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a b s t r a c t

This study examines the impact of trading by Algorithmic Traders (ATs) and Non-Algorithmic Traders
(NATs) on volatility, and conversely, the impact of volatility shocks on ATs and Non-ATs. ATs are
classified as High-Frequency Traders (HFTs) and Buy-side Algorithmic Traders (BATs). Using jump
robust volatility estimates, we find that excessive directional and non-directional trading by BATs
and HFTs increases volatility, whereas that by NATs marginally decreases volatility. Conversely, all
traders increase their non-directional trading one hour following a volatility shock. BATs carry out
more directional trades during a volatility shock, whereas HFTs withdraw from such activities.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

When markets are efficient, security prices reflect their true
alue; but the fact is that the markets are often inefficient, and
his is reflected in the instances of excessive volatility and market
rashes. In these circumstances, Algorithmic Traders (ATs) can
ake advantage of volatile periods to place directional bets and
enerate more volatility in future periods. Therefore, this is the
lassic chicken-and-egg dilemma, where causal evidence has not
et been found. This study aims to address this question by
xamining the dynamic relationship between traders’ activity and
arket volatility. We investigate these dynamics by categorizing

he ATs as High-Frequency Traders (HFTs) and Buy-side Algorith-
ic Traders (BATs); and by employing two jump robust estimates
eveloped by Andersen et al. (2012).
ATs are a heterogeneous group, and HFTs form a small per-

entage of that group. On the one hand, HFTs engage in speed
rading, hold securities for short intraday periods and maintain
ow inventory (Malceniece et al., 2019). They cancel most of their
rders and exhibit high order-to-trade ratios. On the other hand,
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BATs employ algorithms to maintain large portfolios for their
clients (Li et al., 2018). Unlike the HFTs, BATs hold these portfolios
for a longer duration. We identify these trader groups using a
unique dataset on the Futures market from the National Stock
Exchange (NSE), India. During the sample period, BATs trade 1.6
times more NIFTY50 Futures than HFTs. While prior studies on
spot markets are limited to a subset of ATs, i.e., HFTs, and ignore
the impact of BATs, this study provides a holistic understanding
of ATs in the derivatives market by considering all trader groups
and their dynamic relationship with volatility, using the data on
NIFTY50 Futures.

Extant literature is ambiguous on the impact of ATs on volatil-
ity. On the one hand, most studies use the conventional realized
volatility (RV) measure and/or simulated data to find that ATs in-
crease volatility (see, e.g., Casgrain and Jaimungal (2020), Scholtus
et al. (2014)); on the other hand, a few studies find that ATs’ are
beneficial traders, as they reduce volatility (see, e.g., Aït-Sahalia
and Brunetti (2020), Chaboud et al. (2014)). Our study adds to the
literature by examining the differential impact of HFTs, BATs and
Non-ATs (NATs) on volatility, using conventional as well as jump
robust volatility estimates.

Empirical evidence predominantly suggests that HFTs enter
the market at highly volatile periods to place directional bets
and make profits (see, e.g., Hasbrouck and Saar, 2013). ATs would
generate more profits by following volatility-based trading strate-
gies (Ceffer et al., 2018). Contrarily, limited evidence suggests
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that HFTs exit the market during highly volatile periods (Aït-
Sahalia and Brunetti, 2020). This study contributes to this litera-
ture by examining whether volatility causes a differential impact
on traders. We find that during volatility shocks, BATs enter while
HFTs exit the market. Additionally, we examine the extent of
directional trades by different traders during volatility shocks.

We employ the Bayesian Vector Autoregression (BVAR) and
mpulse Response Functions (IRFs) to examine trading activity
nd volatility dynamics. Our results show that trading by NATs
owers volatility, whereas trading by BATs and HFTs raises the
ame. Similarly, extreme buying or selling pressure by BATs and
FTs raises volatility. Additionally, we find an hour’s delay in
raders’ response to volatility shock, wherein all traders increase
heir trading volume, with BATs exhibiting the highest increase
n trading volume. BATs carry out excessive buy or sell trades in
esponse to volatility shock, whereas HFTs drastically reduce such
rades.

The remainder of this paper is organized as follows:
ection 2 discusses the related literature and the development
f hypotheses. Section 3 discusses the data, measures of trading
ctivity and volatility and methodology; Section 4 presents the
mpirical results and analysis. Section 5 discusses the results of
he robustness checks, and Section 6 provides the concluding
emarks in the final section.

. Related literature and hypotheses

The theoretical background on the presence of heterogeneous
raders and their differential impact on volatility can be traced
ack to De Long et al. (1990), who stated that noise traders and
ational speculators act as two distinct heterogeneous groups that
ngage in positive feedback trading1 and increase market volatil-
ty. Chaboud et al. (2014) observe that this theory is relevant to
he present-day market environment, where ATs act as a group
nd create similar feedback effects. Therefore, we hypothesize the
ollowing:

H1a : The heterogeneous trader groups differ in their impact on
olatility.
H1b : Volatility produces a differential impact on heterogeneous

trader groups.

2.1. Impact of traders on volatility

Existing literature does not clearly answer whether subgroups
of ATs increase or decrease volatility. Casgrain and Jaimungal
(2020), using simulated models, show that increased disagree-
ments between heterogeneous market agents increase volatility.
Likewise, Scholtus et al. (2014), using NASDAQ data on S&P 500
Exchange-traded fund, find that ATs increase volatility and reduce
market depth. Breedon et al. (2018) observe that ATs withdraw
liquidity and increase volatility in foreign exchange markets. In
their theoretical model, Cartea and Penalva (2012) classify traders
into three groups, namely, liquidity traders, professional traders
and HFTs, and find that HFTs increase volatility for liquidity
traders, because of the ‘intermediation’ by HFTs between liquidity
demanders and liquidity suppliers that enables faster liquidity
provisioning. Thus, we hypothesize the following:

H2a : ATs’ (both HFTs’ and BATs’) trading activity increases volatil-
ity.

H2b : NATs’ trading activity decreases volatility.
H3a : ATs’ (both HFTs’ and BATs’) buy/sell pressure increases volatil-

ity.
H3b : NATs’ buy/sell pressure decreases volatility.

1 When a positive feedback effect is present, ATs cause price deviations from
he assets’ fundamental value, leading to increased volatility during intraday
ntervals. However, Chaboud et al. (2014) conclude that ATs’ trading activity
ecreases market volatility.
2

2.2. Impact of volatility on traders

Existing literature indicates several adverse effects of volatility
for both investors and firms, resulting from ATs’ trading. ATs’
momentum and volatility-based strategies target high volatile
stocks to make quick profits. One such volatility-based algo-
rithm using Neural Networks by Ceffer et al. (2018) suggests
that traders can make profits by entering (exiting) trades above
(below) a threshold level of high volatility. Thus, we hypothesize
the following:

H4a : Volatility encourages the trading activity of all ATs (both
HFTs and BATs).

H4b : Volatility discourages NATs’ trading activity.
Furthermore, the presence of intense trading by ATs creates

an increased risk of a flash crash. Hasbrouck and Saar (2013)
state that high volatility offers profitable opportunities for HFTs,
who exploit such events in day trading. Our study differs from
the existing literature by empirically examining the differential
impact of volatility on trading volume and directional trades of
different traders, namely, HFTs, BATs and NATs. Therefore, we
hypothesize the following:

H5a : Volatility encourages ATs’ (both HFTs’ and BATs’) to create
excessive buy/sell pressure.

H5b : Volatility discourages NATs’ from creating buy/sell pressure.

3. Data, measurement and methodology

3.1. Data

Existing research indicates that the futures market has faster
information transmission and order execution, which is partic-
ularly prominent in index futures2 ,3 Hence, we use the most
widely traded index future in the National Stock Exchange (NSE),
India, to evaluate the relationship between ATs’ trading and
volatility. We employ a proprietary dataset from the NSE and
consider the widely traded NIFTY50 Index Futures. This contract
has three month trading cycles, namely near month, next month
and far month. The Futures market is open for trading from 09:15
to 15:30 IST. We use three months of high-frequency data on
near month NIFTY50 Futures, for the sample period of 1st July
to 30th September, 2018. We analyze four near month contracts
that expired on 26th July, 30th August, 27th September and 25th
October, 2018, respectively.

Our dataset is unique in the following ways. During order
placement, traders specify whether they are placing their own
orders or clients’ orders by choosing the ‘‘Proprietary’’ or the
‘‘Client’’4 option, respectively, in their trading interface. Addition-
ally, traders must register themselves before employing trading
algorithms.5 Thus, the exchange precisely identifies the category
of traders in this dataset. This information enables us to classify
proprietary ATs as HFTs, and Non-proprietary ATs as BATs, fol-
lowing the classification of Li et al. (2018). All the other traders,
who do not use algorithms are classified as NATs.6

2 Fung et al. (2005) find a sizable amount of volatility spillover from index
utures to the index market; however, the converse is not valid. They discover
hat the lead–lag link between index futures and index markets reduces the
symmetric reaction to positive or negative news.
3 Chen et al. (2016) observe that the E-mini index futures contribute

ignificant information share to the price discovery process during volatile
eriods. They attribute this phenomenon to the increased participation of ATs,
articularly HFTs in the trading process.
4 Clearing Mechanism - NSE India. https://www.nseindia.com/products-

ervices/equity-derivatives-clearing-mechanism (accessed 2.23.21).
5 NIFM, 2017. A study on Algorithm Trading/ High Frequency Trading in the

ndian Capital Market. Government of India. http://www.nifm.ac.in/sites/default/
iles/uploadfiles/Compendium.pdf (accessed 2.23.21).
6 A recent study by Arumugam and Prasanna (2021a) employs this NSE
ataset and explains in detail the markers used to identify ATs.

https://www.nseindia.com/products-services/equity-derivatives-clearing-mechanism
https://www.nseindia.com/products-services/equity-derivatives-clearing-mechanism
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3.2. Measurement and descriptive statistics

3.2.1. Trading measures
We calculate two measures of trading activity, namely, Vol-

me of trade (VLM) and Absolute Net Position (ANP), following
enos et al. (2017). VLM is measured as the aggregate volume
f futures traded by one of the three groups of traders; wherein
he trader group participates in at least one side of the trade
buy/sell). We measure the number of futures traded by HFTs,
ATs and NATs as VLM_HFT, VLM_BAT, and VLM_NAT, respec-
ively, at time t and aggregated in one-hour intervals. VLM mea-
ures for the three trader groups are given in Eqs. (1), (2) and (3).
NP measures the absolute difference between aggregate buy-
ide and sell-side trade volumes, which indicates the intensity of
irectional trades placed by trader groups. ANP measures for the
hree trader groups are given in Eqs. (4), (5) and (6).
LM_HFTt =

∑
jϵHFT

VLMt (1)

VLM_BATt =

∑
jϵBAT

VLMt (2)

VLM_NATt =

∑
jϵNAT

VLMt (3)

ANP_HFTt = |

∑
jϵHFT

VLM_HFT (Buy)t − VLM_HFT (Sell)t | (4)

ANP_BATt = |

∑
jϵBAT

VLM_BAT(Buy)t − VLM_BAT(Sell)t | (5)

ANP_NATt = |

∑
jϵNAT

VLM_NAT(Buy)t − VLM_NAT(Sell)t | (6)

.2.2. Volatility measures
Existing studies have used the conventional Realized Volatility

RV) estimate, which can be misleading in intraday statistical
odeling. We measure the conventional RV as the standard devi-
tion of logarithmic returns. As this conventional measure is not
obust against intraday seasonality and produces U-shape pat-
erns, Andersen et al. (2012) propose two jump robust measures:
edRV and MinRV, which are local realized volatility measures

hat are robust for intraday seasonality. MedRV calculates the
edian of three successive returns and squares it in intraday

ntervals, which removes jumps through two-sided truncation.
ikewise, MinRV calculates the minimum of two successive re-
urns and squares it. If there is a large return in the period, MinRV
mits this observation; hence, it is robust for intraday jumps as
t removes them through one-sided truncation.

Andersen et al. (2012) observe that MedRV is relatively more
fficient than MinRV because of the latter’s exposure to small or
ero returns. Following their work, we use tick time sampling,
here returns are calculated at the trading time at microsecond

evels to deal with microstructure noise and seasonality. RV,
edRV and MinRV are given in Eqs. (7), (8) and (9), respectively,
here r stands for logarithmic returns, t refers to one-hour

ntervals, rt,i stands for individual returns in the one-hour period
, and i varies from 1 to M.

RVt =

√∑M
i=1

(
rt,i − r t

)2
M − 1

(7)

MedRVt =
π

6 − 4
√
3 + π

×

(
M

M − 2

) M−1∑
i=2

med(
⏐⏐rt,i−1

⏐⏐ , ⏐⏐rt,i⏐⏐ , ⏐⏐rt,i+1
⏐⏐)2 (8)

MinRVt =
π

π − 2

(
M

M − 1

) M−1∑
i=1

min(
⏐⏐rt,i⏐⏐ , ⏐⏐rt,i+1

⏐⏐)2 (9)
v

3

Fig. 1. Average daily trading activity and volatility.

.2.3. Descriptive statistics
Table 1 presents the summary statistics of traders’ activity and

olatility measures calculated in one-hour intervals. We observe
hat the mean volume traded by NATs is the highest among
ll traders, followed by BATs. Contrarily, the mean absolute net
osition of BATs is the highest among all traders, followed by
ATs. Fig. 1 depicts the daily averages of trading and volatility
easures for ATs and NATs. Panel A and B show the total trade
olume and absolute net position, respectively. Panel A indicates
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Table 1
Summary Statistics of Traders’ Activity and Volatility Measures.
Variable Mean Std. Dev. 25th %ile Median 75th %ile

VLM_HFT 399624.9 261791.6 229125 328125 519300
VLM_BAT 648854.5 368430.3 398212.5 583200 783000
VLM_NAT 1061642 525938.4 674250 954975 1360163
ANP_HFT 67606.09 69359.48 21862.5 47850 91912.5
ANP_BAT 108699.4 101475.3 33787.5 81000 149700
ANP_NAT 104064.5 92908.86 34837.5 80250 145087.5
RV (bps) 0.3151 0.1538 0.272 0.3443 0.4066
MedRV (bps) 0.0421 0.0855 0.0107 0.021 0.0417
MinRV (bps) 0.0399 0.0927 0.0089 0.0187 0.0385

This table reports summary statistics over the sample period from 1st July to 30th September, 2018 during the regular trading
hours, calculated in one-hour intervals. The sample consists of NIFTY50 Index Futures trading in the NSE. VLM_HFT, VLM_BAT, and
VLM_NAT refer to the number of futures traded by HFTs, BATs and NATs, respectively. ANP_HFT, ANP_BAT and ANP_NAT measure
the gap between aggregate buy-side and sell-side trade volumes of HFTs, BATs and NATs, respectively. RV is the standard deviation
of logarithmic returns. MedRV and MinRV are the two jump robust estimates developed by Andersen et al. (2012).
Table 2
Unit root tests.

ADF PP ADF PP

Constant Constant and trend

VLM_BAT −2.84* −11.7*** −3.59** −12.15***
VLM_HFT −2.83* −13*** −3.71** −14.13***
VLM_NAT −2.6* −14.9*** −3.64** −15.12***
ANP_BAT −15.98*** −16.15*** −16.22*** −16.23***
ANP_HFT −19.98*** −19.98*** −19.96*** −19.96***
ANP_NAT −17.37*** −17.95*** −18.02*** −18.02***
RV −0.9 −19.07*** −1.66 −19.71***
MEDRV −11.18*** −11.34*** −12.08*** −11.96***
MINRV −12.13*** −12.11*** −12.84*** −12.84***

Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) denote unit root tests developed by Dickey and Fuller (1979) and Phillips
and Perron (1988), respectively for testing stationarity. The null hypothesis assumes the presence of unit root.
*Denote rejection of the null hypothesis at 10%.
**Denote rejection of the null hypothesis at 5%.
***Denote rejection of the null hypothesis at 1%.
4
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that three groups of traders’ total volume show co-movement,
where the upward (and downward) fluctuations of traders move
concurrently. Panel B reveals a dissimilar trend in absolute net
position among traders, wherein certain trader groups over-buy
(or over-sell), while others do not do the same. Panel C depicts the
trend of three volatility estimates, wherein MedRV and MinRV de-
viate from RV by a significant margin. The jump robust volatility
estimates capture a considerable shift in the month of September,
where the VLM estimates also shift upward. The conventional RV
estimate does not capture this volatility shift.

3.3. Methodology

Following Hasbrouck and Seppi (2001), we first check for
stationarity of variables, using Augmented Dickey–Fuller (ADF)
and Phillips–Perron (PP) tests developed by Dickey and Fuller
(1979) and Phillips and Perron (1988), respectively. The results
are reported in Table 2, which shows that the variables are
stationary. Hence, we use the level form of these variables in our
analysis.

Additionally, this study uses a time series dataset, comprising
3843 observations at 1-hour frequency. While VAR is frequently
used in models with jointly endogenous variables (Arumugam
and Prasanna, 2021b), it requires the estimation of many param-
eters, which leads to an over-parameterization problem in small
datasets. Therefore, we use Bayesian VAR (BVAR) method, which
solves the over-parameterization problem through shrinkage by
imposing restrictions on parameters using bayesian priors.

We examine the dynamic relationship between volatility and
traders’ activity using the BVAR model and the Impulse Response
4

Functions (IRFs). We estimate six such BVAR models. Models 1,
2 and 3 include RV, MedRV and MinRV, respectively, along with
three VLM measures as endogenous variables, and the results
are reported in Table 3. Similarly, Models 4, 5 and 6 include RV,
MedRV and MinRV, respectively, along with three ANP measures
as endogenous variables, and the results are reported in Table 4.
Schwarz Information Criterion (SIC) indicated one lag as the ap-
propriate lag length, and the models use Litterman/Minnesota
priors (Litterman, 1986). The general form of BVAR regression is
given in Eq. (10), where X and Y are the vectors of endogenous
variables, C is the vector of intercepts, t denotes the time in
one-hour intervals and εt is the error term.

Yt = AYt−1 + BXt−1 + C + εt (10)

. Results and analysis

.1. Do traders affect volatility differently?

Panel A in Table 3 shows that a unit increase in HFT’s VLM
ncreases RV by 2.79 × 10 −7 bps. Panel B and C in Table 3
lso show that HFTs and BATs significantly increase MedRV and
inRV, respectively. We further evaluate the changes in their

elationship using IRFs in Fig. 2, which shows that a one Stan-
ard Deviation (S.D) shock in trading volumes of NATs decreases
olatility, while that of BATs and HFTs increases the same. Panel
in Fig. 2 depicts that a one S.D shock to the trading volume

f NATs and BATs causes RV to drop by 0.023 bps. Contrarily, a
ne S.D shock to the trading volume of HFTs causes RV to soar by
.017 bps. Similarly, Fig. 2 shows that NATs’ trading cause MedRV
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Table 3
Bayesian Vector Autoregression using Volume of trade (VLM) Measure.
Panel A: Model 1

VLM_BAT VLM_HFT VLM_NAT RV

VLM_BAT(−1) 0.37 0.16 0.4 −1.18E−07
(0.06)*** (0.04)*** (0.09)*** (0.00)***

VLM_HFT(−1) 0.16 0.27 0.19 2.79E−07
(0.09)* (0.06)*** (0.13) (0.00)***

VLM_NAT(−1) 0.04 0.01 0.11 5.82E−09
(0.04) (0.03) (0.06) (0.00)

RV(−1) 482431 370535.7 671267.1 0.017876
(88265.8)*** (62977.7)*** (136523)*** (0.04)

R-sq. 0.37 0.38 0.30 0.19
Adj. R-sq. 0.37 0.37 0.29 0.18

Panel B: Model 2

VLM_BAT VLM_HFT VLM_NAT MedRV

VLM_BAT(−1) 0.32 0.13 0.36 3.2E−08
(0.06)*** (0.04)*** (0.09)*** (0.00)**

VLM_HFT(−1) 0.2 0.3 0.31 8.21E−08
(0.09)** (0.06)*** (0.14)** (0.00)***

VLM_NAT(−1) 0.01 −0.004 0.07 −1.43E−08
(0.04) (0.03) (0.06) (0.00)

MedRV(−1) 321107.9 246605.2 80700.85 0.259046
(213659) (152517) (330429) (0.05)***

R-sq. 0.32 0.31 0.24 0.32
Adj. R-sq. 0.31 0.31 0.24 0.32

Panel C: Model 3

VLM_BAT VLM_HFT VLM_NAT MinRV

VLM_BAT(−1) 0.33 0.13 0.36 3.21E−08
(0.06)*** (0.04)*** (0.09)*** (0.00)**

VLM_HFT(−1) 0.21 0.31 0.31 8.31E−08
(0.09)** (0.06)*** (0.14)** (0.00)***

VLM_NAT(−1) 0.02 −0.003 0.07 −1.46E−08
(0.04) (0.03) (0.06) (0.00)

MinRV(−1) 256610.5 208029.9 44223.25 0.235174
(188066) (134238) (290854) (0.05)***

R-sq. 0.32 0.31 0.24 0.27
Adj. R-sq. 0.31 0.31 0.24 0.26

The columns provide the coefficients and standard errors obtained from BVAR models of the form, Yt = AYt−1 + BXt−1 + C + εt ,

where X and Y are the vectors of endogenous variables, C is the vector of intercepts, t denotes the time in one-hour intervals and
εt is the error term. The model uses Litterman/Minnesota priors.
*Indicate significance at 10%.
**Indicate significance at 5%.
***Indicate significance at 1%.
t
v

nd MinRV to drop by 0.013 and 0.017 bps, respectively. These
esults support hypotheses: H1a and H2b.

Panel B in Table 3 shows that a unit change in VLM of
ATs and HFTs causes MedRV to increase by 3.2 × 10−08 and
.21 × 10−08 bps, respectively. A similar response is seen on
inRV in Panel C (Table 3). Panel B in Fig. 2 shows that a
ne S.D shock in VLM of BATs and HFTs increases MedRV by
.039 and 0.026 bps, respectively. We find a similar response on
inRV in Panel C in Fig. 2. Thus, Fig. 2 shows that jump robust
olatility estimates increase considerably when BATs are trading
han HFTs. These results support hypothesis H2a and demonstrate
he negative impact of ATs’ trading on volatility. This is consistent
ith Breedon et al. (2018), Cartea and Penalva (2012), Casgrain
nd Jaimungal (2020) and Scholtus et al. (2014), but contrary
o Chaboud et al. (2014), Hasbrouck and Saar (2013) and Saliba
2020). Further, it shows that BATs increase volatility more than
FTs. Besides, this evidence indicates that the decline in volatility
esulting from NATs’ trading is insufficient to compensate for the
ncrease in volatility resulting from ATs’ trading.

Furthermore, Panel C in Fig. 3 shows that MinRV reduces
arginally by 0.0017 bps after NATs’ activity, but volatility raises

o 0.0076 bps in the second hour. Panels B and C in Table 4 show
5

hat a unit increase in the absolute net position of HFTs increases
olatility by 1.62 × 10−07 and 1.86 × 10 −07 bps, respectively.

Panels B and C in Fig. 3 consistently show that HFTs’ absolute
net position has the highest adverse impact on volatility. They
further illustrate that the absolute net position of HFTs and BATs
increases volatility, and it peaks in the second hour. These results
support our hypothesis H3a. Thus, when traders increase their
directional trade positions, volatility rises, and this effect is the
highest when HFTs are trading actively. Panels B and C in Fig. 3
depict that a one S.D innovation in the absolute net position of
BATs increases volatility by 0.0042 and 0.0057 bps, respectively.
Similarly, a one S.D innovation in the absolute net position of
HFTs increases volatility by 0.0085 and 0.01 bps. These results
support hypothesis H3a, which assumes that the buy/sell pressure
of BATs and HFTs increases volatility. The results are consistent
with Breedon et al. (2018), Casgrain and Jaimungal (2020) and
Scholtus et al. (2014).

4.2. Does volatility affect traders differently?

Panel A in Table 3 shows that a unit change in RV substantially
increases the VLM of BATs, HFTs and NATs. Similarly, Fig. 4 depicts
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Table 4
Bayesian Vector Autoregression using Absolute Net Position (ANP) measure.
Panel A: Model 4

ANP_BAT ANP_HFT ANP_NAT RV

ANP_BAT(−1) 0.16 0.02 0.08 −6.41E−09
(0.05)*** (0.03) (0.04) (0.00)

ANP_HFT(−1) −0.008 0.01 0.02 −5.88E−08
(0.06) (0.04) (0.06) (0.00)

ANP_NAT(−1) 0.12 0.07 0.1 −4.82E−08
(0.05)** (0.03)* (0.05)* (0.00)

RV(−1) 74674.13 11671.96 78926.15 0.059289
(28156.5)*** (19867.9) (26251.3)*** (0.04)

R-sq. 0.09 0.02 0.06 0.01
Adj. R-sq. 0.08 0.01 0.05 0.00

Panel B: Model 5

ANP_BAT ANP_HFT ANP_NAT MedRV

ANP_BAT(−1) 0.14 0.02 0.05 −1.26E−08
(0.05)*** (0.03) (0.04) (0.00)

ANP_HFT(−1) −0.028 0.01 0.001 1.62E−07
(0.06) (0.04) (0.06) (0.00)***

ANP_NAT(−1) 0.1 0.07 0.08 9.58E−08
(0.05)* (0.03)* (0.05) (0.00)**

MedRV(−1) 184892.4 366.27 184650.2 0.427657
(52806)*** (37261.6) (49233.2)*** (0.03)***

R-sq. 0.10 0.02 0.07 0.31
Adj. R-sq. 0.09 0.01 0.06 0.30

Panel C: Model 6

ANP_BAT ANP_HFT ANP_NAT MinRV

ANP_BAT(−1) 0.13 0.02 0.05 −2.03E−08
(0.05)*** (0.03) (0.04) (0.00)

ANP_HFT(−1) −0.03 0.01 0 1.86E−07
(0.06) (0.04) (0.06) (0.00)***

ANP_NAT(−1) 0.11 0.07 0.09 0.00000012
(0.05)* (0.03)* (0.05)* (0.00)***

MinRV 176956.4 −11523.07 172856.5 0.378729
(48191.1)*** (34005) (44930.1)*** (0.04)***

R-sq. 0.10 0.02 0.07 0.27
Adj. R-sq. 0.09 0.01 0.06 0.26

The columns provide the coefficients and standard errors obtained from BVAR models of the form, Y t = AY t−1 + BX t−1 + C + εt ,

where X and Y are the vectors of endogenous variables, C is the vector of intercepts, t denotes the time in one-hour intervals and
εt is the error term. The model uses Litterman/Minnesota priors.
*Indicate significance at 10%.
**Indicate significance at 5%.
***Indicate significance at 1%.
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s

he impulse responses of traders’ activity for one S.D innovation
n volatility measures. Traders increase their activity after an
our of volatility shock. On the one hand, shocks to RV cause
he highest increase in NATs’ trading volumes, followed by BATs.
hese results support hypothesis H1b. A one S.D shock in RV
ncreases NATs, BATs and HFTs trading by 89441, 64280 and
9371 units, respectively. On the other hand, shocks to MedRV
nd MinRV cause the highest increase in BATs’ trading volumes,
ollowed by HFTs. A one S.D shock in MedRV increases NATs,
FTs and BATs trading by 4112, 12564 and 16360 units, respec-
ively. Likewise, a one S.D shock in MinRV increases NATs, HFTs
nd BATs trading by 2617, 12312 and 15187 units, respectively.
hese results support hypothesis H4a and is consistent with Ceffer
t al. (2018), Hasbrouck and Saar (2013) and Zhang (2012), but
ontrary to Aït-Sahalia and Brunetti (2020).
Table 4 shows that NATs and BATs increase their directional

rades for a unit change in volatility and rejects hypothesis H5b.
ig. 5 depicts the impulse responses of traders’ activity for a
ne S.D innovation in volatility measures. We notice that traders
ncrease their absolute net position after an hour of volatility
hock. Besides, BATs execute the highest number of directional
rades, followed by NATs for a S.D shock in jump robust volatility
6

stimates. A one S.D innovation in MedRV also produces the
owest increase in HFTs’ absolute net position by 26 units. In
ontrast, a one S.D innovation in MinRV reduces HFTs’ absolute
et position by 906 units. These results partly support hypothesis
5a, wherein BATs increase directional trades, while HFTs tend to
ithdraw from the market during extreme volatility.
Contrary to the market fleeing behavior among HFTs, Fig. 5

epicts that a one S.D innovation in MedRV and MinRV increases
ATs’ absolute net position by 13063 and 13920 units, respec-
ively. Similar to BATs, NATs also increase their absolute net
osition after shocks in MedRV and MinRV by 13046 and 13598
nits, respectively. While Fig. 4 shows that HFTs increase their
rading activity after volatility shocks, Fig. 5 offers sufficient proof
hat HFTs’ do not place aggressive unidirectional trades. There-
ore, we find new evidence suggesting that among the ATs, only
ATs increase their directional trades, thereby further aggravating
he volatility shock.

. Robustness checks

We perform additional robustness tests to verify the above re-
ults. We check for intraday seasonality by including two dummy
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Fig. 2. Impulse response functions on response of volatility for innovations in
Volume of trade (VLM) measure.

variables (Jain et al., 2016), one for the period from 9.15 A.M. to
11.00 A.M. (IST) and another for the period from 2.00 P.M to 3.30
P.M (IST). We find that the results obtained are similar to those
presented above. To account for any impact of macroeconomic
announcements on the volume and volatility during the sample
period, we included a dummy variable for announcements. Data
7

Fig. 3. Impulse response functions on response of volatility for innovations in
Absolute Net Position (ANP) measure.

on announcements is obtained from the Economic calendar avail-
able in Bloomberg’s database. We find that the announcement
dummy is insignificant, and the results are similar.

6. Conclusion

This study investigates the differential impact of volatility
shocks on traders and vice-versa. Using a unique dataset from
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Fig. 4. Impulse response functions on response of traders’ volume of trade (VLM)
for innovations in volatility measures.

the NSE that identifies traders, we categorize them as HFTs, BATs
and NATs. Trading activity is measured using aggregate volume
and absolute net trades, where the latter provides the extent of
buy/sell pressure. While existing studies have used the conven-
tional RV estimate, we measure volatility using three measures,
namely, conventional RV, MedRV and MinRV. Our study shows
that BATs reduce conventional RV estimate, but increases jump
robust volatility estimates. We also provide strong evidence for
the presence of differential impact of volatility shocks on traders
8

Fig. 5. Impulse response functions on response of traders’ absolute net position
(ANP) for innovations in volatility measures.

and vice-versa. Our results suggest that an increase in aggre-
gate trading volume of NATs reduces volatility for other traders
while that of ATs (both HFTs and BATs) increases the same. This
study has important implications for market participants. NATs’
returns are compromised due to increased volatility caused by
ATs’ trading. This relative disadvantage could discourage NATs
from providing liquidity, causing them to flee the market for fear
of volatility. Additionally, our results show that HFTs reduce their
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–

directional trades during volatility shocks, which brings down
any unidirectional price movements caused by BATs’ directional
trades.
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