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A B S T R A C T   

Ride-sourcing services have had a disruptive impact on urban mobility. However, the perceived 
risk of contracting the COVID-19 virus while using these services has negatively affected people’s 
willingness to travel by this mode. Therefore, it is essential to understand the factors influencing 
ride-sourcing usage during and after the pandemic. This study utilized data collected through 
stated preference experiments to model mode choice decisions during and after the pandemic. 
The study applied both theory-driven integrated choice and latent variable (ICLV) models and 
data-driven multi-task learning (MTL) deep neural network framework. The study found that the 
MTL models achieved the highest prediction accuracies. Additionally, econometric information 
was derived from both ICLV and MTL models. The marginal effects of level-of-service (LOS) 
variables were largely agreed between the ICLV and MTL models. However, only the latent 
variables from the ICLV models presented meaningful behavioural interpretations. The study 
found that individuals who believed there was greater risk associated with ride-sourcing during 
the pandemic were less likely to use these services. The ICLV model interpretations also indicate 
that the perceived safety of using ride-sourcing services is higher during the post-pandemic period 
compared to during the pandemic period. This finding provides reassurance regarding the re-
covery and growth of ride-sourcing usage in the post-pandemic era.   

1. Introduction 

Ride-sourcing service has disrupted urban mobility, primarily by affecting travel patterns and inducing travel demand (Clewlow 
and Mishra, 2017; Erhardt et al., 2019). The service can improve the accessibility of urban dwellers without private vehicle access 
(Brown and Williams, 2021). Ride-sourcing usage has been impacted by the pandemic, as evidenced by the significant declines in 
ridership and the suspension of shared ride-sourcing due to safety concerns (Bogage, 2020; Lee, 2020). The pandemic and the resulting 
public health policies have produced short-term disruptions in travel behaviour that have the potential to have long-term impacts on 
travel mode choices (Khamis, 2021). Prior studies have found that the pandemic has reduced the willingness to use shared modes, such 
as public transit and ride-sourcing, primarily due to the attitudes and perceived risk associated with these modes (De Vos, 2020; Loa 
and Habib, 2021; Mashrur et al., 2022). This shift has imposed challenges for ride-sourcing services (Kong et al., 2020; Loa et al., 
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2021d; Tirachini, 2020). Given the substantial impact of ride-sourcing on travel behaviour, it is essential to understand the pandemic’s 
short- and long-term impacts on ride-sourcing use. 

This study examines the factors influencing the decision to use ride-sourcing services during and after the pandemic using stated- 
preference (SP) data. The study applies both theory-driven (discrete choice) and data-driven (machine learning) modelling techniques, 
and evaluates the conformity and complementarity of the modelling results (Van Cranenburgh et al., 2022). For the data-driven 
approach, multi-task learning (MTL) deep neural networks (DNN) models are developed to capture the intra-personal correlation 
between mode choices during and after the pandemic (Wang et al., 2020a). The MTL framework is a variant of the multi-layer per-
ceptron (MLP) structure. The MTL can jointly predict multiple related tasks or outcomes. It leverages the shared information between 
the multiple related tasks to improve model performance. In the case of this study, the intra-personal correlation between a re-
spondent’s during-pandemic and post-pandemic mode choices might exist; therefore, the MTL framework is utilized to jointly model 
potentially correlated choices. 

Previous studies have confirmed that perceived risks provoked by the pandemic were determinants in travellers’ choice of using 
shared mobility (Mashrur et al., 2022; Rahimi et al., 2021). Thus, modelling latent variables is important for examining the influence of 
the pandemic on travel mode choice. To this end, theory-driven integrated choice and latent variable (ICLV) models are also estimated. 
ICLV models considered attitudes, opinions and perception as latent variables in the systematic utility function (Ben-Akiva et al., 2002; 
Kamargianni et al., 2015). The model systematically captures unobserved latent variables through the multiple indicators multiple 
causes (MIMIC) model (Ben-Akiva et al., 2002; Kamargianni et al., 2015). The ICLV model ensures straightforward econometric 
interpretability of the effect of latent variables in the choice-making process. 

Van Cranenburgh et al. (2022) raised the question on the possibility of integration of machine learning (ML) and discrete choice 
paradigm. They recognized that improving the explainability of ML models could lead to greater application of ML techniques in 
choice modelling. Recently, several studies delivered early wins on deriving econometric information from ML models (Wang et al., 
2020b; Zhao et al., 2020). However, their inference was limited to socio-economic and level-of-service (LOS) variables. This study 
extends the experiment by extracting econometric information of attitudinal variables from ML models. This exercise sheds light on the 
applicability of state-of-art ML models to infer the effects of latent variables on choice outcomes. 

In a nutshell, this study aims to contribute to the literature from the following perspectives. Firstly, this study provides empirical 
evidence on factors influencing ride-sourcing use and how their influence varies based on the pandemic context. This information can 
contribute to understanding the nature of ride-sourcing use, its subsequent impacts on the transportation system and the environment, 
and the applicability of the findings of pre-pandemic ride-sourcing studies, in the post-pandemic period. Secondly, this study dem-
onstrates the applicability of the novel MTL-DNN framework on a stated-preference dataset with intra-personal correlation. This paper 
contributes by showcasing how to exploit the strengths of the MTL model with specific SP experimental designs. The SP design asked 
respondents to make mode choice decisions for the same trip in two contexts: 1) if the trip was made during the pandemic; 2) if the trip 
were to be made after the pandemic. The design artificially induces intra-personal correlation between choice scenarios. Thirdly, this 
study contributes to collective efforts of integrating the data-driven and theory-driven paradigms. The study evaluates the conformity 
and complementarity of the modelling results from the two modelling paradigms, examining the feasibility of merging the two 
paradigms. 

The remainder of the paper is organized as follows: in Section 2, a review of relevant studies is presented. Section 3 describes the 
data used in this study. Section 4 presents the methodology. Section 5 presents modelling results. Finally, Section 6 concludes the 
study. 

2. Literature review 

The shift in modal preferences that resulted from the pandemic has been attributed primarily to its impacts on attitudes and 
perceptions of risk (De Vos, 2020). Specifically, there is evidence that attitudes towards private vehicles and active modes have become 
more positive or remained unchanged. In contrast, public transit and ride-sourcing attitudes have become more negative (De Haas 
et al., 2020; Ozbilen et al., 2021; Rahimi et al., 2021; Shamshiripour et al., 2020). It has resulted in a decline in ride-sourcing trips and 
reduced ride-sourcing frequency (City of Toronto, 2021; Loa et al., 2021b; Matson et al., 2021). Additionally, the belief that the risk 
associated with travel has increased due to the pandemic has been found to influence the frequency of ride-sourcing use during the 
pandemic (Loa et al., 2021b). 

However, there is also evidence that certain individuals have increased ride-sourcing usage due to the pandemic. For example, Loa 
et al. (2021b) reported that 8% of respondents increased their ride-sourcing use, with the most common reasons being the desire to 
avoid crowded areas and their reluctance to use transit. A similar shift was reported by Costa et al. (2022), who found that 
ride-sourcing use has declined among car users and increased among transit users. The shift from public transit to ride-sourcing 
persisting post-pandemic could result in an increase in both vehicle-kilometers travelled and emissions, due to the increase in the 
number of ride-sourcing trips and deadheading among drivers. Notably, there is evidence that ride-sourcing use has recovered more 
strongly than transit ridership, which could stem from a continued apprehension toward using shared modes (Dzisi et al., 2021). The 
shift in modal preference and policies restricting ride-sourcing services during the pandemic may have significant impacts on the 
transportation system and the environment. Through Monto-Carlo Markov Chain simulations, Yang et al. (2022) estimated that the 
suspension of ride-sourcing services could result in a 60% reduction in vehicle emissions, although it would reduce travel efficiency at 
the same time. 

Using ML approaches to model mode choice decisions has been a rising area of research in recent years. Compared to discrete 
choice models, ML models are shown to have higher prediction accuracies (Golshani et al., 2018; Lee et al., 2018; Ma and Zhang, 

Y. Liu et al.                                                                                                                                                                                                             



Journal of Choice Modelling 48 (2023) 100431

3

2020). The ML approaches that have been applied for mode choice modelling include tree-based algorithms (Ma and Zhang, 2020; 
Moons et al., 2007), support vector machines (Moons et al., 2007), and various DNN models (Golshani et al., 2018; Lee et al., 2018; Ma 
and Zhang, 2020). In particular, DNN models have been increasingly adopted in transportation studies due to their excellent per-
formance and flexible structures. For example, Ma and Zhang (2020) developed a DNN model with entity embeddings to predict travel 
mode choices, achieving an overall accuracy of 88.3% with four travel modes: driving, walking, cycling, and public transit. The 
structure of a DNN model can be tailored specifically for the given datasets and objectives of a study. The MTL structure utilized in this 
study is a special form of DNN designed to jointly model multiple related tasks. It is a popular DNN structure widely applied in image 
classification (Bensaoud and Kalita, 2022; Kuang et al., 2017) and natural language processing (Chen et al., 2021). However, MTL 
models are rarely utilized in transportation and choice modelling. The only such study is Wang et al. (2020a), who used an MTL DNN 
framework to jointly estimate travel mode choices from revealed preference (RP) and SP data. They argued that the MTL DNN 
framework is theoretically appealing in jointly analyzing RP and SP mode choice decisions. The advantages of this framework include 
its automatic feature learning ability and flexible modelling structure. It can be applied to any related tasks (i.e., RP and SP mode 
choices), and flexibles constraints may also be applied to capture the similarities and differences between the related tasks (Wang et al., 
2020a). They also discovered that the performance of the MTL DNN model is comparable to that of a nested logit (NL) model (Wang 
et al., 2020a). 

In terms of model interpretability, there have been some recent developments in interpreting the effects of explanatory variables 
from DNN models. Particularly for choice analysis, Wang et al. (2020b) argued that DNN models can be interpreted and analyzed for 
economic information such as choice probabilities, market share, social welfare, and elasticities. They proposed both function-based 
interpretation and gradient-based interpretation for extracting economic information from DNN models and found such information to 
be reasonable and more flexible than those of discrete choice models. However, Wang et al. (2020b) also pointed out that DNN models 
are highly sensitive to hyperparameters and initialization, and their probability functions can be locally irregular. These can poten-
tially limit the interpretation of DNN models and need to be addressed. Zhao et al. (2020) also investigated the behavioural outputs and 
variables’ importance of a neural network (NN) model for travel mode choice. They compared the marginal effects and elasticities of 
the variables computed from the NN model and a multinomial logit (MNL) model. They found that derived marginal effects and 
elasticities have the same signs but rather different magnitudes. In addition to economic and behavioural information, the relative 
importance of the explanatory variables on model outputs is also examined by studies using DNN to model travel mode choices. Several 
methods have been proposed to compute variable importance for DNN models, such as absolute values of weights (Zhang et al., 2020; 
Zhao et al., 2020) and Garson’s algorithm (Golshani et al., 2018). As an extension of the work stated above, this paper compares the 
economic information extracted from ICLV models with MTL models. None of the existing studies summarized above contained 
attitudinal factors. This paper can service as a reference for future development of inferring latent variables in machine learning 
models. 

Fig. 1. Comparison of key socio-economic attributes – samples vs. census.  

Y. Liu et al.                                                                                                                                                                                                             



Journal of Choice Modelling 48 (2023) 100431

4

3. Data description 

3.1. Survey design 

The data used to develop the models were collected as part of the study into the use of shared travel modes (SiSTM). The goals of 
SiSTM were to understand the impacts of the pandemic on the use of ride-sourcing in the Greater Toronto Area (GTA) and the influence 
of attitudes on ride-sourcing use. Two cycles of the SiSTM survey were conducted – the first (“SiSTM-1”) in July 2020 and the second 
(‘SiSTM-2″) in July 2021. The SiSTM-1 and SiSTM-2 surveys asked respondents to provide information on personal and household 
attributes, their pre-pandemic travel behaviour, and the impacts of the pandemic on their ride-sourcing usage. Respondents were also 
asked to answer a series of attitudinal questions about the during- and post-pandemic periods. Additionally, respondents were asked to 
complete a series of SP experiments on travel mode choices for commute and non-commute trips during the pandemic and post- 
pandemic periods. 

Both surveys were conducted using a web-based interface, with a random sample of market research panel members living in the 
GTA invited to complete the survey. Non-monetary compensation was provided to participants upon completion of the survey by the 
market research company. After the data were cleaned and invalid responses were removed, 920 and 806 completed responses 
remained for SiSTM-1 and SiSTM-2, respectively. For more information on the SiSTM-1 and SiSTM-2 surveys, see Loa et al. (2021a) and 
Loa et al. (2021c), respectively. This study uses the responses from residents of Toronto due to the higher levels of ride-sourcing and 
transit use compared to the surrounding municipalities; there were 400 and 364 responses from Toronto residents in SiSTM-1 and 
SiSTM-2, respectively. 

3.2. Sample description 

The distributions of key socio-economic attributes in the two samples are compared to the 2016 Canadian Census in Fig. 1. Re-
spondents under the age of 24 and over 65 were under-represented in the sample, while those between the ages of 25 and 44 were over- 
represented. This is likely due to the administration of the survey to the members of a market research panel and the use of a web-based 
survey interface. Similarly, individuals from households earning less than $40,000 and over $150,000 annually were under- 
represented, while those from households earning between $40,000 to $150,000 were over-represented. As shown in Fig. 2, most 
respondents possessed a driver’s license and had access to a private vehicle, while slightly less than half owned a transit pass at the time 
of the survey. 

SiSTM-1 and SiSTM-2 included attitudinal questions pertaining to both the during-pandemic and post-pandemic periods. As 
outlined in Fig. 3, most respondents believe that the pandemic increased the risk associated with travel and with using shared mobility 
services. However, compared to SiSTM-1 respondents, SiSTM-2 respondents were less likely to believe that the level of risk at the time 
of the survey was greater than that of the pre-pandemic period. Moreover, SiSTM-2 respondents were more likely to indicate that they 
would feel safe using taxis and ride-sourcing during the pandemic. Similarly, as shown in Fig. 4, SiSTM-1 respondents were more likely 
to report apprehension about spending time outside their homes and increasing their reliance on online orders. Conversely, a greater 
percentage of SiSTM-2 respondents indicated that they would like to return to their normal routine despite COVID-19 remaining a 
public health threat. 

SiSTM-2 also included several new attitudinal questions to help understand how attitudes and perceptions of risk changed during 
the pandemic. As summarized in Fig. 5, the use of ride-sourcing and taxi is influenced by the severity of the public health measures that 
are currently in place. Additionally, roughly half of the respondents indicated their concern regarding COVID-19 increases when public 
health measures become more restrictive. Besides, the responses to the attitudinal questions highlight how the change in the level of 
concern about COVID-19 differs among members of the sample. Specifically, while 43% of respondents indicated they were less 
concerned about COVID-19 than earlier in the pandemic, 37% indicated more concern. 

SiSTM-1 and SiSTM-2 respondents were also asked about their attitudes toward travel in the post-pandemic period, and the results 
are illustrated in Fig. 6. Overall, SiSTM-2 respondents were less likely to believe that there would be more risk associated with using 
ride-sourcing post-pandemic and less willing to spend time outside their homes. Additionally, SiSTM-2 respondents were more likely to 

Fig. 2. Mobility tool ownership – SiSTM-1 vs. SiSTM-2.  
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believe that daily life would return to normal post-pandemic; however, roughly one-quarter of respondents believe that post-pandemic 
life will differ from pre-pandemic life. 

3.3. Experimental design 

Survey respondents were also asked to complete a series of SP experiments concerning travel mode choices at different pandemic 
stages. The experiments included eight modes – auto-drive (i.e., drive yourself), auto-passenger (i.e., driven by someone you know), 
public transit, exclusive ride-sourcing, shared ride-sourcing, taxi, bicycle, and walking. The two driving modes were only available to 

Fig. 3. Comparison of during-pandemic travel attitudes.  

Fig. 4. Comparison of during-pandemic perceptions of risk.  
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Fig. 5. Summary of attitudinal questions only included in SiSTM-2.  

Fig. 6. Comparison of post-pandemic attitudes.  

Fig. 7. An example of the SP experiments used in the SiSTM surveys.  
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those who indicated they had access to a private vehicle; all other modes were always available. The alternatives and attributes 
included in the SP experiments are demonstrated in Fig. 7. The SP experiments were designed based on a hypothetical commuting and 
non-commuting trip, with the most recent iteration of the regional household travel survey being used to determine the reference trip 
distances. Specifically, the average trip distances were used for motorized modes (i.e., private vehicle, taxi, and ride-sourcing) and 
public transit, while the 95th percentile values were used for active modes. 

The reference distance values were then used to define the reference travel time and cost values for each mode and each trip 
purpose, based on a set of assumed travel speeds and per-distance costs. The levels of the travel time and cost attributes were 
determined by modifying the reference values using information from previous stated preference studies regarding mode choices. The 
values of the waiting time attribute for public transit were determined based on the service standards of the local transit agencies. In 
contrast, the values of the walking time attribute were based on established standards for the maximum access distance for transit 
(Vuchic, 2005). Besides, the values for the taxi and ride-sourcing modes were based on the values used by Weiss et al. (2019). In 
addition to the attributes presented in Fig. 7, two contextual variables were included in the SP experiments of SiSTM-2 – the number of 
vaccine doses received by the respondent and whether mass vaccination has been achieved. 

The D-efficient design method was applied in the experimental design software Ngene to produce 12 experimental designs for both 
commuting and non-commuting trips. Each respondent completed a total of 12 choice experiments. Each respondent was presented 
with three randomly selected experiments for each trip purpose and was asked to select their preferred mode if the trip was made 
during the pandemic period. Respondents were then presented with the same set of choice experiments and asked to select their 
preferred mode if the trip was made in the post-pandemic period. This design aimed to capture the difference in respondents’ choices 
under different external contexts. In addition, the design deliberately creates a correlation between the during-pandemic (DP) and 
post-pandemic (PP) choice scenarios. 

As shown in Figs. 8 and 9, SiSTM-2 respondents were more likely to choose the public transit, taxi, and bicycle alternatives and less 
likely to choose the driving modes. This could stem from changes in attitudes and perceptions of risk over the pandemic and the 
increases in cycling observed in the first year of the pandemic (Budd and Ison, 2020; Marsden et al., 2021). 

4. Methodology 

4.1. Deep neural network (DNN) models 

4.1.1. Multi-layer perceptron (MLP) model 
DNN models are popular ML models that have been applied in various fields. They are known for their flexible structures and the 

ability to learn nonlinear relationships between input variables (Golshani et al., 2018). One of the most commonly used structures of 
DNN models is the fully connected feedforward network, also known as the multi-layer perceptron (MLP) model. An MLP model 
comprises one input layer, several hidden layers, and one output layer. Each layer contains a set of neurons. The neurons in the input 
layer represent the explanatory variables, and the classification or regression results are expressed through the neurons in the output 
layer, depending on whether it is a classification or regression model. In this study, classification models are utilized to predict mode 
choices; therefore, the output layer generates the estimated probabilities of being classified as each alternative mode. The numbers of 
hidden layers and their corresponding neurons are hyperparameters of the model that need to be tuned to fit the dataset better. The 
structure of the MLP model developed in this study is shown in Fig. 10, which contains four hidden layers. There are 200 neurons in 
each of the first two hidden layers, and 100 neurons in the last two hidden layers. This model structure is consistent with the structure 
of the MTL model used in this study. 

The underlying mechanisms of the DNN models are pattern association and error correction (Hensher and Ton, 2000). The in-
formation on pattern association is processed through the neurons in each layer. Each neuron receives data from the connected neurons 
in the previous layer and then processes them through a nonlinear activation function. Equation (1) provides a general formulation of 
this process for a neuron u: 

Fig. 8. Comparison of modes chosen in the during-pandemic experiments.  

Y. Liu et al.                                                                                                                                                                                                             



Journal of Choice Modelling 48 (2023) 100431

8

hu =φ

(
∑M

m=1
WmuXm + βu

)

(1)  

where, 

M = number of neurons in the previous layer, 
Xm = input to the current neuron u from the previous layer that contains M neurons, 
Wmu = weight that connects the previous neuron m to the current neuron u, 
βu = bias term of the current neuron u, 
hu = output of the nonlinear activation function φ( ). 

The outputs of the current layer hi then serve as the inputs to the subsequent layer. Several types of nonlinear activation functions 
exist, such as sigmoid, hyperbolic tangent, step, and rectified linear unit (ReLU) functions (Lee et al., 2018). This study utilizes the 
ReLU function as the nonlinear activation function in all hidden layers of the models. The formulation of the ReLU function is shown in 
Equation (2). 

ReLU(Zi)=

{
Zi if Zi ≥ 0
0 if Zi < 0 (2) 

The ReLU activation function addresses the vanishing gradient problem and its detrimental impact on estimating weights (Nair and 
Hinton, 2019). The gradient descent method adjusts the weights to minimize the errors between predictions and targets. Such errors 
are computed through a loss function. The cross-entropy loss function is utilized in this study, whose formulation is presented in 
Equation (3). It is a common loss function used for classification models. The softmax function shown in Equation (4) is the activation 
function of the output layer, which is used to estimate the probability of choosing each choice alternative. The alternative with the 
highest probability is then determined to be the predicted choice of the observation. 

LCE = −
1
M
∑M

m

∑K

k=1
tk log Pk (3)  

Fig. 9. Comparison of modes chosen in the post-pandemic experiments.  

Fig. 10. Structure of MLP model.  
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Pk = softmax(Z)=
exp(zi)

∑K
k=1 exp(zk)

(4)  

where, 

M = number of observations in the dataset, 
K = number of choice alternatives to be classified, 
tk = a binary indicating whether alternative k is the correct prediction, 
Pk = the predicted probability of choice being alternative k, 
Z = the input to the softmax function located at the output layer. 

4.1.2. Multi-task learning (MTL) model 
The multi-task learning (MTL) framework is a DNN framework that leverages the shared information between multiple learning 

tasks to improve the prediction accuracy for each task (Zhang and Yang, 2018). This framework is often applied when multiple related 
tasks need to be identified from the same datasets. In this study, the related tasks are the survey respondents’ mode choices for the 
during- and post-pandemic SP scenarios. Since the SP scenarios are the same for the two periods, the explanatory variables remain 
constant across the two related tasks. Based on this characteristic of the dataset, the structure of the MTL model is developed, as shown 
in Fig. 11. The MTL model includes four hidden layers, similar to the MLP model. However, the difference is that there are shared and 
task-specific layers in the MTL model. The first two hidden layers are shared layers that are fully connected and trained by data from 
both tasks. Each of the shared layers has 200 neurons. Following the shared layers are task-specific layers with 100 neurons. Two 
task-specific layers are fully connected for each task and can only be trained by data from that specific task. The shared layers are to 
capture the similarities between the two tasks, and the task-specific layers are to learn the unique characteristics of each task (Caruana, 
2004; Wang et al., 2020a). The MTL model adopts the same activation functions as the MLP model. The cross-entropy loss is calculated 
for each task, and the model is trained by minimizing the average cross-entropy loss of the two tasks. 

4.1.3. Model training and regularization 
Other than the number of hidden layers and neurons, the hyperparameters of the DNN models also include the optimization al-

gorithms, learning rate, batch size, training iterations, and regularization methods. The hyperparameters were tuned using the random 
search method and evaluated with a 5-fold cross-validation process (Bergstra and Bengio, 2012; Zhang et al., 2020). 

Different optimization algorithms were tested for the models, including stochastic gradient descent, the Adagrad, and the Adam 
algorithms. The Adam optimization algorithm is chosen for both MLP and MTL models to minimize the average cross-entropy loss. It 
extends the stochastic gradient descent (SGD) optimization algorithm. Unlike the classical SGD, which employs a constant learning 
rate to update all parameters, the Adam optimizer generates adaptive learning rates for different parameters by estimating the first and 
second moments of gradients (Kingma and Ba, 2015). Its effectiveness has been exemplified in many deep learning applications 
(Kingma and Ba, 2015). 

The learning rate determines the proportion of parameters to be updated along the gradient direction (Ma and Zhang, 2020). The 
search space for the learning rate was between 1.00E-05 and 0.01, and a learning rate of 5.00E-05 was chosen because it yielded the 

Fig. 11. Structure of MTL model.  
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best model performance. The models are trained over 2000 iterations. The model parameters are updated in each iteration through a 
random subset of the training dataset, also known as a mini-batch. The search space for the batch size was between 10 and 100, and a 
batch size of 100 was selected for all models after hyperparameter tuning. Although a larger batch size can improve computational 
efficiency (Masters and Luschi, 2018), this batch size is chosen because it achieved better performance during hyperparameter tuning. 

The dropout regularization method is employed in both MLP and MTL models to reduce overfitting. Dropping out means 
temporarily removing a neuron and all its connections from the network (Srivastava et al., 2014). During training, a neuron can be 
randomly removed with a probability of p. This is to introduce noise and break up the potential co-adaptations between layers, so that 
the model predictions do not rely too much on a few particular neurons. The dropout regularization is only applied during training. 
When testing the model, the weights of the retained neurons are rescaled by multiplying a probability of 1 − p to offset the effect of the 
dropout (Ma and Zhang, 2020; Srivastava et al., 2014). The search space for the dropout probability p was between 0.1 and 0.5, and a 
value of 0.25 was ultimately applied to all models after hyperparameter tuning. 

An extensive number of variables can be extracted from the collected data. Because of the automatic feature learning ability of the 
DNN, the variable selection process was not conducted through a specific method before developing the models. All variables believed 
to be relevant to mode choice decisions are used in the models, including variables related to socio-economic attributes, trip char-
acteristics of each mode, and attitudes towards the pandemic. The attitudinal variables are treated as continuous variables ranging 
from 1 to 5, with 1 being strongly disagree with the attitudinal statement and 5 being strongly agree with the attitudinal statement. 

Each of the SiSTM-1 and SiSTM-2 datasets is randomly split into a training set and a testing set. The ratio between the training and 
testing set is 5:1. A 5-fold stratified cross-validation is applied to the training set for hyperparameter tuning and out-of-sample vali-
dation. Eventually, the performance of the tuned model is evaluated using the testing set. When developing the models, it was 
discovered that the unbalanced datasets could negatively impact the performances of the models, as the model tends to favour the 
dominant mode to minimize loss. To mitigate this issue, the random over-sampling technique is applied to the training datasets, so that 
all modes have an equal number of observations. Since resampling techniques can only be conducted based on one dependent variable, 
the under-represented alternatives are randomly over-sampled based on the during-pandemic mode choices. 

4.1.4. Availability of mode choice alternatives in DNN models 
The set of available modal alternatives (i.e., choice set) is often different across individuals. For example, the auto-drive mode is not 

expected to be available for an individual who does not have a driver’s license or access to a private vehicle. Therefore, identifying the 
choice set is an important step in mode choice modelling. In discrete choice models, the availability of a modal alternative is usually 
addressed through the use of a binary indicator when calculating the probability of choosing each mode. However, the identification of 
choice sets is less investigated in studies using ML methods to model mode choice. Most ML studies assume that all modal alternatives 
are available to all trip-makers. To the best of our knowledge, only two studies attempted to incorporate choice set identification in 
their DNN models by modifying the softmax function shown in Equation (5) and excluding the unavailable modes (Nam et al., 2017; 
Wang et al., 2020a). 

This study proposes an alternative approach by exploiting the learning ability of the DNN model. The SP design used in this study 
assumes that all modes are available for all survey respondents, except for auto-drive and auto-passenger. For respondents who do not 
have a driver’s license or a private vehicle in the household, the SP design automatically excludes auto-drive and auto-passenger in 
their choice sets. When developing the MLP and MTL models, a binary variable is added as a feature to reflect the availability of these 
modes. The models are expected to learn the relationships between these variables and the choices and discover that auto-drive or 
auto-passenger cannot be chosen when this variable is zero. A preliminary comparison was conducted between this method and the 
approach of modifying the softmax function. The results show that there was no obvious difference in terms of prediction accuracies, 
and the former took less time to train the models. Nevertheless, to fully investigate the effectiveness of this approach, future studies 
should conduct more in-depth analysis using different datasets with various choice-set availability conditions. 

4.2. Discrete choice models 

To improve the robustness of this study, discrete choice models are also estimated to compare with the MTL models. The discrete 
choice models are to provide a benchmark reference to the interpretation of the MTL models. In particular, integrated choice and latent 
variable (ICLV) models are developed to account for the effects of attitudes on mode choice decisions. There are two components in an 
ICLV model: a discrete choice model and a latent variable model (Ben-Akiva et al., 2002). The MNL model is utilized as the discrete 
choice component of the ICLV models. The systematic utility function of a choice alternative k for individual a is presented in Equation 
(5). 

Vk = βkxa + μkLVa + εk (5)  

where xa is a set of variables, including socio-economic and level-of-service variables, and LVa is a set of latent variables to account for 
attitudinal influence. The βk and μk are the estimated coefficients, and εk is a random error term with Type I Extreme Value distri-
bution. 

The multiple indicators multiple causes (MIMIC) model is applied to establish the relationship between the latent variables, socio- 
economic variables observed values of the attitudinal variables. The formulation is shown in Equations (6) and (7) (McFadden, 1986; 
Train et al., 1987). 
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LVa = λSa + ηa (6)  

where LVa is the latent variable, Sa is a set of socio-economic variables with estimated coefficients λ, and ηa is a random error term that 
has a standard normal distribution. 

The attitudinal statements are the indicators of their corresponding latent variable and are expressed through a measurement 
equation, as shown in Equation (7) (McFadden, 1986; Train et al., 1987). 

Ia = γLVa + va (7)  

where Ia is the observed value of the indicator (i.e., attitudinal statement), LVa is the latent variable with an estimated coefficient γ, and 
va is the random error with a standard normal distribution. 

5. Modelling results 

5.1. Model performance 

This section presents the results of ICLV, MTL and MLP models estimated for each survey cycle. Fig. 12 shows the workflow of each 
model for each survey cycle. In total, five models are estimated for each survey cycle. ICLV and MLP models are estimated and trained 
for each DP and PP scenario, separately. MTL model jointly takes both DP and PP scenario in the shared layer but make prediction. Both 
models take socio-economic variables as input. The ICLV uses latent variables calculated using Equation (6). Conversely, MTL and MLP 
directly use attitudinal variables as input variables. 

Table 1 summarizes the overall prediction accuracies of the best-performed models. The prediction accuracy of each model is 
calculated on the testing datasets. Overall, the MTL models outperform the ICLV and MLP models by significant margins in both 
datasets. Similar observations were also reported by Wang et al. (2020a), who found that MTL models can outperform nested logit 
models by around 5% when predicting mode choices using RP-SP data. Notably, the MTL models consistently demonstrate higher 
accuracy compared to the MLP models. One of the significant factors contributing to the performance improvement of the MTL model 
is its ability to utilize correlated choices. The comparison in this study is made in a carefully designed controlled setting. Both MTL and 
MLP models are very alike. The models were trained on the same dataset with turned hyperparameters to achieve the highest possible 
accuracy. The only difference is that MTL is equipped with shared layers aiming to capture any shared information between DP and PP 
scenarios. In this study, induced correlation from the same respondents is the major known source of the shared information that can 
be utilized by the MTL. This correlation is induced purposely by the experimental design. Indeed, in the data-driven method, it is 
challenging to conclude with certainty the improved efficiency is entirely brought by utilizing shared correlated choices. This prop-
osition is derived from the model performance and rationing model structure difference between MTL and MLP. Future studies could 
perform rigorous investigations such as activation mapping to verify the proposition. 

Given the higher prediction accuracies of the MTL models, their model performances are discussed in detail in the following 
sections. The confusion matrices of the MTL model results are presented in Table 2. A confusion matrix includes the observed and 
predicted numbers of observations of each modal alternative, along with their recall and precision. Equations (8) and (9) show the 
computation for recall and precision, respectively (Liu et al., 2021). The recall value of an alternative can be interpreted as its pre-
diction accuracy. 

Fig. 12. Graphic illustrations of models for each survey cycle.  
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Recall=
samples that are accurately predicted as alternative N

all samples of alternative N
(8) 

Table 1 
Summary of model performance.  

Model SiSTM-1 (DP) SiSTM-1 (PP) SiSTM-2 (DP) SiSTM-2 (PP) 

ICLV 50.2% 46.4% 48.5% 45.6% 
MLP 51.5% 45.7% 56.2% 51.5% 
MTL 65.0% 61.2% 69.1% 70.6% 

*DP: during-pandemic, PP: post-pandemic. 

Table 2 
Confusion matrices of MTL models.  

SiSTM-1 MTL Predicted Mode (During-Pandemic) Overall Accuracy 

Observed Mode Walk AD AP PT ERS SRS Taxi Cycling Total Recall 

Walk 19 11 3 1 1 0 0 0 35 54.3% 65.0% 
AD 8 163 15 5 2 1 1 1 196 83.2% 
AP 2 16 36 4 1 0 0 1 60 60.0% 
PT 5 14 1 19 0 2 0 1 42 45.2% 
ERS 0 7 2 4 10 1 1 1 26 38.5% 
SRS 0 2 3 0 3 2 0 0 10 20.0% 
Taxi 0 1 2 1 1 2 1 0 8 12.5% 
Bicycle 1 3 4 0 0 0 1 3 12 25.0% 
Total 35 217 66 34 18 8 4 7 389 – 
Precision 54.3% 75.1% 54.5% 55.9% 55.6% 25.0% 25.0% 42.9% – –  

SiSTM-1 MTL Predicted Mode (Post-Pandemic) Overall Accuracy 

Observed Mode Walk AD AP PT ERS SRS Taxi Cycling Total Recall 

Walk 11 7 4 3 1 0 0 0 26 42.3% 61.2% 
AD 2 150 9 6 1 1 1 2 172 87.2% 
AP 1 25 32 10 0 1 0 1 70 45.7% 
PT 6 15 6 32 3 0 0 1 63 50.8% 
ERS 2 11 0 6 6 2 1 0 28 21.4% 
SRS 1 4 2 1 4 5 1 0 18 27.8% 
Taxi 0 0 0 0 2 0 0 0 2 0.0% 
Bicycle 3 2 0 1 1 1 0 2 10 20.0% 
Total 26 214 53 59 18 10 3 6 389 – 
Precision 42.3% 70.1% 60.4% 54.2% 33.3% 50.0% 0.0% 33.3% – –  

SiSTM-2 MTL Predicted Mode (During-Pandemic) Overall Accuracy 

Observed Mode Walk AD AP PT ERS SRS Taxi Cycling Total Recall 

Walk 23 3 2 7 0 0 0 2 37 62.2% 69.1% 
AD 2 126 6 9 1 1 0 0 145 86.9% 
AP 2 11 24 3 2 0 1 0 43 55.8% 
PT 9 9 4 54 1 0 0 0 77 70.1% 
ERS 0 4 1 7 6 2 0 0 20 30.0% 
SRS 0 2 2 4 3 3 1 0 15 20.0% 
Taxi 1 1 2 0 0 1 4 0 9 44.4% 
Bicycle 2 1 0 1 2 0 0 11 17 64.7% 
Total 39 157 41 85 15 7 6 13 363 – 
Precision 59.0% 80.3% 58.5% 63.5% 40.0% 42.9% 66.7% 84.6% – –  

SiSTM-2 MTL Predicted Mode (Post-Pandemic) Overall Accuracy 

Observed Mode Walk AD AP PT ERS SRS Taxi Cycling Total Recall 

Walk 18 2 2 6 0 1 0 1 30 60.0% 70.6% 
AD 1 119 5 6 2 0 2 0 135 88.1% 
AP 3 9 33 2 3 0 0 0 50 66.0% 
PT 2 12 6 58 4 4 0 1 87 66.7% 
ERS 2 4 0 6 5 0 0 0 17 29.4% 
SRS 0 1 1 1 3 3 0 0 9 33.3% 
Taxi 0 2 1 3 0 0 4 0 10 40.0% 
Bicycle 2 0 0 3 1 3 0 17 26 65.4% 
Total 28 149 48 85 18 11 6 19 364 – 
Precision 64.3% 79.9% 68.8% 68.2% 27.8% 27.3% 66.7% 89.5% – – 

*AD: auto-drive, AP: auto-passenger, PT: public transit, ERS: exclusive ride-sourcing, SRS: shared ride-sourcing. 
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Precision=
samples that are accurately prediected as alternative N

all samples that are predicted as alternatvie N
(9) 

The confusion matrices from the two datasets reveals the same information. The prediction accuracies of the auto drive, auto 
passenger, and public transit are relatively higher than the other modes. This is caused by the significant imbalance between the 
sample sizes of the choice alternatives. None of the other modes has a market share higher than 10%. Even though the resampling 
technique was applied to balance the training data, there is much less information that the models can learn for the underrepresented 
modes. The modal alternatives that generally have the lowest prediction accuracies are exclusive and shared ride-sourcing and taxi. 
Several of these mode choices are incorrectly predicted as auto drive or public transit. The reason may be that they share similar travel 
time as auto trips or similar behavioural patterns as transit trips. Nevertheless, compared with several other studies that included fewer 
modes (Golshani et al., 2018; Lee et al., 2018), the prediction accuracies of the MTL models are still relatively promising. 

5.2. Estimated parameters of ICLV models 

The final specifications of the ICLV models for the SiSTM-1 and SiSTM-2 datasets are summarized in Table 3 and Table 4, 
respectively. For the ICLV models, factor analysis was utilized to identify the latent variables based on the attitudinal statements 
presented in the surveys. Two latent attitudinal variables are identified and included in the ICLV models: 1) perception of increased 
risk associated with using shared mobility during the pandemic, and 2) feeling safe using ride-sourcing services during the pandemic. 
The indicator variables corresponding to each latent variable are summarized in Table A1 in Appendix A. 

In Tables 3 and 4, variables that are statistically significant at the 95% confidence level and have the expected sign are retained in 
the final model. Although the critical value of t-stat is 1.96, some parameters with lower t-stat values are also kept in the final model for 
comparison purposes. Given the length of the tables, we only show the estimated parameters for the choice model component in 

Table 3 
ICLV model specification for SiSTM-1.    

SiSTM-1 (during- 
pandemic) 

SiSTM-1 (post- 
pandemic) 

Variable Mode Coefficient t-stat Coefficient t-stat 

Choice model component 
Alternative specific constant Auto-drive (AD) 0 NA 0 NA 

Auto-passenger (AP) − 1.4575 − 8.4811 − 1.1046 − 5.8464 
Public transit (PT) − 2.2741 − 8.7120 − 1.1395 − 5.3481 
Exclusive ride-sourcing 
(ERS) 

− 2.0296 − 5.3855 − 2.2518 − 9.1727 

Shared ride-sourcing 
(SRS) 

− 3.1743 − 7.5306 − 1.9271 − 3.3496 

Taxi − 3.0239 − 7.4987 − 3.1709 − 8.6621 
Cycling − 3.3390 − 4.3020 − 2.6379 − 3.3619 
Walk − 2.3340 − 2.9859 − 1.8590 − 2.5200 

In-vehicle travel time (min) All motorized modes − 0.0004 − 1.1627 − 0.0114 − 2.4376 
Travel cost ($) All motorized modes − 0.0273 − 2.9099 − 0.0103 − 1.0265 
Travel time (min) Cycling − 0.0187 − 1.2090 − 0.0381 − 2.1103 
Travel time (min) Walk − 0.0198 − 1.3650 − 0.0201 − 1.6192 
Use as a commute mode pre-pandemic and it is a commute trip Auto-drive (AD) 1.4436 7.3717 1.2827 6.9528 

Auto-passenger (AP) 1.0810 3.7583 1.1158 3.8449 
Public transit (PT) 0.7832 3.2391 1.0624 4.8267 
Exclusive ride-sourcing 
(ERS) 

0.4224 0.9521 1.0215 2.4758 

Shared ride-sourcing 
(SRS) 

1.0089 1.9203 0.8337 1.1588 

Cycling 1.5021 2.3794 2.5510 4.5955 
Walk 1.3128 3.9166 1.3501 4.1641 

Number of bikes in household Cycling 0.6420 3.9117 0.5777 4.3683 
Has a transit pass Public transit (PT) 0.3005 1.3444 – – 
Age Exclusive ride-sourcing 

(ERS) 
− 0.0106 − 1.4282 − 0.0213 − 1.8068 

Walk 0.0169 2.1171 0.0085 1.0284 
Perception of increased risk associated with using shared mobility during the 

pandemic 
Walk 0.4275 2.7928 – – 

Feeling safe using ride-sourcing services during the pandemic Auto-passenger (AP) − 0.3206 − 2.4372 − 0.4456 − 2.7102 
Public transit (PT) 0.4567 3.2419 0.2104 1.2405 
Exclusive ride-sourcing 
(ERS) 

0.5133 3.1593 0.4687 2.5580 

Shared ride-sourcing 
(SRS) 

0.7596 4.0349 0.7008 2.4721 

Taxi 0.7478 2.7625 0.6856 2.4128  
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Table 2 and Table 3. The estimated results of the structural model and measurement model components of the ICLV models for SiSTM-1 
and SiSTM-2 are included in Table A2 and Table A3 in Appendix A. 

The estimated coefficients of the SiSTM-1 ICLV models show that the LOS variables (i.e., travel time and cost) have negative signs, 
as expected. One latent attitudinal variable is found to be statistically significant for both the exclusive and shared ride-sourcing 
modes, which is “feeling safe using ride-sourcing services during the pandemic”. This variable has a strong and positive effect on 
both ride-sourcing modes, which is reasonable because people who feel safe using ride-sourcing services are more likely to choose such 
modes. The significance of this latent attitudinal variable demonstrates the impact of attitudes and perceptions of risk on the decision 
to use ride-sourcing. 

By comparing the same parameters between the during- and post-pandemic models, it is observed that the statistical significance of 
in-vehicle travel time is higher in the post-pandemic model than the during-pandemic model, whereas the opposite pattern is noted for 
the latent attitudinal variable. Such an observation suggests that the trip-makers may be more concerned about the perceived safety of 
ride-sourcing modes during the pandemic, whereas travel time becomes more relevant for post-pandemic mode choices. Nevertheless, 
the latent attitudinal variable is statistically significant at a 95% confidence level for both the during- and post-pandemic models, but 
in-vehicle travel time is only statistically significant at around the 70% confidence level in the during-pandemic model. 

The SiSTM-2 ICLV models reveal the same behavioural patterns as the SiSTM-1 models. In addition, another latent attitudinal 
variable – “perception of increased risk associated with using shared mobility during the pandemic” is shown to be statistically sig-
nificant for the exclusive ride-sourcing mode, especially in the during-pandemic model. This variable has a strong and negative effect 
on using exclusive ride-sourcing services, which is also intuitive. Exclusive ride-sourcing services can be considered as a shared 
mobility service, and trip-makers who believe there is more risk associated with using shared mobility are less likely to use them. 

Table 4 
ICLV model specification for SiSTM-2.    

SiSTM-2 (during- 
pandemic) 

SiSTM-2 (post- 
pandemic) 

Variable Mode Coefficient t-stat Coefficient t-stat 

Choice model component 
Alternative specific constant Auto-drive (AD) 0 NA 0 NA 

Auto-passenger (AP) − 1.2939 − 5.8256 − 1.5093 − 6.5763 
Public transit (PT) − 1.4093 − 6.5810 − 1.0267 − 5.5931 
Exclusive ride-sourcing 
(ERS) 

− 2.0360 − 2.8540 − 2.4822 − 8.5657 

Shared ride-sourcing 
(SRS) 

− 1.0142 − 1.7420 − 1.2161 − 1.6178 

Taxi − 1.8704 − 2.6936 − 0.6839 − 0.9698 
Cycling − 2.4728 − 3.7886 − 2.3682 − 4.3833 
Walk − 1.2658 − 1.9211 − 0.3104 − 0.4875 

In-vehicle travel time (min) All motorized modes − 0.0034 − 0.6770 − 0.0139 − 2.9792 
Parking cost ($) Auto-drive (AD) − 0.0188 − 1.2253 − 0.0012 − 2.1109 
Travel time (min) Cycling − 0.0186 − 0.9876 − 0.0194 − 1.1954 
Travel time (min) Walk − 0.0301 − 2.1999 − 0.0495 − 3.3265 
Use as a commute mode pre-pandemic and it is a commute trip Auto-drive (AD) 1.6596 9.7029 1.3348 7.3205 

Auto-passenger (AP) 1.7950 6.4580 1.6798 6.1313 
Public transit (PT) 1.4683 7.6666 1.7202 9.0290 
Exclusive ride-sourcing 
(ERS) 

2.0237 6.5662 1.6134 4.4285 

Shared ride-sourcing 
(SRS) 

1.0221 2.6294 1.5148 3.8171 

Taxi 1.2751 2.6614 1.2480 2.2905 
Cycling 2.3755 4.2451 2.1541 4.4539 
Walk 1.7638 5.3892 1.3267 3.3116 

Number of bikes in household Cycling 0.3949 3.0123 0.4866 3.2936 
Age Exclusive ride-sourcing 

(ERS) 
− 0.0199 − 1.4146 – – 

Shared ride-sourcing 
(SRS) 

− 0.0563 − 4.3659 − 0.0514 − 3.0544 

Taxi − 0.0278 − 1.5953 − 0.0595 − 3.2079 
Walk 0.0133 1.5052 – – 

Household annual income > $100,000 Cycling − 1.5234 − 2.2363 − 1.2859 − 2.2984 
Perception of increased risk associated with using shared mobility during the 

pandemic 
Public transit (PT) − 0.6328 − 3.6921 − 0.6140 − 3.2000 
Exclusive ride-sourcing 
(ERS) 

− 0.4280 − 2.0138 − 0.3903 − 1.6320 

Feeling safe using ride-sourcing services during the pandemic Public transit (PT) 0.7214 3.4587 0.5956 2.9309 
Exclusive ride-sourcing 
(ERS) 

1.3857 3.8306 1.1495 3.4655 

Shared ride-sourcing 
(SRS) 

1.5742 3.8604 1.2532 3.3577 

Taxi 0.2632 0.9076 0.5449 1.9394  
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However, this latent attitudinal variable is found to be insignificant for the shared ride-sourcing mode. 

6. Model interpretation and implications 

Model interpretation derives the effects of factors influencing mode choice probabilities. In this section, two economic interpre-
tation methods are presented: marginal effects of the variables and marginal rate of substitution between variables. This section 
highlights the similarities and differences between the interpretation of results from MTL models and ICLV models. 

6.1. Marginal effects of level-of-service variables 

The marginal effects are computed for two sets of determinants identified for the ride-sourcing modes: the LOS variables and the 
attitudinal variables. The marginal effect of a variable reflects the change in the probability of choosing an alternative given a unit 
change in the variable (Zhao et al., 2020). For the MTL models, the marginal effects are estimated as the partial derivative of the choice 
probabilities with respect to the variables, as proposed by Wang et al. (2020b). Table 5 presents the average marginal effects of the LOS 
variables with respect to exclusive (ERS) and shared ride-sourcing (SRS) modes across all samples in the testing set. 

The directionality of effects between ICLV and MTL agreed. All the marginal effect values from the ICLV models are negative, as 
expected. Most of the marginal effect values from the MTL models are negative as well, albeit very few of them have positive effects. In 
particular, the magnitude of the effect of travel cost in SiSTM-1 is consistent between both methods. Albeit the overall trend aligns, the 
exact values of the marginal effects of in-vehicle travel time differ between MTL and ICLV models. This may be a result of the local 
irregularity issue that was discussed by Wang et al. (2020b). When the sample size is not large enough for a complex model, it is 
possible to observe counter-intuitive behavioural patterns. The negative signs are reasonable because people are less likely to choose a 
mode when its travel time and cost increase. In general, the interpretations of LOS variables from the MTL models agree with those 
from the ICLV models in terms of directional effect. The same conclusion was drawn by other studies as well, such as Wang et al. 
(2020b) and Zhao et al. (2020). 

6.2. Marginal effects of attitudinal variables 

Table 6 presents the average marginal effects of the attitudinal variables with respect to exclusive and shared ride-sourcing modes 
across all samples in the testing set. The interpretation of latent variables in the ICLV model is straightforward. The marginal effects of 
the latent attitudinal variables in the ICLV models have expected signs. The perception of increased risk of using shared mobility during 
the pandemic has negative effects on the probabilities of choosing exclusive ride-sourcing services, whereas the variable of feeling safe 
using ride-sourcing services during the pandemic has positive effects on the probabilities of choosing exclusive and shared ride- 
sourcing services. In terms of magnitude, it is observed that the marginal effects of the latent attitudinal variables are often much 
larger than those of the LOS variables. It appears that trip-makers may be more sensitive to a unit change in the perceived risk and 
safety of ride-sourcing services than a unit change in travel time or cost. This is a reasonable observation given the pandemic context. 
The perceived risk and safety associated with using ride-sourcing services during the pandemic are most likely derived from the fear of 
COVID-19 infection when being in contact with others. Given that such pandemic-related attitudes are relevant to the health of the 
trip-makers, it is not surprising that the latent attitudinal variables are more impactful on the mode choice probabilities than travel 
time and cost. However, it is worth noting that, since the perceived risk and safety of using ride-sourcing services are latent factors that 
cannot be directly observed, it is nontrivial to comprehend a unit change in a latent attitude, and it may be subjective to context. 

Unlike LOS variables, it is difficult to draw the same conclusion that the effects of attitudes agreed between ICLV and MTL. In fact, it 
is difficult to draw meaningful interpretations from the MTL model. In general, the marginal effects of the same attitudinal variable in 
the MTL models vary across the two datasets and pandemic periods, making it difficult to conclude an overall behavioural pattern. The 
MTL (or data-driven approach) is trained to identify (hidden) patterns in the data. These models do not incorporate theoretical 
constructs, which are necessary for the interpretation of latent variables such as attitudes or perceptions. Latent variables are not 
directly observable, making them more abstract and complex than observable variables such as travel time and cost. The relationship 
between latent variables and the observable variables used to measure them can be complex and multidimensional, which makes 
interpretation more challenging. As such, their interpretation requires a theoretical understanding of the construct they represent and 

Table 5 
Marginal effects of LOS variables.  

Variable SiSTM-1 SiSTM-2 

ERS (DP) ERS (PP) SRS (DP) SRS (PP) ERS (DP) ERS (PP) SRS (DP) SRS (PP) 

ICLV models 
In-vehicle travel time (mins) − 2.52E-05 − 6.00E-04 − 1.14E-05 − 4.11E-04 − 1.73E-04 − 8.28E-04 − 1.35E-04 − 5.14E-04 
Travel cost ($) − 1.72E-03 − 5.39E-04 − 7.81E-04 − 3.69E-04 – – – – 
MTL models 
In-vehicle travel time (mins) − 2.46E-04 1.90E-04 − 3.12E-04 − 8.28E-05 − 8.21E-04 − 4.33E-04 1.19E-04 1.48E-04 
Travel cost ($) − 1.12E-03 − 4.44E-04 − 5.51E-04 − 1.83E-04 − 2.75E-04 4.71E-05 − 3.04E-04 − 1.02E-04 

*DP: during-pandemic, PP: post-pandemic, ERS: exclusive ride-sourcing, SRS: shared ride-sourcing. 
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the factors that influence it, namely, the casual effect. Therefore, interpreting latent variables can be more difficult than interpreting 
socioeconomic and cost variables. Modellers can exploit the power of MTL models allowing them to self-identify the relationship 
between attitudinal variables and achieve the highest prediction accuracy. However, meaningful variable interpretation on attitudinal 
variables is proved to be challenging through this study. There is a paradox between adding proper representation of latent variables in 
ML models and the underlying concept of the data-driven approach. However, this remains a challenge that must be addressed in order 
to successfully integrate data-driven approaches into the field of choice modelling. 

6.3. Marginal rate of substitution between variables from ICLV models 

The marginal rate of substitution is also important for quantifying variable effects and policy evaluation. They are computed as the 
ratio between the parameters of two variables of interest (Wang et al., 2020b). It reflects the value of time savings or willingness-to-pay 
for an improvement in choice marking context. In this study, the marginal rates of substitution between LOS variables and the latent 
attitudinal variables in the ICLV models are generated to analyze their trade-offs. 

The marginal rate of substitution can be understood as the equivalent value of travel time or cost for the perceived risk or safety 
associated with using ride-sourcing services given the influence of the pandemic. For example, the marginal rate of substitution be-
tween “perception of increased risk associated with using shared mobility during the pandemic” and in-vehicle travel time can reflect 
the additional units of travel time needed to decrease one unit of the perceived risk. The marginal rate of substitution between “feeling 
safe using ride-sourcing services during the pandemic” and travel cost can reflect the equivalent decrease in travel cost given one unit 
increase in the perceived safety of ride-sourcing services is equivalent. The absolute number of the ratio is not meaningful because one 
unit of the latent variables does not have any intrinsic meaning. Instead, a comparison between the ratios from during-pandemic and 
post-pandemic scenarios could reflect the impact of the pandemic-provoked risk on travel behaviours. 

Table 7 presents the results. Overall, the equivalent travel time of the latent attitudinal variables during the pandemic is much 
larger than in the post-pandemic period. The decrease in marginal rates of substitution between travel time and latent attitudinal 
variables in the post-pandemic model shows that the perceived risk and safety of using ride-sourcing services are less influential in ride- 

Table 6 
Marginal effects of attitudinal variables.  

Variable SiSTM-1 SiSTM-2 

ERS (DP) ERS (PP) SRS (DP) SRS (PP) ERS (DP) ERS (PP) SRS (DP) SRS (PP) 

ICLV models 
Perception of increased risk of using shared mobility 

during-pandemic (LV1) 
– – – – − 2.17E- 

02 
− 2.32E- 
02 

– – 

Feel safe using ride-sourcing services during-pandemic 
(LV2) 

3.23E-02 2.46E-02 2.17E-02 2.52E-02 6.98E-02 6.84E-02 6.22E-02 4.63E-02 

MTL models 
I believe there are more risks associated with leaving my 

home than before the pandemic (LV1*) 
1.93E-03 1.22E-04 − 1.51E- 

03 
− 3.55E- 
04 

− 2.50E- 
03 

− 1.87E- 
03 

1.53E-04 7.79E-04 

I believe there is more risk associated with using ride- 
sourcing services than before the pandemic (LV1*) 

1.30E-03 4.68E-04 − 1.13E- 
03 

− 1.29E- 
03 

7.72E-04 1.32E-04 8.72E-04 1.30E-04 

I believe there is more risk associated with using taxi 
services than before the pandemic (LV1*) 

− 1.20E- 
03 

− 6.33E- 
04 

− 1.29E- 
05 

− 8.05E- 
04 

− 2.32E- 
03 

− 1.48E- 
03 

− 6.05E- 
04 

− 5.85E- 
05 

I believe there is more risk associated with carpooling 
than before the pandemic (LV1*) 

1.31E-03 8.90E-04 − 1.01E- 
04 

− 2.15E- 
05 

− 1.15E- 
03 

− 1.14E- 
03 

− 1.93E- 
04 

8.12E-04 

I believe there is more risk associated with using car- 
sharing services than before the pandemic (LV1*) 

− 1.95E- 
06 

1.47E-03 − 3.36E- 
04 

− 1.44E- 
03 

3.45E-04 − 1.89E- 
04 

1.48E-04 5.62E-04 

I believe there is more risk associated with using bicycle 
sharing services than before the pandemic (LV1*) 

2.39E-03 − 8.96E- 
04 

− 1.92E- 
03 

6.19E-04 1.53E-03 − 7.60E- 
04 

− 3.68E- 
04 

1.42E-03 

I am less willing to spend time outside of my home than I 
was before the pandemic (LV1*) 

− 3.07E- 
03 

− 4.13E- 
04 

1.26E-03 3.34E-04 2.22E-03 4.29E-04 5.85E-04 9.68E-04 

I prefer to stay away from others when I am travelling 
(LV1*) 

2.13E-03 6.54E-04 − 1.21E- 
03 

− 5.50E- 
05 

5.85E-04 6.82E-04 − 1.01E- 
04 

5.43E-06 

I would like to return to my daily routine once the current 
restrictions are lifted, even while COVID-19 is still 
considered a public health threat (LV2*) 

− 2.45E- 
03 

− 4.18E- 
06 

1.26E-03 − 5.72E- 
05 

− 1.79E- 
04 

3.61E-05 3.63E-04 − 9.14E- 
05 

I will go back to my daily routine once the current 
restrictions are lifted, even while COVID-19 is still 
considered a public health threat (LV2*) 

− 1.97E- 
03 

− 8.73E- 
04 

5.18E-04 1.96E-04 8.38E-04 1.22E-03 1.12E-03 − 1.91E- 
04 

I would feel safe using a ride-sourcing service while 
COVID-19 is still considered a public health threat 
(LV2*) 

5.60E-04 − 4.85E- 
04 

1.18E-03 1.99E-03 − 5.01E- 
04 

− 2.42E- 
05 

1.62E-05 − 2.98E- 
05 

I would feel safe riding in a taxi while COVID-19 is still 
considered a public health threat (LV2*) 

2.76E-03 − 5.30E- 
04 

1.02E-03 1.99E-03 − 2.85E- 
04 

− 1.22E- 
03 

5.68E-05 3.42E-04 

*DP: during-pandemic, PP: post-pandemic, ERS: exclusive ride-sourcing, SRS: shared ride-sourcing. 
*The variables noted as LV1* in the MTL models are the same variables used in the measurement model of latent variable LV1 in the ICLV models. 
*The variables noted as LV2* in the MTL models are the same variables used in the measurement model of latent variable LV2 in the ICLV models. 
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sourcing mode choices after the pandemic. 
For travel cost, the absolute value for the ratio is larger in the post-pandemic scenario compared to the during-pandemic. This 

means that post the pandemic, travellers demand a larger decrease in their travel costs in return for the same unit of increase in their 
perceived safety. In other words, they are willing to trade off less money for their perceived safety in the post-pandemic scenario 
compared to the during-pandemic scenario. 

The above observation shows that pandemic-provoked attitudes were influential factors in the early stages of the COVID-19 
pandemic. More importantly, their effects diminished as individuals believed they entered the post-pandemic era. The marginal 
rate of substitution in the SiSTM-2 during-pandemic model is much smaller than in the SiSTM-1 during-pandemic model. The SiSTM-2 
survey was conducted in July 2021, one year later than the SiSTM-1. The modelling results indicate that trip-makers have started to 
pick up their trust in ride-sourcing services as the pandemic develops. 

7. Discussion & conclusion 

This study uses both data-driven (machine learning) and theory-driven (discrete choice) methods to examine the factors influ-
encing the decision to use ride-sourcing services during and after the pandemic. Three models are developed in this study: the novel 
multi-task learning (MTL) deep neural network framework, the classical multi-layer perceptron (MLP) deep neural network framework 
and the integrated choice and latent variable (ICLV) model. The MTL models show the highest model performance in terms of pre-
diction accuracies than MLP and ICLV. This demonstrates that the sophisticated architecture of multi-task learning deep neural net-
works supports and is suitable for leveraging shared information across multiple mode choices made by the same individual in various 
choice contexts. In this study, the shared information between travel mode choices is carefully induced through SP experimental 
design. Individuals were given the same hypothetical choice scenario asking them to make decisions considering the during-pandemic 
and post-pandemic context. The application of a similar SP design and the utilization of the MTL structure can be extended to other 
choice modelling studies aiming to examine variations in choice decisions for specific scenarios with a single controlling variable, such 
as investigating the impact of raising violence on the decision to use public transit. 

In addition, this study evaluates the conformity and complementary of the modelling results between data-driven and theory- 
driven methods. The marginal effects of the LOS and attitudinal variables are computed for MTL and ICLV models. The results 
show that the directional effects of LOS variables are largely consistent between the two modelling methods. This showcases the 
consistency of economic information for observable variables between data-driven and theory-driven methods. It aligns with previous 
work from Wang et al. (2020b) and Zhao et al. (2020). However, the marginal effects of the latent attitudinal variables in the ICLV 
models exhibit more explainable behavioural patterns compared to those in the MTL models. The ICLV model demonstrates a sig-
nificant decrease in individuals’ perceived pandemic-provoked risk associated with using shared mobility in the post-pandemic 
context. On the other hand, meaningful interpretation of attitudinal variables cannot be extracted using the MTL model. 

The difficulty of interpreting attitudinal variables from the MTL model emphasizes the challenge that needs to be addressed in order 
to achieve successful integration of data-driven methods in choice modelling. Evaluation of modelling results from this study raised the 
question of interpreting attitudinal variables in data-driven models. It has been overlooked by literature that compares two modelling 
paradigms (Wang et al., 2020b; Zhao et al., 2020). From this perspective, the ICLV approach serves as an invaluable and comple-
mentary counterpart to any existing data-driven approach. This study, together with previous literature such as the work of Vij and 
Walker (2016), highlights the usefulness of latent variables in choice modelling. ICLV models incorporate theoretical-backed latent 
constructs. This allows for the interpretation of the impact of latent variables on decision-making behaviour, providing a deeper 
understanding of the underlying mechanisms that drive choice-marking behaviour. It is particularly useful and essential in the 
pandemic context when unobservable latent variables dominate the choice process. Successfully integrating data-driven approaches in 
choice modelling should resolve the interpretability of attitudes. There exists a paradox in incorporating the representation of latent 
variables within machine learning models while adhering to the fundamental concept of data-driven approaches. This is a valid open 
research question for future efforts that integrate these two modelling paradigms. 

Like any research, this study has the following limitations. The MTL model structure presented in this study was only applied to 
data collected from a specific SP design. The generalization of the MTL model structure to incorporate a broader range of SP designs 
would require further testing and investigation. Future studies are also recommended to fully investigate the effectiveness of including 

Table 7 
Marginal rate of substitution between variables in ICLV models.   

SiSTM-1 SiSTM-2 

Latent attitudinal variable LOS variable ERS 
(DP) 

ERS 
(PP) 

SRS 
(DP) 

SRS 
(PP) 

ERS 
(DP) 

ERS 
(PP) 

SRS 
(DP) 

SRS 
(PP) 

Perception of increased risk of using shared 
mobility during-pandemic 

In-vehicle travel 
time 

– – – – 126 28 – – 

Feel safe using ride-sourcing services during- 
pandemic 

In-vehicle travel 
time 

− 1 283 − 41 − 1899 − 61 − 408 − 83 − 463 − 90 

Feel safe using ride-sourcing services during- 
pandemic 

Travel cost − 19 − 46 − 28 − 68 – – – – 

*DP: during-pandemic, PP: post-pandemic. 
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binary choice-set variables in DNN models to represent choice-set availability. Different datasets with various choice-set availability 
conditions can be utilized to test the performance and generalization of this method, in comparison with modifying the softmax 
function to restrict choice-set availability. Moreover, due to data limitations, this study only analyzes the mode choice decisions 
during- and post-pandemic periods. Future studies can also compare pre-pandemic mode choice decisions with the during- and post- 
pandemic results and explore the possibility of post-pandemic modal preference returning to the pre-pandemic situation. 
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Appendix A. Structural Model and Measurement Model Components of the ICLV Models 

The indicator variables used to identify the latent variables are summarized in Table A1 with their factor loadings. The estimated 
results of the structural model and measure model components of the ICLV models for SiSTM-1 and SiSTM-2 are included in Table A2 
and Table A3, respectively.  

Table A1 
Definition of latent variables in the ICLV models  

Latent Variable Indicator Variables Factor 
Loading 

Perception of increased risk of using shared mobility 
during-pandemic 

I believe there are more risks associated with leaving my home than before the pandemic 0.784 
I believe there is more risk associated with using ridesourcing services than before the 
pandemic 

0.791 

I believe there is more risk associated with using taxi services than before the pandemic 0.795 
I believe there is more risk associated with carpooling than before the pandemic 0.844 
I believe there is more risk associated with using car-sharing services than before the 
pandemic 

0.793 

I believe there is more risk associated with using bicycle sharing services than before the 
pandemic 

0.542 

I am less willing to spend time outside of my home than I was before the pandemic 0.569 
I prefer to stay away from others when I am travelling 0.658 

wish to maintain daily routine and feel safe using 
ride-sourcing during-pandemic 

I would like to return to my daily routine once the current restrictions are lifted, even while 
COVID-19 is still considered a public health threat 

0.637 

I will go back to my daily routine once the current restrictions are lifted, even while 
COVID-19 is still considered a public health threat 

0.716 

I would feel safe using a ridesourcing service while COVID-19 is still considered a public 
health threat 

0.876 

I would feel safe riding in a taxi while COVID-19 is still considered a public health threat 0.832   

Table A2 
Structural and measurement model components of SiSTM-1 ICLV models   

SiSTM-1 (during- 
pandemic) 

SiSTM-1 (post- 
pandemic) 

Variable Coefficient t-stat Coefficient t-stat 

Structural model for latent variable “Perception of increased risk and concern of using ride-sourcing services post-pandemic" 
Household size – – − 0.1449 − 4.2517 

(continued on next page) 
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Table A2 (continued )  

SiSTM-1 (during- 
pandemic) 

SiSTM-1 (post- 
pandemic) 

Variable Coefficient t-stat Coefficient t-stat 

Have a driver’s licence – – 0.2969 1.8977 
Structural model for latent variable “Feel safe using ridesourcing during pandemic" 
Household annual income >80,000 − 0.1049 − 1.1179 – – 
Age (log) − 0.1072 − 4.4737 − 0.0552 − 1.0396 
Gender: Male 0.2364 2.4909 –  
Part-time employed 0.5854 3.6731 – – 
Full-time employed 0.4687 4.8643 0.3671 – 
Never used ride-sourcing services pre-pandemic − 0.1342 − 1.2031 − 0.3495 − 1.5733 
Used ride-sourcing services more than once a week pre-pandemic 0.5719 4.1932 0.4597 1.5267 
Being a student 0.6743 5.4294 0.5333 1.8503 
Measurement model for latent variable “Perception of increased risk of using shared mobility during-pandemic" 
I believe there are more risks associated with leaving my home than before the pandemic 0.8069 14.0336 0.9360 10.7974 
I believe there is more risk associated with using ridesourcing services than before the pandemic 0.9383 20.1558 1.0956 13.7123 
I believe there is more risk associated with using taxi services than before the pandemic 1.0023 22.9698 1.1661 14.3490 
I believe there is more risk associated with carpooling than before the pandemic 0.9668 23.0612 1.1112 16.0868 
I believe there is more risk associated with using car-sharing services than before the pandemic 0.8882 17.5263 1.0406 13.7008 
I believe there is more risk associated with using bicycle sharing services than before the pandemic 0.7691 13.7134 0.9068 11.8588 
I am less willing to spend time outside of my home than I was before the pandemic 0.6486 9.9780 0.7533 8.8815 
I prefer to stay away from others when I am travelling 0.5523 7.7618 0.6488 7.7544 
Measurement model for latent variable “Wish to maintain daily routine and feel safe using ridesourcing services during-pandemic" 
I would like to return to my daily routine once the current restrictions are lifted, even while COVID-19 is still 

considered a public health threat 
0.8151 15.5396 0.8368 8.2788 

I will go back to my daily routine once the current restrictions are lifted, even while COVID-19 is still 
considered a public health threat 

0.8193 15.6372 0.8288 7.6968 

I would feel safe using a ridesourcing service while COVID-19 is still considered a public health threat 0.9878 27.8102 0.9269 13.5257 
I would feel safe riding in a taxi while COVID-19 is still considered a public health threat 0.9973 25.4734 0.9421 11.2885   

Table A3 
Structural and measurement model components of SiSTM-2 ICLV models   

SiSTM-2 (during- 
pandemic) 

SiSTM-2 (post- 
pandemic) 

Variable Coefficient t-stat Coefficient t-stat 

Structural model for latent variable “Perception of increased risk of using shared mobility during-pandemic" 
Household annual income >80,000 0.2210 1.8926 0.1316 0.9141 
Age (log) − 0.0377 − 2.0493 − 0.2062 − 2.7050 
Structural model for latent variable “Feel safe using ridesourcing during pandemic" 
Full-time employed 0.5476 4.5044 0.4202 4.0404 
Never used ride-sourcing services pre-pandemic − 0.5726 − 5.7732 − 0.4861 − 5.1641 
Used ride-sourcing services more than once a week pre-pandemic – – 0.6041 6.0339 
Being a student 0.1032 1.0365 – – 
Measurement model for latent variable “Perception of increased risk of using shared mobility during-pandemic" 
I believe there are more risks associated with leaving my home than before the pandemic 0.8801 16.2422 0.8870 15.0788 
I believe there is more risk associated with using ridesourcing services than before the pandemic 0.9683 20.5434 0.9791 18.7862 
I believe there is more risk associated with using taxi services than before the pandemic 0.9819 19.3278 0.9918 17.7333 
I believe there is more risk associated with carpooling than before the pandemic 0.9517 17.4572 0.9635 16.6462 
I believe there is more risk associated with using car-sharing services than before the pandemic 0.9796 18.0999 0.9844 16.7425 
I believe there is more risk associated with using bicycle sharing services than before the pandemic 0.7185 10.2469 0.7217 10.0238 
I am less willing to spend time outside of my home than I was before the pandemic 0.7493 11.7645 0.7577 11.1917 
I prefer to stay away from others when I am travelling 0.7614 11.7056 0.7674 11.0500 
Measurement model for latent variable “Wish to maintain daily routine and feel safe using ridesourcing services during-pandemic" 
I would like to return to my daily routine once the current restrictions are lifted, even while COVID-19 is still 

considered a public health threat 
0.6576 7.6192 0.6596 8.8671 

I will go back to my daily routine once the current restrictions are lifted, even while COVID-19 is still 
considered a public health threat 

0.7796 9.1189 0.7832 10.8101 

I would feel safe using a ridesourcing service while COVID-19 is still considered a public health threat 1.0755 9.9291 1.1043 14.8550 
I would feel safe riding in a taxi while COVID-19 is still considered a public health threat 1.0293 9.4879 1.0422 13.4367  
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