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a b s t r a c t

In retrospect, the experimental findings on competitive market behavior called for a revival of the
old, classical, view of competition as a collective higgling and bargaining process (as opposed to
price-taking behaviors) founded on reservation prices (in place of the utility function). In this paper,
we specialize the classical methodology to deal with speculation, an important impediment to price
stability. The model involves typical features of a field or lab asset market setup and lends itself
to an experimental test of its specific predictions; here we use the model to explain three general
stylized facts, well established both empirically and experimentally: the excess, fat-tailed, and clustered
volatility of speculative asset prices. The fat tails emerge in the model from the amplifying nature of
speculation, leading to a random-coefficient autoregressive return process (and power-law tails); the
volatility clustering is due to the traders’ long memory of news; bubbles are a persistent phenomenon
in the model, and, assuming the standard lab present value pattern, the bubble size increases with the
proportion of speculators and decreases with the trading horizon.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Laboratory market experiments have established the stability
nd efficiency of competitive markets organized notably under
he double-auction trading institution (Smith, 1962). The experi-
ental findings (reviewed, e.g., in Plott, 1982; Smith, 1982; Smith
nd Williams, 1990; Davis and Holt, 1993; Holt, 1995, 2019) chal-
enge core tenets of neoclassical value theory (the requirement
or large number of traders, market clearance, complete informa-
ion of supply and demand, and most notably passive price-taking
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behaviors, which bypass the central problem of price discovery)
and, in retrospect, they call for a theory of competitive markets
rooted in the old, classical, view of competition as a collective
higgling and bargaining process, founded on reservation prices, as
the authors’ recent reappraisal of the experiments and the clas-
sics of value theory suggests (Inoua and Smith, 2020b,c,a, 2021,
2022a,b,c). The stability and efficiency of lab markets, which are
robust to various supply and demand conditions, do not hold,
however, for a good that is retradable for capital gains (Dickhaut
et al., 2012; Inoua and Smith, 2022c), for then the stabilizing
virtue of competition is counteracted by speculation.

In this paper, we specialize the classical methodology to deal
with speculation, thus complementing the theory of competitive
markets for non-retradable goods (Inoua and Smith, 2021) with
a model of a speculative asset market that assumes typical fea-
tures of a field or lab market, classical micro-foundations (with
the state of risk aversion in the market completely specified
by a distribution of minimum acceptable rate of return), and
adaptive expectations.2 We model traders, endowed with initial
holdings of cash and asset units, who compete to trade asset units

2 Briefly, by the classical approach we mean adopting a realistic approach
o individual behaviors and interactions and deriving economic regularities
s collective patterns emerging from these behaviors and interactions. For a
etailed discussion of the classical methodology, as we reappraise it, see, again,
noua and Smith (2020b,c,a, 2022b).
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. Ford Motor Company stock: (a) price; (b) return (in percent); (c) cumulative distribution of volatility in log–log scale, and a linear fit of the tail, with a slope
close to 3; (d) autocorrelation function of return, which is almost zero at all lags, while that of volatility is nonzero over a long range of lags.5
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ased on their news-corrected adaptive expectations of future
rice change or asset mispricing, and are willing to trade for at
east a minimum acceptable return. Specific predictions of the
odel can be derived that can be tested experimentally. At this
oint, however, our goal is primarily theoretical: we develop
he theoretical foundations of the model and use its linearized
ersion to explain three general stylized facts of speculative as-
et prices, well-established both empirically and experimentally:
heir excess, fat-tailed, and clustered volatility.3

The excess volatility puzzle (Shiller, 1981; LeRoy and Porter,
981), a challenge to the efficient-market hypothesis (Fama,
970), is now an equally well-received hypothesis (as attests
he Nobel prize of 2013); moreover, asset experiments (Smith
t al., 1988) provide unambiguous evidence to this hypothesis,
y allowing complete control over the fundamental value (for
eviews, see Porter and Smith, 2003; Palan, 2013). The fat tails of
sset returns imply that financial volatility is more extreme than
he Gaussian distribution commonly assumed: more precisely,
he empirical distribution of returns is a power law with an
xponent often close to 3 (Guillaume et al., 1997; Gopikrishnan
t al., 1999; Plerou et al., 1999; Gabaix et al., 2006).4

3 Throughout this paper, ‘‘volatility’’ refers to the magnitude (absolute value)
f asset returns (percent price change), although the word is used more
ommonly when this magnitude is averaged across time intervals.
4 Regarding the fat tails, Mandelbrot more precisely found a power-law expo-
ent α < 2 and conjectured that log-price changes follow a stable distribution, a
ypothesis confirmed early by Fama (1963). But subsequent works (cited in the
ext) based on more extensive data found instead a power law with α ≈ 3. For
a review of the financial stylized facts, see, e.g., Cont (2001, 2007), Chakraborti
et al. (2011a), and Lux and Alfarano (2016).
5 Data source: Center for Research in Security Prices (CRSP); data accessed

through Wharton Research Data Services (WRDS).
 p

2

Volatility clustering means that high-amplitude price changes
tend to be followed by high-amplitude price changes, and low-
amplitude price changes, by low-amplitude price changes, imply-
ing a long-memory volatility process and a nontrivial predictabil-
ity in price changes, whose sign is serially uncorrelated but whose
amplitude (absolute value) is long-range correlated (Bollerslev
et al., 1992; Ding et al., 1993; Granger and Ding, 1994; Comte
and Renault, 1996). Both the fat tails and the clusters of volatility
(illustrated in Fig. 1) are also general properties of speculative
prices, applying to various assets (commodities, stocks, exchange
rates, options, indices), across various time scales (from a few
minutes to a few weeks), on different market places, and are
also confirmed in asset experiments (Kirchler and Huber, 2007,
2009). By their generality, these stylized facts should constrain
any realistic theory of speculative markets.

The neoclassical approach to value theory faces foundational
difficulties, the most important of which being the above-
mentioned problem of price formation.6 In finance, more specif-
ically, these problems are compounded by the no-trade, or more
precisely no-speculation, theorems, which uncover an inherent
difficulty of modeling speculative trade itself in terms of expected-

6 Despite a few able attempts at articulating more realistic neoclassical price
nd trade formation processes than the tatonnement story, the core problems
emain unsolved. As states a review of these models: ‘‘we shall have to conclude
hat we still lack a satisfactory descriptive theory of the invisible hand’’. Hahn
1982, p. 746) More recently: ‘‘we do not have an adequate theory of value,
nd there is an important lacuna in the center of microeconomic theory. Yet
conomists generally behave as though this problem did not exist’’. Fisher (2013,
. 35).
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tility maximization and rational expectations (Rubinstein, 1975;
ilgrom and Stokey, 1982; Tirole, 1982; Gizatulina and Hellman,
019).7
Ingredients for an alternative to the elegant neoclassical ap-

roach to finance are scattered in various studies: for exam-
le, behavioral finance emphasizes various cognitive biases and
ther ‘‘anomalies’’ of the neoclassical model of rational behav-
or (Barberis and Thaler, 2003); and various field and lab data
uggest that traders in practice follow simple adaptive expec-
ation heuristics (Smith et al., 1988; Haruvy et al., 2007; Chow,
011; Lahav, 2011; Anufriev and Hommes, 2012; Greenwood and
hleifer, 2014; Colasante et al., 2017; Hommes, 2021), to which
ome down trend-following trading strategies based on moving
verages of past prices or returns (Baltas and Kosowski, 2013;
empérière et al., 2014; Zakamulin, 2014; Levine and Pedersen,
016; Beekhuizen and Hallerbach, 2017).8 Moreover, theoretical
nd statistical models exist that combine these ingredients, no-
ably agent-based financial models (reviewed, e.g., by Samanidou
t al., 2007; Chakraborti et al., 2011b; Lux and Alfarano, 2016),
hich mimic the stylized facts through a mix of nonlinear mech-
nisms such as traders switching between trading strategies (Lux
nd Marchesi, 1999, 2000), which, however, are not needed for
he emergence of the stylized facts in the lab (Kirchler and Huber,
007, 2009).9 But although models abound in this field, there

is yet to emerge a general, unifying, relatively simple, micro-
founded, theoretical framework that would qualify as a standard
model of the stylized facts.

We propose to this end the classical model above-described,
inning down the stylized facts to their simplest causes through
inear mechanisms (assuming both speculators and value-
nvestors similarly to the agent-based literature, but not the
witching between the trading strategies).10 The fat tails emerge
n our model from the intrinsic self-reinforcing nature of specula-
ive trading: a speculative asset return forms a random-coefficient
utoregressive process from which emerge power-law tails by
n important theorem (Kesten, 1973).11 The destabilizing role
f speculation is intuitive and familiar, and invoked in various

7 The stylized facts apply to speculative prices. A laboratory asset experiment
ncovers nonspeculative bubbles (Lei et al., 2001), namely bubbles occurring
bsent asset re-trading (a necessary condition for speculation), and due, at least
artly, to decision error or confusion, or the need for subject-traders to trade,
he only game available. For a recent reappraisal of this ‘‘counterexample’’ to
he speculative bubble hypothesis, reaffirming the centrality of speculation in
he seminal asset market design (Smith et al., 1988), see the working paper by
ucker and Xu (2020).
8 A moving average of a variable and an adaptive expectation of that variable
re essentially the same concept mathematically. Thus, modeling typical trend-
ollowing trading strategies amounts to assuming adaptive expectations of
rices, or, better, returns, as the trading strategies seem to be better formulated
n terms of moving averages of past returns than moving averages of past prices
Beekhuizen and Hallerbach, 2017).
9 The classical method, as above-defined (Footnote 2), has a few themes

realism of assumption, simple individual behaviors, emergence of complex
ggregate patterns) that are echoed in the contemporary ‘‘complex systems’’
pproach to the economy more generally, to which physicists have greatly
ontributed, usually applying models and techniques from statistical physics
o unravel the subtle statistical microstructure of order-book-driven financial
arkets and the financial stylized facts in particular, a trend often known as

‘econophysics’’ (overviewed, e.g., in Mantegna and Stanley, 1999; Voit, 2003;
amanidou et al., 2007; Bouchaud, 2011; Chakraborti et al., 2011b,a; Lux and
lfarano, 2016; Bouchaud et al., 2018).
10 The linearized version of the model invoked in this paper to explain the
tylized facts appears in a previous work (Inoua, 2020), without the classical
icro-foundations and the mathematical justifications that we provide here.

11 For a complete overview of the theory of random-coefficient autoregressive
RCAR) or Kesten processes, see the monograph by Buraczewski et al. (2016),
o which we often refer the reader in this paper. RCAR processes are more
eneral and more realistic versions of the more usual ARMA processes, having,
oreover, the fascinating property of allowing the emergence of a fat-tailed
utput from light-tailed inputs. RCAR processes already play a central, if perhaps
3

Fig. 2. Big volatility clusters triggered by major events (crises).13

forms and under different names in many models (e.g., Cutler
et al., 1990; De Long et al., 1990); we show here that speculation
and adaptive expectations lead intrinsically to the power law of
returns in a competitive market. Volatility clustering is due to the
long memory that traders have of exogenous news as reflected
in their expectations, if modeled as forming a nearly integrated
news-corrected adaptive expectation process (to allow for long
memory); an indication of this explanation is the timing of
big volatility clusters, concomitant with major economic events,
such as uncertainty ensuing a crisis (Fig. 2), an intuition that
accords well with earlier hypotheses, theoretical (Andersen and
Bollerslev, 1997) and experimental (Kirchler and Huber, 2007,
2009).12 In fact, underlying most models of volatility clustering
we analyzed, is a simple, integrated, long-memory, process usu-
ally at work amid a complex mix of mechanisms, and which,
upon scrutiny, might be the ultimate cause of the phenomenon
in these models: thus, the random walk of fundamental value
assumed in agent-based models ([from seminal work by Lux and
Marchesi, 1999, onward); the integrated GARCH model (Engle
and Bollerslev, 1986), which, among the GARCH family (Engle,
1982; Bollerslev, 1986; Bollerslev et al., 1992), fits best the em-
pirical data [but has a power law tail exponent of 2 (Mikosch and
Starica, 2000, 2003)]; and similar models (e.g., LeBaron, 2001).

The rest of the paper is organized as follows. Section 2, which
starts with a few basic definitions, restates more formally the
three stylized facts of asset returns. Section 3 presents the model’s
general setup and assumptions; Section 4 specializes the model
to a return process driven by speculators only and thus explains
the power law of return; and Section 5 adopts a more general
specification of the model to explain the other stylized facts as
well. Directions for future research are indicated in the summary
and concluding remarks in Section 6.

unfamiliar, role in finance. Thus, GARCH processes belong to this class of
processes; a few theoretical models also invoke a first-order RCAR process, e.g.:
the linear approximation of some agent-based models (Sato and Takayasu, 1998;
Aoki, 2002; Carvalho, 2004), or a ‘rational bubble’ model assuming a random
discount factor (Lux and Sornette, 2002), which generates a tail exponent smaller
than 1. The mathematics of RCAR process is rather involved and requires
advanced techniques of probability theory; in the TeXFolio:appA Appendix we
offer a simple and intuitive derivation of their power-law tail behavior, in the
one-dimensional case relevant for our purpose in this paper.
12 The arrival of news was suggested as the most important cause of the fat
tail and the clustering of volatility in the experiments (Kirchler and Huber, 2007,
2009).
13 Data source: CRSP.
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. The three stylized facts of speculative prices

Consider (discrete) trading periods (say days) t = 1, . . . , T ,
nd include t = 0 merely to date the initial positions of the
ariables involved (rather than as a trading time). Let {pt} be the
adjusted) closing prices of a speculative asset XYZ at the end of
ach period t = 0, 1 . . . , T and let {dt} be the dividends paid, say,
t the closing of each period t .
Excess volatility simply means that pt − ve

t is persistently
onzero, where ve

t is the asset’s present fundamental value,
s anticipated by the market. Let vt be the asset’s unknown
resent value, the discounted sum of (unknown) future dividends
dt+k : k ≥ 1}. Assuming, just for notational simplicity, a constant
iscount factor (1 + ρ)−1, the asset unknown present value
atisfies the stochastic recurrence equation:14

t = (1 + ρ)−1(vt+1 + dt+1), (1)

whose usually considered forward-looking solution is

vt =

∞∑
k=1

dt+k

(1 + ρ)k
. (2)

The (expected) fundamental present value is commonly defined
as ve

t = Et (vt ), an optimal forecast of (2) given available informa-
tion at time t, which in a strong version of rational expectations
includes the dividend generating process itself, which we will
denote generically as G. In the seminal asset experiments (Smith
et al., 1988), intended to approximate the latter version of rational
expectations (actually a stronger version: common knowledge
of rational expectations), the experimenter announces publicly
the dividend generating process, leading, in the standard case
(Smith et al., 1988) of dividends {dt} randomly drawn from a
nown (usually a discrete uniform) distribution, to a fundamental
alue process declining to zero, a step function whose linear
pproximation is
e
t = (T − t + 1)E(dt ), t = 1, . . . , T , (3)

where here and throughout E is an (unconditional) expectation
operator.

In this paper, we will adopt a different definition of an asset
present value than the neoclassical one, ve

t = Et (vt ), based
n rational expectations of the forward-looking solution of the
tochastic recurrence equation (1).15 We will assume an adap-
ively formed expected present value estimated from the divi-
end history [Eq. (14) below].
Define the asset return (or relative price change) during each

eriod as

t =
pt − pt−1

pt−1
, t = 1, . . . , T .

The empirical power law of speculative returns reads formally:

prob{|r| > x} ∼ cx−α, x → ∞ (α, c > 0), (4)

where α, the key parameter, is called the Pareto index or tail ex-
ponent (typically close to 3) and c is merely a norming constant.16

14 Here for conceptual clarity, we distinguish the asset’s fundamental value,
he discounted sum of future dividends v, an unknown (random) variable, and
he asset’s fundamental value ve , as forecasted by the market participants. It is
ore common to call fundamental value the latter concept, however, namely

he rational valuation (expectation) of the former variable by a representative
rader.
15 On the distinction between the two solution concepts for a stochastic recur-
ence equation, forward-looking (noncausal) versus backward-looking (causal),
erhaps first emphasized in Vervaat (1979, Theorem 2.1), see Buraczewski et al.
2016, p. 16).
16 The notation f ∼ g means that f (x)/g(x) → 1 as x → ∞.
4

Throughout this paper, we estimate the power-law exponent α by
the following least-square estimator:

α̂ =
cov(log x, logH(x)|x ≥ xmin)

var(log x|x ≥ xmin)
, where H(x) = prob{|r| > x},

(5)

and the cutoff xmin is optimally chosen by an algorithm by Clauset
et al. (2009).17 Graphically, the estimator (5) is simply the slope
of the linear least-square fit of the (complementary) cumulative
distribution of returns beyond the cutoff xmin.

We mention in passing that (4) is more precisely the tail
probability of return conditional on positive prices: by definition
of the return as a ratio involving the inverse price, we should
consider time periods involving nearly complete price crashes,
formally the density function of price, say f , is positive at zero,
in which case we have18

prob{|1/p| > x} =

∫ 1/x

−1/x
f (z)dz ∼

2f (0)
x

, x → ∞, (6)

a power-law tail with exponent α = 1, which the return inherits
as a product involving this power law.19 Thus one would expect a
tail exponent α ≈ 1 in asset experiments involving the declining
present value (3) and exhibiting bubble-and-crash phenomenon,
since ve

t → 0 implies pt → 0 in a market involving a sufficiently
large number of fundamental-value investors, who tend to bring
the price near its fundamental value by definition (by arbitraging
away asset mispricing): this basic theoretical prediction seems to
be indeed the case in experimental data, as Fig. 4 suggests, where,
for statistical significance, we pooled data across experimental
sessions. (See Fig. 3.)

Thus, to achieve more usual power law of returns in the lab
requires implementing a more realistic pattern of fundamental
value process, as did Kirchler and Huber (2007, 2009), using a
random walk of dividends: see Fig. 4. Ideally one would also
wish to have sufficiently long enough trading periods under ho-
mogeneous treatments (to ensure an invariant return-generating
process) for statistical significance (the estimation of fat tails
requires more data than that of light tails).20

Volatility clustering means that the magnitude (usually ab-
solute return) of speculative returns has a long memory, in the
sense of having a slowly decaying autocorrelation function:

cor(|rt |, |rt+h|) > 0 across many lags h. (7)

Formally long memory requires the ACF to decay so slowly as to
be nonintegrable, meaning
∞∑
h=0

|cor(|rt |, |rt+h|)| = ∞. (8)

Autoregressive processes (RCAR) typically exhibits exponentially
decaying memory of the past: that is, under technical but general

17 For the code generating the cutoff (and an alternative estimator de-
scribed next), see https://aaronclauset.github.io/powerlaws/. We prefer to use
the estimator (5) to the more common maximum likelihood estimator α̂ =

/
∑n

i=1 log(xi/xmin), which yields similar but slightly less accurate estimates (in
terms of downward bias), as we notice based on simulations.
18 For a sufficiently long-time horizon, a price crash is an almost sure
phenomenon whenever the average return is small enough.
19 Formally, assume ∆p is such that 0 < E|∆p| < ∞ and is independent from
p, whose density function is f. Then (6) and Breiman’s lemma (Breiman, 1965,
Proposition 3; see Buraczewski et al., 2016, p. 275) implies that prob{|∆p/p| >

} ∼ 2f (0)E|∆p|/x, x → ∞.
20 One might also consider running lab experiments in which trade is unin-
terrupted, if cross-period leaning of subjects is not of special interest. We thank
D. P. Porter for this observation.

https://aaronclauset.github.io/powerlaws/
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Fig. 3. Power law behavior in an experimental bubble-and-crash experimental data: 6 market-session data pooled. Data source: Lahav (2011).

Fig. 4. An experimental asset market price data showing the fat tails and clusters of volatility. Data source: Kirchler and Huber (2009, Market 2, Treatment 1).
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Fig. 5. Population versus sample ACFs for a nearly integrated GARCH (1, 1)
process with c = 0.1, a = 0.1, b = 0.899, a + b = 0.999.

conditions (Buraczewski et al., 2016, p. 23) one can show that for
a measurable function f ,

cov(f (rt ), f (rt+h)) ≤ c0µh, 0 < µ < 1, h → ∞, (9)

which is a short-memory process, except in the critical (limiting)
case µ → 1. The critical case µ → 1 is, we believe, the
most natural and plausible explanation for volatility clustering in
terms of long memory of news (as our model suggests), despite
dominant belief in a power-law model for the long memory for
volatility:

cor(|rt |, |rt+h|) ∼ h−β , 0 < β < 0.5, (10)

which seems to better model the empirical ACF of volatility (for
a brief review, see, e.g., Lux and Alfarano, 2016, p. 5), but which
does not necessarily imply that the true (population) ACF itself
follows a power law, as the following simulation based on an
almost integrated GARCH (1, 1) suggests (our model exhibits the
same pattern): rt = σtεt , where σt = a+bσt−1+cσ 2

t−1, where {εt}
are i.i.d. (independent and identically distributed) draws from a
normal distribution, c > 0, a, b ≥ 0; the GARCH(1, 1) is known
(Bollerslev, 1986, Equation 14) to have cor(|rt |2, |rt+h|

2) = (a+b)h,
in our example (0.999)h. Yet the empirical ACF seems to be better
fit by a power law, as the simulation in Fig. 5 shows:

3. The model: General setup and assumptions

Assume:

1. (Assets) A market involving a risky asset (say a stock) that pays
exogenously generated dividends {dt}, and cash money (the
means of payment) that pays rf percent interest per period.
Each trader starts with initial cash and asset holdings, in total
C0 and S0, all traders included.

2. (Traders) The market is populated by two types of traders:
Type I traders, who trade based on capital gain forecasts, and
Type II traders, who trade based on mispricing forecasts. Each
trader i ∈ I ∪ II is willing to trade for at least a minimum
acceptable return ρ i

≥ 0, distributed among each trader Type
according to F J (x) = prob{ρ J

≤ x}, J = I, II .
3. (Expectations) The traders’ expectations are adaptive and

news-correcting.
4. (Competition) The asset prices {pt} emerge competitively, by

the law of supply and demand, simplified into a linear re-
sponse of the asset return r to excess demand Z .
t t

6

5. (Distributions) Each unknown distribution of interest (see be-
low) is modeled by a maximum entropy one (that is, by an
uninformative prior: uniform, exponential, or normal).21

Let the dividend-generating process be generically dt = G(dt−1),
t = 1, . . . , T , d0 = 0, where G is a stochastic function that we
will specialize in accordance with lab implementations: random
draws from a uniform distribution (Smith et al., 1988) or (the
positive part of) a random walk process (Kirchler and Huber,
2007, 2009).

The total amount of cash spending power in the market is22

Ct = (1 + rf )tC0 + S0
∑
τ≤t

dτ (1 + rf )t−τ , t = 0, . . . , T . (11)

he market liquidity, the maximum number of asset units that
an be (potentially) traded (bought or sold), absent any exoge-
ous liquidity (credit) injection or short selling, is23

Lt = S0 + Ct , t = 0, . . . , T . (12)

The law of supply and demand in finance reads

rt = γ
Zt
Lt

, t = 1, . . . , T . (13)

where γ is a positive adjustment parameter. This linear price
impact holds both in lab (Smith et al., 1988) and field data (Cont
et al., 2014), using order flow imbalance as a proxy for excess
demand.

The two types of traders are respectively motivated by the
following anticipated returns:

r it =

⎧⎪⎪⎨⎪⎪⎩
pit − pt

pt
, i ∈ I,

vi
t − pt
pt

, i ∈ II,

where pit is a forecast at time t of the asset’s future resale price (at
some future time t ′ > t) (by a Type I trader), and vi

t is the asset’s
fundamental value as forecasted adaptively and recursively (by a
type II trader) as follows:

vi
t = (1 + ρ i)vi

t−1 − dit , i ∈ II, (14)

tarting from an initial guess vi
0, where dit is a dividend forecast

y i ∈ II .
The unitary signed demand (counting supply negatively) for

ach trading type i ∈ I ∪ II is

z it = 1{r it ≥ ρ i
} − 1{r it < ρ i

} = 21{r it ≥ ρ i
} − 1,

i = 1, . . . , Lt , t = 1, . . . , T . (15)

here 1{·} is an indicator function.24 We decompose the market
iquidity in terms of the two trading Types:

t = LIt + LIIt ,

nd write the market excess demand [the sum of the signed
lementary demands (15)] in terms of units of market liquidity:

Zt
Lt

=
1
Lt

Lt∑
i=1

z it =
LIt
Lt

∑LIt
i∈I z

i
t

LIt
+

LIIt
Lt

∑LIIt
i∈II z

i
t

LIIt
.

21 One of the goals of an experimental implementation is to determine the
distributions of the relevant variable of the model. Absent any such information,
we assume maximum entropy distributions.
22 Asset sales and revenues being equal in the aggregate, they do not generate
any net cash addition.
23 A more detailed analysis of the endogenous dynamics of market liquidity
is not undertaken here. Previous works in this direction include Caginalp et al.
(2000).
24 That is, 1{A} = 1 if A is true, and 1{A} = 0, otherwise.
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sing an expectation symbol Ei∈J to denote (for simplicity of
otation and manipulation) averaging among each trader Type J ,

and using (15) and iterating the expectations, we get:

Zt
Lt

= 2
LIt
Lt
Ei∈I [F I (r it )] + 2

LIIt
Lt

Ei∈II [F II (r it )] − 1. (16)

Eqs. (13) and (16) together with the news-corrected adaptive
expectations assumption, defines the general model as follows:

dt = G(dt−1), d0 = 0, (17)

rt = 2γ
LIt

LIt + LIIt
Ei∈I [F I (r it )] + 2γ

LIIt
LIt + LIIt

Ei∈II [F II (r it )] − γ , (18)

r it = µir it−1 + (1 − µi)rt−1 + εi
tnewst , 0 ≤ µi

≤ 1, i ∈ I, (19)

i
t = µidit−1 + (1−µi)dt−1 +εi

tnewst , 0 ≤ µi
≤ 1, i ∈ II, (20)

vi
t = (1 + ρ i)vi

t−1 − dit−1, (21)

where newst = 1 if some news arrived in the market in period t,
and 0, otherwise; {µi

} are memory parameters, with 0 ≤ µi
≤

1; and {εi
t} are the impacts of news on traders’ forecasts. The

news-corrected adaptive expectations can be written as:

r it = (1 − µi)
t−1∑
k=0

(µi)krt−k +

t∑
k=0

(µi)kεi
t−knewst−k, i ∈ I, (22)

i
t = (1 − µi)

t−1∑
k=0

(µi)kdt−k +

t∑
k=0

(µi)kεi
t−knewst−k, i ∈ II, (23)

rovided r i0 = di0 = 0. Perfect memory of past news means
i
= 1, and zero memory, µi

= 0.
Absent any knowledge about the minimum acceptable return,

e assume it is uniformly distributed in the market:25

J (x) = prob{ρ J
≤ x} =

x

ρ
J
max

, 0 < x < ρ J
max, J = I, II. (24)

The following variables [Eq. (25)] measure the predominance of
each trading type in the market and will play a central role in the
theory:26

nJ
t = 2

γ

ρ
J
max

LJt
LIt + LIIt

, J = I, II. (25)

hese variables also are not directly observable; we assume they
re exponentially distributed.
Finally, assuming the dividend process follows a random walk

onstrained to be positive, we get the linear version of the general
odel:

t = max{0, dt−1 + εd
t }, (26)

t = (1 + rt )pt−1, (27)

t = nI
t r

e
t + nII

t
ve
t − pt
pt

− γ , (28)

nJ
t = 2

γ

ρ
J
max

LJt
LIt + LIIt

, J = I, II, (29)

25 We assume a continuous uniform distribution only for the simplicity of
otation and simulation.
26 A uniform (or other type of) distribution would produce essentially the
ame result, although the exponential seems to produce returns closer to
mpirical ones.
7

ret = µIret−1 + (1 − µI )rt−1 + εI
tnewst , (30)

e
t = µIIdet−1 + (1 − µII )dt−1 + εII

t newst , (31)

e
t = (1 + ρ)ve

t−1 − det , (32)

here ret = Ei∈I (r it ), d
e
t = Ei∈II (dit ), ve

t = Ei∈II (vi
t ), µJ

= Ei∈J (µi),
J
t = Ei∈I (εi

t ), J = I, II , and ρ = Ei∈II (ρ i).

. The speculative market model and the power law of returns

The intuition that extreme asset price fluctuations are due to
he amplifying feedback inherent to speculative trades can be
ormally proven in the model (26)–(32) by assuming zero average
sset mispricing, so that the asset return is driven by Type I
raders:
e
= p and 0 ≤ µI < 1, (33)

hich yields the speculative return model:

t = nI
t r

e
t − γ , (34)

I
t = 2

γ

ρ I
max

LIt
LIt + LIIt

, (35)

e
t = (1 − µ)

t−1∑
k=0

µkrt−k +

t∑
k=0

µkεt−knewst−k. (36)

n the simplest case of purely speculative market where traders
ave zero memory of exogenous news, we get the first order
andom-coefficient autoregressive return process:
e
= p and µI

= 0 implies rt = nI
t rt−1 + nI

tε
I
tnewst − γ . (37)

he general case ve
= p and 0 < µ < 1 is qualitatively equivalent

(as regards tail behaviors) to the simple case (37). Combining (34)
and (36) yields indeed the expanded form of the speculative
return process:

rt = nI
t

t−1∑
k=0

(1 − µI )(µI )krt−k + nI
t

t∑
k=0

(µI )kεt−knewst−k − γ . (38)

ssume the (random) limit r∞ = limt→∞ rt exists (almost surely),
nd likewise for the other random variables involved in (38),
hich is the case if these latter are i.i.d. (independent and iden-
ically distributed), as we will assume throughout. Then r∞ is the
tationary solution to the stochastic recurrence equation (38) and
beys the equality in distribution27

∞

d
= nI

∞

∞∑
k=0

(1 − µI )(µI )kr∞ + nI
∞

∞∑
k=0

(µI )kε∞news∞ − γ ,

hich simplifies to

∞

d
= nI

∞
r∞ + (1 − µI )−1nI

∞
ε∞news∞ − γ . (39)

his is then the stationary solution (unique in distribution) of the
tochastic recurrence equation (38), and it has power-law tails,
ccording to the following result, where eIt = εI

tnewst .

roposition (Power Law of Speculative Returns). Consider the linear
odel with p = ve and 0 < µI < 1. Assume {(nI

t , e
I
t )} are i.i.d. copies

f a random pair (nI , eI ) whose moments are all finite, eI (1−nI )−1 is
on-degenerate (nonconstant), and the law of log(nI ) given nI > 0

27 An equality in distribution means the left-hand and right-hand sides have
the same distribution.
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Fig. 6. The speculative asset market model simulated: prob{news} = 1, disposition to speculate {nJ
t } i.i.d. draws from an exponential distribution with mean 0.55;

impact of news {εI
t } is zero-mean Gaussian with standard deviation of 1.
a
c

is nonarithmetic.28 If there is α > 0 such that E(nI )α = 1 then
prob{|r∞| ≥ x} ∼ cx−α , c > 0.

Proof. This is an implication of Kesten theorem (Buraczewski
et al., 2016, Theorem 2.4.4) stated formally and explained intu-
itively in Appendix. Moreover, one can show by adapting stan-
dard stationarity analysis of RCAR processes (Buraczewski et al.,
2016, Section 2.1) that 0 < µ < 1, E(nI )α = 1, and the
moment condition of the proposition imply that (39) is indeed
the stationary solution of the stochastic recurrence equation (38),
and the return process converges in distribution to the stationary
solution.29 ■

The speculative market model is simulated in Fig. 6.
As mentioned in Section 2 [Eq. (9)] and as is clear from

Fig. 6, the speculative market model cannot account for clus-
tered volatility: for any such autoregressive model, and for any
arbitrary function f , cov[f (rt−h), f (rt )], when it is well-defined,
decays rapidly (at an exponential rate) with the lag h (Mikosch
and Starica, 2000; Basrak et al., 2002). So, volatility, whether
measured as |r|, r2, or more generally by any function f , cannot
be long-range correlated in this speculative model. The key to
this model’s incapacity for reproducing clustered volatility is the
short-memory property: speculators forget fundamental news

28 A random variable is nonarithmetic if its support does not coincide with
nteger multiples of a real number.
29 The proposition assumes a less general setting to avoid more general but
ore technical assumptions on (n, ε), met by any variables with finite moments.
y Jensen’s inequality, E(nα) = 1 implies E[log n] < 0, which, together with the
oment assumption, guarantees the existence of the stationary solution: the

atter condition generalizes the known one, n < 1, for a nonrandom n. (In these
statements, absolute values would be considered instead, were the variables
nonpositive.) For an exponential distribution nI , one can show that E(nI )3 = 1
for E(nI ) ≈ 0.55 as assumed in Fig. 6.
8

very quickly, at the exponential rate (µI )h, as is clear from (38),
nd this short memory forbids any persistent trading behavior
apable of explaining a persistent volatility. Setting µI

≈ 1 in
the speculative model would lead to long memory of both the
return and the absolute return, however, unlike in empirical data.
A more general model is therefore needed involving the long
memory of news in both trading types, whose interplay yields
the stylized facts.

5. A more general specification

It turns out that both the fat tails and the clusters of volatility
are robustly captured by the linear model (26)–(32) assuming the
specification:

µI
= µII

= 0.99, (40)

as the simulation in Fig. 7 shows, where the other parameter
specifications, reported in Table 1, are chosen to have realistic
orders of magnitude compared to empirical data (notably the
standard deviation of return which is typically around 1% per day
in field data.) (See Fig. 8.)

Excess volatility of price relatively to fundamental value is also
a generic phenomenon in the model. To investigate the bubble
phenomenon in the context of the bubble-and-crash experiments,
we specialize the model’s asset present value process {vt} to
the standard experimental implementation, by drawing dividends
randomly and uniformly from the set {0, 4, 8, 20}, and setting
ρ = 0. According to the model simulations, the asset bubble size
increases ceteris paribus with the dominance of speculation in the
market, namely E(nI ), and it decreases with the overall trading
horizon T , as shows Fig. 10. Also, the traders’ adaptive expectation
of the fundamental value being close to the neoclassical version
ve
t = (T−t+1)E(dt ) → 0, we recover the power law tail exponent

α = 1 as explained in Section 2 and confirmed in Fig. 10. (See
Fig. 9.)
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Fig. 7. The general model simulated: (a) price; (b) return (in percent); (c) cumulative distribution of volatility in log–log scale, and a linear fit of the tail; (d)
autocorrelation function of return and absolute return.
Fig. 8. Density function estimate for the tail exponent estimator α̂ for 50 sample
aths of the model with the parameters of Table 1 (General Model).

. Summary and leads for future work

In this paper we set the foundations for a classical model of
inancial markets to explain three of the most general stylized
acts of speculative prices: the fat tails of speculative returns
merge inherently from speculation under adaptive expectations;
he clustered volatility is a consequence of the long memory
hat traders have of news; and bubbles are an inherent phe-
omenon whose size increases with the preponderance of spec-
lation in the market and decreases with the trading horizon,
eteris paribus.
9

Table 1
Model parameter specification and summary statistics. Simulations
with T = 10000; initial conditions: p0 = ve

0 = 105, d0 = de0 = 10,
and r1 = re1 = 0. The {nJ

t } are random draws from exponential
distributions; all εvariables are zero-mean normally distributed,
except in the speculative model, where mean (εI ) = 0.01%.

Fig. 6 Fig. 7
Speculative model General model

Parameters

Discount rate ρ N/A 1.64%

Price impact: γ 0.01% 0.01%

Dividend: std(εd) N/A 0.1

mean(nI ) 0.55 0.2
mean(nII ) N/A 0.8
News: std(εI ) 1% 1%
News: std(εII ) N/A 0.1
prob(news) 1 0.2
Memory µI 0.99 0.99
Memory µII N/A 1

mean(r) 0.01% 0.01%
std(r) 1.31% 1.06%
Tail exponent α̂ 3.05 2.97

Some aspects of the model call for further investigation. For
example, although the simulations suggest fat-tailed returns in
the general specification of the model, the exact tail behavior
needs to be investigated mathematically; also, an experimental
investigation of the model would be desirable, to know, among
other things, the distribution of the key variables (the minimum
acceptable return, proportion of speculation, the impact of news).
The endogenous dynamics of market liquidity remains to be
analyzed. And, moreover, the theoretical discussion of the bubble-
and-crash phenomenon, as replicated by the model, is of course
too stylized in view of the rich and subtle laboratory studies
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Fig. 9. Bubble and crash phenomena in the model: the size of the bubble is increasing with the propensity to speculate in the market and the time horizon, ceteris
paribus. The model parameters are as in Table 1, General Model, save: dividends uniformly drawn from {0, 4, 8, 20}; ρ = 0; and p0 = ve

0/2 = 400.
Fig. 10. With a present value declining to zero, the model recovers the power exponent α ≈ 1, as expected. All the model parameters are as in Table 1, General
odel, save: the dividends, uniformly drawn from the set {0, 4, 8, 20}; T = 100; p0 = ve

0/2 = 400; and ρ = 0.
t
(
e

T
A

f this phenomenon; in particular, we have not yet modeled a
rucial aspect of lab market dynamics in general, cross-period
ubject learning and experience.

ppendix. Kesten theorem

We offer an intuitive explanation for the following theorem
ue to Kesten (1973) and proven differently by Goldie (1991) and
 <

10
hus also known as the Kesten–Goldie theorem; see also Vervaat
1979), among others; for a detailed exposition, see Buraczewski
t al. (2016, Section 2.4.4).

heorem. Let (a, b) be a pair of real-valued random variables.
ssume there is α > 0 such that: E(|a|α) = 1, E[|a|α max(0, log |a|)]
∞, and E(|b|α) < ∞. Assume log |a|, given a ̸= 0, is nonarith-
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etic, and (1 − a)−1b is nondegenerate (nonconstant). Then r d
=

r + b implies prob{r > x} ∼ c+x−α , prob{r < −x} ∼ c−x−α ,
x → ∞, hence prob{|r| > x} = cx−α , c± ≥ 0, c = c+ + c− > 0.

The equation in law

r d
= ar + b (A)

arises, as we saw in the text, as the stationary solution of a RCAR
process, say rt = at rt−1+bt , where (at , bt ) are independent copies
of a generic random pair (a, b). One can think of such process
in various contexts as modeling the state of a system driven by
an exogenous influence b amplified by an endogenous feedback
term ar . A fat-tailed output r can of course result directly from
a fat-tailed input b (Grincevićius, 1975; Grey, 1994). But, more
surprisingly, as Kesten originally proved, a fat-tailed, power-law,
output r can emerge from a light–tail pair (a, b) through feedback
amplifications. (For our purpose, a variable is fat-tailed if one of
its moments is infinite; power laws are important examples.)

We are interested in the tail behavior of the distribution of the
output r , finding a function

H(x) ∼ prob{|r| ≥ x}, x → ∞.

Provided ar ̸= 0, we can write (A) as follows:

|r| d
= |ar|(1 + |b/ar|). (B)

Assuming b is ‘‘relatively light-tailed’’, |b/ar| is ‘‘negligible’’ for big
realizations of r , hence we have prob{|r| ≥ x} ∼ prob|r| > x/|a|,
and by iterated expectations (integrating across the distribution
of a) one gets the functional equation

H(x) = Ea[H(x/|a|)]. (C)

For real numbers x and y ̸= 0, assume there is a function h(y)
such that30

H(x/y) = H(x)h(y). (D)

Set y = |a| in (D) to get H(x/|a|) = H(x)h(|a|), which in view
of (C) implies

Ea[h(a)] = 1. (E)

Set x = 1 in (D) to get H(1/y) = H(1)h(y), hence

h(y) = H(1/y)/H(1). (F)

Thus (D) becomes H(x/y) = H(x)H(1/y)/H(1), which in terms of
z = 1/y and h(x) = H(x)/H(1) reads

h(xz) = h(x)h(z). (G)

The only continuous solution to (G) is the power law h(x) = Cx−α ,
so

H(x) = H(1)x−α. (H)

Going backward, we get, from (F), h(|a|) = |a|α , and (E) becomes

E(|a|α) = 1. (I)

To summarize the steps:

1. The power law H(x) = H(1)x−α holds asymptotically: prob{|r|
≥ x}/H(x) → 1, x → ∞.

2. The feedback component is the crucial one in the emergence
of the power law, since b/ar is assumed small.

30 Needless to say, the crucial step is precisely the justification of (D):
he ongoing exercise is merely intended to demystify the emergence of the
mportant Eq. (I), rather than to sketch a proof.
11
3. The crucial step assumes existence of the function h, in par-
ticular existence of α > 0 such that Ea[h(a)] = E(|a|α) = 1, a
necessary condition of which is prob{|a| > 1} > 0 (otherwise
E(|a|α) < 1). Thus the emergence of the power law is due to
the amplifying feedbacks, namely events {a > 1}. Interestingly
the power law tail is determined entirely by the feedback
variable a, through the equation E(|a|α) = 1.
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