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A B S T R A C T   

Average fuel efficiency of vehicles improved substantially over the last three decades in Japan. Yet, the carbon 
emissions from on-road passenger vehicles continued to increase until 2000, and then turned to a steadily 
declining trend. We empirically investigate this disparity. To that end, we apply an analogue of the Copeland- 
Taylor decomposition, combined with an empirically estimated behavioral model of car ownership and utili-
zation choice, to economically decompose vehicle carbon emissions into the scale, composition, and technique 
effects over our study period, 1990–2015. We find that exogenous demographic changes such as population size, 
driver’s license holdings, or labor migration across regions can only explain this disparity partially. After ac-
counting for endogenous changes in household’s geographically-explicit transport demand by the estimated 
behavioral model, the predicted emissions match the time path of the observed emissions surprisingly well. Of all 
the factors in the behavioral model, the fuel cost per unit of driving accounts for the largest share of the total 
variation in the observed emissions. Our result indicates that 60% of the technique effect is offset by the perverse 
effect of induced transport demand due to the lower fuel cost. Importantly, the induced demand comes from both 
the intensive margin (driving) and the extensive margin (car ownership).   

1. Introduction 

Road transport is the second largest contributor of global GHG 
emissions today, accounting for roughly 16% of global GHG emissions 
and 22% of global carbon dioxide (CO2) emissions (Our World in Data, 
2020). How best to control carbon emissions from driving of private 
vehicles continues to be a daunting and important task for policy makers 
worldwide (Anderson et al., 2011; Knittel, 2012). This manuscript at-
tempts to draw some useful insight for transport-related climate miti-
gation policies by analyzing 25-years of data in Japan. In Japan, the 
average fuel economy ratings of passenger vehicles (cars and vans) have 
dramatically improved from 1990 to 2015 — by a roughly constant rate 
of 13% each five-year period. Yet, vehicle CO2 emissions from house-
holds sharply increased from 1990 to 2000, after which they began to 
decline dramatically. Fig. 1 demonstrates this striking discrepancy be-
tween the trend in fuel-economy technology and that of vehicle CO2 
emissions over this period. The Japanese Ministry of Land, 

Infrastructure, Transport and Tourism (MLIT) and industry reports often 
claim that the emissions decline since 2000 is largely due to the 
improvement in fuel-efficiency technologies (MLIT, 2021; Japan Auto-
mobile Manufacturers Association, 2010). However, such an explana-
tion fails to explain this disparity we observe in Fig. 1, leaving us the 
puzzle: What then explains the disparity between the two trends? 

With this question in mind, this manuscript attempts to economically 
decompose vehicle CO2 emissions from households over the 25-year 
period from 1990 to 2015, endogenizing consumer’s car ownership and 
utilization choices.1 Our approach is similar, in spirit, to Copeland and 
Taylor (1994; 2003) and Shapiro and Walker (2018) in that the emis-
sions are conceptually decomposed into three terms: scale, composition, 
and technique effects. We, however, differ substantially from them on 
several important accounts. First, we only study road transportation, 
and we do not explicitly build a general-equilibrium model of that 
sector. Instead, we only model consumer’s car ownership and utilization 
decisions explicitly, taking car prices, car model offerings, gasoline 

* Correspondence to: 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan. 
E-mail address: s1530138@u.tsukuba.ac.jp (S. Kuroda).   

1 We only analyze the CO2 emissions from on-road passenger vehicles owned by households because we do not have access to detailed data that would allow us to 
economically decompose CO2 emissions from commercial vehicles or other transport modes. For example, e-shipping is likely to be an important source of variation 
in CO2 emissions from commercial vehicles, yet we don’t have data to account for changes in its geographic distribution (at municipality level) over time. None-
theless, we believe some of the underlying mechanisms in this paper (changes in demographics, price, income, fuel economy, product mix) are also important in 
understanding other transport-related CO2 emissions. 
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prices, and other economic factors as exogenously fixed at the observed 
levels. Hence, our model does not account for the changes in the 
economy-wide sector composition over time. Second, we account for 
changes in the geographic distribution of households’ endogenous 
automobile demand over time. Japan has experienced rapid de-
mographic changes during the study period: The overall population 
peaked in 2008 while the share of the elderly (age 65 or above) 
increased from 12.1% in 1990 to 26.6% in 2015. Along with this de-
mographic change, Japan has also witnessed a substantial migration of 
households during the same period. For example, the share of popula-
tion living in six largest cities increased from 15.4% in 1990–16.9 in 
2015. This change in the geographic distribution of households alone 
can potentially explain the observed patterns in vehicle CO2 emissions 
because the demand for vehicle transport differs substantially between 
urban and non-urban areas due to differences in public transit avail-
ability or other city structures. 

With these in mind, we first start with the statistical decomposition of 
the vehicle CO2 emissions in a manner analogous to Copeland and 
Taylor (1994), yet tailor the definition of the scale, the composition, and 
the technique effects into our settings. We define the scale effect as the 
effect directly driven by changes in the total driving demand — i.e., 
changes in the total vehicle kilometers travelled summed over all re-
gions in Japan. The composition effect is defined as the effect of changes 
in the composition of driving demand across households, regions, 
and/or types of car holdings. The technique effect is then defined simply 
as the effect of changes in fuel efficiency technologies, which determines 
CO2 emissions per unit of driving, holding constant the CO2 emissions 
rate per unit of energy consumption. Hence, by definition, the scale and 
the composition effect must explain the puzzling discrepancy mentioned 
above. 

We then attempt to economically decompose the scale and the 
composition effects into exogenous and endogenous terms. To do so, we 
borrow from the discrete-continuous choice model developed and esti-
mated in Konishi et al. (2021). The model is estimated on the detailed 
household-level dataset from a national internet survey conducted in 
2016. The model builds on the conventional discrete-continuous choice 
framework (e.g., Dubin and McFadden, 1984; Goldberg, 1998; West, 
2004; Bento et al. 2005, 2009; Jacobsen, 2013), but is unique in that it 
allows for parameters to depend not only on household and product 

attributes but also on regional attributes (public transit density, in 
particular). Hence, the model allows us to predict location-specific 
vehicle ownership and utilization rates as well as how they respond to 
changes in spatial demographic distribution over time. 

We use census and GIS data to construct the distributions of age, 
income, household size, and public transit density at the municipality 
level. Consumer’s “choice set” is constructed and adjusted for each 
period (in a 5-year interval), based on the available car offerings for each 
interval, using catalog data on car prices and car attributes (fuel econ-
omy) as well as gasoline prices. The predicted shares of different car 
models and predicted annual driving distance for each municipality are 
then multiplied by the number of households for that municipality. We 
treat the number of households in each municipality in each year as 
exogenous, and we fix them at the observed level. Consequently, in our 
model, total driving demand changes partly due to purely exogenous 
changes in demographics and partly due to endogenous behavioral re-
sponses to exogenous factors (e.g., car prices, car attributes, gasoline 
prices, household characteristics, changes in public transit availability). 

We have three important findings. First, contrary to our expectation, 
demographic changes cannot fully explain the scale and the composition 
effects. Changes in the total number of households (or driver’s license 
holders) and its spatial distribution across municipalities over time can 
only explain about half of the gap between the two trends in Fig. 1 over 
the 25-year study period. Second, we find that much of the remaining 
variation can be explained by endogenous demand responses due to 
improved fuel efficiency technology (roughly 87.2% of the gap); and if 
they were not considered, the prediction errors would be two to ten 
times larger. In other words, we can only explain the observed vehicle 
CO2 emissions after accounting for endogenous demand responses. It is 
important to emphasize here that we do not obtain this result by con-
struction — ours is not the statistical (or mechanical) decomposition of 
total variation; the endogenous term is predicted from the discrete- 
continuous choice model estimated on a separate study sample, not fit 
to the observed trends in CO2 emissions. Third and most importantly, of 
the endogenous demand responses, fuel economy improvements have 
the largest explanatory power, accounting for 16.9% of total variation. 
This means that, while improvements in fuel efficiency technology 
significantly reduce emissions per unit of driving, 60% of this reduction 
is offset by an increase in vehicle demand, in terms of both utilization 
and ownership, due to its effect of decreasing driving costs. 

Our results have several important implications for optimal design of 
policies to control carbon emissions from road transportation. First, our 
results reinforce the key finding from the previous empirical studies on 
this topic, which echoes the conventional view held by many environ-
mental economists: Optimal pricing of pollution, via the gasoline tax in 
this context, is critical, and without it, simply improving fuel efficiency 
of automobiles is unlikely to curtail vehicle carbon emissions effectively. 
We arrive at this with an approach quite different from the previous 
studies, however. The earlier studies estimate a behavioral model of 
household’s demand for automobiles, either using cross-section survey 
data on car ownership/utilization (e.g., Goldberg, 1998; Bento et al., 
2009; Jacobsen, 2013) or using a panel of sales data over a relatively 
short period (e.g., D’Haultfœuille et al., 2014; Konishi and Zhao, 2017; 
Reynaert, 2021), and then use the estimated model to simulate the 
economic impacts of counterfactual policies. In contrast, we take the 
25-years of aggregate-level vehicle CO2 emissions data in Japan, and use 
the micro-level (empirically estimated) behavioral model, in combina-
tion with the Copeland-Taylor decomposition, to test how much of the 
total variation in emissions over the 25-year period can be explained by 
the model. Thus, our approach is similar, at least in spirit, to Shapiro and 
Walker (2018). 

Second, our work identifies two different sources of the perverse 
effect of lowering the user cost of driving (i.e., dollar per unit of driving 
distance), often known as the Jevons paradox. The empirical literature 
often focuses on the rebound effect of energy-saving investments (e.g., 
Small and Van Dender, 2007; Jacobsen, 2013; Linn, 2016; Yoo et al., 

Fig. 1. CO2 Emissions from On-road Passenger Vehicles in Japan, 1990–2015. 
Note: The figures include on-road CO2 emissions from vehicles held by house-
holds only, excluding those from non-commercial vehicles. (a) Actual observed 
CO2 emissions, (b) CO2 emissions predicted from fuel efficiency improvements, 
holding other factors fixed, and (c) CO2 emissions predicted from fuel efficiency 
improvements and car holding mix of kei-cars versus regular cars, holding other 
factors fixed. 
Source: Greenhouse Gas Inventory Office of Japan (2022) and Author’s 
calculation. 

Y. Konishi and S. Kuroda                                                                                                                                                                                                                     



Japan & The World Economy 66 (2023) 101194

3

2019; Craglia and Cullen, 2020). That is, higher fuel efficiency reduces 
per-unit cost of driving, and hence may induce more driving. We also 
find evidence for another type of induced demand, however. That is, 
higher fuel efficiency increases the expected payoff from owning a 
vehicle relative to other transportation mode, and hence may induce a 
higher rate of car ownership. We find that both effects are important in 
explaining the vehicle emissions trend. This second type of induced 
demand is implicit in all studies cited above. However, ours is probably 
the first to quantify its sizable impact of the Jevons paradox over such a 
long-run time span. 

Lastly, however, we also find that when the scale effect (or the effect 
of population size) tapers off, the technique effect (or the effect of 
technology improvement alone) starts to dominate. Although we do not 
formally explore its implication, this may imply that the effectiveness of 
technology-based regulation (e.g., fuel-economy regulation) may 
depend on whether the potential demand is sufficiently saturated in a 
given country. In our context, the sizable Jevons effect arises precisely 
because the lower utilization cost due to the technological progress in-
duces the higher demand for automobiles. In an economy with the 
flattening size of potential drivers, however, this Jevons effect may not 
be large because the inducible potential demand may be limited. In fact, 
we do observe similar U-shaped CO2 emissions trends for on-road 
transportation in Europe and in the United States. In contrast, in coun-
tries like India and China where there is still likely to be large unex-
ploited demand for automobiles, incentive-based policies (e.g., carbon/ 
gasoline taxes), which would raise the utilization cost, is likely to be 
more effective in reducing transport-related CO2 emissions than a 
technology-based regulation (e.g., fuel-economy regulation or subsidy 
to promote fuel-economy technologies). 

This paper complements three strands of literature. First, there is a 
large literature that investigates, theoretically and empirically, the ef-
ficiency properties of alternative policies to control emissions from road 
transportation (Fullerton and West, 2002, Huse and Lucinda, 2014, Klier 
and Linn, 2015, Yan and Eskeland, 2018, Chen et al., 2021, and other 
papers cited in Anderson et al., 2011; Knittel, 2012; or Anderson and 
Sallee, 2016). Second, there are empirical studies that attempt to 
quantify the economic and environmental impacts of fuel-economy 
regulation using the discrete-continuous choice model similar to ours 
(e.g., Goldberg, 1998; Jacobsen, 2013; Klier and Linn, 2012; Reynaert, 
2021). Third, there is also a large literature in the non-economic journals 
that use statistical factor decompositions to explain changes in CO2 
emissions over time (see papers cited in Shiraki et al., 2020; Robaina and 
Neves, 2021; Long et al., 2021). The approach we take in this paper 
builds on findings from all these strands of literature. We, however, take 
a step further. We use the empirically estimated behavioral model of 
discrete-continuous choice of car ownership and utilization, apply it in 
the Copeland-Taylor type factor decomposition, to understand the eco-
nomic factors behind the long-run time path of CO2 emissions from road 
transportation over the 25-year period, 1990–2015. 

2. Background and motivation: A statistical decomposition 

In 1990, 49.5 million tons of CO2 was emitted from on-road vehicles 
in Japan. The vehicle CO2 emissions continued to increase and peaked in 
2000 at 77.7 million tons in 2000 (57% increase from the 1990 level). 
The emissions then declined consistently throughout the remaining 
period. In 2015, the vehicle CO2 emissions was roughly 62.1 million tons 
(10% decrease from the 2010 level, but 1.25 times the 1990 level). On 
the other hand, the average fuel efficiency of owned vehicle fleet has 
substantially improved from 1990 to 2015. For example, the average 
fuel efficiency ratings of gasoline cars with weight between 1100 kg and 
1200 kg (calculated as the average of owned vehicles) improved by 
almost 75% from 9.7 km/L in 1990–17.0 km/L in 2015. This vehicle- 
specific fuel efficiency improvement may understate the true technical 
change, however. New, improved car models have been introduced 
throughout the period, and they rapidly increased their market shares 

over time. For example, the market share of fuel-efficient kei-cars in-
crease from 6.2% in 1990 to 34.7% in 2015, and the share of hybrid 
vehicles also increased from 0.5% in 2005 to 9.6% in 2015. 

Fig. 1 visualizes these trends. In the figure, three CO2 emissions time 
series are plotted. The red line is the observed vehicle CO2 emissions, 
normalized against the 1990 value. The green dashed line plots the 
counterfactual vehicle CO2 emissions if all other factors were held fixed 
at the 1990 level, but the fuel efficiency ratings of all vehicles change as 
observed. The blue dashed line plots the counterfactual emissions if the 
ownership mix also change as observed. The figure demonstrates that 
the product mix widens the gap between the observed CO2 trend and the 
technique effect. Our goal in this paper is to empirically investigate the 
factors that explain this gap. 

To do so, we start by presenting a statistical decomposition of vehicle 
CO2 emissions over the study period, 1990–2015, following Copeland 
and Taylor (1994) and Shapiro and Walker (2018). In the original 
definition, the scale effect refers to the change in emissions caused solely 
by scaling up the size of the economy, the composition effect refers to 
the change in emissions caused solely by changes in the composition of 
output across manufacturing industries, and the technique effect refers 
to the change in emissions caused solely by changes in emissions in-
tensity per unit of production or consumption within an industry. We 
tailor this line of logic to our setting, and define the analogue of 
Copeland-Taylor decomposition of the vehicle CO2 emissions Z as 
follows: 

Z = X
∑

s
κses = Xκ′ e (1)  

where X is total travel demand, κ is vehicle type share, and e is fuel ef-
ficiency technology (or emission intensity). The change in emissions dZ/
Z is then expressed as the sum of three terms representing the scale 
(dX/X), composition (dκ/κ), and technique effect (de/e): 

dZ
Z

=
dX
X

+
dκ
κ
+

de
e

(2) 

To what extent does this decomposition help us (or does not help us) 
understand the gap? As a first step, we further decompose total driving 
demand X into two terms: X = N× x, where N is the number of 
households and x is the travel demand per household. For the moment, 
let us fix the per-household travel demand x at the 1990 level. Then, 
total travel demand must change proportionally to the number of 
households. 

As shown in Panel A of Fig. 2, the number of households grew at a 
faster rate than the population itself over the study period. This occurs 
not only because more people remain unmarried, forming single-person 
households, but also because of the so-called “nuclearization of families” 
— traditionally, married couples used to live in the same house with 
their parents, but are now increasingly less likely to do so today. Because 
car ownership and utilization decisions are often made at the household 
level in Japan and elsewhere, the number of households is an important 
determinant of the total travel demand. Furthermore, the figure also 
indicates that the number of households with at least one driver’s license 
holder increased even faster than the number of households itself. This 
reflects the fact that holding a driver’s license constitutes a certain social 
status in Japan — the driver’s license is commonly used as an identifi-
cation for various administrative purposes, and hence, non-driving in-
dividuals still obtain driver’s license just as an identification card. In 
Panel B of Fig. 2, we plot the counterfactual vehicle CO2 emissions 
incorporating the scale effect and the technique effect, taking these 
alternative measures of N as the exogenous change in the total travel 
demand X = N× x, but holding the per-household travel demand at the 
1990 level x. From this exercise, we see that the change in the number of 
households with driver’s license generates an inverted U-shaped rela-
tionship that comes closer to the observed emissions trend. 

By construction, then, the remaining gap must come from the 
composition effect (if we are willing to assume that the per-household 
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travel demand stays constant). This raises another question, however. As 
we have already seen from Fig. 1, the compositional change of different 
types of vehicles tend to decrease the vehicle CO2 emissions, and hence, 
it should bring down (rather than bring up) the counterfactual emissions 
trend. Hence, we must seek another kind of composition effect. In 
Shapiro and Walker (2018), the composition effect is defined as either 
the changes in resource allocation across industries or in product mix 
within the industries. In our setting, there is no sectoral reallocation, as 
we focus only on the road transportation sector. There is, however, a 
natural analogue to “sectors” in our setting. Different areas have 
different degrees of economic development with varying levels of public 
transit networks. Therefore, if the composition of population across re-
gions changes, this alone may change the emissions path in an ambig-
uous way. 

To get a sense of the direction of this composition effect, Panel A of  
Fig. 3 compares the geographical distribution of population in 2015 
against that in 1990. For ease of interpretation, we use a measure of 
public transit density of railroad infrastructure as in Konishi et al. 
(2021). We see that a non-negligible share of population moved away 
from rural areas with low public transit density to urban/suburban areas 

with higher public transit density. To estimate the magnitude of this 
effect, we re-define κs as the population share of each municipality s, 
rather than the share of vehicle type, in Eq. (1). In Panel B of Fig. 3, we 
plot the counterfactual CO2 emissions incorporating this type of 
composition effect on top of the technique effect. To calculate this 
emissions path, we use the observed number of households with driver’s 
license in each municipality Ns, and multiply this by average 
per-household transport demand xs for each municipality (held con-
stant). By construction, this emissions path incorporates all three effects. 
However, we see there is still a large discrepancy between this emissions 
path and the observed CO2 emissions. The gap between the two trends is 
still only explained by 1/3 to at most 1/2 by the factors considered so 
far. 

The fact that neither of the decomposition exercises so far can 
reproduce the observed emissions path means that we are not properly 
accounting for either the scale effect or the composition effect or both. 
What is missing so far is the transport demand of each household x, 
which we hold constant. In reality, the transport demand may change 
endogenously over time, presumably in response to changing de-
mographics and economic environments. For example, the increase in 

Fig. 2. “Scale” Effect of Vehicle CO2 Emissions in Japan, 1990–2015. Note: In Panel B, we calculate the counterfactual CO2 emissions with the three types of 
exogenous scale variation (N) presented in Panel A on top of technique effect and the composition change (κ) is not taken into account. 

Fig. 3. “Composition” Effect of Vehicle CO2 Emissions in Japan, 1990–2015. Note: Panel A shows the average of population ratio in each public transit density bin. 
Panel B shows the counterfactual CO2 emissions considers the composition effect on top of scale and technique effect in addition to actual observed emissions and 
emissions predicted by technique effect alone. 
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the number of single-person households or single-family households 
implies that both the average household size and the average household 
income are smaller, which would decrease the household’s demand for 
car ownership and utilization ceteris paribus. On the other hand, the 
substantial improvement in the fuel economy technology implies that 
the utilization cost of vehicles is lower, which would increase the 
household’s demand for car ownership and utilization. There are other 
factors that are unaccounted for so far that may affect the endogenous 
transport demand x. We thus attempt to account for such factors in more 
depth in the next section. 

3. Model 

We start by re-writing the decomposition Eq. (1), re-defining terms. 
Let N be the total number of households with at least one driver’s license 
holder, which we interpret as the potential size of the road trans-
portation sector per our discussion in Section 2 . Let κr denote the share 
of such households in each municipality r. Let xjr be the “average de-
mand for road transport” by a household holding vehicle type j and 
residing in municipality r. We define xjr more precisely shortly below. 
The emissions intensity ej is defined as the emissions per unit of fuel 
consumption (CO2/L) divided by fuel efficiency (km/L). We can then 
write the total vehicle CO2 emissions as: 

Z =
∑

r

[

κrN

(
∑

j
xjrej

)]

(3) 

Note that Eq. (3) is essentially an identity in theory. That is, the 
observed CO2 emissions in the left hand side must coincide with the right 
hand side. Because we have observed values for N, κr, and ej, we could 
obtain the estimates of xjr by fitting (or calibrating) the data, in theory. 
There are two problems with this approach. First, the values of xjr are not 
identifiable in this approach because the number of “estimands” xjr far 
exceeds the number of observations. Second, even if we obtain the es-
timates of xjr this way, they are not amenable to economic interpreta-
tion, which we can bring to policy implications. 

We, therefore, take an alternative route. We use the discrete- 
continuous choice model estimated in Konishi et al. (2021) to predict 
the transport demand per household for each municipality. More spe-
cifically, the predicted transport demand x̂jr is given by: 

x̂jr = λ̂jr
(
wjr
)
× v̂jr

(
wjr
)

(4)  

where ̂λjr and ̂vjr are, respectively, the predicted probability of owning a 
vehicle type j and the predicted annual vehicle kilometers travelled 
(VKT) by a household living in r given the vector of observed attributes w 
of cars, households, and regions, and v̂jr is the predicted annual vehicle 
kilometers travelled by the same household. Estimation of the discrete- 
continuous choice model is done on a sample of roughly 100,000 
households from a national internet survey conducted in 2016. The 
estimated model has the following features: (a) Each household is 
assumed to own at most two cars. The model accounts for the correlation 
between choices of the first and the second cars by adding the terms that 
capture utility from having a particular combination of vehicles; (b) it 
allows for the parameters of indirect utility to depend explicitly on a 
measure of public transit density, generating realistic substitution pat-
terns that are explicitly linked to public transit; and (c) it applies the 
Dahl (2002)’s control function approach to control for correlation in the 
error terms in the ownership and driving equations. 

Given the parameter estimates from Konishi et al. (2021), we 
compute the predicted values of λ̂jr and v̂jr as follows. We first start by 
defining the choice set Ct for each year t, from which households choose 
a car portfolio to own. This choice set is defined as the set of different 
vehicle categories j’s, each having a unique vector of product attributes 
ajt. That is, Ct ≡

{
ajt
}

j∈Jt
. We adjust the choice set for each period (in the 

5-year interval) since the types of vehicles available Jt as well as their 
attributes ajt in the market change over time. We then use the estimates 
of structural parameters from Konishi et al. (2021) and calculate λ̂jr and 
v̂jr as follows. 

λ̂jrt =

∫

Pr
(
uj
(
ajt, srt,h; β̂

)
≥ uk(akt, srt,h; β̂), ∀k

)
dμrt(h) (5)  

where uj is the indirect utility of owning vehicle portfolio j with the 
parameter estimates ̂β, srt is the vector of attributes in municipality r, h is 
the vector of household attributes such as household size and household 
head’s gender, and μrt is the empirical distribution of household attri-
butes in municipality r in year t. 

v̂jr =

∫

E[d
(
ajt, h, srt; γ̂

)]
dμrt(h) (6)  

where d is the empirical driving distance equation with the parameter 
estimates γ̂. The details on how we construct the choice set Ct as well as 
the sketch of how Konishi et al. (2021) obtain the parameter estimates β̂ 
and γ̂ are available in the Online Appendix. 

Given (3) and (4), we can re-define the decomposition as follows: 

dZ
Z

=
dN
N

+
dx
x
+

dκ
κ
+

de
e

=

(
dN
N

+
dκ
κ
+

de
e

)

+

(
dv
v
+

dλ
λ

) (7) 

The first set of parentheses in Eq. (7) corresponds to the scale, 
composition, and technique effects that vary exogenously due to de-
mographic and technological changes, and the second set corresponds to 
the scale and composition effects that are explicitly modeled to vary 
endogenously in response to exogenous factors (i.e., changes in car 
prices, car attributes, gasoline prices, household attributes, and public 
transit density). 

In theory, the terms in the second parenthesis in Eq. (7) should 
explain the remaining gap we observe in Fig. 3. Empirically, however, the 
predicted values of λ̂jr and v̂jr from the estimated behavioral model need 
not because the model is not directly fit to the observed emissions path 
for Z, and is instead estimated on the survey sample we obtained else-
where. The question is, to what extent the estimated behavioral model 
can explain the observed path for x = λ × v (or equivalently the gap we 
observed in Fig. 3). 

4. Data 

We use three sets of data for our analysis. All data are compiled every 
five years from 1990 to 2015 expect for the second set of data. The 
Online Appendix provide more detailed explanation of the data and 
variables used in the analysis. 

The first is demographic data. We obtain census data on the total 
number of households by household size at the municipality level from 
the National Census, Statistics Bureau. In 1990, we do not have data on 
the number of households by municipality, and hence, the 1990 values 
are linearly imputed from 1995/2000 data. The number of driver’s li-
cense holders is available from the Operating License Statistics, National 
Police Agency, but only at the prefecture level. Hence, we calculate the 
driver’s license holding rate by gender at the prefecture level, and apply 
the same holding rates equally to all municipalities within the same 
prefecture to estimate the driver’s license holding rate per household in 
each municipality in each year. These demographic data are also used to 
produce statistical decompositions in Figs. 1–3. 

The second set of data are the parameter estimates (β̂, γ̂) of the 
discrete-continuous choice model from Konishi et al. (2021). One set of 
parameters are those that define the indirect utility function for car 
ownership. Another set of parameters are those that define the vehicle 
kilometers traveled given the choice of car holdings. The estimation of 
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the parameters is done on the national internet survey data conducted in 
2016, which contains detailed information on car own-
ership/utilization, geographic identifiers of residence as well as other 
socioeconomic characteristics of roughly 100,000 households in Japan. 
The survey data are combined with the car catalog data from Carsensor. 
net and regulatory information on car taxes and other incentives from 
the Ministry of Land, Infrastructure, Transport and Tourism (MLIT). 

The third set of data are inputs (ajt ,h,srt) for the estimated behavioral 
model to predict the average household travel demand in Eqs. (4)–(6) 
for each municipality in each year. 

Product Attributes in the Choice Sets ajt: For fuel efficiency, fuel 
type, and vehicle weights, we use catalog data from greeco-channel. 
com, which provides a comprehensive collection of characteristics of 
all vehicles sold in Japan. For car prices, we use the price index for each 
car-type obtained from the Retail Price Survey (Statistics Bureau). We 
calculate the fuel cost per unit of driving as YPK (yen per kilometer of 
driving distance) using the fuel efficiency ratings and the gasoline price 
obtained from the Retail Price Survey. 

Empirical Distribution of Household Attributes h: To construct 
the empirical distribution of household income by household size, we 
use data from the Family Income and Expenditure Survey (Statistics 
Bureau). Since household income by household size were not surveyed 
in 1990 and 1995, however, we estimate incomes by household size in 
1990 and 1995 by extrapolating using the rate of change in average 
income obtained from the Statistical Survey of Actual Status for Salary in 
the Private Sector (National Tax Agency). 

Municipality-level Public Transit Density srt: We calculate the 
public transit density index for each municipality, following Konishi 
et al. (2021), using the GIS data on railroad networks and railroad sta-
tions available from MLIT’s National Land Numerical Information 
download service. This density index is defined as an average of two 
indices: the ratio of the area within a 15-minute walk to a station in 
inhabitable areas; and the ratio of railroad lines to the area. It shows the 
accessibility and usefulness of the public transportation infrastructure of 
railroads. 

Fig. 4 plots the time paths of the mean values of these attributes that 
enter the behavioral model (normalized against the 1990 level). The 
figure demonstrates that the attributes of cars in the choice set have 
changed much more than the attributes of households or public transit 
availability. For example, the average car price (after adjusted for CPI) 
more than doubled from 1990 to 2015 while the average fuel economy 
(measured in yen per kilometer of driving) improved roughly at the 
same rate. This is consistent with the economic theory that the price of 

cars must reflect the discounted economic value of savings in fuel con-
sumption. On the other hand, the average household income (after 
adjusted for CPI) declined slightly while the average public transit 
density moderately increased over the same period. We expect, there-
fore, that if the behavioral model has any explanatory power for the 
remaining gap in Fig. 3, it must come from the ability to predict the 
behavioral responses to the changes in the attributes of cars in the choice 
set. 

5. Result 

We first present the results in a manner amenable to direct com-
parison with Figs. 1–3. That is, Panel A of Fig. 5 plots four counter-
factual vehicle CO2 emissions trends, incrementally adding each of the 
effects in Eq. (7), along with the actual emissions trend, all normalized 
against the values in 1990. The dashed line with the triangle marker 
represents the vehicle CO2 emissions that would have occurred if only 
the technique effect occurred — i.e., the fuel efficiency ratings of vehi-
cles change as observed, yet all other factors are fixed at the 1990 level. 
The dashed line with the square marker adds, on top of the technique 
effect, the exogenous scale effect — i.e., the effect of changes in the total 
number of households with driver’s license, holding the other factors 
constant. The dashed line with the plus marker then adds the exogenous 
composition effect — i.e., the effect of households’ migration across 

Fig. 4. Changes in the Key Variables in the Behavioral Model. Note: Variety of 
car model is the number of vehicle types available in the choice set. Household 
income is the average household income for two-person households. YPK is that 
of the mid-weight regular car. Public transit density index is the average over 
all municipalities. 

Fig. 5. Economic Decomposition of CO2 Emissions from On-road Passenger 
Vehicles in Japan, 1990–2015. Note: Panel A shows the predicted CO2 emissions 
when the following factors are incrementally taken into account: (1) fuel effi-
ciency technology as exogenous technique effect, (2) the number of households 
with driver’s license as exogenous change in scale, (3) migration as exogenous 
change in composition, and (4) change in driving demand per household 
calculated by the behavioral model as endogenous change in scale. In Panel B, 
‘Unexplained’ is defined by the gap between the actual emission and the 
emission predicted by all factor (line (4) in the Panel A). 
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municipalities. Hence, by construction, these three lines correspond to 
the first three (exogenous) terms in Eq. (7), and are essentially the same 
as the counterfactual trends in Figs. 1–3. Finally, the dotted line with the 
square marker adds the predicted travel demand from the behavioral 
model on top of these effects. 

We can see that the line comes remarkably close to the observed 
emissions path, despite the fact that the predictions are made from the 
microeconometric behavioral model, not directly fit to the aggregate 
level data. We do see relatively large errors in 1995 and 2015. We 
suspect that the prediction error in 1995 occurs because we had to use 
the imputed values for the municipality-level population for 1995 due to 
the lack of data. For 2015, we are not sure of the reasons for the pre-
diction error, but we suspect that it might have to do with the fact that 
the gap between catalog-based versus actual on-road fuel efficiency has 
widen over the last decade (Tanaka, 2020), possibly due to manipulation 
of fuel efficiency ratings by car makers known as “gaming” (Reynaert 
and Sallee, 2021). In fact, our prediction matches the observed emis-
sions in 2015 nearly perfectly if we apply their estimate of the perfor-
mance gap found in the EU market.2 

In Panel B of Fig. 5, we stack the change in CO2 emissions attrib-
utable to each factor over time, this time by changing each factor one by 
one as observed while holding all other factors at the 1990 level. The 
figure visualizes what is already stated. The actual vehicle CO2 emis-
sions increased by 55.6% over the study period. The technique and 
(exogenous) composition effects would have caused the emissions to 
decline by 44.8% and 7.5%, respectively, failing to explain this trend. 
On the other hand, the (exogenous) scale effect alone would have 
increased the emissions by 69.7%, leaving another 38.2 ppt (= 55.6 – 
44.8 – 7.5 + 69.7) as the remaining gap. Our estimated behavioral 
model predicts that the endogenous transport demand would have 
increased the CO2 emissions by 19.4%, which explains roughly half of 
the remaining gap in 2015. The explanatory power of the behavioral 
model is particularly high in years between 2000 and 2010, during 
which we have more reliable data either on municipality-level popula-
tion or fuel efficiency ratings as explained above. Furthermore, the fact 
that the model underestimates the actual CO2 emissions means that we 
are missing some factors that induce a higher travel demand than pre-
dicted by the behavioral model. Thus, this result further signifies the 
importance of the puzzle we attempt to answer: Why the vehicle CO2 
emissions did not decrease as much as we expect from the sharp, 
consistent improvement in the fuel efficiency technology? Our behav-
ioral model explains it quite well, albeit not perfectly so. 

In Table 1, we also quantify the contribution of each factor as a 
percent of total variation for each year: For each factor k ∈ K, 

Share of contribution by k in year t =
⃒
⃒Δt

k

⃒
⃒

∑

k∈K

⃒
⃒Δt

k

⃒
⃒ (8)  

where Δt
k is the rate of change in emissions in year t relative to the 1990 

level when only the factor k is varied. Table 1 reports the contribution 
shares for each year. The improvement in fuel efficiency technology (the 
technique effect) accounts for 25.2% of the total change in vehicle CO2 
emissions over the 1990–2015 period relative to the 1990 level while 
the increase in the number of households (the exogenous scale effect) 
and the migration (the exogenous composition effect) explains, respec-
tively, 39.1% and 4.2%. The remaining 21.3% of the variation must be, 
by definition, accounted for the endogenous change in per-household 
transport demand per Eq. (7). Of this, the largest contributor turns out 

to be the change in the operating cost (YPK), which accounts for 15.9% 
of the total variation. To purge out the effect of changes in gasoline 
prices, we also calculate the counterfactual CO2 emissions due to the 
endogenous transport demand in response to the change in YPK, holding 
the gasoline price at the 1990 level. It turns out this behavioral response 
alone can explain 15.1% of the total variation in the vehicle CO2 
emissions. 

This implies two things. First, while improvements in fuel efficiency 
technology significantly reduce CO2 emissions per unit of travel, 60% of 
this reduction is offset by the corresponding increase in travel demand per 
household due to the lower operating costs induced by this technological 
change. This effect is large even compared to the exogenous scale effect. 
Second, the increase in gasoline prices since 2000 had the effect of 
partially offsetting the effect of improved fuel efficiency. The fuel effi-
ciency improvement might have caused CO2 emissions to increase more 
if the gasoline price did not increase. The result echoes the related 
empirical studies, which find the importance of gasoline prices in cur-
tailing vehicle CO2 emissions. 

Lastly, we quantify the contribution of each of the demand factors in 
the behavioral model in Table 2. Recall that we endogenize the con-
sumer’s transport demand in response to the following six factors: (a) car 
offerings (e.g., kei-cars vs. regular cars), (b) car prices, (c) operating 
costs (YPK), (d) household income, (e) public transit density, (f) others 
(household attributes such as age). In Table 2, we report the contribu-
tion of changes in each attribute holding other factors constant at the 
1990 level in a manner analogous to Table 1, but this time, the share of 
contribution is calculated relative to the total variation in the endoge-
nous transport demand. There are three messages from this table. First, 
the contribution of car prices is small, despite the fact that the magni-
tude of the increase in average car prices (after adjusted for CPI) is 
almost the same as that of operating costs (see Fig. 4). This is because the 
estimated elasticity is larger with respect to the operating cost than to 
the ownership cost. Second, the effects of household incomes and public 
transit density are also quite small. But this is expected because the 
changes in these variables are relatively small (Fig. 4). Third, the 
product offerings, particularly the introduction of more kei-car and 
hybrid car models, in the market have had non-negligible impacts both 
on ownership and utilization. This accounts for 11% of the total varia-
tion. While the effect is only under 15% of the effect of YPK, it does play 
a role in explaining changes in the per-household transport demand. 
These results signify the importance of accounting for endogenous de-
mand responses to the technological change in fuel efficiency. 

6. Conclusion 

Average fuel efficiency of vehicle fleet in ownership has improved 
consistently throughout the last three decades in Japan. Yet, the total 
CO2 emissions from on-road vehicles continued to increase from 1990 to 
2000, after which the trend turned to a steady decline. Consequently, 
there is a large gap between the observed CO2 emissions path and the 
counterfactual emissions path that would have occurred if all other 
economic factors stayed the same as the 1990 level while the fuel effi-
ciency improvement follows the observed path. The manuscript at-
tempts to empirically investigate what explains this gap. 

We start by statistically decomposing the observed CO2 emissions in 
Japan during our study period of 1990–2015, using an analogue of the 
decomposition framework by Copeland and Taylor (1994) and Shapiro 
and Walker (2018). The statistical decomposition takes (1) the size of 
population or the number of households as the scale effect, (2) reallo-
cation of households across municipalities and the types of vehicles 
owned within municipalities as the composition effect, and (3) fuel ef-
ficiency improvement as the technique effect. We find that this statis-
tical decomposition accounts for only half of the gap between the two 
trends. 

To further explore the remaining variation, we combine the behav-
ioral model of household’s car ownership and utilization decision with 

2 Reynaert and Sallee (2021) study the effect of the EU’s Fuel Economy 
(Carbon Emissions) Regulation, which started in 2007, on the performance gap 
between the catalog-based fuel efficiency ratings and the actual on-road fuel 
efficiency performance, using a panel of 250,000 drivers over 12 years in the 
Netherlands. They found that the catalog-based fuel efficiency improvements 
were only 30% effective, so that the remaining 70% is due to gaming. 
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the Copeland-Taylor decomposition framework. By construction of the 
decomposition, the remaining variation comes from changes in house-
hold’s endogenous travel demand responses to changes to economic 
environment. The behavioral model uses the discrete-continuous choice 
model developed and estimated in Konishi et al. (2021). We construct 
the choice set of vehicles for each year from which households with 
different attributes residing in different municipalities choose a portfolio 
of vehicles to own and then choose an annual milage to drive. The 
estimated behavioral model is then applied to the choice set in each year 
(reflecting changing economic environment) to predict the average car 
ownership and utilization per household for each municipality every 
five year during the study period. Our results indicate that the endog-
enous demand responses explain the remaining variation in the 
observed vehicle CO2 emissions surprisingly well (albeit limitations we 
discuss below); and if they were not taken into account, prediction errors 
would be several times larger. Importantly, the endogenous demand 
responses due to improved fuel efficiency technology accounts for as 
much as 87.2% of the gap between the two trends. Our results also 
substantiate the empirical relevance of the Jevons paradox over the 
long-time horizon: i.e., while improvements in fuel efficiency technol-
ogy significantly reduce CO2 emissions per unit of travel over the 25 
years, 60% of this reduction is offset by the corresponding increase in 
travel demand per household due to the lower operating costs induced 
by this technological change. 

These results may have important implications for policies targeted 
at transport-related carbon emissions in Japan and elsewhere. First, in 
theory, fuel-economy regulations are the second-best policy in settings 
where an efficient gasoline tax is not politically feasible. The limitation 
of such regulations is well established, both in theory and empirics — 
they can correct for externalities on extensive margin (car choice), but 
not on intensive margin (driving choice). Because fuel-economy regu-
lations decrease the unit cost of driving, it may induce more driving — 
the effect known as the rebound effect. Our results suggest that there 
may be another demand-stimulating effect when we take into account 

the long-run dynamics. Fuel-economy regulations, if they work as 
intended, induce a faster rate of fuel-economy technology change. This 
will lower the costs of ownership and utilization. This may in turn 
stimulate demand for car ownership and utilization. Hence, the perverse 
effect of fuel-economy regulation may be even larger than previously 
thought when such dynamics are incorporated. 

Second, Japan is not the only country where such a puzzling emis-
sions trend is observed. For example, in the United States, CO2 emissions 
from passenger transportation increased by a factor of 1.2 from 1990 to 
2000, and then decreased by a factor of 1.1 over the following 10 years 
compared to 1990 (U.S. Bureau of Transportation Statistics, 2022). 
Similarly, CO2 emissions from private cars in the EU also rose by 1.2 
times from 1990 to 2000, peaked around 2004, and then began to 
decline afterwards (European Environment Agency, 2011). All three 
regions have similar fuel economy regulations, which are intended to 
stimulate fuel-economy technology improvements without harming 
automakers’ profits. Our study is not meant to quantify the economic 
and environmental impacts of the fuel economy regulations, yet our 
results suggest that these inverted U-shaped trends in vehicle CO2 
emissions may be a natural consequence of fuel-economy regulations. 
Although a large number of studies have empirically investigated the 
economic and environmental effects of the fuel-economy regulations (e. 
g., Goldberg, 1998; Jacobsen, 2013; Reynaert, 2021), relatively little is 
done to investigate the long-run impacts of such regulations using long 
time-series data. Our findings suggest the need for empirical research 
that would incorporate the long-run dynamics of fuel-economy regula-
tions more fully. 

Lastly, we touch on several limitations of this study. First, the 
structural parameters of the discrete-continuous model used in this 
study is estimated on a single cross-sectional sample of households 
drawn from the internet survey conducted in 2016. This means that the 
identification of the model parameters relies on cross-sectional varia-
tions as of 2016. Yet, we apply the estimated model to predict behavioral 
responses over the 25-year study period, far back in time from the survey 
data. By this, we are implicitly assuming stationary behavioral responses 
over time. Second, to predict transport demand, we only consider the 
demand-side responses, not the supply-side responses such as strategic 
pricing or strategic product offerings. Third, there may be factors that 
we miss, yet are important in explaining the vehicle CO2 emissions. For 
example, Tanaka (2020) find the evidence for non-negligible discrep-
ancy between catalog and actual fuel economy. Despite these limita-
tions, however, we believe that these missing factors are unlikely to 
significantly change the conclusions of the paper since the margin of 
change due to these factors is expected to be quite small, relative to the 
margin of change due to the other factors we incorporate in the analysis. 
For example, our analysis incorporates the inter-regional migration and 
other long-run demographic changes over the study period, yet we find 
the effect of these is quite small. Furthermore, the largest prediction 
failure occurs in 2015, in which the model understates the vehicle CO2 
emissions. This implies that we are missing factors that would predict 
higher transport demand or higher CO2 emissions per unit of driving. 
Thus, decreased road congestion or increased prevalence of eco-driving 
would not explain the remaining gap. Exploring incorporating this 
aspect is important, but is left for future research. 

Table 1 
The Share of Contribution of Each Factor Relative to Total Variation in Vehicle CO2 Emissions.  

Change in emissions relative to 1990 Exogenous Endogenous (x) Unexplained 

Scale (N) Composition (κ) Technique (e) YPK Others 

1995 33.1% (+) - 13.0% (–) 23.7% (+) 2.3% (–) 28.0% (+) 
2000 48.1% (+) 3.1% (–) 12.1% (–) 31.6% (+) 1.9% (–) 3.2% (+) 
2005 44.3% (+) 3.6% (–) 17.2% (–) 26.6% (+) 4.9% (–) 3.4% (-) 
2010 43.4% (+) 4.3% (–) 23.3% (–) 18.9% (+) 4.3% (–) 5.8% (+) 
2015 39.1% (+) 4.2% (–) 25.2% (–) 15.9% (+) 5.1% (–) 10.5% (+) 

Note: The share of contribution is calculated as defined in Eq. (8). 

Table 2 
The Share of Contribution of Each Factor of the Behavioral Model.  

Change in 
emissions due 
to endogenous 
demand (x) 

Factors in the Behavioral Model  

(a) 
Product 
mix 

(b) 
Car 
price 

(c) 
YPK 

(d) 
Income 

(e) 
Public 
transit 

(f) 
Others 

1995 0.0% 0.5% 
(–) 

92.0% 
(+) 

0.6% 
(+) 

0.5% 
(–) 

6.5% 
(–) 

2000 6.5% 
(+) 

0.4% 
(–) 

86.2% 
(+) 

0.1% 
(+) 

0.3% 
(–) 

6.4% 
(–) 

2005 5.5% 
(+) 

0.4% 
(–) 

85.9% 
(+) 

0.3% 
(–) 

0.5% 
(–) 

7.4% 
(–) 

2010 12.2% 
(+) 

0.4% 
(–) 

77.1% 
(+) 

0.4% 
(–) 

0.6% 
(–) 

9.3% 
(–) 

2015 11.4% 
(+) 

0.6% 
(–) 

76.3% 
(+) 

0.8% 
(–) 

0.6% 
(–) 

10.3% 
(–) 

Note: The table reports the contribution of a two-person household living in a 
suburban, but the results are generally the same for other households. Product 
mix represents the set of products in the market. 
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