial up-front premiums. Hence, it is clear that individual fairness implies collective fairness. We extend the model setup in Milevsky 
and Salisbury (2016) by including systematic mortality risk and prove that the design they propose is not collectively fair, which prohibits 
it from being individually fair for all the individuals. Consequently, we propose an alternative way to design the withdrawal rate which 
ensures collective fairness. Furthermore, we then derive conditions under which individual fairness can be achieved.

Although it is possible to design a tontine for heterogeneous groups which even ensures individual fairness for each group, this tontine 
cannot maximize the expected discounted utility of each group simultaneously (see also Milevsky and Salisbury (2016) and Chen et al. 
(2021d). In the second part of this paper, we design a tontine for heterogeneous groups that is optimal for the collective of policyholders. 
For this, we take a social planner’s viewpoint and maximize the weighted sum of the individual utility functions to achieve a withdrawal 
rate which is at least optimal for the collective of heterogeneous policyholders.2 The resource constraint of the social planner is the 
collective fairness criterion. In our setting, we can choose, in the second step, appropriate participation rates for each group to ensure 
individual fairness. If all the participants use logarithmic utility to describe their risk preferences (relative risk aversion all equal to 1), we 
are able to determine the optimal tontine withdrawal rate analytically and can determine individually fair participation rates for the given 
withdrawal rate numerically. In contrast, we need to rely on numerical procedures to determine the optimal tontine withdrawal rate along 
with individually fair participation rates when policyholders from various cohorts own different levels of relative risk aversion.

We compare the socially optimal withdrawal rate of tontines with mixed cohorts to those with homogeneous cohorts, and to the pro-
portional and natural tontines introduced by Milevsky and Salisbury (2016). Both the proportional and natural tontine are generalizations 
of the natural single-cohort tontine introduced in Milevsky and Salisbury (2015) which delivers constant retirement benefits if mortality 
evolves as expected. We find that all these tontine models yield approximately identical certainty equivalents under logarithmic utility. 
However, under heterogeneous power utility preferences, we find that the social planner-designed tontine and the single-cohort tontine 
outperform the proportional and natural tontines. This is because the natural and proportional tontines are unable to account for the 
degree of relative risk aversion of policyholders. However, our numerical results also suggest that the proportional and natural tontines 
perform better than the social planner’s tontine when the ages of the cohorts differ significantly. So, among the parameters considered, the 
natural and proportional tontines perform better for mixed-cohort tontines with large age differences, while the social planner’s tontine 
performs better when age differences are closer and utility preferences differ greatly from log utility. In contrast to Milevsky and Salisbury 
(2016), we find that the benefits of pooling heterogeneous cohorts do not significantly exceed those of individually utility-maximizing 
withdrawal rates in single-cohort tontines. In conclusion, we find that fair participation rates for reasonable tontine designs are roughly 
identical and can be approximated by the ratio of annuity factors. The reason is that participation rates measure differences between age 
groups for which annuity prices are at least a good approximation (see also Milevsky and Salisbury (2016)).

The remainder of this article is structured as follows: In Section 2, we consider a tontine with a given withdrawal rate and derive 
conditions under which such a tontine is collectively and individually fair. In Section 3, we then solve the collective optimization problem 
of the social planner and analyze the expected discounted lifetime utility of the heterogeneous policyholders. In Section 4, we conclude. 
Some proofs and technical details as well as a pseudo code are collected in the appendix.

2. Achieving fairness in given tontines

In this section, it is our goal to derive conditions under which fairness in mixed-cohort tontines can be achieved, if withdrawal rates 
are assumed to be given. In particular, it is not the goal of this section to derive individually utility-maximizing withdrawal rates as, for 
instance, done in Milevsky and Salisbury (2015) and Chen et al. (2019, 2021d).

2.1. Model setup

We consider L cohorts that differ in initial wealth and age. We denote the initial size of cohort j ∈ {1, . . . , L} by n j , the age of the 
members in cohort j by x j and the initial wealth of a member of cohort j by w j . We assume that the members in each cohort are 
identical copies of each other. The total initial pool size is then n = n1 + · · · + nL .

The remaining lifetime of policyholder i will be denoted by Ti for i = 1, . . . , n. The (possibly stochastic) force of mortality of each 
member is μx+t , i.e. all the members are subject to the same mortality law (but still differ in their ages). We use Ft := σ({μx+s}s≤t) to 
denote the sigma-algebra containing the information regarding the systematic mortality risk up to time t . Furthermore, we introduce the 
notation

Sx(t) := E
[
1{T >t} | Ft

]= e− ∫ t
0 μx+sds

1 Naturally, there will still be some fees (e.g. for the management of investments, distribution of dividends, the organization of a tontine, and providing regular information 
to policyholders), but these will be small compared to annuities (cf. Chen et al. (2021a)).

2 This type of collective utility function is frequently considered in the finance literature, see e.g. Wilson (1968), Dumas (1989), Weinbaum (2009) and Jensen and Nielsen 
(2016).
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for the random survival probabilities conditional on the systematic mortality outcome. The (deterministic) survival probabilities are then 
given by

sx(t) := E
[
1{T >t}

]= E
[
E
[
1{T >t} | Ft

]]=E
[

e− ∫ t
0 μx+sds

]
.

The number of policyholders alive at time t is then given by

N(t) =
n∑

j=1

1{T j>t},

where (1{T j>t} | Ft) ∼ Ber(Sx j (t)). We use Ni(t) to denote the number of living members in cohort i, such that N(t) = ∑L
i=1 Ni(t). We 

assume that the remaining lifetimes of individuals are conditionally (on Ft ) independent. Conditional on Ft , the overall number of living 
policyholders N(t) then follows a Poisson Binomial distribution.

Following Milevsky and Salisbury (2016), we define the payoff to an individual policyholder by

b(i)(t) := wd(t) · πi wi∑n
j=1 π j w j1{T j>t}

1{Ti>t} (1)

where d(t) is a deterministic withdrawal rate specified at the beginning of the contract and w =∑n
i=1 wi is the total initial wealth from 

all the cohorts. πi is the so-called participation rate, or, in other words, 1/πi can be interpreted as the share price for an individual i
to participate in the tontine product. The main purpose of this parameter is to arrive at a higher level of fairness among heterogeneous 
policyholders, particularly those with different ages. Thinking of policyholders with different ages, with all the other parameters being 
identical, roughly speaking, the older shall be entitled to higher tontine payments, as the entire period during which they obtain payoffs 
is expected to be shorter. In this sense, the participation level for older policyholders shall be higher, or equivalently, the share price for 
older policyholders shall be lower. The quantity πi wi can be considered as the number of shares of individual i.

In the remainder of this section, we will assume that d(t) is a given withdrawal rate and analyze under which conditions fair partici-
pation rates πi exist and whether they are unique.

2.2. Collective and individual fairness

In this article, we disregard financial market risk and focus exclusively on mortality risk. Moreover, we follow Stamos (2008), Hanewald 
et al. (2013) and Milevsky and Salisbury (2015) and neglect safety margins in tontines, as they can be neglected for sufficiently large pools 
even in the presence of systematic mortality risk (cf. Chen et al. (2019)).3 Let r be the risk-free interest rate. The actuarially fair premium 
for an individual j in a given cohort can then be computed as the expected present value of the benefits:

P j
0 =E

⎡
⎣ ∞∫

0

e−rt wd(t)
π j w j∑n

i=1 πi wi1{Ti>t}
1{T j>t

}dt

⎤
⎦

=
∞∫

0

e−rtE

[
wd(t)

π j w j∑n
i=1 πi wi1{Ti>t}

1{T j>t
}]dt

=
∞∫

0

e−rt wd(t)E

[
Sx j (t)E

[
π j w j∑n

i=1 πi wi1{Ti>t}

∣∣∣ Ft, T j > t

]]
dt. (2)

Using (2), we can now specify the term “fairness”.

Definition 2.1. We distinguish between collective and individual fairness:

• Individual fairness is defined for a member in cohort j ∈ {1, . . . , L} if w j = P j
0.

• Collective fairness is defined as

w =
n∑

i=1

P i
0.

If individual fairness holds for all the individuals in the mixed cohorts, it implies collective fairness. However, the reverse statement is 
not valid. Milevsky and Salisbury (2016) have shown that their design is not collectively fair (and thus cannot be individually fair for all 
policyholders). For the sake of completeness, we want to briefly show that their design is not collectively fair in our slightly generalized 
setting and, particularly, discuss the main assumption responsible for this result.

3 Note that, in addition to the findings in Chen et al. (2019), intuitively there is no need for a specific safety margin with respect to systematic mortality risk in a tontine, 
since (almost) exclusively policyholders, not providers, bear this risk.
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Proposition 2.2. Let πi > 0 and wi > 0 for all i = 1, . . . , n. Following Milevsky and Salisbury (2016), i.e. particularly applying the assumption used 
in their paper

∞∫
0

e−rtd(t)dt = 1,

the mixed-cohort payoff design in (1) is not collectively fair.

Proof. First, note that the premium charged from the collective, or in other words, the sum of the individual premiums, is given by

n∑
j=1

P j
0 =

n∑
j=1

∞∫
0

e−rtE

[
wd(t)

π j w j∑n
i=1 πi wi1{Ti>t}

1{T j>t
}]dt

=
∞∫

0

e−rt wd(t)
n∑

j=1

E

[
π j w j∑n

i=1 πi wi1{Ti>t}
1{T j>t

}]dt.

Here, it holds

n∑
j=1

E

[
π j w j∑n

i=1 πi wi1{Ti>t}
1{T j>t

}]= E

⎡
⎣ n∑

j=1

π j w j∑n
i=1 πi wi1{Ti>t}

1{T j>t
}
⎤
⎦

= E

⎡
⎣E

⎡
⎣ n∑

j=1

π j w j∑n
i=1 πi wi1{Ti>t}

1{T j>t
} ∣∣∣ Ft

⎤
⎦
⎤
⎦

= E

⎡
⎣P (N(t) > 0 | Ft)E

⎡
⎣ n∑

j=1

π j w j∑n
i=1 πi wi1{Ti>t}

1{T j>t
} ∣∣∣ Ft, N(t) > 0

⎤
⎦
⎤
⎦+E [P (N(t) = 0 | Ft) · 0]

= E [P (N(t) > 0 | Ft)]

= E

⎡
⎣1 −

n∏
j=1

(1 − Sx j (t))

⎤
⎦ .

It has then the consequence

n∑
j=1

P j
0 =

∞∫
0

e−rt wd(t)E

⎡
⎣1 −

n∏
j=1

(1 − Sx j (t))

⎤
⎦dt

<

∞∫
0

e−rt wd(t)dt = w. (3)

The inequality in (3) shows that the fairness does not hold in the mixed-cohort tontine on the collective level. �
The assumption discussed in Proposition 2.2 implies that the withdrawal rate d(t) is chosen in such a way that the tontine provider 

makes payments up to an infinite time horizon, independent of whether there are living policyholders left. Or in other words, it can be 
understood that Milevsky and Salisbury (2016) assume that the pool contains at least one policyholder who lives forever. In the following, 
we will slightly adjust this assumption and discuss under what conditions collective fairness can be achieved. We slightly adjust the 
constraint on the withdrawal rate d(t) to account for the pool size eventually dropping to zero. For this, we introduce the notation

P0 := E

⎡
⎣ ∞∫

0

e−rtd(t)1{N(t)>0}dt

⎤
⎦

=
∞∫

0

e−rtd(t)E

⎡
⎣1 −

n∏
j=1

(1 − Sx j (t))

⎤
⎦dt,

where

P (N(t) > 0) = E

⎡
⎣1 −

n∏
j=1

(1 − Sx j (t))

⎤
⎦ ,
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i.e. we can directly observe from the expression P0 that payments are made to policyholders as long as at least one policyholder is alive. 
In particular,

w P0 =
∞∫

0

e−rt wd(t)P (N(t) > 0)dt

denotes the expected present value of payments that the tontine provider pays out to the policyholders. In expectation, the premiums 
collected will perfectly finance the retirement benefits of the pool. However, if the actual mortality deviates from the expectation, the 
tontine provider can make a gain or suffer a loss. In particular, if individuals survive longer than expected, the tontine provider needs to 
fulfill the promise of providing d(t) to the pool as long as at least one policyholder is alive. In this sense, the tontine provider carries the 
mortality risk of the last survivor of the pool.

Proposition 2.3. Let πi > 0 and wi > 0 for all i = 1, . . . , n. Further, let the withdrawal rate d(t) be chosen in such a way that P0 = 1. Then, the 
mixed-cohort payoff design in (1) is collectively fair.

Proof. Assuming that d(t) is chosen in such a way that P0 = 1, it is a straightforward calculation (see the proof of Proposition 2.2) to 
show that

n∑
j=1

P j
0 = w · P0.

Hence, choosing d(t) such that P0 = 1 directly leads to the collective fairness. �
Given that the collective fairness is fulfilled, it seems natural to examine whether there are some choices of π1, . . . , πn such that the 

individual fairness is additionally fulfilled. For the case with two cohorts L = 2, we can theoretically show that individual fairness for all 
individuals can be ensured under mild assumptions.

Proposition 2.4. Let L = 2 with n1 > 0, n2 > 0. Furthermore, assume without loss of generality that the first member of the pool belongs to the first 
cohort, while the second member belongs to the second cohort. Additionally, assume that the collective fairness is fulfilled, i.e.

P0 = 1. (4)

Assume further that

n1 w1 < n2 w2

⎛
⎝

∫∞
0 e−rtd(t)E

[
1 − (

1 − Sx1(t)
)n1
]

dt

1 − ∫∞
0 e−rtd(t)E

[
1 − (

1 − Sxi (t)
)n1
]

dt

⎞
⎠ . (5)

Assuming that π1 = 1, there exists a unique value π2 such that the individual fairness is satisfied for both cohorts.

Proof. We want to have

wi = P i
0, i = 1,2. (6)

We set π1 := 1 without loss of generality. Under this specification, we get:

P 1
0 =

∞∫
0

e−rtE

[
wd(t)

w1

w1N1(t) + w2π2N2(t)
1{T1>t}

]
dt,

P 2
0 =

∞∫
0

e−rtE

[
wd(t)

π2 w2

w1N1(t) + w2π2N2(t)
1{T2>t}

]
dt.

Note that for (6) to be fulfilled, it suffices to find π2 such that w1 = P 1
0 . Once this is fulfilled, the second condition w2 = P 2

0 follows 
directly from the collective fairness condition (4), because it follows directly that

w = n1 w1 + n2 P 2
0

which is equivalent to w2 = P 2
0 , because w − n1 w1 = n2 w2. It is clear that P 1

0 : [0, ∞) →
(

0, 
∫∞

0 e−rtE 
[

wd(t)
N1(t) 1{T1>t}

]
dt
]

, π2 �→ P 1
0(π2) is 

a strictly decreasing and thus bijective function in π2. Therefore, if

w1 <

∞∫
0

e−rtE

[
wd(t)

N1(t)
1{T1>t}

]
dt, (7)

it follows that there exists a unique positive number π∗ such that P 1(π∗) = w1. �
2 0 2
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Inequality (5) (or, equivalently, (7)) means that the initial wealth invested by a member of the first cohort shall be smaller than the 
initial value of the tontine benefits if they were paid only to a member of the first cohort. Note that for larger values of n1, the denominator 
in (5) will be close to zero, because 

∫∞
0 e−rtd(t)E 

[
1 − (

1 − Sx1 (t)
)n1
]

dt is close to 1. Thus, in realistic situations with appropriate pool 
sizes and two cohorts, individual fairness can be achieved. Inequality (5) can therefore be seen as a technical requirement rather than an 
economic restriction on the setup of the tontine.

Next, we prove that for any cohort size, given the existence of a set of fair participation rates, this set is unique up to multiplicative 
constant. For this, we directly follow a proof provided in Milevsky and Salisbury (2016).

Proposition 2.5. Assume without loss of generality that the i-th individual belongs to the i-th cohort. Let L ≥ 2 and d(t) be given with ni > 0 and 
wi > 0 and assume that a set of fair participation rates π = (π1, . . . , πL) with π j ∈ (0, ∞) exists. Then, this set is unique up to a multiplicative 
constant.

Proof. The proof follows similar steps as the proof of Theorem 4(a) in Milevsky and Salisbury (2016) and is provided in Appendix A.1 for 
the sake of completeness. �

Proposition 2.4 shows the existence of fair participation rates for two cohorts. Proposition 2.5 shows the uniqueness of the fair par-
ticipation rates (given existence) for any cohort size. Consequently, the question is now whether a set of fair participation rates exists for 
larger numbers of cohorts L ≥ 3. In the following, assume without loss of generality that the i-th individual belongs to the i-th cohort. 
For such a number of cohorts, we get:

w1 =
∞∫

0

e−rtE

[
wd(t)

w1

w1N1(t) +∑L
j=2 w jπ j N j(t)

1{T1>t}

]
dt,

wi =
∞∫

0

e−rtE

[
wd(t)

πi wi

w1N1(t) +∑L
j=2 w jπ j N j(t)

1{Ti>t}

]
dt, i = 2, . . . , L − 1.

Note that we can again omit the last equation (i = L) due to the collective fairness. Therefore, we have L −1 nonlinear equations and L −1
unknowns (π2, . . . , πL). In the following, we consider the expected present values of future benefits P i

0 as functions of the participation 
rates. Note that these functions

P 1
0 : (0,∞) →

⎛
⎝0,

∞∫
0

e−rtE

[
wd(t)

w1

w1N1(t) +∑L
j=3 w jπ j N j(t)

1{Ti>t}

]
dt

⎞
⎠ ,

π2 �→ P 1
0(π2),

P i
0 : (0,∞) →

⎛
⎝0,

∞∫
0

e−rtE

[
wd(t)

πi wi

w1N1(t) +∑L
j=2, j 
=i+1 w jπ j N j(t)

1{Ti>t}

]
dt

⎞
⎠ ,

πi+1 �→ P i
0(πi+1), i = 2, . . . , L − 1

are strictly decreasing in π2 and πi+1, treating π j , j = 3, . . . , L and π j , j 
= i + 1 as given constants, respectively. In other words, for any 
values of π j , j = 3, . . . , L, fulfilling

w1 <

∞∫
0

e−rtE

[
wd(t)

w1

w1N1(t) +∑L
j=3 w jπ j N j(t)

1{Ti>t}

]
dt, (8)

we can find a unique value π∗
2 such that P 1

0(π∗
2 ) = w1. Similarly, for any values π j , j 
= i + 1 satisfying

wi <

∞∫
0

e−rtE

[
wd(t)

πi wi

w1N1(t) +∑L
j=2, j 
=i+1 w jπ j N j(t)

1{Ti>t}

]
dt, (9)

we can find a unique value π∗
i+1 such that P i

0(π
∗
i+1) = wi . Thus, we can successively determine all the values π∗

2 , . . . , π∗
L until all the 

fairness conditions are met. This can, for instance, be done using the numerical procedure provided in Appendix B. This numerical method 
is one possible approach to finding fair participation rates and has some weaknesses, depending on how precisely the parameters are 
defined. Most importantly, in some situations the search may amount to trial and error and may require several attempts to find a 
solution. For a more detailed discussion along with the technical details, we refer interested readers to Appendix B.

2.3. Numerical example

Throughout the numerical analyses, we rely on a shocked Gompertz law. The deterministic Gompertz law (see Gompertz (1825)) is 
frequently used in actuarial science, particularly for retirement planning (see e.g. Milevsky (2020)). In this paper, we follow e.g. Lin and 
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Table 1
Base case parameter setup. We assume without loss of generality that individ-
uals i = 1, 2, 3 belong to cohorts i = 1, 2, 3, respectively.

Cohorts 
L = 3

Cohort sizes 
ni = 500

Initial wealth levels
w1 = 100, w2 = 200, w3 = 300

Risk-free rate 
r = 0.01

Participation rate 
π1 = 1

Initial ages
x1 = 65, x2 = 70, x3 = 75

Modal age 
m = 88.721

Dispersion 
b = 10

Longevity shock
ε ∼ N(−∞,1)

(−0.0035,0.08142
)

Table 2
Fair participation rates π2 and π3 for the 
flat tontine. We rely on the parameters 
introduced in Table 1.

wi = 100 i

ni = 100 ni = 500

x = 70 π2 = 5.49 π2 = 6.57
x = 75 π3 = 11.76 π3 = 15.16

wi = 100

ni = 100 ni = 500

x = 70 π2 = 2.52 π2 = 2.93
x = 75 π3 = 4.42 π3 = 5.36

Cox (2005) and apply a stochastic shock to this deterministic mortality law to take account of the systematic mortality risk. Such a model 
can be motivated by the fact that regulators in many countries require insurers to test their balance sheet against various stress scenarios. 
Dealing with retirement plans, we are particularly interested in longevity shocks. In total, the force of mortality is, for any x and t ≥ 0, 
given by

μx+t = (1 − ε)
1

b
e

x+t−m
b ,

where m > 0 denotes the modal age at death, b > 0 is the dispersion coefficient and ε is a random shock taking values in (−∞, 1). Table 1
provides the base case parameters used in the subsequent numerical analyses.

The parameters are chosen due to the following reasons:

• For the overall pool size, we follow Qiao and Sherris (2013) who recommend a pool size of at least 1000 for modern tontines.
• Based on the ongoing low interest rate environment across most countries, we set the constant risk-free interest rate close to zero. 

For example, the German average risk-free rate of investment in 2019 was 1.1% (see Statista (2019)).
• The ages of the retirees 65, 70 and 75 are typical retirement ages. The initial wealth levels of the retirees increase in the age, since 

individuals who decide to postpone their retirement have more years to earn income than individuals who retire at an earlier age.
• For the values of m and b, we follow Milevsky and Salisbury (2015).
• Concerning the longevity shock ε , we follow Chen et al. (2019) and assume that it follows a truncated normal distribution on the 

interval (−∞,1). The parameters used for this distribution are also taken from Chen et al. (2019), in which the parameters are cali-
brated in accordance with the longevity shock scenario of the Solvency II standard formula. This amounts to a sudden and permanent 
decrease of annual death probabilities by 20%.

As a simple example, we consider a flat tontine as defined in Milevsky and Salisbury (2015), i.e. we consider a constant withdrawal 
rate

d(t) = d = 1∫∞
0 e−rtE

[
1 −∏n

j=1(1 − Sx j (t))
]

dt
.

In Table 2, we present the resulting fair participation rates, which ensure both collective and individual fairness.
Naturally, the participation rates increase with age, as older individuals are entitled to higher retirement benefits. Furthermore, we find 

that the participation rates rise more sharply with age if initial wealth levels also increase with age. This is another natural outcome, as 
individuals who contribute at higher levels are entitled to even higher benefits due to individual fairness. Finally, we find that an increase 
in pool size leads to an increase in participation rates, but has no effect on the relationship between participation rates.

3. Optimal tontine under actuarial fairness

For a given tontine, or more specifically, a withdrawal rate, we have shown both theoretically and numerically how collective and 
individual fairness can be achieved among various cohorts. If fairness is the utmost key component that matters, our results above show 
that, at least for two cohorts, it is possible to ensure individual fairness for all. However, if other optimality criteria such as maximizing 
expected utility are also relevant for decision makers, the considered tontines in the above sections may not be optimal.
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3.1. Social planner’s problem

It is clear that the withdrawal rate d(t) of the mixed-cohort tontine considered in this article cannot be determined in such a way 
that the expected discounted lifetime utility level of each cohort is maximized, as it is frequently done for homogeneous-cohort tontines 
(cf. Milevsky and Salisbury (2015) and Chen et al. (2019, 2020)). In the following, we therefore choose a withdrawal rate d(t) which max-
imizes the weighted sum of the individual utility functions. In this sense, the resulting withdrawal rate d(t) is optimal for the collective, 
but not optimal for a single cohort. In particular, this approach is particularly different from the approach taken in Milevsky and Salisbury 
(2016), where the natural tontine design introduced in Milevsky and Salisbury (2015) is generalized to heterogeneous cohorts.

Let Ui be the utility function and ρi be the subjective discount factor of individual i. Furthermore, let β1, . . . , βn be nonnegative 
numbers adding up to 1. Then, the optimization problem of the social planner is given by

max
d(t)

E

⎡
⎣ ∞∫

0

n∑
i=1

e−ρi tβi U i

(
wd(t) · πi wi∑n

j=1 π j w j1{T j>t}

)
1{Ti>t}dt

⎤
⎦

subject to
n∑

i=1

P i
0 =

∞∫
0

e−rt wd(t)E

[
1 −

n∏
i=1

(1 − Sxi (t))

]
dt = w,

(10)

where w is the total initial wealth. In the construction of this optimization problem, we follow the literature on collective decisions under 
uncertainty, see e.g. Wilson (1968), Amershi and Stoeckenius (1983), Huang and Litzenberger (1985), Dumas (1989), Weinbaum (2009), 
Pazdera et al. (2016), Jensen and Nielsen (2016), Schumacher (2018) and Chen et al. (2021b,c). The constraint of the optimization problem 
is the collective fairness condition, i.e. the initial value to the tontine scheme coincides with the total initial wealth.

If all the individual utility preferences are identical and given by a log-utility function, we can find an explicit solution to this opti-
mization problem.

Theorem 3.1. Assume that Ui(·) = ln(·) for all i = 1, . . . , n. Then, the optimization problem (10) has the following explicit solution:

d∗(t) =
∑n

i=1 e−ρi tβiE
[
1{Ti>t}

]
λe−rtE

[
1 −∏n

j=1(1 − Sx j (t))
] , (11)

where the Lagrangian multiplier is given by

λ =
n∑

i=1

βi

∞∫
0

e−ρi tE
[
1{Ti>t}

]
dt.

Proof. See Appendix A.2. �
Note that, with logarithmic utility, the optimal withdrawal rate (11) depends on individual discount factors, utility weights and future 

lifetimes, but not on the individual participation rates. This implies that in the numerical analysis, we can therefore treat this withdrawal 
rate as given and proceed as described in Section 2 to determine the individually fair participation rates.

If the utility functions are not identical, the expected discounted lifetime utility can be rewritten in the following way:

E

⎡
⎣ ∞∫

0

n∑
i=1

e−ρi tβi U i

(
wd(t) · πi wi∑n

j=1 π j w j1{T j>t}

)
1{Ti>t}dt

⎤
⎦

=
∞∫

0

n∑
i=1

E

[
e−ρi tβi U i

(
wd(t) · πi wi∑n

j=1 π j w j1{T j>t}

)
1{Ti>t}

]
dt

=
∞∫

0

n∑
i=1

E

[
Sxi (t)E

[
e−ρi tβi U i

(
wd(t) · πi wi∑n

j=1 π j w j1{T j>t}

) ∣∣∣∣∣ Ft, Ti > t

]]
dt.

The Lagrangian is given by

L =
∞∫

0

n∑
i=1

E

[
Sxi (t)E

[
e−ρi tβi U i

(
wd(t) · πi wi∑n

j=1 π j w j1{T j>t}

) ∣∣∣∣∣ Ft, Ti > t

]]
dt

+ λ

⎛
⎝w −

∞∫
0

e−rt wd(t)E

⎡
⎣1 −

n∏
j=1

(1 − Sx j (t))

⎤
⎦dt

⎞
⎠ .

The first-order condition is then given by
221



A. Chen and M. Rach Insurance: Mathematics and Economics 111 (2023) 214–229
n∑
i=1

E

[
Sxi (t)E

[
e−ρi tβi U

′
i

(
wd(t) · πi wi∑n

j=1 π j w j1{T j>t}

)
w · πi wi∑n

j=1 π j w j1{T j>t}

∣∣∣∣∣ Ft, Ti > t

]]

= λe−rt wE

⎡
⎣1 −

n∏
j=1

(1 − Sx j (t))

⎤
⎦ .

In this more general case with different risk aversion levels for various cohorts, the withdrawal rate d(t) and the participation rates πi are 
interconnected. To solve this equation, we need to rely on numerical procedures. In particular, we need to simultaneously determine the 
optimal withdrawal rate d(t) and the individually fair participation rates πi . The interconnection between these parameters can make the 
numerical computation of these parameters complex and time-consuming.

3.2. Certainty equivalents and additional designs

We compare the social planner’s tontine to tontines with homogeneous cohorts set up for each of the individual cohorts. Note that for 
such homogeneous-cohort-tontines, an explicit solution to the optimal withdrawal rate exists under CRRA utility preferences (see e.g. Chen 
et al. (2019)). In addition, we modify two tontine designs from Milevsky and Salisbury (2016), the proportional and natural mixed-cohort 
tontine. The modification is done to ensure the collective fairness condition for these tontines, such that reasonable comparisons between 
these designs and the social planner’s optimal tontine can be conducted. Both the proportional and natural mixed-cohort tontine are 
extensions of the single-cohort natural tontine introduced in Milevsky and Salisbury (2015), which is optimal for log-utility-maximizers.

First, the proportional tontine is specified by

d(t) =
n∑

j=1

w j

w
· sx j (t)

āx j

,

where āx j = ∫∞
0 e−rt sx j (t)dt is the money’s worth of an annuity paying out 1 continuously until death. Note that this design is not 

collectively fair, since it provides payments up to an infinite time horizon, even with no living policyholders left:

∞∫
0

e−rtE

⎡
⎣1 −

n∏
j=1

(1 − Sx j (t))

⎤
⎦d(t)dt <

∞∫
0

e−rtd(t)dt = 1.

If we want to use this tontine structure in our setting, we can easily modify it to the following collectively fair scheme:

d(t) = 1

E
[

1 −∏n
j=1(1 − Sx j (t))

] n∑
j=1

w j

w
· sx j (t)

āx j

.

In a final step, we can then choose the participation rates π j in such a way that individual fairness is achieved.
Furthermore, Milevsky and Salisbury (2016) consider the natural mixed-cohort tontine, specified by

d(t) =
n∑

j=1

π j w j∑n
i=1 āxi πi wi

· sx j (t),

where the weights π j can be chosen arbitrarily. This approach is also not collectively fair, as it provides payments up to an infinite time 
horizon, even if there are no living policyholders left:

∞∫
0

e−rtE

⎡
⎣1 −

n∏
j=1

(1 − Sx j (t))

⎤
⎦d(t)dt <

∞∫
0

e−rtd(t)dt = 1.

Again, we can easily modify this withdrawal rate into the following collectively fair scheme:

d(t) = 1

E
[

1 −∏n
j=1(1 − Sx j (t))

] n∑
j=1

π j w j∑n
i=1 āxi πi wi

· sx j (t),

where we can again choose the participation rates to achieve individual fairness.
For our numerical analyses, we assume that the utility functions are of the constant relative risk aversion (CRRA) type, i.e., for γi > 0, 

the utility function Ui is defined by

Ui(y) =
{

y1−γi

1−γi
, γi 
= 1

ln(y), γi = 1.

In the utility function 
∑n

i=1 βi U i(·), we add different types of CRRA utility functions Ui . To make sure that the units in the collective 
utility function can be added, we need to ensure that the weights βi are chosen in such a way that βi U i owns the same unit for all i. This 
is e.g. ensured by the choice of weights
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Fig. 1. Withdrawal rates depending on time t for different tontine designs, where we use γ1 = 6 and γ2 = 8 for the case with power utility. The parameters are chosen as in 
Table 1. Furthermore, we assume ρi = r.

βi = w̄γi∑n
j=1 w̄γ j

, w̄ = 1

n

n∑
i=1

wi, (12)

which we have taken from Chen et al. (2021c).
In this section, we fix the first two cohorts introduced in Table 1 as base case parameters. Throughout the numerical analyses, we 

assume ρi = r to ensure a fair comparison between the tontine of the social planner and Milevsky and Salisbury (2016)’s designs. For the 
CRRA utility, we assume that For the CRRA utility, we assume that γ1 = 6 and γ2 = 8, i.e. risk aversion increases with age, as found in the 
literature (at least from age 65 on, see e.g. Riley and Chow (1992) and DaSilva et al. (2019)).

In Fig. 1, we show the optimal withdrawal rate d(t) obtained under log utility and power utility along with the withdrawal rates of the 
proportional and natural tontine. Note that the optimal withdrawal rate under log utility is independent of the participation rates πi . For 
the power utility, we set π1 = 1 and π2 = 1.222 to achieve individual fairness. The withdrawal rate of the proportional tontine is again 
independent of the participation rates and for the natural tontine, we set π2 = 1.211 to achieve individual fairness. We observe that the 
withdrawal rates are decreasing and therefore coincide roughly with optimal withdrawal rates derived in the literature (cf. Milevsky and 
Salisbury (2015)). In total, there are no major differences in the structure of the different withdrawal rates.

We analyze the utility benefit/loss generated by the collective problem by comparing it to optimal solutions when they are treated as 
separated cohorts. To compare the benefits resulting from the different tontines, we consider the certainty equivalent CE as the level of 
the deterministic annuity payoff that yields the same expected utility as a given mixed-cohort tontine. That is, the certainty equivalent 
CEi of individual i is determined by

∞∫
0

e−ρi t sxi (t)Ui(CEi)dt = E

⎡
⎣ ∞∫

0

e−ρi t U i

(
wd(t) · πi wi∑n

j=1 π j w j1{T j>t}

)
1{Ti>t}dt

⎤
⎦ .

Under CRRA utility functions, the certainty equivalent can be determined as

CEi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
(1−γi)∫∞

0 e−ρi t sxi (t) dt
E

[∫∞
0 e−ρi t U i

(
wd(t) · πi wi∑n

j=1 π j w j1{T j>t}

)
1{Ti>t}dt

]) 1
1−γi

, γi 
= 1

e
E

[∫∞
0 e−ρi t Ui

(
wd(t)· πi wi∑n

j=1 π j w j1{T j>t}

)
1{Ti>t}dt

](∫∞
0 e−ρi t sxi (t) dt

)−1

, γi = 1,

depending on whether power or log utility is used.

3.3. Numerical results

3.3.1. Base case
In Table 3, we provide the certainty equivalents of the mixed-cohort and the single-cohort tontines for log-utility. We observe that 

the proportional and natural tontine slightly outperform the social planner’s tontine for both pool sizes considered. However, they are 
unable to outperform the homogeneous tontines. In particular, we observe that the younger cohort prefers the homogeneous tontine to 
the mixed-cohort tontines. This result is reversed for the older cohort. All in all, the differences between the various tontine designs 
are rather small. Furthermore, we observe that an increase in the pool size increases all certainty equivalents, a natural result which is 
consistent with the literature.

In Table 4, we provide the certainty equivalents of the mixed-cohort and the single-cohort tontines for CRRA utility. We observe that 
the social planner’s optimal tontine and the homogeneous tontines now outperform the natural and proportional tontine. The reason for 
this result is that both these tontine designs are generalizations of the natural tontine introduced in Milevsky and Salisbury (2015), which 
is optimal for a log-utility maximizer. Furthermore, we again find that the younger cohort prefers the homogeneous tontine to the mixed-
cohort tontine set up by the social planner. This result reverses for the older cohort. Thus, it is not clear which of the two approaches of 
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Table 3
Certainty equivalents obtained under log-utility. We rely 
on the parameters introduced in Table 1 and the partic-
ipation rates making the heterogeneous tontine individ-
ually fair. Furthermore, we assume ρi = r.

x = 65 x = 70 π2

n1 = n2 = 100

Homogeneous tontine 5.423 13.09 -
Social planner 5.40 13.12 1.236
Proportional tontine 5.417 13.12 1.216
Natural tontine 5.416 13.13 1.216

n1 = n2 = 500

Homogeneous tontine 5.44 13.127 -
Social planner 5.42 13.130 1.230
Proportional tontine 5.43 13.14 1.211
Natural tontine 5.43 13.14 1.211

Table 4
Certainty equivalents obtained for γ1 = 6 and γ2 = 8. 
We rely on the parameters introduced in Table 1 and the 
participation rates making the heterogeneous tontine in-
dividually fair. Furthermore, we assume ρi = r.

x = 65 x = 70 π2

n1 = n2 = 100

Homogeneous tontine 5.31 12.64 -
Social planner 5.27 12.89 1.236
Proportional tontine 5.16 12.00 1.216
Natural tontine 5.18 12.15 1.216

n1 = n2 = 500

Homogeneous tontine 5.38 12.91 -
Social planner 5.36 13.02 1.222
Proportional tontine 5.28 12.68 1.211
Natural tontine 5.29 12.75 1.211

Table 5
Certainty equivalents obtained under log-utility. We rely 
on the parameters introduced in Table 1 (except for the 
cohort sizes) and the participation rates making the het-
erogeneous tontine individually fair. Furthermore, we as-
sume ρi = r.

x = 65 x = 70 π2

n1 = 100, n2 = 25

Homogeneous tontine 5.423 12.97 -
Social planner 5.412 13.11 1.230
Proportional tontine 5.418 13.12 1.218
Natural tontine 5.417 13.11 1.218

n1 = 500, n2 = 125

Homogeneous tontine 5.438 13.09 -
Social planner 5.430 13.14 1.222
Proportional tontine 5.436 13.15 1.211
Natural tontine 5.435 13.14 1.211

is preferable. One could just as easily argue that the decision to establish a single tontine with heterogeneous cohorts or separate tontines 
with homogeneous cohorts could be left with the plan provider.

3.3.2. Unequal pool sizes
Next, we want to study the impact of unequal pool sizes on the certainty equivalents and participation rates. We assume that the 

second cohort (retirement age 70) makes out only 25% of the first cohort (retirement age 65). In Table 5 we provide the certainty 
equivalents of the mixed-cohort and the single-cohort tontines for log-utility. Comparing the results of Table 5 to those in Table 3, we 
observe that the certainty equivalent of the second cohort decreases significantly under the homogeneous tontine, whereas this effect is 
reduced in the heterogeneous tontines.

In Table 6, we provide the corresponding certainty equivalents of the mixed-cohort and the single-cohort tontines for CRRA utility. 
Comparing the results in Table 6 to those in Table 4, we observe that members of the second cohort now suffer a larger loss in utility 
from choosing the single-cohort tontine. This is a natural result, given that their pool size now only makes out 25% of the younger cohort. 
In particular, any mixed-cohort tontine performs better for this cohort than the single-cohort tontine. Nevertheless, we still observe that 
the social planner’s tontine is the most preferable mixed-cohort tontine for both cohorts. The reasons are, again, the consideration of the 
different degrees of risk aversion (which differ from log utility).
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Table 6
Certainty equivalents obtained for γ1 = 6 and γ2 = 8. 
We rely on the parameters introduced in Table 1 and the 
participation rates making the heterogeneous tontine in-
dividually fair. Furthermore, we assume ρi = r.

x = 65 x = 70 π2

n1 = 100, n2 = 25

Homogeneous tontine 5.308 11.98 -
Social planner 5.281 12.86 1.234
Proportional tontine 5.180 12.10 1.218
Natural tontine 5.180 12.11 1.218

n1 = 500, n2 = 125

Homogeneous tontine 5.383 12.70 -
Social planner 5.366 13.05 1.222
Proportional tontine 5.325 12.87 1.211
Natural tontine 5.317 12.82 1.211

Table 7
Certainty equivalents obtained under log-utility. We rely 
on the parameters introduced in Table 1 and the partic-
ipation rates making the heterogeneous tontine individ-
ually fair. Furthermore, we assume ρi = r.

x = 65 x = 80 π2

n1 = n2 = 100

Homogeneous tontine 5.423 20.77 -
Social planner 5.063 20.57 2.495
Proportional tontine 5.405 20.90 1.945
Natural tontine 5.404 20.88 1.942

n1 = n2 = 500

Homogeneous tontine 5.438 20.86 -
Social planner 5.103 20.62 2.462
Proportional tontine 5.428 20.92 1.931
Natural tontine 5.428 20.92 1.930

Fig. 2. Withdrawal rate d(t) depending on time t for the proportional, natural and social planner’s tontine (under log utility). The parameters are chosen as in Table 1 except 
for x2 = 80. Furthermore, we assume ρi = r.

3.3.3. Increasing the age difference
As a final analysis, we want to increase the heterogeneity of the cohorts by increasing the age of members in the second cohort 

to 80. In Table 7, we provide the corresponding certainty equivalents of the mixed-cohort and the single-cohort tontines for log-utility. 
Now we observe that the social planner’s tontine delivers the lowest certainty equivalents for both cohorts and has a significantly higher 
participation rate for the second cohort than the proportional and natural tontine. To analyze these findings in more detail, in Fig. 2, 
we show the corresponding withdrawal rates of the different tontine designs. We observe that the social planner’s tontine delivers lower 
(higher) benefits at younger (older) retirement ages compared to the other two designs, which nearly coincide. This slower decline of the 
withdrawal rate results in a higher participation rate for the older cohort, because these have lower probabilities of receiving retirement 
benefits at older ages, i.e. they need higher participation rates for their remaining lifetime in order to fulfill the individual fairness 
constraint. The flatter withdrawal rate results because, in this example, apparently the social planner takes the younger cohort stronger 
into consideration. The payoff could be adjusted by modifying the utility weights βi in (12) to account, for example, for the ages of the 
different cohorts as well.
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Table 8
Certainty equivalents obtained for γ1 = 6 and γ2 = 8. 
We rely on the parameters introduced in Table 1 and 
the participation rates making the heterogeneous ton-
tine individually fair. Furthermore, we assume ρi = r.

x = 65 x = 80 π2

n1 = n2 = 100

Homogeneous tontine 5.308 19.78 -
Social planner 5.080 20.43 2.11
Proportional tontine 5.117 20.45 1.95
Natural tontine 5.111 20.43 1.94

n1 = n2 = 500

Homogeneous tontine 5.383 20.35 -
Social planner 5.227 20.62 2.06
Proportional tontine 5.287 20.73 1.93
Natural tontine 5.281 20.72 1.93

The more steeply declining proportional and natural withdrawal rates, however, lead to lower participation rates for the second cohort 
as well as higher certainty equivalents for both cohorts. Hence, while the natural and proportional tontine turn out not to be optimal for 
higher degrees of risk aversion, in this example, they can better account for large differences in age groups than the tontine constructed 
by the social planner.

Next, in Table 8, we provide the certainty equivalents of the mixed-cohort and the single-cohort tontines for CRRA utility. Comparing 
the results in Table 8 to those in Table 7, we observe that the certainty equivalents of the collectively optimal and the natural and 
proportional tontine have become closer. The reason for this is that the more adequate reflection of risk aversions offsets the utility loss 
caused by the age difference observed in Table 7. Similar to Table 7, we observe that the participation rates of the social planner are 
higher than those of the natural and proportional tontine.

Thus, among the parameters considered, we find that the natural and proportional tontines are better suited to mixed cohort tontines 
with large age differences, while the social planner’s tontine works better when ages are closer together and utility preferences differ 
strongly from log utility.

Throughout the respective numerical analyses, we additionally observe that the fair participation rates π2 are roughly identical and 
approximately given by

π2 ≈ āx1

āx2

=
{

18.35290/15.19852 = 1.207545, x2 = 70,

18.35290/9.552432 = 1.921280, x2 = 80.
(13)

The reason for this is that the participation rates measure the differences between age groups, for which annuity prices are at least a good 
approximation (see also Milevsky and Salisbury (2016)). However, for the collectively optimal tontine, the approximation is less accurate 
when the certainty equivalents are low (see in particular the cases x1 = 65 and x2 = 80). In particular, our numerical analyses suggest 
that for any well-functioning tontine design (yielding acceptable certainty equivalents), the above approximation (13) can be used for the 
participation rates. Particularly, this approximation of the fair participation rates as the ratio of the present values of the annuities can be 
used to find more accurate estimates of the fair participation rates. For the details, we refer the interested reader to Appendix B.

Finally, we observe that the numerically found participation rates coincide with sensible participation rates from the literature. In 
particular, we confirm the findings by Donnelly (2015) in the context of equitable retirement products. Moreover, our numerical results 
suggest that risk aversion heterogeneity might be a second-degree effect in mortality risk sharing dominated by the first-degree effect of 
age heterogeneity.

4. Conclusion

This paper studies actuarial fairness and social welfare in tontines with heterogeneous cohorts. To study actuarial fairness, the tontine 
design we consider is a given one and the one introduced in Milevsky and Salisbury (2016). We distinguish between collective and 
individual fairness, show how collective fairness can be achieved and demonstrate that, under certain conditions, even individual fairness 
can be additionally ensured. In the second part of this paper, we consider a utilitarian social planner setting up a tontine on behalf of the 
collective of heterogeneous policyholders. Comparing the collectively optimal tontine to separate, cohort-optimized tontines as well as the 
proportional and natural tontine presented in Milevsky and Salisbury (2016), we find that approximately identical certainty equivalents 
are achieved under homogeneous log-utility preferences. However, in our numerical analysis, under higher and heterogeneous degrees of 
relative risk aversion, the social planner and the homogeneous-cohort tontines outperform the proportional and natural tontine, whereas 
the natural and proportional tontines perform better for mixed cohort tontines with large age differences.

As a possible extension to this article, we might assume that policyholders are not only heterogeneous in their ages and wealth levels, 
but, for example, also in their health status (cf. care-dependent tontines as in Chen et al. (2022) and Hieber and Lucas (2022)). We might 
for example assume that each cohort can be split into two groups, where one group has higher mortality rates (i.e. a lower health status) 
than the other group. We might then also assume that the health status is correlated with the wealth, i.e. less healthy individuals are also 
less wealthy. Such an additional degree of heterogeneity would increase the diversity in the pool and might change the relation between 
the social planner and the single-cohort tontines.
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Appendix A. Proofs

A.1. Proof of Proposition 2.5

Note that individual fairness is equivalent to

P j
0

w j
= 1 for all j = 1 . . . , L.

The proof now follows similar steps as the proof of Theorem 4(a) in Milevsky and Salisbury (2016). Assume that π and π̃ both fulfill 
individual fairness, are unequal and are not multiples of each other. We use the notation P j

0(π) throughout this proof to emphasize the 
dependence of P j

0 on the different sets of participation rates. Define π(s) := sπ + (1 − s)π̃ . Then, we obtain

d

ds
P j

0(π(s)) =
∞∫

0

e−rtE

[
wd(t)

d

ds

π j(s)∑L
i=1 πi(s)wi Ni(t)

1{T j>t
}
]

dt

=
∞∫

0

e−rtE

⎡
⎢⎣wd(t)

∑L
i=1 wi Ni(t)

(
πi(s)π ′

j(s) − π j(s)π ′
i (s)

)
(∑L

i=1 πi(s)wi Ni(t)
)2

1{T j>t
}
⎤
⎥⎦dt.

Here, it holds

πi(s)π ′
j(s) − π j(s)π ′

i (s) = (
π̃i + s

(
πi − π̃i

))
(π j − π̃ j) − (πi − π̃i)

(
π̃ j + s

(
π j − π̃ j

))
= π̃i(π j − π̃ j) − (πi − π̃i)π̃ j = π̃iπ j − πiπ̃ j = π jπi

(
π̃i

πi
− π̃ j

π j

)
. (14)

Now fix j such that π̃ j/π j is minimal. Then, it follows that (14) is ≥ 0 for all i and > 0 for at least one i (because π̃ is not a multiple of 
π ). Hence, d

ds P j
0 is positive for this j which implies 1 = P j

0(π) < P j
0(π̃ ) = 1, clearly a contradiction. �

A.2. Proof of Theorem 3.1

Note that we can rewrite the expected lifetime utility of the collective as

E

⎡
⎣ ∞∫

0

n∑
i=1

e−ρi tβi ln

(
wd(t) · πi wi∑n

j=1 π j w j1{T j>t}

)
1{Ti>t}dt

⎤
⎦

= E

⎡
⎣ ∞∫

0

n∑
i=1

e−ρi tβi

(
ln(w) + ln(d(t)) + ln

(
πi wi∑n

j=1 π j w j1{T j>t}

))
1{Ti>t}dt

⎤
⎦

=
∞∫

0

n∑
i=1

e−ρi tβiE

[(
ln(w) + ln(d(t)) + ln

(
πi wi∑n

j=1 π j w j1{T j>t}

))
1{Ti>t}

]
dt.

The first-order condition is therefore:

n∑
i=1

e−ρi tβi
1

d(t)
E
[
1{Ti>t}

]= λe−rtE

⎡
⎣1 −

n∏
j=1

(1 − Sx j (t))

⎤
⎦ ,

which delivers

d∗(t) =
∑n

i=1 e−ρi tβiE
[
1{Ti>t}

]
λe−rtE

[
1 −∏n

j=1(1 − Sx j (t))
] .

The Lagrangian multiplier λ is obtained from the budget constraint as follows:

1 =
∞∫

e−rt

∑n
i=1 e−ρi tβiE

[
1{Ti>t}

]
λe−rtE

[
1 −∏n

j=1(1 − Sx j (t))
]E

⎡
⎣1 −

n∏
j=1

(1 − Sx j (t))

⎤
⎦dt
0
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=
∞∫

0

∑n
i=1 e−ρi tβiE

[
1{Ti>t}

]
λ

dt

⇔ λ =
∞∫

0

n∑
i=1

e−ρi tβiE
[
1{Ti>t}

]
dt. �

Appendix B. Pseudo code for determining the fair participation rates

Let us again assume that individual i is a member of cohort i (i = 1, . . . , L). For a given withdrawal rate, the following pseudo code 
finds the fair participation rates π1, . . . , πL .

1. Fix a tolerance level tol and initialize all the necessary parameters.
2. Specify upper and lower bounds πu

2 , . . . , πu
L and π l

2, . . . , π
l
L for π2, . . . , πL and set πi = 1

2 (πu
i + π l

i ) for i = 2, . . . , L such that (8) and 
(9) are fulfilled.

3. Compute P 1
0 .

4. While |P 1
0 − w1| > tol

(a) Specify upper and lower bounds πu
3 , . . . , πu

L and π l
3, . . . , π

l
L for π3, . . . , πL and set πi = 1

2 (πu
i + π l

i ) for i = 3, . . . , L such that (8)
and (9) are fulfilled.

(b) While |P 2
0 − w2| > tol

i. ... (Continue as in (a) and (b) for all i = 3, . . . , L − 2.)
ii. Specify upper and lower bounds πu

L and π l
L for πL and set πL = 1

2 (πu
L + π l

L) such that (8) and (9) are fulfilled.

iii. While |P L−1
0 − w L−1| > tol

A. If P L−1
0 − w L−1 > 0, set πL = π l

L .
B. If P L−1

0 − w L−1 < 0, set πL = πu
L .

C. Compute P L−1
0 .

iv. ... (Set all the πi values as in B and C for the corresponding i = L − 2, . . . , 3.)
v. If P 2

0 − w2 > 0, set π3 = π l
3.

vi. If P 2
0 − w2 < 0, set π3 = πu

3 .
vii. Compute P 2

0 .
(c) If P 1

0 − w1 > 0, set π2 = π l
2.

(d) If P 1
0 − w1 < 0, set π2 = πu

2 .
(e) Compute P 1

0 .

We want to point out that choosing the upper and lower bounds for the participation rates may, in fact, not be straightforward. For the 
lower bound, there is some information we can use:

• For identical wealth levels and heterogeneous ages, we can assume that the first cohort is the youngest cohort and fix π1 = 1. It is 
then clear that all the other cohorts will have π j > 1 for j = 2, . . . , L.

• Assuming identical ages and heterogeneous wealth levels, we can do the same thing by fixing π1 = 1, where this time the first cohort 
( j = 1) is the least wealthy. It is then again clear that all the other cohorts will have π j > 1 for j = 2, . . . , L.

• In the numerical analyses in this paper, we assume that older cohorts are also the more wealthy ones, allowing us to rely on the 
previous two observations. From our point of view, this assumption is not unrealistic because people who retire at older ages have 
more time to accumulate savings for their retirement.

• The last case would then be decreasing wealth levels combined with increasing ages. In this case, choosing a lower bound would not 
be so clear and we would have to work out the more dominant factor (age vs. wealth) first.

Choosing an appropriate upper bound, however, is not straightforward if we want to allow for general withdrawal rates d(t).

• For example, for the withdrawal rates in Section 3, we could use the approximation π j ≈ āx1/āx j . For example, we can fix the upper 
bound as c · āx1/āx j , where c is some constant greater than 1 (suggested by our numerical findings, as π j > āx1/āx j ), for example, 
c = 2.

• However, for general withdrawal rates (e.g. the flat tontine), we indeed have to first take a guess and see whether the algorithm can 
find a solution within the defined interval. If it cannot do that (it will then simply deliver the upper bound as a solution), we need to 
restart the algorithm with a larger upper bound. Finding appropriate upper bounds can therefore amount to trial and error in some 
cases.
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