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1. Introduction

The lognormal distribution has extensive applications in the social and physical sciences. It is widely used in finance to model stock 
prices and in actuarial science to model insurance liabilities. Crow and Shimizu (1987) document applications in biology, ecology, atmo-
spheric sciences and geology. The lognormal distribution also has applications in engineering and in particular in the field of wireless 
communications. The distribution of the sum of lognormals has an intuitive interpretation and plays an important role in many applica-
tions.

The distribution of the sum of random variables is of interest in mathematical statistics and applied probability. Asmussen and Rojas-
Nandayapa (2008) study the tail behaviour of the sum of correlated lognormals. Gulisashvili and Tankov (2016) propose an efficient 
importance sampling estimator for the left tail of the distribution function of the sum of lognormal variables. Botev et al. (2019) develop 
a Monte Carlo approach to estimate the distribution of the sum of dependent lognormal random variables.

There are several references in the actuarial and finance literature to the distribution of the sum of lognormals. Dufresne (2008)
considers the distribution of the sum of two lognormals with applications to stock prices. Asmussen (2018) uses conditional Monte 
Carlo to investigate the tails of sums of random variables and uses his approach to compute the Value at Risk and Conditional Tail 
Expectation. Furman et al. (2020) develop an approximation for the sums of independent lognormal variables and illustrate the method 
with applications to risk measures and economic capital.

It is straightforward to derive closed-form expressions for the moments of a sum of correlated lognormals. However, the distribution 
itself does not have a closed form. Many approximations of this distribution have been developed over the years. For a review of these 
approaches, see Asmussen et al. (2011). It is often more convenient to work with the distribution of the average rather than the sum 
and we will follow this practice. It turns out that under certain conditions, the distribution of the average of a group of lognormals 
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converges to a univariate lognormal, as the number of variables tends to infinity. This result first appeared in the engineering literature. 
See Szyszkowicz and Yanikomeroglu (2009) and Beaulieu (2011). These authors showed that the distribution of the average of n correlated 
lognormal variables converges to a univariate lognormal, as n tends to infinity.

The current paper extends the Szyszkowicz-Yanikomeroglu-Beaulieu (SYB) result to the case where there are homogeneous groups of 
correlated lognormals with a specified correlation structure. We assume that the underlying variables can be divided into a finite number 
of K groups where there is strong homogeneity within groups but there can be considerable heterogeneity across the different groups. 
These properties are captured through a covariance matrix with a specific block structure. In our case, the correlations and variances are 
constant within each block but the correlations among the different blocks are unequal. This type of block structure is mathematically 
convenient and it also has practical applications.

We present two situations which have been modelled using this type of covariance structure. First, consider a stock portfolio consisting 
of different sub-portfolios. The sub-portfolios could correspond, for instance, to industry groupings. Engle and Kelly (2012) and Archakov 
and Hansen (2020) discuss portfolios with this structure. The last named authors develop procedures for estimating covariance matrices 
in these circumstances. Archakov and Hansen (2020) illustrate their approach using a sample of daily stock returns. The model discussed 
later in our paper corresponds to the case where the stocks in each sub-portfolio are equally weighted. DeMiguel et al. (2009) have shown 
that equally weighted stock portfolios possess desirable risk-return characteristics.

The second example relates to a portfolio of loans where each loan is subject to credit risk. These risks can be modelled using a 
block correlation matrix. The application is discussed by Huang and Yang (2010) in connection with loan portfolio models used by rating 
agencies. They observe that the default risk correlation between loans is specified by analysts who often classify the loans into groups 
based on sectors, industries or regions. The correlation between two different blocks depends only on the blocks they belong to. Huang 
and Yang (2010) demonstrate the efficiency of their approach in a Monte Carlo context using two large loan portfolios.

These examples provide the motivation for us to study models with this type of block correlation structure. Essentially we show that the 
within-group averages converge to a K -dimensional lognormal distribution as the numbers in each group become large. The significance 
of this result is that it reduces the dimension of the problem. The derivation depends on certain conditions. A critical assumption is that 
the within-block covariances are equal which means that the corresponding variances are equal since we assume constant correlations 
within each block. We highlight the importance of this assumption by showing that even when the differences among the within-block 
variances are miniscule, the block averages do not converge to a lognormal distribution. The between-group correlations are constant for 
each pair of groups and also have to satisfy additional conditions to ensure the covariance matrix is positive definite.

Associated with every multivariate lognormal distribution is a corresponding multivariate normal distribution. It is often more conve-
nient to work with the covariance matrix associated with this normal distribution than the covariance matrix of the lognormal distribution. 
If there are m variables in each block and there are K blocks the overall covariance matrix is of size Km × Km. The variables within each 
block are assumed to have the same variance. The pairwise correlations between these variables are all equal. The large matrix is assumed 
to be positive definite and this implies that the K × K matrix composed of the averages of the block submatrices is also positive definite.

The rest of the paper is organized as follows. Section 2 introduces our notations and assumptions. We start with the properties 
of the univariate lognormal random variable. Then we derive expressions for the first four moments of the average of a number of 
lognormal variables, under fairly general assumptions. We will rely on these results in section 4. Section 3 contains our convergence result. 
Given our assumptions, the distribution of the averages of the K blocks of lognormal variables converges to a K -dimensional lognormal 
distribution. The derivation relies on Kolmogorov’s strong law of large numbers (Serfling (2009)) and is an extension of the approach used 
by Szyszkowicz and Yanikomeroglu (2009) and Beaulieu (2011). In Section 4 we consider an example where the heterogeneity in the 
within-block variances is controlled by an arbitrarily small parameter ε . We show that even for a miniscule degree of heterogeneity, the 
third and fourth moments of the limiting distribution lack the lognormal properties so that the convergence no longer holds. The final 
section summarises the paper and outlines several future research topics.

2. The lognormal distribution

We start with a brief review of the univariate lognormal distribution. Next, we consider the multivariate lognormal distribution and 
derive the formulae for the first four moments of linear combinations of lognormal variables. Then we outline the block structure used in 
our convergence result and discuss the positive definite issue.

2.1. Univariate and multivariate lognormal distributions

If a normal random variable X has variance σ 2 and mean μ − σ 2

2 , then

Y = e X

is said to have a lognormal distribution. We have

E[Y ] = eμ

and for all positive integers n,

E[Y n] = exp

([
μ − σ 2

2

]
n + n2σ 2

2

)
. (1)

We now introduce the n-dimensional multivariate lognormal distribution. Let

W = [W1, W2, · · · , Wn]T

be a multivariate normal distribution with the mean vector
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[
μ1 − σ 2

1

2
, · · · ,μn − σ 2

n

2

]T

(2)

and the covariance matrix

C =

⎡
⎢⎢⎢⎣

σ 2
1 ρ12σ1σ2 · · · ρ1nσ1σn

ρ12σ1σ2 σ 2
2 · · · · · ·

...
...

...
...

ρ1nσ1σn · · · · · · σ 2
n

⎤
⎥⎥⎥⎦ . (3)

Then

X = [X1, X2, · · · , Xn]T

where

Xi = eW i

has a multivariate lognormal distribution.
We now list some of the cross moments. These moments will be useful when we derive the moments of linear combinations of the 

X ’s. For i �= j, we have

E[Xi X j] = eμi+μ j+Cij

E[Xi X2
j ] = eμi+2μ j+Cij+2C jj .

For i �= j, i �= k and k �= j,

E[Xi X j Xk] = eμi+μ j+μk+Cij+C jk+Cik .

Next we consider the case when there are several variables in the cross moments. For i �= j,

E[X3
i X j] = e3μi+μ j+3Cii+3Cij

E[X2
i X2

j ] = e2μi+2μ j+Cii+C jj+4Cij .

For i �= j, i �= k and k �= j, we have

E[X2
i X j Xk] = e2μi+μ j+μk+Cii+2Cij+2C jk+C jk .

The last cross moment corresponds to the case when no pair of the four indices i, j, k and l are equal.

E[Xi X j Xk Xl] = eμi+μ j+μk+μl+Cij+Cik+Cil+C jk+C jl+Ckl

Later in the paper, we will need expressions for the moments of the average of a group of lognormal variables. To this end, we state 
the formulae for the first four moments of any linear combination of lognormal variables with the mean and covariance structure given 
by equations (2) and (3). The proofs of these expressions are straightforward but sometimes lengthy and are omitted. We assume that the 
weights wi are all positive where

n∑
i=1

wi = 1.

We define the linear combination An by

An =
n∑

i=1

wi Xi . (4)

The first moment of An is

E[An] =
n∑

i=1

wie
μi . (5)

The second moment of An is

E[A2
n] =

n∑
i=1

n∑
j=1

wi w je
μi+μ j+Cij . (6)

The third moment is
99
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E[A3
n] =

n∑
i=1

w3
i e3μi e3Cii + 3

n∑
i=1

n∑
j=1,i �= j

wi w2
j e(μi+2μ j) e(C jj+2Cij)

+
n∑

i=1

n∑
j=1, j �=i

n∑
k=1,k �=i,k �= j

wi w j wk e(μi+μ j+μk) e(Cij+C jk+Cik).

For the fourth moment, we have

E[A4
n] =

n∑
i=1

w4
i e4μi e6Cii + 4

n∑
i=1

n∑
j=1,i �= j

w3
i w je

(3μi+μ j) e3(Cii+Cij)

+ 3
n∑

i=1

n∑
j=1,i �= j

w2
i w2

j e2(μi+μ j) e(Cii+C jj+4Cij)

+ 6
n∑

i=1

n∑
j=1,i �= j

n∑
k=1,k �=i,k �= j

w2
i w j wke(2μi+μ j+μk) e(Cii+2Cij+2Cik+C jk)

+
n∑

i=1

n∑
j=1,i �= j

n∑
k=1,k �= j,k �=i

n∑
l=1,l �=k,l �= j,l �=i

wi w j wk wle
(μi+μ j+μk+μl)e(Cij+Cik+Cil+C jk+C jl+Ckl).

These formulae for the moments of An are quite general. We can simplify the expressions for the moments by considering a special 
case. Assume that

wi = 1

n
, 1 ≤ i ≤ n,

μi = μ, 1 ≤ i ≤ n,

σi = σ , 1 ≤ i ≤ n,

ρi j = ρ, 1 ≤ i < j ≤ n.

Let us denote these four assumptions as Assumptions A. In this case, we show that as n tends to infinity the limits simplify. We have

lim
n→∞ E[A2

n] = e2μ lim
n→∞

(∑n
i=1

∑n
j=1, j �=i eρσ 2 + ∑n

i=1 eσ 2
)

n2

= e2μ lim
n→∞

(
n(n − 1)eρσ 2 + n eσ 2

)
n2

= e2μ+ρσ 2
.

Szyszkowicz and Yanikomeroglu (2009) have shown1 that under Assumptions A, the distribution of An tends to a univariate lognormal 
distribution. We see from the last equation that the variance of the associated (normal) limiting distribution is given by ρσ 2 . This is the 
average variance of the covariance matrix C under Assumptions A. Using the same approach, we can derive expressions for the limits of 
the higher moments under Assumptions A. For the third moment, under Assumptions A, we can show that

lim
n→∞ E[A3

n] = e3μ + 3ρσ 2
. (7)

For the fourth moment, under Assumptions A, we can show that

lim
n→∞ E[A4

n] = e4μ + 6ρσ 2
. (8)

These last two moments correspond to the moments of the limiting univariate lognormal distribution with ρσ 2 playing the role of the 
variance.

2.2. Groups of lognormal variables

This section describes the structure of the groups of lognormal variables that we will be dealing with. The within-group correlations 
and variances are equal, and the correlation between any two variables from a given pair of groups is constant. Essentially there is a 
high degree of homogeneity within groups and scope for some heterogeneity across groups. The structure of the relationships among 
the variables is captured through a well-defined block structure. The properties of block covariance and block correlation matrices are 
discussed by several authors including Cadima et al. (2010), Huang and Yang (2010), Roustant and Deville (2017) and Archakov and 
Hansen (2020).

1 Assumptions A also correspond to a special case of the assumptions used by Beaulieu (2011). Beaulieu assumes equal covariances instead of equal variances and equal 
correlations.
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We assume there are K groups of lognormal variables where each group consists of m variables denoted by

{X1
i }m

i=1, {X2
i }m

i=1, · · · , {X K
i }m

i=1.

Let n = Km. This n-dimensional lognormal distribution has an associated n-dimensional normal distribution. The m lognormal variables 
in the kth block are denoted by

[Xk
1, Xk

2, · · · , Xk
m]T .

Let

W k
i = log Xk

i , 1 ≤ i ≤ m

so that

{W 1
i }m

i=1, {W 2
i }m

i=1, · · · , {W K
i }m

i=1

follow a multivariate normal distribution.
Denote by Cn the covariance matrix of this multivariate normal distribution. The matrix Cn is assumed to have a special block structure 

where the within-block variances and correlations are constant. We have

Cn =
⎡
⎢⎣

B[1,1] · · · B[1,K ]
...

...
...

B[K ,1] · · · B[K ,K ]

⎤
⎥⎦ (9)

where each B[k,k] is of dimension m × m.
The diagonal blocks B[k,k] have the following structure

B[k,k] = σ 2
k

⎡
⎢⎢⎢⎣

1 ρk · · · ρk
ρk 1 · · · ρk
...

...
...

...

ρk ρk · · · 1

⎤
⎥⎥⎥⎦ (10)

where 0 < ρk < 1. The off-diagonal blocks are defined as follows

B[k,l] = ρklσkσl

⎡
⎢⎢⎢⎣

1 1 · · · 1
1 1 · · · 1
...

...
...

...

1 1 · · · 1

⎤
⎥⎥⎥⎦ (11)

where 0 < ρkl < 1. We will assume that Cn is positive definite and we will see that this property imposes some additional restrictions on 
the ρk, ρl and ρkl .

We now describe the moments of these lognormal variables. We have for 1 ≤ k ≤ K and 1 ≤ i ≤ m,

E[Xk
i ] = eμk

i .

The within-block second moments are, for 1 ≤ k ≤ K ,

E[(Xk
i )

2] = e2μk
i +σ 2

k

E[Xk
i Xk

j ] = eμk
i +μk

j+ρkσ
2
k .

The cross block product moments are for 1 ≤ k ≤ K , 1 ≤ l ≤ K , k �= l,

E[Xk
i Xl

j] = eμk
i +μl

j+ρklσkσl .

We now turn to the positive definite issue. When matrix Cn is positive definite, this has implications for the relations among the 
correlation parameters. It is known that the matrix Cn is positive definite if and only if a certain smaller K × K matrix is positive definite 
(Cadima et al. (2010) and Archakov and Hansen (2020)). The elements of this smaller matrix, herein denoted by C K (m), correspond to the 
averages of the elements of each of the block matrices.

C K (m) =

⎡
⎢⎢⎢⎣

σ 2
1

( 1
m + (1 − 1

m )ρ1
)

ρ12σ1σ2 · · · ρ1K σ1σK

ρ12σ1σ2 σ 2
2

( 1
m + (1 − 1

m )ρ2
) · · · ρ2K σ2σK

...
...

...
...

ρ1K σ1σK ρ2K σ2σK · · · σ 2
K

( 1
m + (1 − 1

m )ρK
)

⎤
⎥⎥⎥⎦ .

We therefore assume that C K (m) is a positive definite matrix for all m and in particular that it is positive definite as m tends to infinity. 
This means the matrix C̄ K is positive definite, where
101
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C̄ K = lim
m→∞ C K (m) =

⎡
⎢⎢⎢⎣

σ 2
1 ρ1 ρ12σ1σ2 · · · ρ1K σ1σK

ρ12σ1σ2 ρ2σ
2
2 · · · ρ2K σ2σK

...
...

...
...

ρ1K σ1σK ρ2K σ2σK · · · ρK σ 2
K

⎤
⎥⎥⎥⎦ .

We know that the determinants of all the principal submatrices of C̄ K have to be positive because C̄ K is positive definite. Hence we 
have

ρ1ρ2 ≥ ρ2
12.

There is a similar result for all two by two matrices that straddle the diagonal so that, for 1 ≤ i < j ≤ K , we have

ρiρ j ≥ ρ2
i j . (12)

It will be convenient to define rkl as

rkl = ρkl√
ρkρl

(13)

where 0 ≤ rkl < 1.
To summarize, matrix Cn is positive definite if and only if the smaller matrix C K (m) is positive definite. We assume that C K (m) is 

positive definite for all values of m. This implies that equation (12) is true.
We now look at the multivariate lognormal distribution. The Km × Km covariance matrix of the lognormal distribution is denoted by 

Dn . It inherits the block structure from Cn and it is also positive definite. Similar to Cn , we know that, for Dn , a smaller K × K matrix 
formed by replacing each block with its average also has the positive definite property. We denote this matrix by D K (m). The elements of 
this matrix are lengthy so we will just exhibit some representative ones. The diagonal (k, k)th element is

m∑
i=1

e2μk
i +ρkσ

2
k

m2
+

m∑
i=1

m∑
j=1, j �=i

eμk
i +μk

j+ρkσ
2
k

m2
−

m∑
i=1

eμk
i

m

m∑
j=1

eμk
j

m
.

The off-diagonal (k, l)th element of D K (m) is

m∑
i=1

m∑
j=1,

eμk
i +μl

j+ρklσkσl

m2
−

m∑
i=1

eμk
i

m

m∑
j=1

eμl
j

m
.

We can now use these moments to obtain the moments of the limiting distribution of the K averages as m tends to infinity. Accordingly, 
we define the K -dimensional random variable

Y K
m =

[∑m
i=1 X1

i

m
, · · · ,

∑m
i=1 X K

i

m

]T

. (14)

As m tends to infinity, the expected value of Y K
m is

lim
m→∞ E

[
Y K

m

]
=

[
lim

m→∞

m∑
i=1

E[X1
i ]

m
, · · · , lim

m→∞

m∑
i=1

E[X K
i ]

m

]T

=
[

eμ(1)

, · · · , eμ(K )
]T

where, for 1 ≤ k ≤ K ,

lim
m→∞

m∑
i=1

E[Xk
i ]

m
= lim

m→∞

m∑
i=1

eμk
i

m
= eμ(k)

.

As m tends to infinity the covariance matrix D K (m) tends to D̄ K where

D̄ K =

⎡
⎢⎢⎢⎢⎣

e2μ(1)
(eρ1σ

2
1 − 1) eμ(1)+μ(2)

(eρ12σ1σ2 − 1) · · · eμ(1)+μ(K )
(eρ1K σ1σK − 1)

eμ(1)+μ(2)
(eρ12σ1σ2 − 1) e2μ(2)

(eρ2σ
2
2 − 1) · · · eμ(2)+μ(K )

(eρ2K σ2σK − 1)
...

...
...

...

eμ(1)+μ(K )
(eρ1K σ1σK − 1) eμ(2)+μ(K )

(eρ2K σ2σK − 1) · · · e2μ(K )
(eρK σ 2

K − 1)

⎤
⎥⎥⎥⎥⎦ (15)

While we have not yet proved that the vector Y K
m tends to a K -dimensional lognorml distribution there are several encouraging signs 

we are on the right track. Note that the individual average, on the right-hand side of equation (14), each tends to a univariate lognormal 
from the results of Szyszkowicz and Yanikomeroglu (2009) and Beaulieu (2011). Thus as m tends to infinity, the limit of
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m∑
i=1

Xk
i

m

tends to a lognormal distribution with mean eμ(k)
and variance e2μ(k)

(eρkσ
2
k − 1). Hence the marginal distribution has the correct conver-

gence. In addition the K × K matrix D̄ K has the right structure to be the covariance matrix of a K dimensional lognormal distribution 
with these marginals.

3. The convergence result

We are now ready to derive our convergence result. In this section, we show that, as m tends to infinity, the distribution of a portfolio 
made up of the averages of the K blocks of lognormal variables converges to a K -dimensional lognormal variable. Our approach is 
based on those of Szyszkowicz and Yanikomeroglu (2009) and Beaulieu (2011) who prove the result when K = 1. The proof relies on an 
application of Kolmogorov’s strong law of large numbers (Serfling (2009)).

In the previous section we generated the multivariate lognormal distribution in an obvious way by associating each lognormal variable 
with a corresponding single normal variable. To prove our convergence result it will be convenient to generate each lognormal variate 
from a linear combination of normal variates. Here is a simple example that illustrates the intuition. Suppose Z is a normal variable with 
mean zero and variance σ 2. Let Z1 and Z2 be independent normal variates where Z1 has mean μ and variance σ 2

2 and Z2 has mean 
−μ and variance σ 2

2 . Their sum (Z1 + Z2), will be a normal variable with mean zero and variance σ 2. This normal variable has the same 
mean and variance as Z .

This means that we can generate essentially the same lognormal distribution using different linear combinations of normal variables. 
The basic idea in the proof is to generate an n-dimensional multivariate lognormal distribution X from an underlying normal distribution 
which is structured as a combination of correlated and independent normal variables. The structure is designed so that, when m tends 
to infinity, we can apply the strong law of large numbers to the independent components, while maintaining the desired correlation 
properties.

In the last section we explained how to construct a multivariate lognormal distribution with a given block structure based on Km
individual normal variables. The next lemma shows how to construct essentially the same Km-dimensional lognormal distribution from a 
different set of K + Km underlying normal variables. These underlying normal variables have been selected to facilitate the convergence 
proof.

Lemma 3.1. Assume we are given the mean and covariance of the Km-dimensional lognormal distribution with the block structure described in the 
previous section. We can generate an equivalent Km-dimensional lognormal distribution with the same block structure from a specified multivariate 
normal distribution of dimension K + Km.

The first K of these normal variables are

Z01, Z0, · · · , Z0K .

These variables all have mean zero and variance one:

E[Z0k] = 0 and V ar[Z0k] = 1, k = 1,2, · · · , K .

These K random variables are correlated with one another. The pairwise correlations among them are

E[Z0k Z0l] = rkl, 1 ≤ k �= l ≤ K ,

where the rkl were defined in equation (13).
The remaining Km normal variables can be divided into K groups with m variables in each group

{Z 1
i }m

i=1, {Z 2
i }m

i=1, · · · , {Z K
i }m

i=1.

These variables are all pairwise independent. They are also all independent of each of the first K normal variables. For 1 ≤ i ≤ m and 1 ≤ k ≤ K , we 
have

E[Zk
i ] = μk

i − σ 2
k

2
< ∞

V ar[Zk
i ] = σ 2

k (1 − ρk) < ∞.

The Km random variables2defined as

{Xk
i }m

i=1 := {e√
ρk σk Z0k+Zk

i }m
i=1, 1 ≤ k ≤ K ,

represent the desired multivariate lognormal distribution.

2 We have used the same notation as before {Xk
i }m

i=1 to economize on symbols.
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Proof. We note that the exponent (√ρk σk Z0k + Zk
i ) in the last equation is normal with mean μk

i − σ 2
k
2 and variance σ 2

k .
Also for 1 ≤ k, l ≤ K and 1 ≤ i, j ≤ m, we can show

E[Xk
i ] = eμk

i

E[(Xk
i )

2] = e2μk
i +σ 2

k

E[Xk
i Xk

j ] = eμk
i +μk

j+ρkσ
2
k , i �= j

E[Xk
i Xl

j] = eμk
i +μl

j+ρklσkσl , k �= l.

Combining these results we see that the {Xk
i }m

i=1 generated in this way form a multivariate lognormal distribution with the desired 
properties. �

We are now ready to state and prove our convergence result.

Theorem 3.2. Suppose we have the Km-dimensional lognormal distribution described in Lemma (3.1)

{X1
i }m

i=1, {X2
i }m

i=1, · · · , {X K
i }m

i=1.

These n variables have the block covariance matrix denoted by Dn in the previous section. The K -dimensional random variable Y K
m defined in equation 

(14) denotes the averages of the K blocks of lognormal variables.
Under our assumptions, as m tends to infinity, Y K

m converges in probability to a K -dimensional lognormal distribution with expected value[
eμ(1)

, · · · , eμ(K )
]T

and covariance matrix D̄ K .

Proof. Our proof is an extension of that in Szyszkowicz and Yanikomeroglu (2009) and Beaulieu (2011) who consider the simpler case 
when K = 1. The general idea of the proof is that we express the random variable of interest Y K

m as a product of two random variables. 
One follows a lognormal distribution. The other one can be proven to converge to a constant, by the law of large numbers. Then, invoking 
Slutsky’s Theorem (Rohatgi and Saleh (2015)), we prove the convergence of Y K

m to a lognormal random variable. The detailed proof is as 
follows.

We first consider the average associated with the kth block. From Lemma (3.1), for 1 ≤ k ≤ K ,

1

m

m∑
i=1

Xk
i = 1

m

m∑
i=1

e
√

ρk σk Z0k+Zk
i = e

√
ρk σk Z0k

(
1

m

m∑
i=1

e Zk
i

)
.

Now we take the limit as m tends to infinity to get, for 1 ≤ k ≤ K ,

lim
m→∞

1

m

m∑
i=1

Xk
i = e

√
ρk σk Z0k

(
lim

m→∞
1

m

m∑
i=1

e Zk
i

)
.

We can invoke Kolmogorov’s strong law of large numbers, with the relaxation on the identically distributed condition, according to 
page 27 of Serfling (2009). We require that e Zk

i , 1 ≤ i ≤ m, are independent and that the series 
∑m

i=1 V ar
(

e Zk
i

)
/i2 converges as m tends 

to infinity. The first condition is satisfied since the Zk
i , 1 ≤ i ≤ m, are independent. The second condition is satisfied as long as σ 2

k , ρk and 
μk

i are all less than infinity, which is assumed in the model. This can be easily verified as in Beaulieu (2011).
Hence, from Kolmogorov’s strong law of large numbers, for 1 ≤ k ≤ K ,

lim
m→∞

1

m

m∑
i=1

e Zk
i = lim

m→∞
1

m

m∑
i=1

E[e Zk
i ]

= lim
m→∞

(
1

m

m∑
i=1

eμk
i

)
e− ρkσ2

k
2

= eμ(k)− ρkσ2
k

2 .

The convergence is in probability.
We define

Yk = e
√

ρk σk Z0k+μ(k)− ρkσ2
k

2 . (16)

Hence,

lim
m→∞

1

m

m∑
Xk

i = Yk
i=1
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with probability 1, according to Slutsky’s Theorem (Rohatgi and Saleh (2015)).
Note that since [Z01, Z02, · · · , Z0K ]T form a multivariate normal distribution, then [Y1, Y2, · · · , Y K ]T form a multivariate lognormal 

distribution.
Hence we have shown that

lim
m→∞ Y K

m =
[

lim
m→∞

m∑
i=1

X1
i

m
, · · · , lim

m→∞

m∑
i=1

X K
i

m

]T

= [Y1, · · · , Y K ]T (17)

with probability 1.
From equation (16) it is easy to check that

E[Yk] = eμ(k)

and

V ar(Yk) = e2μ(k)
(

eρkσ
2
k − 1

)
.

Furthermore, for 1 ≤ k ≤ K , 1 ≤ l ≤ K , k �= l, we have

Cov(Yk, Yl) = eμ(k)+μ(l)
(

erkl
√

ρkσk
√

ρlσl − 1
)

= eμ(k)+μ(l) (
eρklσkσl − 1

)
.

Hence the covariance matrix of the K -dimensional lognormal distribution [Y1, Y2 · · · , Y K ]T is D̄ K as anticipated. �
Note that Theorem 3.2 works on Y K

m whose elements are within-block sums with equal weights. We can also extend to the general 
case with unequal weights. In the general case, we define a new K -dimensional random variable

Y K
m (w) =

[∑m
i=1 w1

i X1
i

m
, · · · ,

∑m
i=1 w K

i X K
i

m

]T

(18)

where w = {wk
i : 1 ≤ i ≤ m, 1 ≤ k ≤ K } are weights satisfying3

m∑
i=1

wk
i

m
= 1, 1 ≤ k ≤ K .

The expected value of Y K
m (w) is

lim
m→∞ E

[
Y K

m (w)
]

=
[

lim
m→∞

m∑
i=1

w1
i E[X1

i ]
m

, · · · , lim
m→∞

m∑
i=1

w K
i E[X K

i ]
m

]T

=
[

eμ(1)(w), · · · , eμ(K )(w)
]T

where, for 1 ≤ k ≤ K ,

lim
m→∞

m∑
i=1

wk
i E[Xk

i ]
m

= eμ(k)(w).

The covariance matrix of the K -dimensional limiting lognormal distribution is D̄ K (w) which is the same as D̄ K with μ(k)(w) replacing 
μ(k) .

Proposition 3.3. Suppose for every 1 ≤ k ≤ K , we have

lim
m→∞

m∑
i=1

(wk
i )

2

i2
< ∞.

Under our block covariance structure, as m tends to infinity, the K -dimensional random variable, Y K
m(w) converges in probability to a K -dimensional 

lognormal distribution with mean

3 Here is an example of such weights that converge naturally to a reasonable limit. Assume that for 1 ≤ i ≤ m, vi are numbers on (0,2). We could define wi = λvi where

λ = m∑m
i=1 vi

so that ∑m
i=1

wi
m = 1.
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[
eμ(1)(w), · · · , eμK (w)

]T

and with covariance matrix equal to D̄ K (w).

The proof is similar to Theorem 3.2 and is omitted. Theorem 3.2 is a special case of Proposition 3.3 when wk
i = 1 for all i and k.

4. Example with heterogeneous variances

This section highlights the importance of the (within-block) homogeneous variance assumption. Under our assumptions, the within-
block homogeneous variance leads to homogeneous covariance. This assumption guarantees the convergence results. Note that our block 
covariance structure is the same as in Szyszkowicz and Yanikomeroglu (2009), but different from that in Beaulieu (2011). The latter paper 
assumes heterogeneity within-block variance but imposes a homogeneous covariance assumption in equation (T3), which essentially leads 
to the convergence result.

To show the importance of our assumption, it will be enough to consider the case K = 1. We provide an example where the variances 
differ by very miniscule amounts and show that the average of a large group of lognormal variables does not converge to a univariate 
lognormal. Under our assumptions, we are able to find closed-form expressions for the moments of the average. We show that the 
relations among these moments do not correspond to the relations among the moments of a univariate lognormal. Hence, we conclude 
that the limiting distribution is not a univariate lognormal.

We assume there are n lognormal variables where the standard deviations (of the associated normal distributions) lie in the interval 
[σlow , σhigh]. It will be convenient to use the following notation

σlow = σ ,

σhigh = σ(1 + ε), ε > 0,

δ = ε

2n
.

We assume the corresponding standard deviations are given by the following vector

σ [1 + δ, 1 + 3δ, · · · ,1 + (2n − 1)δ] .

Hence the standard deviations are evenly distributed in the interval [σ , σ(1 + ε)]. The corresponding variances are contained in the 
interval (σ 2, σ 2(1 + ε)2). This interval can be made arbitrarily small by reducing the value of ε .

For convenience, we assume that all the μi are equal to zero and that all the pairwise correlations are ρ > 0. It is convenient to let 
α = 1 + ε .

Under these assumptions, the limiting distribution of the second moment (about zero) of the average is, recalling equation (6),

lim
n→∞ E

[
A2

n

]
= lim

n→∞

n∑
i=1

1

n2
eρσ 2(1+(2i−1)δ)2

+ lim
n→∞

n∑
i=1

n∑
j=1, j �=i

1

n2
eρσ 2(1+(2i−1)δ)(1+(2 j−1)δ)

=
α∫

1

α∫
1

eρσ 2xydxdy.

(19)

The first term on the right-hand side tends to zero. The double summation on the second line tends to the double integral from the 
Riemann integrability of the continuous bivariate exponential function in the rectangle [1, α] × [1, α].

Likewise, the limiting distribution of the third moment (about zero) of the average is

lim
n→∞ E

[
A3

n

]
=

α∫
1

α∫
1

α∫
1

eρσ 2(xy+xz+yz)dxdydz. (20)

Finally, the limiting distribution of the fourth moment (about zero) of the average is

lim
n→∞ E

[
A4

n

]
=

α∫
1

α∫
1

α∫
1

α∫
1

eρσ 2(xy+xz+xw+yz+yw+zw)dxdydzdw. (21)

Now consider the case of a true univariate lognormal distribution, X , with mean zero (μ = 0) and variance σ 2
0 . The first four moments 

of X about zero are

E[X] = 1,

E[X2] = eσ 2
0 ,

E[X3] = e3σ 2
0 ,

E[X4] = e6σ 2
0 .
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Hence, in the case of a true univariate lognormal distribution X , we have

E[X3] =
(

E[X2]
)3

and

E[X4] =
(

E[X2]
)6

.

If the distribution of Am , as m tends to infinity, converges to a univariate lognormal, we would have

α∫
1

α∫
1

α∫
1

eρσ 2(xy+xz+yz)dxdydz =
⎛
⎝ α∫

1

α∫
1

eρσ 2xydxdy

⎞
⎠

3

(22)

and

α∫
1

α∫
1

α∫
1

α∫
1

eρσ 2(xy+xz+xw+yz+yw+zw)dxdydzdw =
⎛
⎝ α∫

1

α∫
1

eρσ 2xydxdy

⎞
⎠

6

. (23)

However the following two propositions4 show that both equation (22) and equation (23) are false. This means that the limiting 
distribution of Am , under our assumption of heterogeneous variances, does not converge to a lognormal distribution. Note that this result 
is true for arbitrarily small ε .

Proposition 4.1. For a monotone function f : (0, ∞) → (0, ∞) and iid (independent and identically distributed) positive random variables X, Y , Z , 
we have

E[ f (XY ) f (X Z) f (Y Z)] ≥ E[ f (XY )]3. (24)

Moreover, if f is strictly monotone and X, Y , Z are non-degenerate, then the inequality (24) is strict.

Proof. Take X ′, Y ′, Z ′ such that X, Y , Z , X ′, Y ′, Z ′ are iid. Let x, y, z, x′, y′, z′ be arbitrary positive real numbers. We first note that

E[ f (X y) f (X z)] = E[ f (X y)]E[ f (X z)] + Cov( f (X y), f (X z))

≥ E[ f (X y)]E[ f (X z)] = E[ f (X y) f (X ′z)],
where we use Cov( f (X y), f (X z)) ≥ 0, which is due to the Fréchet-Hoeffding (or Hardy-Littlewood) inequality (Lieb and Loss (2001)) by 
noting that f (X y) and f (X z) are both increasing (or decreasing) functions of X . Therefore, we have

E[ f (X y) f (X z) f (yz)] ≥ E[ f (X y) f (X ′z) f (yz)],
and by integrating over (y, z), we get

E[ f (XY ) f (X Z) f (Y Z)] ≥ E[ f (XY ) f (X ′ Z) f (Y Z)]. (25)

By the same argument,

E[ f (x′Y ) f (Y z)] ≥ E[ f (x′Y ) f (Y ′z)],
which gives

E[ f (xY ) f (x′z) f (Y z)] ≥ E[ f (xY ) f (x′z) f (Y ′z)],
and by integrating over (x, x′, z), we get

E[ f (XY ) f (X ′ Z) f (Y Z)] ≥ E[ f (XY ) f (X ′ Z) f (Y ′ Z)]. (26)

Finally,

E[ f (xZ) f (y′ Z)] ≥ E[ f (xZ) f (y′ Z ′)],
which gives

E[ f (xy) f (x′ Z) f (y′ Z)] ≥ E[ f (xy) f (x′ Z) f (y′ Z ′)],
and by integrating over (x, x′, y, y′), we get

4 We thank Ruodu Wang of the University of Waterloo for his proof of the first proposition and for inspiring the proof of the second proposition.
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E[ f (XY ) f (X ′ Z) f (Y ′ Z)] ≥ E[ f (XY ) f (X ′ Z) f (Y ′ Z ′)]. (27)

Therefore, we obtain

E[ f (XY ) f (X Z) f (Y Z)] ≥ E[ f (XY ) f (X ′ Z) f (Y Z)] (by (25))

≥ E[ f (XY ) f (X ′ Z) f (Y ′ Z)] (by (26))

≥ E[ f (XY ) f (X ′ Z) f (Y ′ Z ′)] (by (27))

≥ E[ f (XY )]3. (by the iid assumption)

This shows (24). The last statement follows by noting that Cov( f (X y), f (X z)) > 0 as soon as f (X y) and f (X z) are non-degenerate. �
In our case, choosing X, Y , Z as uniform distributed on [1, α] and f : x 
→ eρσ 2x with ρσ 2 �= 0, we get the inequality

α∫
1

α∫
1

α∫
1

eρσ 2(xy+xz+yz)dxdydz >

⎛
⎝ α∫

1

α∫
1

eρσ 2xydxdy

⎞
⎠

3

.

Therefore, equation (22) does not hold.

Proposition 4.2. For a monotone function f : (0, ∞) → (0, ∞) and iid positive random variables X, Y , Z , W , we have

E[ f (XY ) f (X Z) f (X W ) f (Y Z) f (Y W ) f (Z W )] ≥ E[ f (XY )]6. (28)

Moreover, if f is strictly monotone and X, Y , Z , W are non-degenerate, then the inequality (28) is strict.

Proof. The proof is parallel to that of Proposition 4.1, hence is omitted. �
In our case, choosing X, Y , Z , W as uniform distributed on [1, α] and f : x 
→ eρσ 2x with ρσ 2 �= 0, we get the inequality

α∫
1

α∫
1

α∫
1

α∫
1

eρσ 2(xy+xz+xw+yz+yw+zw)dxdydzdw >

⎛
⎝ α∫

1

α∫
1

eρσ 2xydxdy

⎞
⎠

6

.

Therefore, equation (23) does not hold.

5. Summary and future research

The distribution of the average of lognormal variables has widespread applications in insurance and finance. This paper analyzed the 
limiting distribution of the means of K groups of correlated lognormal variables. We showed that under certain assumptions on the block 
covariance structure, the distribution converges to a K -dimensional lognormal distribution. The within-block means can vary but the 
within-block variances and the within-block correlations are constant. We have shown that the homogeneity of the within-block variances 
plays an essential role in the derivation.

To round out the paper it may be helpful to discuss some future research topics. These relate to the effectiveness of the approximation 
both in terms of convergence and its application in practice. As a starting point, it would be of interest to analyze how sensitive the 
convergence result is to the underlying assumptions. For example, if the underlying variables are lognormal and all the assumptions are 
satisfied, how quickly does the portfolio of averages converge to the K -dimensional lognormal distribution? The convergence will clearly 
depend on the number of variables in each block. In a risk management context, tail behaviour is important so that the tail convergence 
would furnish a useful measuring rod.

Another project would be to examine the robustness of the convergence result to variations in the underlying assumptions. For example, 
while the homogeneity of within-block variances is essential for the portfolio of block averages to converge to a K -dimensional lognormal 
it would be interesting to explore what divergence is introduced when we use heterogeneous variances. For example, when K = 1 we 
could use a benchmark model with each variance equal to the average variance (of the heterogeneous model). In the benchmark model, 
we assume all pairwise correlations are equal to the average correlation. The benchmark model satisfies our conditions and the average 
under the benchmark model converges to a univariate lognormal. We could compare this distribution with the actual distribution of 
the average in the case of heterogeneous variances. Propositions 4.1 and 4.2 can provide numerical values for the moments so we can 
compare the first four moments of the two distributions. We could use metrics like the Kullback-Leibler divergence to compare the two 
distributions.

Perhaps the most interesting future task would be to assess how well the model works in a real-world setting. This would involve 
calibrating the model to one or more empirical data sets and estimating its parameters. The performance of the model could be compared 
to that of the empirical distribution using various criteria. The K -dimensional lognormal distribution would be much simpler to handle 
in terms of portfolio optimization and Monte Carlo simulation. However, the key issue will be how reliable the results obtained are as 
compared to those based on the parent empirical distribution.

In this connection, we would like to mention one caveat that is related to risk measurement calculations. These are typically concerned 
with tail risk estimation: e.g. based on Value at Risk or Conditional Tail Expectation. In the limit as m tends to infinity and we converge to 
the K -dimensional lognormal model, all of the unsystematic risks have been diversified away. This implies that tail risk quantities based 
on this model would underestimate their actual values. This type of bias would be anathema to any prudent risk manager. However, it 
should be possible to offset this bias by increasing either the input variances or the input correlations or both.
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