
Insurance: Mathematics and Economics 108 (2023) 165–176

Contents lists available at ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

A new stochastic dominance criterion for dependent random variables 

with applications

Félix Belzunce ∗, Carolina Martínez-Riquelme

Department of Estadística e Investigación Operativa, University of Murcia, Facultad de Matemáticas, Campus de Espinardo, 30100 Espinardo (Murcia), Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received September 2021
Received in revised form November 2022
Accepted 5 December 2022
Available online 9 December 2022

JEL classification:
C12
G11

Keywords:
Stochastic dominance
Dependent random variables
Nonparametric tests
Portfolio selection
Regret theory

In this paper we develop a new tool for the comparison of paired data based on a new criterion of 
stochastic dominance that takes into account the dependence structure of the random variables under 
comparison. This new procedure provides a more detailed comparison of dependent random variables 
and overcomes some difficulties of standard techniques like Student’s t and Wilcoxon-Mann-Whitney 
tests for non normal data. This tool provides an alternative to the usual stochastic dominance criterion 
which only considers the marginal distributions in the comparison. We show how this new tool can be 
fruitfully used for the comparison of paired asset returns.
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1. Introduction

The comparison of random quantities according to their mag-
nitude has a long history. The most simple and basic way is the 
comparison of measures of location like the mean or median, 
whereas the use of stochastic dominance criteria have been proved 
to provide more detailed comparisons, to such extent that it is a 
fundamental tool for the comparison of random quantities in eco-
nomics, finance and risk analysis nowadays.

The usual stochastic dominance criterion was introduced by 
Lehmann (1955) and has been extensively applied in economics, 
finance and risk analysis as it can be seen in the books by Müller 
and Stoyan (2002), Denuit et al. (2005), Sriboonchitta et al. (2010)
and Levy (2016). Some other applications can be found in Shaked 
and Shanthikumar (2007) and Belzunce et al. (2016a). This crite-
rion is commonly used to rank distributions as an alternative to 
the comparisons provided by measures of location. Given two ran-
dom variables X and Y , X is said to be less or equal than Y in 
the stochastic dominance criterion (or stochastic order), denoted 
by X ≤st Y , if and only if, P (X > x) ≤ P (Y > x), for all x ∈ R. 
Clearly, this criterion compares the magnitude of the two random 
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variables, where the random variable Y tends to take larger val-
ues than the random variable X from a probabilistic point of view. 
In particular, if the stochastic dominance holds, then the means, 
the medians and every percentile or quantile of the corresponding 
random variables are also ordered. The number of statistical in-
ference techniques about the stochastic dominance criterion have 
increased during the last two decades; see, for example, David-
son and Duclos (2000), Barret and Donald (2003), Linton et al. 
(2005) and more recently Scaillet and Topaloglou (2010), Barret et 
al. (2014) and Andreoli (2018). However, the main drawback of the 
stochastic dominance criterion is that only consider the marginal 
distributions of the two random variables and does take into ac-
count the dependence structure when the random variables are 
dependent, which is the case of returns for two assets. Despite 
the fact that several criteria of stochastic dominance for dependent 
random variables have been considered (see for example Shan-
thikumar and Yao, 1991 and Cai and Wei, 2014), they are very 
technical in nature and are not easy to check from a statistical 
point of view.

Therefore, the aim of this paper is to propose a new tool for the 
comparison of dependent random variables, which is easy to deal 
with, according to a new stochastic dominance criterion that takes 
into account the dependence structure and to show how this tool 
can be used in practice to improve the outcome of a portfolio by 
selecting the assets according to the new criterion, covering situa-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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tions where the assets are not ordered in the usual stochastic dom-
inance criterion and/or the dependence is not taken into account.

In order to provide a motivation of the new tool, we start mak-
ing a review of the usual statistical techniques for the comparison 
of dependent random variables, which are based on a paired sam-
ple from a bivariate random vector (X, Y ). If the difference Y − X
is normally distributed, the standard procedure is to apply the Stu-
dent’s t test for E[Y − X], concluding that Y tends to take larger 
values than X if E[Y − X] > 0. As we will see later, this property 
implies, in some probabilistic sense, that the random variable with 
the greatest mean truly tends to take larger values than the other 
one (see Example 2.6) in contrast with the independent case. The 
problem arises when Y − X is not normally distributed. In such 
case, the Wilcoxon-Mann-Whitney (WMW) test is commonly per-
formed for the median of Y − X in order to check if the median is 
greater than 0. However, the median approach has some problems 
and disadvantages that we consider next. From the statistical point 
of view, for instance, Divine et al. (2018) have demonstrated that 
the WMW procedure fails as a test to compare two medians. From 
the probabilistic point of view, let us pose the following question: 
Is it appropriate to consider the median of Y − X as a measure to 
check whether a random variable tends to take larger values than 
another one, when X and Y are dependent? Next, we show that 
the answer is no, as well as we explore which criterion should be 
considered to compare the magnitude of two dependent random 
variables.

Let us first show the reason why the comparison based on the 
median of Y − X is not appropriate to compare dependent random 
variables. The idea behind the WMW test is to check if the median 
of Y − X is greater than 0 (or, equivalently, if the median of X − Y
is smaller than 0) as an evidence that Y tends to take larger values 
than X . If we assume that P (X = Y ) = 0, then the median of Y − X
is greater than 0 if, and only if, P (Y − X > 0) ≥ (0.5 ≥)P (X − Y >

0), this property is equivalent to the strict stochastic precedence 
criterion and it is denoted by X ≤pr Y (see Boland et al., 2004 and 
a related definition by Arcones et al., 2002). However, the following 
example shows that the stochastic precedence criterion is not very 
informative to compare the magnitude of two dependent random 
variables.

Example 1.1. Let us consider the following example in which we 
have a discrete bivariate distribution on R2, such that all the 
points have the same probability (see Fig. 1). In this case, it is 
clear that P (X > Y ) = 0.5 = P (Y > X) and, therefore, the two ran-
dom variables are equal according to the stochastic precedence 
criterion. However, if we look at the differences Y − X , when Y
is greater than X (dashed lines), these are greater than the differ-
ences between X − Y , when X is greater than Y (dotted lines) and, 
intuitively, Y tends to take larger values than X .

The problem lies in reducing all the information about Y − X
to just one number, that is, to P (Y − X > 0), without taking into 
account the thickness of the left tail (below the median) and the 
right tail (above the median) of Y − X . Moreover, we observe that 
the stochastic dominance criterion is not appropriate in this case 
either, since it only compares the marginal distributions of the 
two random variables without taking into account their depen-
dence structure and, therefore, it should not be considered as a 
criterion to compare two dependent random variables. Because of 
these facts, we wonder about which probabilistic criterion should 
be considered to compare the magnitude of two random variables 
in the dependent case in order to affirm that one of the random 
variables tends to take larger values than the other one.

Going back to Example 1.1, the stochastic precedence criterion 
does not take into account the magnitudes of Y − X and X − Y , 
therefore we can consider the comparison of the magnitude of 
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Fig. 1. A discrete distribution on R2 where each point has the same probability 
equal to 1/6.

Y − X and X − Y to get a more detailed comparison of X and Y . 
A natural way to compare such differences is to consider the usual 
stochastic dominance criterion, that is, to check if X − Y ≤st Y − X . 
Since the stochastic dominance criterion compares the magnitude 
of two random variables, if the previous inequality holds, then 
Y − X tends to take large values than X −Y , and therefore, Y tends 
to take larger values than X taking into account their joint distri-
bution to reach the conclusion. Based on this idea, we introduce 
a new statistical test for the comparison of paired data. A natural 
scenario where the new criterion can be applied is the compar-
ison of asset returns. The use of stochastic dominance criteria to 
compare two assets with returns X and Y has been shown to be a 
very powerful tool to improve and compare portfolios. As we will 
see, the new tool can be used to improve the outcomes of a port-
folio by replacing one asset by another one which stochastically 
dominates the previous one according to the new criterion.

The organization of this paper is as follows. In Section 2, we in-
troduce a new stochastic dominance criterion for the comparison 
of the magnitude of two dependent random variables, as well as 
we study some of its main properties. Along the revision of this 
paper, professor Tomasso Lando noticed to us that this criterion 
appears in Montes et al. (2020) under a different notation. Fortu-
nately, there is no overlap with the contents of this paper and the 
main focus in the paper by Montes et al. (2020) is to show the 
connection among the usual stochastic order and the new one un-
der different types of dependence. Additionally, they present the 
new criterion in the context of regret theory which can be used to 
provide an interpretation in the context of risk theory, as we will 
observe later in Section 2. Next, in Section 3 we derive a statistical 
procedure for testing the new criterion. In Section 4, we use the 
test to provide a fruitful application in the context of finance. Fi-
nally, in Section 5 we give some comments about open problems 
and future research about the new stochastic dominance criterion.

2. Stochastic dominance among two dependent random 
variables

According to the previous section, we introduce the following 
new stochastic dominance criterion as a tool for comparing two 
dependent random variables in terms of their magnitude.

Definition 2.2. Given a bivariate random vector (X, Y ), we say that 
X is smaller than Y in the weak joint stochastic dominance, de-
noted by X ≤st:wj Y , if

P (X − Y > t) ≤ P (Y − X > t), for all t ∈R,
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or, equivalently, if X − Y ≤st Y − X .

According to the preceding notation in the literature, we have 
used the term “joint” to indicate that we are considering the de-
pendence structure in the comparison and the term “weak” to 
point out that it is a weaker criterion than an existing criterion, 
as we will see later. Prior to explore the properties of this order 
and the relationships with some other criteria found in the litera-
ture, let us make some remarks.

This notion has been independently introduced by Montes et al. 
(2020), where they give an interpretation in the context of regret 
theory. This theory was introduced by Bell (1982), Fishburn (1982)
and Loomes and Sugden (1982), where the satisfaction of a deci-
sion maker is based on the benefits of his/her choice and on the 
benefits of the unselected one. In particular, Montes et al. (2020)
show that X ≤st:wj Y if, and only if, X ≤AR Y (absolute regret or-
der), where X ≤AR Y if, and only if, E[u(X − Y )] ≤ E[u(Y − X)], for 
very increasing function u (see Hon Tan and Hartman, 2013). Re-
placing “benefits” by “losses”, the st:wj can be interpreted in the 
context of risk theory as follows. A decision maker would prefer 
risk X instead of risk Y , taking into account the losses of the se-
lected risk and the unselected one, if X ≤st:wj Y .

Remark 2.3. As observed by Montes et al. (2020) the new criterion 
is coherent with both the comparison of the means of the two 
random variables and the comparison in the stochastic precedence 
criterion. It is easy to see that if X ≤st:wj Y , then E[X] ≤ E[Y ]. In 
addition, from the definition of the new criterion, it also follows 
that P (X > Y ) ≤ P (Y > X), that is, X ≤pr Y .

Finally, notice that if X ≤st:wj Y then E[X] = E[Y ] if, and only if, 
X − Y =st Y − X (see Theorem 1.A.8 in Shaked and Shanthikumar, 
2007).

Remark 2.4. We observe that the new criterion compares the prob-
ability of the areas At = {(x, y) ∈ R2|y > x + t} and Bt = {(x, y) ∈
R2|y < x − t}, for all t ∈R, that is, the new criterion is equivalent 
to P ((X, Y ) ∈ Bt) ≤ P ((X, Y ) ∈ At), for all t ∈ R. It is easy to see 
that the previous inequality holds for the random variables X and 
Y defined in Example 1.1, that is, X ≤st:wj Y in that case.

Remark 2.5. If X − Y (or equivalently Y − X) has a continuous dis-
tribution, then the weak joint stochastic dominance holds if, and 
only if, P (X − Y > t) ≤ P (Y − X > t), for all t ≥ 0. The proof fol-
lows trivially from the fact that P (X − Y > t) = P (Y − X ≤ −t) and 
P (Y − X > t) = P (X − Y ≤ −t), for all t < 0. In other words, the 
right tail of X − Y behaves like the left tail of Y − X and, therefore, 
it is natural to study if, under the condition X ≤st:wj Y , the right 
tail of Y − X is lighter than the left tail of Y − X . The usual stochas-
tic order has been related to the comparison of tails by Mulero et 
al. (2017). They prove that for two non negative random variables 
X and Y , if X ≤st Y , then X ≤rtail Y , where X ≤rtail Y if

E[X w(X)] ≤ E[Y w(Y )],
for all non-decreasing function w : R ⇒ R+ provided previous 
expectations exist. The rtail ordering has been proved to be con-
sistent with the fact that the right tail of X is heavier than the 
right tail of Y . Now, given that under the assumption X ≤st:wj Y
we have that (X − Y )+ ≤st (Y − X)+ , then (X − Y )+ ≤rtail (Y − X)+
and therefore the right tail of Y − X is lighter than the right tail of 
X − Y , or equivalently, the left tail of Y − X .

Let us see now an example of a family of parametric distribu-
tions where the new weak joint stochastic dominance holds.
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Example 2.6. Let us consider a bivariate elliptically distributed 
random vector, (X, Y ) ∼ E2(μ, �, �), that is, (X, Y )t = μ + AU, 
where μ is the vector of means, A ∈ R2×k is a matrix of pa-
rameters such that � = AAt , and U is a k-dimensional spherical 
distribution with characteristic generator �. From the well known 
properties of linear combinations of elliptical distributions, it is 
easy to see that Y − X ∼ E1(μ2 − μ1, s11 + s22 − 2s12, �) and 
X − Y ∼ E1(μ1 − μ2, s11 + s22 − 2s12, �), where

� =
(

s11 s12
s12 s22

)
.

That is, Y − X and X − Y are equally distributed, except for a loca-
tion change. Therefore, if E[X] = μ1 ≤ E[Y ] = μ2, then X − Y ≤st
Y − X or, equivalently, X ≤st:wj Y .

Therefore, the comparison in the new criterion only depends on 
the position on the plane of the mean vector and does not depend 
on the variances and correlation among the two random variables.

As a particular case, if we consider a bivariate normal random 
vector (X, Y ) ∼ N(μ, V), where μ is the mean vector and V is the 
covariance matrix, if we assume that E[X] = μ1 ≤ μ2 = E[Y ], then 
we have that X ≤st:wj Y . It is worthy mentioning that the previ-
ous comment is still true when the difference X − Y is normally 
distributed, without any assumption on the joint distribution. As 
a consequence, the Student’s t test for paired samples can be also 
considered as a test for the comparison of the magnitude of two 
dependent random variables according to the new criterion.

Fig. 2 shows examples for both positive and negative correla-
tion. In particular, we consider (X, Y ) ∼ N(μ, V ), where μ = (1, 2), 
the variances are 2 and 1, respectively, and the correlation is 0.8, 
for the positive correlation and -0.8, for the negative correlation. 
The dashed lines are the boundaries of the areas At and Bt , for 
t = 1.2, whose probabilities can be compared to check the weak 
joint stochastic order (see Remark 2.4).

Next, we explore the relationships between the new criterion 
and some other joint stochastic dominance criteria previously de-
fined in the literature. As mentioned in the introduction, the com-
parison of two dependent random variables according to their 
magnitude was considered first by Shanthikumar and Yao (1991)
and more recently by Cai and Wei (2014) and Belzunce et al. 
(2016b), under two different approaches. Let us describe the two 
approaches.

The approach given by Shanthikumar and Yao (1991) is based 
on a preliminary characterization of the corresponding stochastic 
dominance criterion in the independent case, considering the same 
characterization as a definition in the dependent case. For example, 
Shanthikumar and Yao (1991) proved the following characteriza-
tion of the usual stochastic dominance criterion.

Let X and Y be independent random variables, then X ≤st Y if, 
and only if, E[g(X, Y )] ≤ E[g(Y , X)], for all g ∈ Gst , provided that 
the previous expectations exist, where

Gst = {g : R2 → R|g(x, y) − g(y, x) is increasing in x, for all y}.
According to this characterization, they provided the following 

definition. Given a bivariate random vector (X, Y ), X is said to be 
smaller or equal than Y in the joint stochastic order, denoted by 
X ≤st:j Y , if E[g(X, Y )] ≤ E[g(Y , X)], for all g ∈ Gst , provided that 
the previous expectations exist. Following this idea they proposed 
some other joint stochastic dominance criteria. The motivation of 
these criteria is purely mathematical based, and it is hard to find a 
motivation from the applied point of view. Additionally, there are 
no statistical tools to check these criteria. According to these com-
ments, it is clear that a new criterion is needed and our proposal 
provides a simple answer to this problem.
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Fig. 2. Joint density functions for (X, Y ) ∼ N(μ, V ), where μ = (1,2), the variances are 2 and 1, the correlation is 0.8 (on the left) and -0.8 (on the right), where t = 1.2.
Next, we show that the new criterion is weaker than the joint 
stochastic order.

Theorem 2.7. Given a bivariate random vector (X, Y ), if X ≤st:j Y , then 
X ≤st:wj Y .

Proof. According to Shanthikumar and Yao (1991), if X ≤st:j Y , 
then (X, −Y ) ≤st (Y , −X) which, from the definition of the multi-
variate stochastic dominance (see Section 5), implies that X −Y ≤st
Y − X , or equivalently, X ≤st:wj Y . �

Therefore, taking into account the previous results, comments 
and the results in Shanthikumar and Yao (1991), we have the fol-
lowing chain of implications.

X ≤st:j Y ⇒ X ≤st Y
⇓ ⇓

X ≤pr Y ⇐ X ≤st:wj Y ⇒ E[X] ≤ E[Y ].
Therefore, the new criterion is weaker than the previous crite-

rion, which means that it has a wider applicability and it can only 
be improved by the comparison of medians and means, which is 
not very informative as we have already pointed out.

Next, we provide some counterexamples to show that the im-
plications related to the new criterion do not hold in the reverse 
sense. On the one hand, Example 1.1 can be used as a coun-
terexample for the implication X ≤st:wj Y ⇒ X ≤st Y . On the other 
hand, the following counterexample shows that the implication 
X ≤st:wj Y ⇒ X ≤st:j Y does not hold.

Counterexample 2.8. Let us consider (X, Y ) ∼ N(μ, V), where 
E[X] = μ1 �= μ2 = E[Y ] and V ar[X] = V11 �= V22 = V ar[Y ]. It is 
known that X �st Y and X �st Y (see Table 2.2 in Belzunce et 
al., 2016a). However, if E[X] = μ1 < μ2 = E[Y ] we have that 
X ≤st:wj Y . Since X ≤st:j Y ⇒ X ≤st Y , this example contradicts the 
implication X ≤st:wj Y ⇒ X ≤st:j Y .

The main focus of the paper by Montes et al. (2020) is the rela-
tionship among the new order and the usual stochastic order. For 
example they prove that if X and Y are independent random vari-
ables such that X ≤st Y , then X ≤st:wj Y . A simple proof of this fact 
is the following. If X ≤st Y then follows that −Y ≤st −X . Now, by 
the preservation under convolution of the stochastic dominance, it 
holds that X − Y ≤st Y − X or, equivalently, X ≤st:wj Y . Additionally, 
Montes et al. (2020) provide a counterexample for the reversed im-
plication.

Montes et al. (2020) also provide two results where the usual 
stochastic order implies the st:wj order under the assumption 
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of comonotonicity or Archimedean copula of the random vector 
(X, Y ).

Next we provide a more general result for the case of Archi-
medean copulas. In particular, we provide a result for a general 
copula.

Theorem 2.9. Let (X, Y ) be a bivariate random vector with absolutely 
continuous distribution and copula C(p, q). If X ≤st Y and

∂

∂ p
C(u, v1) ≤ ∂

∂q
C(v2, u), for all u, v1 and v2 ∈ (0,1),

such that v1 ≤ v2, (2.1)

then X ≤st:wj Y .

Proof. From Theorem 2.3 by Navarro and Sarabia (2022) we have 
that the distribution function of X − Y is given by

P (X − Y ≤ t) =
+∞∫

−∞

∂

∂ p
C−(F (x), G(x − t)) f (x)dx,

where C−(p, q) = p − C(p, 1 − q) is the copula of (X, −Y ) (see 
Theorem 2.4.4, Nelsen, 2006).

Let us consider in the previous integral the change of variable 
F (x) = u, then we have

P (X − Y ≤ t) =
1∫

0

(
1 − ∂

∂ p
C(u, G(F −1(u) − t))

)
du. (2.2)

In a similar way we have that the distribution function of Y − X
is given by:

P (Y − X ≤ t) =
1∫

0

(
1 − ∂

∂q
C(F (G−1(u) − t), u)

)
du. (2.3)

Now given that X ≤st Y we have that F (x) ≥ G(x) for all x ∈ R
and F −1(u) ≤ G−1(u) for all u ∈ (0, 1), therefore

F (G−1(u) − t) ≥ G(G−1(u) − t) ≥ G(F −1(u) − t),

for all t ∈R, u ∈ (0,1).

Now, from (2.1) we have that

∂

∂ p
C(u, G(F −1(u) − t)) ≤ ∂

∂q
C(F (G−1(u) − t), u),

for all t ∈R, u ∈ (0,1).
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Combining this inequality with equations (2.2) and (2.3) we get 
that P (X − Y ≤ t) ≥ P (Y − X ≤ t) for all t ∈ R, that is, X ≤st:wj
Y . �

If C is an Archimedean copula, that is, C(u, v) = φ−1(φ(u) +
φ(v)), where φ is differentiable an strictly decreasing and convex 
function, condition (2.1) is equivalent to

φ′(φ−1(φ(u) + φ(v1))) ≤ φ′(φ−1(φ(u) + φ(v2))), u, v1 ≤ v2

Notice that previous condition holds from the decreasingness 
and convexity of function φ. Therefore, Theorem 2.9 provides a 
generalization of Proposition 14 by Montes et al. (2020), where 
the generator is assumed to be a twice differentiable function.

To finish, we provide some desirable properties of a stochastic 
ordering such as stability under convolution, mixtures, compound-
ing and limit (see Denuit et al., 2005, p. 106). First, we observe the 
preservation under convolution.

Theorem 2.10. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a set of indepen-
dent bivariate random vectors. If Xi ≤st:wj Yi , for all i = 1, 2, . . . , n, then

n∑
i=1

Xi ≤st:wj

n∑
i=1

Yi .

Proof. From the assumptions, it is clear that Xi −Yi ≤st Yi − Xi , for 
all i = 1, . . . , n and also that the random variables X1 − Y1, X2 −
Y2, . . . , Xn − Yn are independent, as well as the random variables 
Y1 − X1, Y2 − X2, . . . , Yn − Xn . Therefore, from the preservation of 
the stochastic dominance under convolutions, we have that

n∑
i=1

(Xi − Yi) ≤st

n∑
i=1

(Yi − Xi),

that is, the st:wj order holds among the convolutions of X ’s and 
Y ’s. �

Now, we provide a result on mixtures.

Theorem 2.11. Let {(X(θ), Y (θ)), θ ∈ S ⊆ R} be a family of bivariate 
random vectors. Let �1 and �2 be two random variables with common 
support S. If

1. X(θ) ≤st:wj Y (θ), for all θ ∈ S,
2. X(θ) − Y (θ) or Y (θ) − X(θ) are increasing in the usual stochastic 

dominance order in θ ∈ S, and
3. �1 ≤st �2 ,

then X(�1) ≤st:wj Y (�2).

Proof. Let us consider the random variables Z(θ) = X(θ) − Y (θ)

and Z ′(θ) = Y (θ) − X(θ). Then, from Assumption 1, we have that 
Z(θ) ≤st Z ′(θ), for all θ ∈ S . From Assumption 2, we have that 
E[φ(Z(θ))] or E[φ(Z ′(θ))] are increasing in θ ∈ S , for any increas-
ing function φ. The result follows now from Theorem 2.2.8, in 
Belzunce et al. (2016a). �

This result is useful to provide comparisons in the presence of 
covariates. The result can be easily extended to the case where �1
and �2 are two n dimensional random vectors with common sup-
port S ⊆ Rn , and it can be used to provide examples of bivariate 
vectors which are ordered according to the weak joint stochastic 
dominance.

Moreover, it can be used, jointly with the preservation under 
convolution, to provide a preservation result under compounding. 
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In particular the two previous results can be used to provide the 
following theorem.

Theorem 2.12. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a set of indepen-
dent bivariate random vectors. If Xi ≤st:wj Yi , for all i = 1, 2, . . . , n, and 
N and M two integer-valued random variables independent of the ran-
dom variables (X1, Y1), (X2, Y2), . . . , (Xn, Yn). If Xi ≤st:wj Yi , for all 
i = 1, 2, . . . , n and N ≤st M then

N∑
i=1

Xi ≤st:wj

M∑
i=1

Yi .

Finally, we show that the new criterion is preserved under con-
vergence in distribution.

Theorem 2.13. Let {(Xn, Yn)}n∈N be a sequence of bivariate random 
vectors which converges in distribution to a bivariate random vector 
(X, Y ). If Xn ≤st:wj Yn, for all n ∈N , then X ≤st:wj Y .

Proof. If {(Xn, Yn)}n∈N converges in distribution to a bivariate 
random vector (X, Y ), then Xn − Yn converges in distribution to 
X − Y and Yn − Xn converges in distribution to Y − X . The result 
follows for the preservation of the usual stochastic dominance un-
der convergence (see Theorem 2.2.7 in Belzunce et al., 2016a). �

It would be interesting to find an integral representation of this 
new stochastic order. In particular, it would be interesting to find 
a characterization in the sense of the definition of joint stochastic 
orders provided by Shanthikumar and Yao (1991) but we have not 
been able to provide it and it remains as an open problem.

3. A non parametric asymptotic test for the weak joint stochastic 
dominance

In this section, we develop a non parametric asymptotic test for 
testing the weak joint stochastic dominance criterion. Given that 
the focus is on the comparison of two dependent random variables 
X and Y , our purpose is to develop a test based on a paired ran-
dom sample, {(Xi, Yi)}n

i=1, of (X, Y ). We will assume that Y − X
(and, obviously, X − Y ) has a continuous distribution function. A 
remark will be given at the end of this section for the cases of 
integer-valued and ordinal random variables.

Under these assumptions, the goal of this section is to provide 
a non parametric test for testing the null hypothesis

H0 : X ≤st:wj Y

against the alternative hypothesis

H1 : X �st:wj Y ,

based on the paired sample {(Xi, Yi)}n
i=1. Taking into account Re-

mark 2.5 we observe that the previous test is equivalent to test the 
null hypothesis

H0 : P (X − Y > t) ≤ P (Y − X > t), for all t ∈ [0,+∞)

against the alternative hypothesis

H1 : P (X − Y > t) > P (Y − X > t), for some t ∈ [0,+∞).

Following Barret and Donald (2003), we propose a Kolmogorov-
Smirnov type test of significance. Prior to the definition of the test 
statistic, let us fix some notation and make some observations. Let 
us denote by F (t) and G(t) the distribution functions of X − Y and 
Y − X , respectively. Now, given that {Xi − Yi}n and {Yi − Xi}n
i=1 i=1
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are random samples of X − Y and Y − X , respectively, the corre-
sponding empirical distributions, Fn and Gn , can be used to both 
estimate their distribution functions and propose a test statistic for 
the previous hypothesis. Under these notations, the empirical sur-
vival functions of X − Y and Y − X are given by

F n(t) = 1 − Fn(t) =
n∑

i=1

I(t,+∞)(Xi − Yi)

n

and

Gn(t) = 1 − Gn(t) =
n∑

i=1

I(t,+∞)(Yi − Xi)

n
,

respectively, where I(t,+∞)(·) is the indicator function on the inter-
val (t, +∞). According to this, a reasonable Kolmogorov-Smirnov 
type test statistic is the following

Sst:w j
n = √

n sup
t∈[0,+∞)

{
F n(t) − Gn(t)

}
,

where the decision rule is to reject H0 if Sst:w j
n > c and the crit-

ical value c would be determined in terms of the distribution of 
Sst:w j

n . However, it is not feasible to obtain the exact distribution of 
such statistic, and we would rather use the asymptotic distribution. 
Next, we provide an asymptotic upper bound for P (Sst:w j

n > c).

Proposition 3.14. Following the previous notation and under H0, we 
have that

lim
n→∞ P

(
Sst:w j

n > c
)

≤ P

(
sup

t∈[0,+∞)

{G P (t)} > c

)
,

for any c ∈ R, being G P = {G P (t), t ∈ [0, +∞)} a Gaussian process 
where, for given t1, t2, . . . , tk ∈ [0, +∞), (G P (t1), G P (t2), . . . , G P (tk))

is a k-dimensional multivariate normal random vector with zero mean 
vector and covariance matrix �, such that

�ii = V ar[G P (ti)] = F (ti) + G(ti) − (
F (ti) − G(ti)

)2
,

for i = 1,2, . . . ,k,

and

�i j = Cov(G P (ti),

G P (t j)) = F (ti ∨ t j) + G(ti ∨ t j) − (F (ti) − G(ti))(F (t j) − G(t j)),

where x ∨ y = max{x, y}.

Proof. First, we consider the weak convergence of the process 
�n = {�n(t); t ∈ [0, +∞)}, where �n(t) = √

n(F n(t) − Gn(t) −
(F (t) − G(t))), which is centered at zero. The stochastic process 
�n has trajectories in the Skorokhod space D([0, +∞)) of cadlag 
real valued functions with domain [0, +∞). It is well known that 
the processes En(F ) = {Fn(t); t ∈ [0, +∞)} and En(G) = {Gn(t); t ∈
[0, +∞)} converge weakly, in the metric space D([0, +∞)) with 
the uniform metric, to Brownian processes B and B ′ , respectively. 
Then, from Theorem 1.4.8 by van der Vaart and Wellner (1996), we 
have that (En(F ), En(G)) converges weakly to (B, B ′), and by the 
continuity mapping theorem (CMT) we have that �n = En(G) −
En(F ) converges weakly to G P = B − B ′ . Let us identify now the 
limiting stochastic process G P . First, we observe that,

F n(t) − Gn(t) =
n∑ lt(Xi, Yi)

n
,

i=1
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where lt(x, y) = I(t,+∞)(x − y) − I(t,+∞)(y − x) and the distribution 
of the random variable lt(X, Y ) is given by⎧⎨
⎩

1 with probability F (t),
0 with probability G(t) − F (t),
−1 with probability G(t).

Therefore,

E[lt(X, Y )] = F (t) − G(t),

V ar[lt(X, Y ))] = F (t) + G(t) − (
F (t) − G(t)

)2
(3.4)

and

Cov(lt(X, Y ), lt′(X, Y ))

= F (t ∨ t′) + G(t ∨ t′) − (F (t) − G(t))(F (t′) − G(t′)), (3.5)

for any t, t′ ∈ [0, +∞). Now, applying the multivariate central limit 
theorem (MCLT) to

�n(t) = √
n

(∑n
i=1 lt(Xi, Yi)

n
− E[lt(X, Y )]

)
,

we have that (�n(t1), �n(t2), . . ., �n(tk)) converges in distribu-
tion (weakly) to a multivariate normal random vector, for any 
t1, t2, . . . , tk ∈ [0, +∞), with zero mean vector and covariance ma-

trix � given by �ii = F (ti) + G(ti) −
(

F (ti) − G(ti)
)2

and �i j =
F (ti ∨ t j) + G(ti ∨ t J ) − (F (ti) − G(ti))(F (t j) − G(t j)), for all i, j =
1, . . . , n, where the previous values follow from (3.4) and (3.5), re-
spectively.

Therefore, the limiting stochastic process is a Gaussian stochas-
tic process.

Now, given that the function sup(·) is a continuous function 
on the Skorokhod space D([0, +∞)) with the uniform metric, and 
using again the CMT, we have that sup(�n) converges weakly (in 
distribution) to sup(G P ).

Finally, under H0, we have that Sst:w j
n ≤ sup[0,+∞)(�n(t)) (a.s.), 

and therefore,

lim
n→∞ P

(
Sst:w j

n > c
)

≤ lim
n→∞ P

(
sup

t∈[0,+∞)

{�n(t)} > c

)

= P

(
sup

t∈[0,+∞)

{G P (t)} > c

)
. �

Now, we prove the consistency of the proposed test.

Proposition 3.15. Following the previous notation and under H1, we 
have that

lim
n→+∞ P (Sst:w j

n > c) = 1,

for any c ∈R.

Proof. First we observe that under H1 there exists a t0 such that 
F (t0) − G(t0) > 0, and therefore

sup
t∈[0,+∞)

{
F (t) − G(t)

}
> 0.

It is not difficult to see that

lim
n→+∞ sup

t∈[0,+∞)

{
F n(t) − Gn(t)

} = sup
t∈[0,+∞)

{
F (t) − G(t)

}
> 0, a.s.,

therefore
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lim
n→+∞

√
n sup

t∈[0,+∞)

{
F n(t) − Gn(t)

} = +∞ a.s.

Now the result follows observing that

lim
n→+∞ inf P (Sst:w j

n > c) ≥ P ( lim
n→+∞ inf{Sst:w j

n > c}) = 1,

for any c ∈R. �
In order to compute the upper bound of the p-value for the 

test, we need to compute a probability for the supreme of the 
limiting Gaussian process described in the previous result. Recall 
that the covariance matrix is unknown, hence we propose to re-
place the covariance by the consistent estimation provided by the 
sample covariance, that is, the values are obtained replacing the 
distribution functions F and G by their corresponding empirical 
distribution functions Fn and Gn . Now, following Hansen (1996)
and Barret and Donald (2003), we can use Monte-Carlo methods 
to provide simulations of the Gaussian process and then use a 
grid to approximate the probability. More specifically, select a grid 
0 = t0 < t1 < · · · < tk on [0, +∞), then provide a set of N sim-
ulations of the multivariate random vector (G P (t0), . . . , G P (tk))

and, finally, compute the upper bound of the p-value based on 
the maximum of each simulation as follows. Let S1, S2, · · · , SN de-
note the maximum of each one of the simulations, then the upper 
bound can be approximated by

P

(
sup

t∈[0,+∞)

{G P (t)} > c

)
≈

∑N
i=1 I(c,+∞)Si

N
.

The number of grid points can be defined by the user to in-
crease the accuracy of the previous approximation. For the simu-
lation of the multivariate random vector we have used R 3.6.3 (R 
Core Team, 2020) and the MASS (v7.3-51.51; Ripley et al., 2019) 
package. Recall that the simulation heavily depends on the com-
putations related with the covariance matrix, which is time con-
suming. An alternative to this approach is the following. Given the 
grid 0 = t0 < t1 < · · · < tk on [0, +∞), P

(
supt∈[0,+∞){G P (t)} > c

)
is approximated by P (max(G P (t0), . . . , G P (tk)) > c) which in turn 
is approximated in terms of the empirical distribution based on 
the simulations. This probability can be computed as

P (max(G P (t0), . . . , G P (tk)) > c)

= 1 − P (G P (t0) ≤ c, . . . , G P (tk)) ≤ c),

that is, in terms of the multivariate distribution function of 
(G P (t0), . . . , G P (tk)) at the point (c, . . . , c). This can be computed 
using R 3.6.3 (R Core Team, 2020) and the mvtnorm (v1.1-0; Genz 
et al., 2020) package, which requires less computations for the co-
variance matrix and, therefore, it is less time consuming.

To sum up, in order to test if X ≤st:wj Y for two dependent 
random variables with continuous distributions and finite right ex-
treme of the supports T , we propose to test

H0 : P (X − Y > t) ≤ P (Y − X > t), for all t ∈ [0,+∞)

against the alternative

H1 : P (X − Y > t) > P (Y − X > t), for some t ∈ [0,+∞),

with the test statistic 
√

n supt∈[0,+∞)

{
F n(t) − Gn(t)

}
following the 

next steps:

S1. Take a bivariate random sample {(xi, yi)}n from (X, Y ).
i=1
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S2. Compute the value Sst:w j
n = √

n supt∈[0,+∞)

{
F n(t) − Gn(t)

}
, 

where Fn and Gn are the empirical distributions corresponding 
to the values {xi − yi}n

i=1 and {yi − xi}n
i=1, respectively. Is not 

difficult to see that the Sst:w j
n = √

n maxz∈Z∪{0}
{

F n(z) − Gn(z)
}

, 
where Z = {xi − yi}n

i=1 ∪ {yi − xi}n
i=1.

S3. Fix a grid 0 = t0 < t1 < · · · < tk on [0, max{Z}], consider the 
multivariate random vector (G P (t0), . . . , G P (tk)), with zero 
mean vector and covariance matrix given by �n , where �n

ii =
F n(ti) + Gn(ti) −

(
F n(ti) − Gn(ti)

)2
and �n

i j = F n(ti ∨ t j) +
Gn(ti ∧ t J ) − (F n(ti) − Gn(ti))(F n(t j) − Gn(t j)), and then pro-
vide an approximation of the upper bound for the p-value by 
either:
a) providing a set of N simulations of the random vec-
tor (G P (t0), . . . , G P (tk)), and approximating the upper bound 
p1 = ∑N

i=1 I
(Sst:w j

n ,+∞)
Si/N , where S1, S2, · · · , SN denote the 

maximum for each one of the simulations,
or
b) the probability p2 = 1 − P (G P (t0) ≤ c, . . . , G P (tk)) ≤ c).

S4. Reject the null hypothesis if either p1 or p2 is small enough.

It is important to notice that the previous procedure can be 
used, with some small modifications, for the cases of integer-
valued or ordinal random variables. If X and Y are integer-
valued, then the supreme should be taken over the whole real 
line and the convergence results holds. If X and Y are integer-
valued or ordinal random variables with a finite number of pos-
sible values then Y − X takes values on a finite set, let say, 
{t0, t1, . . . , tk}. In this case, the stochastic process G P is just a 
(k + 1)-dimensional random vector and there is no need of a 
grid for the approximation, being the upper bound for the p-
value given by P (max(G P (t0), . . . , G P (tk)) > c) = 1 − P (G P (t0) ≤
c, . . . , G P (tk)) ≤ c), which can be done as described previously. To 
sum up, for discrete or ordinal random variables we should pro-
ceed with steps S1, S2, S3.b and finish with S4, where in the case 
of non-finite integer-valued random variables the supreme is taken 
over the whole real line.

Next, we provide a Monte Carlo experiment to assess the be-
havior of the test in several situations.

3.1. Monte Carlo results

Along this subsection we perform some Monte Carlo experi-
ments for small and large samples in order to show how our 
proposed test behaves in different situations. In addition, the new 
test is compared with some well known tests for paired data. On 
the one hand, recall that the new stochastic dominance criterion 
is equivalent to the comparison of the means, when the difference 
Y − X is normally distributed (see Example 2.6) and, therefore, the 
Student’s t test for paired data is equivalent to test the st:wj crite-
rion in such case. On the other hand, according to Remark 2.3, the 
new criterion also implies that the median of Y − X is greater than 
0 (or equivalently the median of X −Y is smaller than 0) whenever 
P (X = Y ) = 0, and this comparison is tested by the WMW test. 
Therefore, it is natural to compare our test with the usual Studen-
t’s t and WMW tests for paired data, where X being smaller than 
Y plays the role of the null hypothesis in both cases.

The experiment is performed in several situations where the 
weak joint stochastic dominance either holds or does not hold. Let 
us describe the different cases that we have considered.

Cases 1, 2 and 3: In these cases (X, Y ) follows a bivariate normal 
distribution with mean vector (2, 4), (3, 1) and (2, 2.01) in Case 1, 
2 and 3 (C1, C2 and C3), respectively, with covariance matrix

V =
(

2 1.5
1.5 1.5

)
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Fig. 3. Survival functions for X − Y and Y − X according to cases 4, 5, 6, 7 and 8.
Cases 4, 5, 6, 7 and 8: In these cases the dependence structure 
is given by a Clayton copula with parameter 0.5, that is, C(u, v) =
(u−0.5 + v−0.5)−2, for all (u, v) ∈ [0, 1]2, and the marginal distribu-
tions are either Pareto or Weibull, denoted by X ∼ P (a, k) and X ∼
W (a, b), that is, the distribution is given by either F (x) = 1 −

(
k
x

)a
, 

for all x ≥ k, or F (x) = 1 − exp
(−(x/b)a

)
, for all x ≥ 0, respec-

tively. In particular, X ∼ P (2, 1) and Y ∼ P (1.5, 1) in Case 4 (C4), 
X ∼ P (5, 4) and Y ∼ P (1.5, 1) in Case 5 (C5), X ∼ W (6, 2) and Y ∼
W (1.5, 1.5) in Case 6 (C6), X ∼ W (0.75, 4) and Y ∼ W (0.25, 1.5)

in Case 7 (C7) and X ∼ W (0.5, 2) and Y ∼ W (0.9, 1.5) in Case 8 
(C8).

Let us now justify the choice of the previous cases. We have 
taken some bivariate normal distributions because of the fact that 
testing X ≤st:wj Y is reduced to the comparison of the means (see 
Example 2.6). In particular, the random variables are ordered in 
the sense X ≤st:wj Y in Case 1, whereas the random variables are 
ordered in the reverse sense in Case 2. As regarding Case 3, the or-
der is verified in the sense X ≤st:wj Y but the difference between 
the survival functions, as well as the difference of the means, is 
very small, hence it is difficult to detect it. Regarding the non nor-
mal cases, for cases 4 and 5, the new criterion does and does not 
hold, respectively (see Fig. 3). In cases 6, 7 and 8 the order does 
not hold in any sense, and there is an increasing difficulty to reject 
the null hypothesis (see Fig. 3). In addition, for cases 6 and 7 we 
have that E[X] > E[Y ], so the Student’s t tests should reject the 
null hypothesis, whereas in Case 8 we have that E[X] < E[Y ], so 
the Student’s t test should not reject the null hypothesis.

We have performed 1000 Monte Carlo replications for each case 
with different sample sizes (n = 50, 100, 200 and 500), in which 
the rejection rates of the null hypothesis have been computed 
for the two conventional significance levels of 0.05 and 0.01. The 
number of points of the grid is k = 100 in every replication. The 
results are provided in Table 1. Next, we make some observations 
on them.
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As we can see from Table 1, when the order clearly holds (cases 
1 and 4) our test performs very well with a rejection rate of 0 
per cent, even for small sample sizes in Case 1 whereas in Case 
4 we need a sample of size 100 to get a 0.034 rate of rejection. 
When the null hypothesis clearly does not hold (cases 2, 5 and 6), 
the new test has a rejection rate of 100 per cent, even for small 
sample sizes. Therefore, the power of our test is very high in such 
situations.

Case 3 is a particular scenario where the null hypothesis holds 
but it is difficult to detect it. In this case, the rejection rate de-
creases as the sample size increases, being the rejection rates sim-
ilar to those for the Student’s t and WMW tests for large sample 
sizes. Therefore, the new test has a high power when the sample 
size increases.

To finish, the order does not hold in cases 7 and 8 although it 
is difficult to reject the null hypothesis, hence we should expect 
low rejection rates. However, surprisingly, we get very high rejec-
tion rates, so the new test performs very well, in contrast with the 
WMW test. Regarding the Student’s t test, we have a very low re-
jection rate for case 7 and an increasing rejection rate for case 8. 
Therefore, the new test detects more clearly that the random vari-
able Y should not be considered greater than the random variable 
X .

To sum up, the new test exhibits a very good behavior when 
the two random variables are either ordered or not ordered, even 
in the most difficult cases, where the behavior clearly improves as 
the sample size increases.

4. An application in finance

Along this section we present an application of the new 
stochastic dominance criterion in the context of return data and 
portfolio selection. The use of stochastic dominance criteria to se-
lect a portfolio is a very common practice in finance. Given an 
investment portfolio, a natural question is how we can replace an 
asset of the given portfolio to provide a higher return. It is well 
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Table 1
Rejection rates for the null hypothesis.

Rejection rates for α = 0.05 (α = 0.01)

n Test C1 C2 C3 C4 C5 C6 C7 C8

New st:wj 0 (0) 1 (1) 0.611 (0.520) 0.160 (0.098) 1.000 (1.000) 1.000 (1.000) 0.985 (0.982) 0.997 (0.984)
50 WMW 0 (0) 1 (1) 0.047 (0.008) 0.001 (0.000) 1.000 (0.998) 0.988 (0.947) 0.258 (0.092) 0.308 (0.103)

Student’s t 0 (0) 1 (1) 0.046 (0.008) 0.002 (0.000) 0.829 (0.763) 0.975 (0.910) 0.002 (0.001) 0.768 (0.324)

New st:wj 0 (0) 1 (1) 0.454 (0.336) 0.034 (0.017) 1.000 (1.000) 1.000 (1.000) 0.999 (0.997) 0.999 (0.996)
100 WMW 0 (0) 1 (1) 0.041 (0.012) 0.000 (0.000) 1.000 (1.000) 1.000 (1.000) 0.391 (0.160) 0.513 (0.241)

Student’s t 0 (0) 1 (1) 0.040 (0.012) 0.000 (0.000) 0.863 (0.805) 1.000 (0.996) 0.000 (0.000) 0.982 (0.805)

New st:wj 0 (0) 1 (1) 0.287 (0.164) 0.000 (0.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (0.998)
200 WMW 0 (0) 1 (1) 0.032 (0.003) 0.000 (0.000) 1.000 (1.000) 1.000 (1.000) 0.547 (0.329) 0.769 (0.491)

Student’s t 0 (0) 1 (1) 0.030 (0.004) 0.000 (0.000) 0.904 (0.861) 1.000 (1.000) 0.000 (0.000) 0.999 (0.992)

New st:wj 0 (0) 1 (1) 0.083 (0.025) 0.000 (0.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
500 WMW 0 (0) 1 (1) 0.026 (0.003) 0.000 (0.000) 1.000 (1.000) 1.000 (1.000) 0.864 (0.668) 0.979 (0.902)

Student’s t 0 (0) 1 (1) 0.021 (0.002) 0.000 (0.000) 0.931 (0.893) 1.000 (1.000) 0.000 (0.000) 0.999 (1.000)

Fig. 4. Scatter plot for Twitter and Facebook weekly returns (on left side), Q-Q plot for Twitter and Facebook returns (on the right side, above) and Q-Q plot for the difference 
between Twitter (X ) and Facebook (Y ) returns (on the right side, below).
known that the usual stochastic dominance criterion does not pro-
vide an answer by two reasons. On the one side, it is difficult to 
find empirical evidence of stochastic dominance among two asset 
returns and, on the other side, replacing an asset by another one 
which stochastically dominates the first one does not result in a 
higher return for the new portfolio.

Next, we explore the role of the new criterion in this context. 
Let us consider the comparison of some weekly return data accord-
ing to the new criterion. In order to eliminate the time dependent 
effect, we consider weekly returns.

Example 4.16. We have considered 331 weekly return data for 
Twitter (X) and Facebook (Y ) from January 1, 2018. The data have 
been retrieved from http://finance .yahoo .com using R 3.6.3 (R Core 
Team, 2020) and the quantmod (v0.4.17; Ryan et al., 2020) pack-
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age. Fig. 4 shows that X and Y are highly positive correlated. 
Now, the question is the following. Can we state that one of them 
tends to take larger values than the other one in some probabilis-
tic sense? Fig. 4 shows that the usual stochastic dominance does 
not hold in any sense (the Q-Q plot clearly intersects the diagonal 
x = y) and, therefore, this criterion does not provide any answer.

This is a common example where the usual stochastic domi-
nance does not hold. However, the Q-Q plot of Y − X and X − Y
suggests that X ≤st:wj Y (see Fig. 4) and, therefore, Facebook 
weekly returns seem to take larger values than the Twitter ones.

In order to confirm the former hypothesis, we apply the test 
provided in Section 3. In particular, we test H0 : X ≤st:wj Y against 
the alternative hypothesis H1 : X �st:wj Y . For this case we get a 
p-value=0.9167104 and, therefore, there is no empirical evidence 
against X ≤st:wj Y . However, this not the end of our analysis. We 

http://finance.yahoo.com
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Fig. 5. Scatter plot for Amazon and Facebook weekly returns (on left side), Q-Q plot for Amazon and Facebook returns (on the right side, above) and Q-Q plot for the 
difference between Amazon (X ) and Facebook (Y ) returns (on the right side, below).
need to check if the previous order holds strictly. From Remark 2.3
we have that if X ≤st:wj Y and E[X] = E[Y ], then X =st:wj Y . There-
fore, we only need to check if the means are strictly ordered or not. 
In this case the Student’s t test for the comparison of the means, in 
the case of paired data, gives a p-value=0.2142, and therefore there 
is not enough empirical evidence against the hypothesis X =st:wj Y .

Let us consider another case in which we consider weekly re-
turn data for Amazon (X) and Facebook (Y ) over the same time 
period.

As we can see in Fig. 5 X and Y are highly positive correlated, 
the usual stochastic dominance does not hold in any sense but 
the new stochastic dominance criterion seems to hold. Again we 
apply the test provided in Section 3 to test H0 : X ≤st:wj Y against 
the alternative hypothesis H1 : X �st:wj Y . In this case we get a 
p-value=0.9946772 and, therefore, there is no empirical evidence 
against X ≤st:wj Y . Furthermore, in this case the Student’s t test 
for the comparison of the means gives a p-value=0.008786, and 
therefore the means are different and X ≤st:wj Y strictly.

This fact can be used and exploited in the context of portfo-
lio selection. Let us consider two portfolios where one of them is 
obtained from the other one by replacing one of the assets. In par-
ticular, we have two portfolios with returns P1 = (1 − α)X + αZ
and P2 = (1 − α)Y + αZ . Let us assume that X ≤st:wj Y , and let 
us compare P1 and P2 according to the new criterion. Given that 
P1 − P2 = (1 −α)(X −Y ), P2 − P1 = (1 −α)(Y − X) and the preser-
vation of the usual stochastic dominance criterion under increasing 
transformations, we have that P1 ≤st:wj P2. Therefore, the portfolio 
P2 has a greater return than the portfolio P1 according to the new 
criterion, as we illustrate next in Example 4.2. This is not always 
true if the new criterion is replaced, in the previous discussion, 
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by the usual stochastic dominance. Let us see an example of this 
situation using the previous data set.

Example 4.17. Continuing with Example 4.16, let us consider the 
weekly returns for Twitter (Z ), Amazon (X) and Facebook (Y ), and 
let us consider the portfolios P1 = 0.8X + 0.2Z and P2 = 0.8Y +
0.2Z . According to the previous discussion and the conclusions in 
the previous example, we have that P1 ≤st:wj P2. It is interesting to 
notice that the usual stochastic dominance criterion does not hold 
among P1 and P2 (see Fig. 6 on the left) but the new stochastic 
dominance criterion does (see Fig. 6 on the right).

Let us give another application. Let us consider a pair (X, Y )

of non independent random returns and the portfolios P1 = (1 −
α1)X +α1Y and P2 = (1 −α2)X +α2Y . Given that P2 − P1 = (α2 −
α1)(Y − X), P1 − P2 = (α2 − α1)(X − Y ) and the preservation of 
the usual stochastic dominance under increasing transformations, 
we have that P1 ≤st:wj P2, if X ≤st:wj Y and α1 < α2. Therefore, 
putting more weight to the greatest asset gives a greater return, 
according to the new criterion.

5. Conclusions and future research

In this paper we have introduced a new stochastic dominance 
criterion which takes into account the dependence structure of the 
random variables involved in the comparison, as well as it has 
been used to compare paired data. The new criterion has been 
shown to be coherent with the Student’s t and WMW tests for 
paired samples, but it provides a more informative comparison of 
dependent random variables. The new criterion has been studied 
from the probabilistic and inferential point of view, providing a 
new test to check it. In addition, we have given an application in 
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Fig. 6. Q-Q plot for the portfolios P1 and P2 (on the left side) and Q-Q plot for the differences of the two portfolios (on the right side).
finance which shows how this new criterion can be fruitfully used 
in portfolio selection. It is also clear that this new test can be used 
in several other contexts, like clinical trials, where “before” and 
“after” data is a common situation. This study can be enlarged and 
enriched according to the following items, among others

1. Further properties of the st:wj criterion: As for the preser-
vation under increasing transformations is concerned, the weak 
joint stochastic dominance is not preserved by increasing transfor-
mations of the marginal distributions. That is, if X ≤st:wj Y , then 
φ(X) �st:wj φ(Y ), for every increasing function φ. The argument 
is the following. Assume that φ(X) ≤st:wj φ(Y ), for any increas-
ing function φ. Then, by Remark 2.3, E[φ(X)] ≤ E[φ(Y )], for any 
increasing function φ, provided that the previous expectations ex-
ist, and, consequently, X ≤st Y . However, we have seen in Section 
2 that the weak joint stochastic dominance does not imply the 
usual stochastic dominance. Therefore, it would be interesting to 
find some other families of functions that preserve the new crite-
rion under transformations of the marginals distributions.

Additionally, if X ≤st:wj Y and Y ≤st:wj Z then it is not necessar-
ily true that X ≤st:wj Z . The main reason is that the comparisons 
X ≤st:wj Y and Y ≤st:wj Z does not contain any information about 
the dependence structure of (X, Z). Therefore, finding conditions 
to ensure X ≤st:wj Z is worth considering.

2. Multivariate extensions: A natural consideration is how to 
define a multivariate version of the new stochastic dominance cri-
terion. Let us consider a 2n dimensional random vector (X, Y), 
where X and Y are n dimensional random vectors. A natural ex-
tension in the multivariate case is the following:

We say that X is smaller than Y in the multivariate joint weak 
stochastic dominance, denoted by X ≤st:wj Y, if X − Y ≤st Y − X, 
where ≤st denotes the multivariate stochastic dominance (see 
Shaked and Shanthikumar, 2007 and Belzunce et al., 2016a).
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We are working on properties and inferential issues for this def-
inition.

Declaration of competing interest

There is no competing interest.

Data availability

Data will be made available on request.

Acknowledgements

The authors want to acknowledge the comments by two anony-
mous referees which have improved significantly the presentation 
of this paper. We sincerely thank Prof. Franco Pellerey, who send 
us some comments and examples on an earlier version of this pa-
per. We also thank Prof. Tomasso Lando who pointed us to the 
paper by Montes et al. (2020).

Funding: This work was supported by the Ministerio de Cien-
cia e Innovación of Spain under grant PID2019-103971GB-I00/AEI/
10.13039/501100011033.

References

Andreoli, F., 2018. Robust inference for inverse stochastic dominance. Journal of 
Business & Economic Statistics 36, 146–159.

Arcones, M.A., Kvam, P., Smaniego, F.J., 2002. Nonparametric estimation of a distri-
bution subject to a stochastic precedence constraint. Journal of the American 
Statistical Association 97, 170–182.

Barret, G.F., Donald, S.G., 2003. Consistent tests for stochastic dominance. Economet-
rica 71, 71–104.

Barret, G.F., Donald, S.G., Bhattacharya, D., 2014. Consistent nonparametric tests for 
Lorenz dominance. Journal of Business & Economic Statistics 32, 1–13.

Bell, D., 1982. Regret in decision making under uncertainty. Operations Research 30, 
961–981.

http://refhub.elsevier.com/S0167-6687(22)00125-1/bib8E754758EEF1CB1355963E9449DD7A5Es1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib8E754758EEF1CB1355963E9449DD7A5Es1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib8D3B56C06624E0E3B2056630C14D7C47s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib8D3B56C06624E0E3B2056630C14D7C47s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib8D3B56C06624E0E3B2056630C14D7C47s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib7FF1C6531CFDCAD729B64B270886CC0Cs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib7FF1C6531CFDCAD729B64B270886CC0Cs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibA634F0AE54DDC3B1DFD45DC6A57BEDD7s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibA634F0AE54DDC3B1DFD45DC6A57BEDD7s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibCDDD64DEDCCA1D337EECD1DB658AB366s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibCDDD64DEDCCA1D337EECD1DB658AB366s1


F. Belzunce and C. Martínez-Riquelme Insurance: Mathematics and Economics 108 (2023) 165–176
Belzunce, F., Martínez-Riquelme, C., Mulero, J.M., 2016a. An Introduction to Stochas-
tic Orders. Elsevier-Academic Press, Amsterdam.

Belzunce, F., Martínez-Riquelme, C., Pellerey, F., Zalzadeh, S., 2016b. Comparison of 
hazard rates for dependent random variables. Statistics 50, 630–648.

Boland, P.J., Singh, H., Cukic, B., 2004. The stochastic precedence ordering with ap-
plications in sampling and testing. Journal of Applied Probability 41, 73–82.

Cai, J., Wei, W., 2014. Some new notions of dependence with applications in optimal 
allocation problems. Insurance. Mathematics & Economics 55, 200–209.

Davidson, R., Duclos, J.Y., 2000. Statistical inference for stochastic dominance and for 
the measurement of poverty and inequality. Econometrica 68, 1435–1464.

Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R., 2005. Actuarial Theory for Dependent 
Risks. Wiley, Chichester.

Divine, G.W., Norton, H.J., Baron, A.E., Juarez-Colunga, E., 2018. The Wilcoxon-
Mann-Whitney procedure fails as a test for medians. American Statistician 72, 
278–286.

Fishburn, P., 1982. Nontransitive measurable utility. Journal of Mathematical Psy-
chology 26, 31–67.

Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Bornkamp, B., Maechler, M., 
Hothorn, T., 2020. mvtnorm: Multivariate Normal and t Distributions. R package 
version 1.1-0.

Hansen, B.E., 1996. When a nuisance parameter is not identified under the null 
hypothesis. Econometrica 64, 413–430.

Hon Tan, C., Hartman, J., 2013. Stochastic dominance, regret dominance and regret 
theoretic dominance. EURO Journal on Decision Processes 1, 285–297.

Lehmann, E.L., 1955. Ordered families of distributions. The Annals of Mathematical 
Statistics 26, 399–419.

Levy, H., 2016. Stochastic Dominance. Springer, London.
Linton, O., Maasoumi, E., Whang, Y.J., 2005. Consistent testing for stochastic dom-

inance under general sampling schemes. The Review of Economic Studies 72, 
735–765.

Loomes, G., Sugden, R., 1982. Regret theory: an alternative theory of rational choice 
under uncertainty. The Economic Journal 92, 805–824.

Montes, I., Salamanca, J.J., Montes, S., 2020. A modified version of stochastic domi-
nance involving dependence. Statistics & Probability Letters 165, 1–12.

Mulero, J., Sordo, M.A., de Souza, M.C., Suárez-LLorens, A., 2017. Two stochastic 
dominance criteria based on tail comparisons. Applied Stochastic Models in 
Business and Industry 33, 575–589.

Müller, A., Stoyan, D., 2002. Comparison Methods for Stochastic Models and Risks. 
Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester.

Navarro, J., Sarabia, J., 2022. Copula representations for the sum of dependent risks: 
models and comparisons. Probability in the Engineering and Informational Sci-
ences 36, 320–340.

Nelsen, R.B., 2006. An Introduction to Copulas. Springer-Verlag, New York.
R Core Team, 2020. R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing, Vienna, Austria. http://www.R-project .org/.
Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A., Firth, D., 2019. MASS: 

Support Functions and Datasets for Venables and Ripley’s MASS. R package ver-
sion 7.3-51.5.

Ryan, J.A., Ulrich, J.M., Thielen, W., Teetor, P., Bronder, S., 2020. quantmod: Quanti-
tative Financial Modelling Framework. R package version 0.4.17.

Scaillet, O., Topaloglou, N., 2010. Testing for stochastic dominance efficiency. Journal 
of Business & Economic Statistics 28, 169–180.

Shaked, M., Shanthikumar, J.G., 2007. Stochastic Orders. Springer-Verlag, New York.
Shanthikumar, J.G., Yao, D.D., 1991. Bivariate characterization of some stochastic or-

der relations. Advances in Applied Probability 23, 642–659.
Sriboonchitta, S., Wong, W.K., Dhompongsa, S., Nguyen, H.T., 2010. Stochastic Domi-

nance and Applications to Finance, Risk and Economics. CRC Press, Boca Raton, 
FL.

van der Vaart, A., Wellner, J.A., 1996. Weak Convergence and Empirical Processes. 
Springer, New York.
176

http://refhub.elsevier.com/S0167-6687(22)00125-1/bibE641740D9775C4359E2E0EA91C91AE70s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibE641740D9775C4359E2E0EA91C91AE70s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibFF73A4504BD3F3D55A184A3EAB08B9D9s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibFF73A4504BD3F3D55A184A3EAB08B9D9s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib8B1B63F54CA285F745561EB5F37E2FD8s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib8B1B63F54CA285F745561EB5F37E2FD8s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib18A06264817CA136843D6D28D60A4895s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib18A06264817CA136843D6D28D60A4895s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib86FB8140948E37E531D027B1AE848818s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib86FB8140948E37E531D027B1AE848818s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib1CB3EB4EF49B048B5D543A7EB402BDEEs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib1CB3EB4EF49B048B5D543A7EB402BDEEs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibBC6CA46FBCB8F78D1A167FB9A5C4DF7Es1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibBC6CA46FBCB8F78D1A167FB9A5C4DF7Es1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibBC6CA46FBCB8F78D1A167FB9A5C4DF7Es1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib23D37F9BC1F9AE09FA5E8C29B79677BCs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib23D37F9BC1F9AE09FA5E8C29B79677BCs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibADFEC889480D1AC973A809AD72F72A7Cs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibADFEC889480D1AC973A809AD72F72A7Cs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibADFEC889480D1AC973A809AD72F72A7Cs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibAD3714B307D102980DD32B28A3A4E837s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibAD3714B307D102980DD32B28A3A4E837s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibCCE040D96BA7B0AC12ABE81DFEE1EAFCs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibCCE040D96BA7B0AC12ABE81DFEE1EAFCs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib4D3D088D20EA7E96BC8198A94B6291BCs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib4D3D088D20EA7E96BC8198A94B6291BCs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibC16646A7E9E1CF304E70AB534C8E7BEEs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib8D13C97BBEC7EE02C60D1BFA86678FDEs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib8D13C97BBEC7EE02C60D1BFA86678FDEs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib8D13C97BBEC7EE02C60D1BFA86678FDEs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib0F36629C163DCCC60196F9D4DB6D2CCFs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib0F36629C163DCCC60196F9D4DB6D2CCFs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib08F6BD7FE1D488925AEB34432DFC989Ds1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib08F6BD7FE1D488925AEB34432DFC989Ds1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibC378D5435372F1D6968E1E70DAB610CEs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibC378D5435372F1D6968E1E70DAB610CEs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibC378D5435372F1D6968E1E70DAB610CEs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib151512D2C8F4EF9D8C3531155E01F136s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib151512D2C8F4EF9D8C3531155E01F136s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibDFFB19A99902845EF7F446E24E028F0As1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibDFFB19A99902845EF7F446E24E028F0As1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibDFFB19A99902845EF7F446E24E028F0As1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib29271A296569F536C84B0CD2912A7313s1
http://www.R-project.org/
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib82F8F378437DCB4399BABDD937D459AFs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib82F8F378437DCB4399BABDD937D459AFs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib82F8F378437DCB4399BABDD937D459AFs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib1049077EF97B4FAFE812BC45A68E485Es1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib1049077EF97B4FAFE812BC45A68E485Es1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib004A60C297D07229D89FE91765A937F3s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib004A60C297D07229D89FE91765A937F3s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib8504C0B49E4881AE3DF56A6A18DAC5B2s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibE202F3E3FCC495670D4F63C0D68D4E5Bs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibE202F3E3FCC495670D4F63C0D68D4E5Bs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibACE1DB6E0E4341862E86729498FC5B39s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibACE1DB6E0E4341862E86729498FC5B39s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bibACE1DB6E0E4341862E86729498FC5B39s1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib0785F99BD4702B52AEC3248112AB91CDs1
http://refhub.elsevier.com/S0167-6687(22)00125-1/bib0785F99BD4702B52AEC3248112AB91CDs1

	A new stochastic dominance criterion for dependent random variables with applications
	1 Introduction
	2 Stochastic dominance among two dependent random variables
	3 A non parametric asymptotic test for the weak joint stochastic dominance
	3.1 Monte Carlo results

	4 An application in finance
	5 Conclusions and future research
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


