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A B S T R A C T

Discrete choice (DC) methods provide a convenient approach for preference elicitation and
they lead to unbiased estimates of preference model parameters if the parameterization of the
value function allows for a good description of the preferences. On the other hand, indifference
elicitation (IE) has been suggested as a direct trade-off estimator for preference elicitation in
decision analysis decades ago, but has not found widespread application in statistical analysis
frameworks as for discrete choice methods. We develop a hierarchical, probabilistic model for IE
that allows us to do Bayesian inference similar to DC methods. A case study with synthetically
generated data allows us to investigate potential bias and to estimate parameter uncertainty
over a wide range of numbers of replies and elicitation uncertainties for both DC and IE.
Through an empirical case study with laboratory-scale choice and indifference experiments, we
investigate the feasibility of the approach and the excess time needed for indifference replies.
Our results demonstrate (i) the absence of bias of the suggested methodology, (ii) a reduction
in the uncertainty of estimated parameters by about a factor of three or a reduction of the
required number of replies to achieve a similar accuracy as with DC by about a factor of ten,
(iii) the feasibility of the approach, and (iv) a median increase in time needed for indifference
reply of about a factor of three. If the set of respondents is small, the higher elicitation effort
may be worth to achieve a reasonable accuracy in estimated value function parameters.

. Introduction

Discrete choice (DC) methods (experiments, models and their statistical evaluation) (Ben-Akiva and Lerman, 1985; Train, 1986;
ouviere et al., 2000; Train, 2009; Hensher et al., 2015) provide a convenient approach for preference elicitation in many fields
f applied economics, such as transport research, marketing, consumer preference research, health economics, and environmental
conomics (Ben-Akiva and Lerman, 1985; Train, 1986; Tempesta et al., 2019; Clark et al., 2014; Brouwer, 2008, and many more).
hey are relatively easy to design and easy to explain to stakeholders as, in the simplest setting, the respondents only have to choose
he preferred outcomes from multiple hypothetical outcome sets. On the other hand, individual replies to discrete choice questions
o not contain much preference information as a single reply does not resolve the differences in preference between the outcomes.
his information is obtained indirectly from the set of replies as the probabilities of the possible replies depend on the difference

n preference. The small amount of information extracted from each reply is usually compensated by large sample sizes used in
he ‘‘experiment’’ which can often relatively easily be achieved, in particular for the elicitation of societal preferences for which
he number of stakeholders is beyond critical limits. However, if the problem to be assessed requires the elicitation of preferences
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of experts, e.g. in environmental management or health economics, it can be difficult to get a sufficiently large sample size for
obtaining reliable preference estimates (de Bekker-Grob et al., 2015).

Many approaches have been explored to reduce sample size requirements in discrete choice experiments. These can be grouped
nto three categories: (1) The most straightforward technique is to optimize the design of choice sets that are presented to the
espondents (Huber and Zwerina, 1996; Bliemer and Rose, 2005; Rose and Bliemer, 2013). However, these techniques depend on
rior assumptions about the preference model and its parameters. (2) Other techniques try to gain more information from individual
eplies by using larger sets of potential outcomes and asking for the best and the worst outcome (Finn and Louviere, 1992; Marley
nd Louviere, 2005; Marley and Pihlens, 2012; Greiner et al., 2014), or for a complete ranking of the potential outcomes (Marley
nd Pihlens, 2012). Even other techniques elicit the certainty of the replies (Greiner et al., 2014; Dekker et al., 2016; Mattmann
t al., 2019) or the frequencies of choosing one or the other outcome. For these techniques, there is a trade-off between the
otential gain of information and the higher elicitation effort for each individual reply. Another method of this category is to
sk respondents to modify one of the attributes that characterize the outcomes until indifference between two potential outcomes
s achieved (Keeney and Raiffa, 1976; Keeney, 1992; Eisenführ et al., 2010). (3) The third category of approaches are based on
daptive designs by modifying new questions partially based on replies to earlier questions instead of fixing the complete design
rom the beginning (Myung et al., 2013; Cavagnaro et al., 2013).

It has been shown that using adaptive designs can lead to biased results (Bradley and Daly, 2000) which requires caution with the
pplication of approaches of category (3). For this reason, the typical approach in applied economics is of category (1). The interest
n techniques of category (2) is that they can be combined with those of category (1) to further decrease sample size requirements.

It is the goal of this paper to quantitatively explore the potential of an indifference or trade-off technique described as the
ast option under category (2) in comparison to a discrete choice experiment. To be able to do so, we develop a statistical model
or indifference replies that allows us to do statistical inference from elicited data in a similar way as it is done with discrete
hoice replies. For both techniques, we use the same error model for the value (random utility) function, but for the indifference
licitation technique, we extend the model by Haag et al. (2019) by formulating an additional error model for the indifference
oint specification by the respondents. This allows us to uniquely describe the uncertainties common to discrete choice and
ndifference elicitation and consider the additional uncertainty in indifference point specification separately. This indifference point
pecification error model also resolves the issues related to inconsistent replies for choice situations where the respondent is close to
ndifference (Bostic et al., 1990), as it allows for inconsistencies caused by the indifference point specification error. We believe that
sing a continuous error model for the indifference point specification improves uncertainty representation compared to a discrete
ndifference threshold that has been used before to address this issue (Cantillo et al., 2010; Branke et al., 2017). Considering these
wo error terms at different levels in the model makes the model a hierarchical, probabilistic model for which doing Bayesian
nference is not trivial. We introduce a numerical approach to solving this problem using the efficient Hamiltonian Markov Chain
onte Carlo method for sampling from the posterior distribution. We then test the suggested methodology with a case study with

ynthetically generated data and with an empirical case study. The synthetic case study allows us to investigate a potential bias
f the approach and to quantify the gain in accuracy for a wide range of sample sizes and elicitation uncertainties. The empirical
ase study makes it possible to investigate the practical feasibility of the approach and to estimate the additional effort needed
or indifference elicitation. On the other hand, our empirical case study is not large enough to provide an extensive, empirical
omparison of the two techniques. It would be interesting to do this in a real application study with more resources for an extensive
xperiment.

. Methods

In this section, we briefly review the value/utility function approach for describing preferences (Section 2.1), its application to
valuate the results of discrete choice and indifference elicitations (Sections 2.2 to 2.4), the design of the synthetic and the empirical
ase studies (Sections 2.5 and 2.6), and our numerical approach for Bayesian inference (Section 2.7).

.1. Value functions (utilities)

If preferences of decision makers or stakeholders between potential states of a system or potential outcomes of decision
lternatives are complete (respondents can always indicate which of two potential outcomes they prefer or whether they are
ndifferent between them) and transitive (if they prefer outcome 𝐴 over outcome 𝐵 and outcome 𝐵 over outcome 𝐶 they also prefer
utcome 𝐴 over outcome 𝐶), then their preference can be represented by a value function, 𝑣, such that preference of outcome

over outcome 𝐵 is equivalent to 𝑣(𝒂(𝐴)) > 𝑣(𝒂(𝐵)). Here, 𝒂(𝐴) and 𝒂(𝐵) are attribute values that characterize the outcomes 𝐴
nd 𝐵, respectively, and the value function, 𝑣, maps the space of potential outcomes to real numbers. Similarly, 𝑣(𝒂(𝐴)) = 𝑣(𝒂(𝐵))
ndicates indifference between the outcomes 𝐴 and 𝐵. All such so-called ‘‘ordinal’’ value functions that are related by monotonically
ncreasing transformations equivalently represent the same preference (see Keeney and Raiffa (1976), Eisenführ et al. (2010) or any
ther textbook on decision analysis for technical details). If also differences in preference are complete and transitive, preferences
an be represented by a ‘‘cardinal’’ or ‘‘measurable’’ value function that is unique up to an affine transformation with positive
lope (Keeney and Raiffa, 1976; Dyer and Sarin, 1979; Eisenführ et al., 2010, or any other textbook on decision analysis).

In the nomenclature used in decision analysis, a utility function complements preferences of certain outcomes with risk
ttitudes (Keeney and Raiffa, 1976; Dyer and Sarin, 1982; Eisenführ et al., 2010) to cope with uncertain outcomes characterized by
2

robability distributions. Note that in economics, the term ‘‘utility function’’ is used for both kinds of preference description (Hensher
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et al., 2015). The methods discussed in this paper are about the elicitation of value functions, preferences for given outcomes that do
not consider risk attitudes. This is motivated by the strategy of eliciting a value function first, and adding risk attitudes for the main
objective as a second step (Dyer and Sarin, 1982). For this reason, eliciting a value function without risk attitudes remains a key issue
in preference elicitation and, when following this strategy, it is this step that covers the trade-offs between sub-objectives (Reichert
et al., 2015).

Although discrete choice replies do not provide direct information about the strength of preference, as derived below, the
onsideration of uncertainty still makes it possible to derive a measurable or cardinal value function as the probabilities for replies
epend on the differences in value between the two potential outcomes.

The typical way of considering uncertainty in preferences is to use an additive, random error term to the value function (called
andom utility in economics) (Ben-Akiva and Lerman, 1985; Train, 1986; Hensher et al., 2015, or any of the other references about
iscrete choice methods cited above):

𝑉 (𝐚,𝜽,𝝍) = 𝑣(𝐚,𝜽) + 𝐸𝑣(𝐚,𝝍). (1)

Here, we use parameterizations of the value function and the error term with parameters 𝜽 and 𝝍 , respectively. Usually, it is assumed
that the random variable characterizing the error to the value function will not depend on the attributes:

𝐸𝑣(𝐚,𝝍) = 𝐸𝑣(𝝍). (2)

This is also the assumption used in this paper. As we will see later, it is then worth introducing a new random variable for the
difference of two independent error terms of the values of different potential outcomes, 𝐴 and 𝐵:

𝐸∗
𝑣 (𝝍) = 𝐸𝑣(𝐚(𝐵),𝝍) − 𝐸𝑣(𝐚(𝐴),𝝍). (3)

As we assume that the errors are independent of the attributes of the potential outcomes (see Eq. (2)), we omitted the alternatives
on the left-hand side of this equation and will also not specify them any more for the individual error terms.

Note that the invariance of the preferences under affine transformations (with a positive slope) of the value function makes the
scaling of the uncertainty term dependent on the chosen scaling of the value function or vice versa. This offers two options for
formulating the uncertain value or random utility model (1):

(i) The width of the error term can be fixed and the scaling of the value function determines the degree of uncertainty (relative
to the width of the uncertainty term).

(ii) The value function can be made unique by fixing the value for two given outcomes and the degree of uncertainty is
characterized by a width parameter of the error term (usually its standard deviation).

All decision-related quantities, such as the sign of the difference in value between two outcomes, or marginal substitution rates are
independent of the chosen scaling, so that the two options are equivalent and lead to the same results except for the scaling-related
parameters of the value function (the first statement follows from 𝑎𝑣(𝐚1) + 𝑏 > 𝑎𝑣(𝐚2) + 𝑏 ⇔ 𝑣(𝐚1) > 𝑣(𝐚2) for 𝑎 > 0 and any values
f 𝐚1 and 𝐚2, the second follows from the independence of the indifference manifolds of 𝑣(𝐚) and 𝑎𝑣(𝐚) + 𝑏 on the values of 𝑎 and 𝑏
s these do not depend on 𝐚). In economics, discrete choice experiments are typically evaluated according to option (i): The error
erm is standardized and the relative significance of the error is inferred indirectly through the scaling of the value (called utility)
unction. This is a convenient choice as no constraints on the parameters of the value function have to be considered. However,
ith this option the parameters of the value function change with changing degree of uncertainty. This is not a disadvantage if a

ingle discrete choice experiment is evaluated. However, as we plan to do a sensitivity analysis regarding the degree of uncertainty
n our synthetic case study, this would be inconvenient as we could not directly compare marginal posterior parameter estimates
nder different assumptions about the uncertainty in value. Also for our empirical case study we are interested in comparing the
ncertainty in value of different respondents which is much easier if this is a model parameter rather than extracting the information
ndirectly from different scalings of the value functions of different individuals. For these reasons, we will design and analyze our
ata based on option (ii): We will make the value function unique by specifying the value to be 0 and 1, respectively, for the two
ost extreme outcomes within the choice setup. We will still allow the value function to extend beyond the interval [0, 1] so that

his choice for our analysis does not decrease the generality of the results (see also the discussion of the chosen value functions and
heir scaling in Section 2.4).

.2. Discrete choice model

We briefly review the simplest case of a discrete choice (DC) model among two alternatives to introduce our notation and to
repare for the indifference elicitation model in Section 2.3 (Ben-Akiva and Lerman, 1985; Train, 1986; Hensher et al., 2015, or any
ther description of discrete choice experiment analysis). Given the error model (1), the probability of choosing outcome 𝐴 over
utcome 𝐵 is given by

𝑃 (choice = 𝐴 ∣ 𝜽,𝝍 , 𝐴, 𝐵) = 𝑃
(

𝑉 (𝐚(𝐴),𝜽,𝝍) ≥ 𝑉 (𝐚(𝐵),𝜽,𝝍)
)

= 𝑃
(

𝐸 (𝐚(𝐵),𝝍) − 𝐸 (𝐚(𝐴),𝝍) ≤ 𝑣(𝐚(𝐴),𝜽,𝝍) − 𝑣(𝐚(𝐵),𝜽,𝝍)
)

. (4)
3

𝑣 𝑣
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Fig. 1. Schematic diagram of the discrete choice model. The values, 𝑣, of both alternatives, 𝐴 and 𝐵, depend on the attributes, 𝐚, and the model parameters, 𝜽.
Including uncertainty, 𝐄, makes them also depend on the error model parameters, 𝜳 . Finally, the decision for 𝐴 or 𝐵 depends on the difference in the uncertain
values of both outcomes 𝐴 and 𝐵. Orange nodes represent given inputs, red nodes marginal (unconditional) random variables, blue nodes internal (conditional)
random variables, and the green node represents the random variable that models the observed outcome. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Under the assumption that the uncertainties in the value functions for the two outcomes are independent of each other and do not
depend on the attributes (2), and using the notation introduced in Eq. (3), we get

𝑃 (choice = 𝐴 ∣ 𝜽,𝝍 , 𝐴, 𝐵) = 𝑃
(

𝐸∗
𝑣 (𝝍) ≤ 𝑣(𝐚(𝐴),𝜽,𝝍) − 𝑣(𝐚(𝐵),𝜽,𝝍)

)

= 𝐹𝐸∗
𝑣 (𝝍)

(

𝑣(𝐚(𝐴),𝜽,𝝍) − 𝑣(𝐚(𝐵),𝜽,𝝍)
)

, (5)

where 𝐹𝐸∗
𝑣 (𝝍) is the cumulative distribution function of the random variable 𝐸∗

𝑣 (𝝍). Formulated for an arbitrary choice, 𝑐, this leads
to

𝑃 (𝑐 ∣ 𝜽,𝝍 , 𝐴, 𝐵) =
{

𝑃 (choice = 𝐴 ∣ 𝜽,𝝍 , 𝐴, 𝐵) if 𝑐 = 𝐴
1 − 𝑃 (choice = 𝐴 ∣ 𝜽,𝝍 , 𝐴, 𝐵) if 𝑐 = 𝐵.

(6)

Finally, for a set of 𝑁 discrete choice replies, {𝑐(𝑖)}𝑁𝑖=1 corresponding to a set of paired potential outcomes, {𝐴(𝑖), 𝐵(𝑖)}𝑁𝑖=1, and under
the assumption of independence of the error terms, we get

𝑃
(

{𝑐(𝑖)}𝑁𝑖=1 ∣ 𝜽,𝝍 , {𝐴
(𝑖), 𝐵(𝑖)}𝑁𝑖=1

)

=
𝑁
∏

𝑖=1
𝑃
(

𝑐(𝑖) ∣ 𝜽,𝝍 , 𝐴(𝑖), 𝐵(𝑖)) (7)

and for the joint probability of replies and parameters

𝑃
(

{𝑐(𝑖)}𝑁𝑖=1,𝜽, 𝝍 ∣ {𝐴(𝑖), 𝐵(𝑖)}𝑁𝑖=1
)

= 𝑃
(

{𝑐(𝑖)}𝑁𝑖=1 ∣ 𝜽,𝝍 , {𝐴
(𝑖), 𝐵(𝑖)}𝑁𝑖=1

)

⋅ 𝑓 (𝜽) ⋅ 𝑓 (𝝍)

=
𝑁
∏

𝑖=1
𝑃
(

𝑐(𝑖) ∣ 𝜽,𝝍 , 𝐴(𝑖), 𝐵(𝑖)) ⋅ 𝑓 (𝜽) ⋅ 𝑓 (𝝍) (8)

with the prior probability densities of the parameters 𝑓 (𝜽) and 𝑓 (𝝍). This equation is the basis for Bayesian inference for the discrete
choice model as the posterior of the parameters is proportional to this joint probability with the actual replies substituted for {𝑐(𝑖)}𝑁𝑖=1.
Fig. 1 shows a graphical representation of the discrete choice model and the left panel of Fig. 2 illustrates outcomes, value function
and the choice decision in a two-dimensional attribute space.

2.3. Indifference/trade-off elicitation

The concept of indifference elicitation (IE), asking the respondent to modify one of the attributes of one of two potential outcomes
to get indifference between the outcomes, is very old. It was already described in the textbook by Keeney and Raiffa (1976). IE is an
interesting concept as it provides direct information about preferences for trade-offs of the respondent between values of attributes.
4

Nevertheless, IE has not found widespread application within a statistical framework that accounts for uncertainty as it is common
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Fig. 2. Illustration of a discrete choice decision (left) and of indifference elicitation (right) for a two-dimensional attribute space. Solid and dashed lines combine
points of equal value, the distributions at the left illustrate their uncertainty. For discrete choice, the respondent just specifies preference between the two
alternatives, here with high probability in favor of outcome A (as there is only a small overlap of the uncertain values of 𝐴 and 𝐵). For indifference elicitation,
the respondent changes the value of 𝑎2 from the value at point B to the value at point B’ to be indifferent between A and B’. The distributions at point B’
indicates the uncertainty in the specification of this value.

practice for the evaluation of DC replies. In this section, we derive a probabilistic model for indifference replies that accounts for
the uncertainty in value (analogous to the DC case) as well as for the uncertainty in the indifference point specification and allows
us to do Bayesian (or Frequentist) inference about value function parameters based on elicited indifference replies.

In the following, we focus on binary choice and assume that the attribute to be modified is continuous or, at least, has a high
number of discrete states that allow a sufficiently accurate specification of the indifference point. We also assume that its range
is large enough that the indifference point can be reached. Note that this makes it impossible to apply this technique to cases in
which a change in one attribute cannot be compensated by a change in another attribute (e.g. if persons are asked for commuting
preferences and have the choice between using their car or traveling by bus and they prefer one or the other irrespective of travel
time, there would be no indifference point regarding travel time for two alternatives that differ in the transportation means). The
function that returns the indifference point in the attribute 𝑎𝑗 , 𝑎̃𝑗 , can be defined as the solution of the implicit equation of equal
value of the two potential outcomes, 𝐴 and 𝐵:

𝑎̃𝑗
(

𝜽, 𝜖(𝐴)𝑣 , 𝜖(𝐵)𝑣 , 𝐴, 𝐵
)

= sol𝑥
(

𝑣(𝐚(𝐴),𝜽) + 𝜖(𝐴)𝑣 = 𝑣
(

(𝐚(𝐵)−𝑗 , 𝑥),𝜽
)

+ 𝜖(𝐵)𝑣

)

. (9)

Here, 𝜖(𝐴)𝑣 and 𝜖(𝐵)𝑣 are realizations of the random variables 𝐸(𝐴)
𝑣 and 𝐸(𝐵)

𝑣 , sol𝑥 refers to the solution of the equation provided as the
argument for the variable 𝑥 and (𝐚(𝐵)−𝑗 , 𝑥) is the vector of attributes 𝐚(𝐵) with the component 𝑗 substituted by 𝑥:

(𝐚(𝐵)−𝑗 , 𝑥) = (𝑎(𝐵)1 ,… , 𝑎(𝐵)𝑗−1, 𝑥, 𝑎
(𝐵)
𝑗+1,… , 𝑎(𝐵)𝑛 ), (10)

where 𝑛 is the number of attributes. If we again assume that the uncertainties in the value functions for the two outcomes are
independent of each other and do not depend on the attributes (2), and using the notation introduced in Eq. (3), we get

𝑎̃𝑗
(

𝜽, 𝜖∗𝑣 , 𝐴, 𝐵
)

= sol𝑥
(

𝜖∗𝑣 = 𝑣(𝐚(𝐴),𝜽) − 𝑣
(

(𝐚(𝐵)−𝑗 , 𝑥),𝜽
)

)

, (11)

where 𝜖∗𝑣 = 𝜖(𝐵)𝑣 − 𝜖(𝐴)𝑣 is a realization of the random variable defined by Eq. (3). As the specification of this ‘‘indifference point’’
involves additional uncertainty to the uncertainty in value, we assume an additive uncertainty term similar and in addition to the
uncertainty in the value function. This leads to the random variable 𝐴𝑗 for the response 𝑎𝑗 conditional on the error 𝜖∗𝑣

𝐴𝑗 ∣ 𝜖∗𝑣 = 𝑎̃𝑗 (𝜽, 𝜖∗𝑣 , 𝐴, 𝐵) + 𝐸𝑎(𝝍). (12)

We denote the probability density of this random variable as follows

𝑓 (𝑎𝑗 ∣ 𝑎̃𝑗 ,𝝍). (13)

This leads to the model

𝑓 (𝑎 , 𝜖∗ ∣ 𝜽,𝝍 , 𝐴, 𝐵) = 𝑓 (𝑎 ∣ 𝑎̃
(

𝜽, 𝜖∗, 𝐴, 𝐵
)

,𝝍) ⋅ 𝑓 (𝜖∗ ∣ 𝝍). (14)
5

𝑗 𝑣 𝑗 𝑗 𝑣 𝑣
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Fig. 3. Schematic diagram of the indifference reply model. The value of the outcome 𝐴. 𝑣(𝐴), depends on the attributes, 𝐚(𝐴) and the model parameters 𝜽, the
value with uncertainty additionally depends on the error term, 𝐄(𝐴)

𝑣 , and its parameters, 𝜳 . The indifference point, 𝑎(𝐵)𝑖 depends on the other attribute components
of the outcome 𝐵, 𝐚(𝐵)−𝑖 , on the uncertain value for the outcome 𝐴, 𝑉 (𝐴), and on the error term 𝐄(𝐵)

𝑣 , and its parameters, 𝜳 , through the implicit Eq. (11). Finally,
the elicited indifference point depends on the exact point and its uncertainty, 𝐄(𝐵)

𝑎 . See Fig. 1 for an explanation of the colors. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

For a set of 𝑁 replies, {𝑎(𝑖)𝑗(𝑖)}
𝑁
𝑖=1, corresponding to the set of potential outcomes {𝐴(𝑖), 𝐵(𝑖)}𝑁𝑖=1, we then get

𝑓
(

{𝑎(𝑖)𝑗(𝑖)}
𝑁
𝑖=1, {𝜖

∗(𝑖)
𝑣 }𝑁𝑖=1 ∣ 𝜽,𝝍 , {𝐴(𝑖), 𝐵(𝑖)}𝑁𝑖=1

)

=
𝑁
∏

𝑖=1
𝑓 (𝑎𝑗 ∣ 𝑎̃𝑗(𝑖)

(

𝜽, 𝜖∗(𝑖)𝑣 , 𝐴(𝑖), 𝐵(𝑖)),𝝍) ⋅ 𝑓 (𝜖∗(𝑖)𝑣 ∣ 𝝍). (15)

This finally leads to the joint probability density

𝑓
(

{𝑎(𝑖)𝑗(𝑖)}
𝑁
𝑖=1, {𝜖

∗(𝑖)
𝑣 }𝑁𝑖=1,𝜽,𝝍 ∣ {𝐴(𝑖), 𝐵(𝑖)}𝑁𝑖=1

)

=
𝑁
∏

𝑖=1
𝑓 (𝑎𝑗 ∣ 𝑎̃𝑗(𝑖)

(

𝜽, 𝜖∗(𝑖)𝑣 , 𝐴(𝑖), 𝐵(𝑖)),𝝍) ⋅ 𝑓 (𝜖∗(𝑖)𝑣 ∣ 𝝍) ⋅ 𝑓 (𝜽) ⋅ 𝑓 (𝝍). (16)

ig. 3 shows a graphical representation of the indifference reply model and the right panel of Fig. 2 illustrates the process of
ndifference elicitation. Rather than choosing the better alternative, the interviewee is asked to specify the value of the attribute
(𝐵)
𝑗 for which he or she would be indifferent between the two alternatives.

Note that the uncertainties in value differences, {𝜖∗(𝑖)𝑣 }𝑁𝑖=1, lead to a large number of ‘‘internal nodes’’ of a hierarchical model
hat increase the dimension of the inference problem compared to the non-hierarchical model presented by Haag et al. (2019) that
id not explicitly consider these uncertainties but lumped them with the uncertainties in value. As we will usually be interested
rimarily in the marginal posterior for the ‘‘global’’ parameters 𝜽 and 𝝍 , we may want to integrate across these internal variables:

𝑓
(

{𝑎(𝑖)𝑗(𝑖)}
𝑁
𝑖=1,𝜽,𝝍 ∣ {𝐴(𝑖), 𝐵(𝑖)}𝑁𝑖=1

)

=
𝑁
∏

𝑖=1
∫ 𝑓 (𝑎𝑗 ∣ 𝑎̃𝑗(𝑖)

(

𝜽, 𝜖∗(𝑖)𝑣 , 𝐴(𝑖), 𝐵(𝑖)),𝝍) ⋅ 𝑓 (𝜖∗(𝑖)𝑣 ∣ 𝝍) d𝜖∗(𝑖)𝑣 ⋅ 𝑓 (𝜽) ⋅ 𝑓 (𝝍). (17)

.4. Distributional assumptions, attribute scaling, and value functions

The theory outlined in Sections 2.2 and 2.3 is independent of specific assumptions about distributional shapes. In this section,
e demonstrate how to get the frequently used probit and logit models as special cases. In the applied part, we will use the probit
odel. This model assumes a Normal distribution for the error term in the value function

𝐄𝑣(𝝍) ∼ N(0, 𝜎𝑣), (18)

hich leads to

𝐄∗
𝑣(𝝍) ∼ N(0,

√

2𝜎𝑣) (19)

for differences in value (see Eq. (3)). Similarly, we can get the logit model, by replacing the normal distribution in Eq. (18) by a
Gumbel distribution that we scale to a standard deviation of 𝜎𝑣 to make it comparable to the probit model:

𝐄𝑣(𝝍) ∼ Gumbel
(

0,

√

6
𝜎𝑣

)

. (20)
6

𝜋
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Note that in contrast to the probit approach, the mean of the error term (20) is not zero. This does not affect our analysis, as we
only need the differences of two error terms where this cancels out (Train, 2009). We then get

𝐄∗
𝑣(𝝍) ∼ Logistic

(

0,

√

6
𝜋

𝜎𝑣

)

, (21)

which is, due to our scaling and as in Eq. (19), a distribution with a standard deviation of
√

2𝜎𝑣.
We assume a Normal distribution for the error in the indifference replies

𝐄𝑎𝑖 (𝝍) ∼ N(0, 𝜎𝑎𝑖 ). (22)

For our synthetic case study we use the same value of 𝜎𝑎 for the standard deviations of the uncertainties in all attributes, 𝜎𝑎𝑖 . This
is possible as we generate the data synthetically. In the empirical case study, we have to infer different values of 𝜎𝑎𝑖 for different
attributes as they have different units and there would be no reason for identical uncertainties even if there would be multiple
attributes with the same units.

With the choice of distributional shapes and parameters given by Eqs. (18) and (22), we thus get the error model parameters
𝝍 = 𝜎𝑣 for the discrete choice model and 𝝍 = (𝜎𝑣, 𝜎𝑎) or 𝝍 = (𝜎𝑣, 𝜎𝑎1 ,… , 𝜎𝑎𝑛 ) for the indifference reply model, depending on the
need for different uncertainties in different attributes (see discussion above). However, for the latter model, due to its hierarchical
structure, we also have the ‘‘internal parameters’’ {𝐄𝑣,𝑖}𝑁𝑖=1 which we will usually integrate out, but the posterior distribution of
which could also be of interest for the analysis of structural errors of the value function.

Both approaches, discrete choice or indifference elicitation, can be applied with any kind of parameterized value function. In
decision analysis, a value function is often constructed by eliciting an objectives hierarchy and parameterizing the value function
of the overarching objective by constructing value functions of the lowest level objectives and aggregating them to value functions
of higher level objectives (Eisenführ et al., 2010; Reichert et al., 2015; Reichert, 2020). In economics, value functions are usually
constructed similarly to constructing statistical models in other contexts by formulating a linear model and adding non-linear and
interaction terms as needed (Ben-Akiva and Lerman, 1985; Hensher et al., 2015). Both approaches end with a parameterized value
function and both techniques analyzed in this study can be directly applied to the overall value function as well as to value functions
of sub-objectives.

To not make our analyses unnecessarily complicated we assume value functions that are monotonic in all attributes (either
increasing or decreasing with increasing attribute values). We can then separate the shape of the value function from the specific
units and ranges by introducing the transformation

𝑎̃𝑖 = 𝑡𝑖(𝑎𝑖) =
𝑎𝑖 − 𝑎𝑖,minv

𝑎𝑖,maxv − 𝑎𝑖,minv
, 𝐭 = (𝑡1,… , 𝑡𝑛) , 𝐚̃ = 𝐭(𝐚). (23)

n this equation, 𝑎𝑖,minv and 𝑎𝑖,maxv, are the components of the attributes corresponding to the minimum and maximum value in the
esign outcome space used for the DC or IE inquiry. As we assumed monotonicity of value in all attributes, this transformation
ransforms the design outcome space to the set [0, 1]𝑛. Attribute values outside the design space are still allowed and lead to
ransformed attributes outside the interval [0, 1]. This transformation allows us to separate shape and scaling of the value function
y formulating the value function as

𝑣(𝐚) = 𝑣̃
(

𝐚̃ = 𝐭(𝐚)
)

, (24)

here 𝑣̃ maps the set [0, 1]𝑛 to the interval [0, 1] with increasing values in each attribute (note that we scaled the value function to
he interval [0, 1] for attributes in the design set, see option (ii) in Section 2.1). We can thus define the shape of the value function
ndependently of the attribute ranges by defining the function 𝑣̃.

The most straightforward value function is a linear function of its attributes. With the constraints discussed above (range of
ransformed attributes [0, 1], range of values [0, 1], increasing value with increasing attributes), this leads to the weighted average
f the transformed attributes:

𝑣̃add(𝐚̃,𝜽) =
𝑛
∑

𝑖=1
𝑤𝑖𝑎̃𝑖 , 𝜽 = (𝑤1,… , 𝑤𝑛) , 𝑤𝑖 ≥ 0 ,

𝑛
∑

𝑖=1
𝑤𝑖 = 1. (25)

ubstituting the transformation (24) into this equation leads to the value function as a function of the original attributes

𝑣add(𝐚,𝜽) =
𝑛
∑

𝑖=1
𝑤𝑖𝑡𝑖(𝑎𝑖) =

𝑛
∑

𝑖=1
𝑤𝑖

𝑎𝑖 − 𝑎𝑖,minv

𝑎𝑖,maxv − 𝑎𝑖,minv
=

𝑛
∑

𝑖=1
𝑐𝑖𝑎𝑖 + 𝑐 (26a)

with

𝑐𝑖 =
𝑤𝑖

𝑎𝑖,maxv − 𝑎𝑖,minv
and 𝑐 = −

𝑛
∑

𝑖=1

𝑤𝑖𝑎𝑖,minv

𝑎𝑖,maxv − 𝑎𝑖,minv
. (26b)

The non-dimensional parameters 𝑤𝑖 can be useful to compare the relative importance of attributes given their ranges, whereas the
parameters 𝑐𝑖 are needed to calculate marginal rates of substitution (−𝑐𝑖∕𝑐𝑗) that have to be expressed in the original units.

As mentioned in Section 2.1, we add an uncertainty term to the value function with a standard deviation 𝜎𝑣. Note that the
equivalent formulation used in economics would be to use a standardized uncertainty term and scale the value function relative to
7



Journal of Choice Modelling 48 (2023) 100426A. Sriwastava and P. Reichert

N
e
f
a
a
w

T
m
t
d

t
t

the standardized uncertainty. Both of these descriptions are equivalent and connected as follows (we have to divide the uncertain
value by 𝜎𝑣 to standardize the uncertainty term and we ignore the constant offset in Eq. (26)):

𝑣add,alt (𝐚,𝜽) =
𝑛
∑

𝑖=1
𝛽𝑖𝑎𝑖 =

𝑛
∑

𝑖=1

𝑐𝑖
𝜎𝑣

𝑎𝑖 , 𝜽 = (𝛽1,… , 𝛽𝑛) , 𝛽𝑖 =
𝑐𝑖
𝜎𝑣

. (27)

ote that we will use the formulation ((25), (26)) for our synthetic experiment because it allows us to parameterize the uncertainty
xplicitly with the parameter 𝜎𝑣 and thus allows us to analyze the sensitivity to the magnitude of uncertainty while keeping the value
unction parameters constant. Nevertheless, the two approaches are equivalent and choosing the formulation (27) instead would
lso have been fine, just a bit less convenient for the discussion of the sensitivity to the magnitude of uncertainty in value. Note
lso that, for this simple linear value function model, marginal rates of substitution are given by (negative) ratios of the coefficients
hich are identical (−𝑐𝑖∕𝑐𝑗 = −𝛽𝑖∕𝛽𝑗) as the standard deviation of the error term used in Eq. (27) to convert the parameters from

one approach to the other, cancels out.
In the following, we will discuss alternative shapes of value functions in the form of the function 𝑣̃. In many cases, a linear value

function (25) or (27) is not sufficient to satisfyingly describe preferences. In economics, to test for nonlinearity, often interaction
terms in the form 𝛽 int𝑖,𝑗 𝑎𝑖𝑎𝑗 and/or nonlinear terms, e.g. 𝛽(2)𝑖 𝑎2𝑖 , are added to the linear function (27) to test for nonlinearity. In
decision analysis, often other nonlinear relationships are used (Langhans et al., 2014; Haag et al., 2019; Reichert et al., 2019). A
simple example of such a nonlinearity is the weighted average between additive and minimum functions:

𝑣̃addmin(𝐚̃,𝜽) = (1 − 𝛼)
𝑛
∑

𝑖=1
𝑤𝑖𝑎̃𝑖 + 𝛼min({𝑎̃𝑖}𝑛𝑖=1)

𝜽 = (𝑤1,… , 𝑤𝑛, 𝛼) , 𝑤𝑖 ≥ 0 ,
𝑛
∑

𝑖=1
𝑤𝑖 = 1 , 𝛼 ∈ [0, 1]. (28)

We can also get the reverse ‘‘curvature’’ of the isolines or iso-surfaces by using the maximum

𝑣̃addmax(𝐚̃,𝜽) = (1 − 𝛼)
𝑛
∑

𝑖=1
𝑤𝑖𝑎̃𝑖 + 𝛼max({𝑎̃𝑖}𝑛𝑖=1)

𝜽 = (𝑤1,… , 𝑤𝑛, 𝛼) , 𝑤𝑖 ≥ 0 ,
𝑛
∑

𝑖=1
𝑤𝑖 = 1 , 𝛼 ∈ [0, 1]. (29)

In our study, we combine these two value functions by using negative values of 𝛼 to describe the mixture with the maximum with
a weight ∣ 𝛼 ∣:

𝑣̃addminmax(𝐚̃,𝜽) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1 − 𝛼)
𝑛
∑

𝑖=1
𝑤𝑖𝑎̃𝑖 + 𝛼min({𝑎̃𝑖}𝑛𝑖=1) for 𝛼 ≥ 0

(1 + 𝛼)
𝑛
∑

𝑖=1
𝑤𝑖𝑎̃𝑖 − 𝛼max({𝑎̃𝑖}𝑛𝑖=1) for 𝛼 < 0

𝜽 = (𝑤1,… , 𝑤𝑛, 𝛼) , 𝑤𝑖 ≥ 0 ,
𝑛
∑

𝑖=1
𝑤𝑖 = 1 , 𝛼 ∈ [−1, 1]. (30)

his value function has the advantage that the inference process can decide whether a mixture of the additive model with the
inimum model or the maximum model is more appropriate as the parameter 𝛼 allows for a continuous transition between the

wo approaches. Figure SI.1 in the Supporting Information provides an overview of typical shapes of this value function in two
imensions. Note that for 𝛼 = 0 we get the additive (linear) model.

As we are eliciting a measurable value function (see Section 2.1), we should provide the possibility of a nonlinear transformation
o account for varying distances of the indifference lines or indifference sub-manifolds. We do this by allowing for the following
ransformation:

𝑣̃trans(𝐚̃,𝜽) =

⎧

⎪

⎨

⎪

⎩

exp
(

𝛽 𝑣̃addminmax(𝐚̃,𝜽)
)

− 1
exp(𝛽) − 1

for 𝛽 ≠ 0

𝑣̃addminmax(𝐚̃,𝜽) for 𝛽 = 0

𝜽 = (𝑤1,… , 𝑤𝑛, 𝛼, 𝛽) , 𝑤𝑖 ≥ 0 ,
𝑛
∑

𝑖=1
𝑤𝑖 = 1 , 𝛼 ∈ [−1, 1] , 𝛽 ∈ R. (31)

This value function is illustrated in Figure SI.2 in the Supporting Information for 𝛼 = 0 and different values of 𝛽.

2.5. Design of the synthetic case study

The goal of the synthetic case study is to test the suggested methodology for potential bias and to explore the gain in uncertainty
reduction compared to discrete choice for a wide range of numbers of replies and elicitation uncertainties. Both can only be done
with synthetically generated data. The test for bias can only be done if the true values are known and testing for many different
8

numbers of replies and uncertainties would be practically infeasible in an empirical case study.
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Table 1
Parameter default values, sensitivity ranges, and priors for the synthetic experiment. The chosen Dirichlet distribution corresponds
to a uniform distribution of the weights on a standard simplex, the Lognormal distribution is parameterized with its true mean
and standard deviation, NormalTrunc is a Normal distribution with given mean and standard deviation truncated to the interval
given as the third argument. The parameters are defined in sections 2.4 and 𝑁 is the number of replies. See also the overview
of notation in the appendix.
Parameter Default value(s) Sensitivity range Prior

𝐰
(

1
3
, 2
3

)

Dirichlet (1, 1)
(

1
4
, 1
4
, 1
2

)

Dirichlet (1, 1, 1)
(

1
6
, 1
6
, 1
3
, 1
3

)

Dirichlet (1, 1, 1, 1)
𝜎𝑣 0.05 [0.05, 0.4] Lognormal (0.05, 0.025)
𝜎𝑎 0.05 [0.05, 0.4] Lognormal (0.05, 0.025)
𝛼 −0.5, 0, 0.5 NormalTrunc (0, 0.5, [−1, 1])
𝛽 −1, 0, 1, 2 Normal (0, 1)
𝑁 [16, 4225]

Table 2
Range of attributes considered for decision problems A and B.

(A) Buying a car (B) Renting a flat

Price
(CHF)

FuelCons
(L/100 km)

NOxEmiss
(%)

Rent
(CHF/month)

Travel time
(min.)

EnergyCons
(kWh/m2/y)

Minimum 19 500 3 10 1350 0 30
Maximum 31 500 9 100 2550 60 150

We choose the simplest analysis layout for the comparison of the two methods with not distinguishing different respondents and
hus generating data with global value function parameters and we will consequently also infer global parameter values. The case
tudy or the application of the technique could easily be extended to consider different respondent characteristics, but the simplest
ase seems to be sufficient to analyze the accuracy of inferred parameters for a given number of replies or the required number of
eplies to achieve a certain accuracy. However, we will test linear and nonlinear value functions as outlined in Section 2.4. For the
ynthetic case study, we chose the attribute ranges to be [0, 1] and thus the transformation (24) corresponds to the identity. The

selected default parameter values and sensitivity ranges for generating synthetic data and the priors for re-inferring the parameters
are given in Table 1.

Uncertainty analysis and sensitivity analysis regarding the number of replies was done with data generation using the default
parameter values and re-inferring the parameters. Sensitivity analyses regarding 𝜎𝑣 and 𝜎𝑎 were done by generating data with
varying these parameters while keeping the other parameters at their default values. All priors were chosen to be wide to have a
minor effect on the inference results. The priors were always kept the same also when parameters values were varied for sensitivity
analysis to avoid a prejudice by the known value.

All synthetic cases were based on a full factorial design of the discrete choice and indifference questions. We did not use a
D-efficient design (Federov, 1972; Bliemer and Rose, 2010; Huber and Zwerina, 1996) for our analyses to be independent of prior
structural assumption of the value function (Walker et al., 2018).

2.6. Design of the empirical case study

For the empirical case study we designed two simple decision problems for laboratory-scale choice or indifference experiments:
(A) buying a car, and (B) renting a flat. In both cases, the alternatives were characterized by three attributes assuming other aspects
to be similar. For the decision problem A the attributes are price of the car (in Swiss francs CHF), Fuel consumption (in liters per
100 km), and NOx emission (expressed as a percentage of the regulatory limit). For the problem B the attributes are monthly rent
of a 1 bedroom apartment in Zurich (in CHF per month), time required for traveling to the work place (in minutes), and the energy
consumption for heating the apartment (in kWh per square meter living area per year). The attribute ranges for both case study
problems are given in Table 2.

We collected preference data for both problems A and B from 6 respondents. For each choice situation, the respondents identified
their preferred alternative and indicated their indifference reply as a value of a predefined attribute. To analyze the relative difficulty
in answering an indifference question compared to a discrete choice question, we also measure the time taken by the respondents
to answer both type of questions.

After scaling the attribute ranges to the interval [0, 1], we used the same priors for the parameters 𝐰, 𝜎𝑣 and 𝜎𝑎𝑖 as were used
in the synthetic case study given in Table 1. However, we distinguished different uncertainties for different attributes as there is no
reason that the uncertainty relative to the interval given in Table 2 should be the same.

Similar to the synthetic case study, we applied the full factorial design to generate the choice sets. For the decision problem
A, we divided the Price attribute into 4 levels and the other two attributes into 3 levels each. Similarly for the problem B, we
divided the Rent attribute into 4 levels and the remaining two attributes into 3 levels each. Consequently for both the problems,
9

we generate choice sets comprising 4 × 3 × 3 = 36 discrete choice and indifference reply questions. Each individual replied to
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all of these 36 decision situations. The number of replies of 36 was chosen as a compromise between the achievable accuracy of
inferred parameters and a potential deterioration of the results by fatigue of the respondents. The first parts of two questionnaires
are provided as examples in section SI.4 of the supporting information. All complete questionnaires are provided in our institutional
repository https://doi.org/10.25678/0007TW. As different individuals have different preferences regarding buying a car or renting
a flat, we did not merge the elicited replies of the 6 respondents to a single sample but just present them as 6 examples of individual
preferences.

2.7. Numerical algorithms and implementation

The discrete choice model leads to an analytical expression for the joint probability of replies and parameters 𝜽 and 𝝍 given
y Eq. (8). The posterior probability density of the model parameters is proportional to this expression if the actual observations are
ubstituted into this function. This leads to a low-dimensional inference problem that can efficiently be solved numerically e.g. with
ny Markov Chain Monte Carlo (MCMC) sampler. On the other hand, due to the hierarchical nature of the indifference specification
odel, we can only derive a (relatively) simple expression for the joint probability density of replies, value function error differences,
𝜖∗(𝑖)𝑣 }𝑁𝑖=1, and parameters 𝜽 and 𝝍 (Eq. (16)). Due to the presence of the value function differences in this expression that cannot
asily be integrated out, this leads to a much higher-dimensional inference problem (this adds unknowns of the dimension of the
umber of replies, 𝑁). Samples from the marginal distributions of the parameters according to Eq. (17) can easily be obtained from
sample of the joint posterior of errors and parameters by ignoring the information from the error terms. To account for this high
imension of the inference problem, we decided to use the Hamiltonian Monte Carlo (HMC) approach to sample from the posterior
istribution of the parameters and internal nodes (Neal, 2011). More specifically, the algorithmic parameters were chosen by using
he No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014) as implemented in the Stan software, https://mc-stan.org (Carpenter
t al., 1985).

Data generation, analysis and post-processing was done in R, https://r-project.org (R Core Team, 2020). The full factorial designs
ere generated using the R package AlgDesign, https://cran.r-project.org/package=AlgDesign. Bayesian inference was imple-
ented by accessing the Stan software using the R package rstan, https://cran.r-project.org/package=rstan (Stan Development
eam, 2020).

Examples of our code are provided in section SI.3 of the Supporting Information, the complete code can be found in our
nstitutional repository at https://doi.org/10.25678/0007TW.

. Results and discussion

.1. Synthetic case study

.1.1. Computational effort
As outlined in Section 2.7, we have a much higher-dimensional inference problem for indifference elicitation (IE) than for discrete

hoice (DC). This can be coped with by using the very efficient Hamiltonian Monte Carlo sampler (see Section 2.7), but it leads
o longer computation times for IE compared to DC. As a representative example, inference (a single repetition) using DC for the
dditive function with 2 attributes took about 18 s for 100 replies and about 42 s for 400 replies. The corresponding inference
imes for IE were 66 s and 429 s respectively. The inference was done using 4 Markov chains with the length of each chain being
000. These simulation times are for a computer equipped with Intel(R) Core(TM) i7-7500U CPU processor with 12 GB RAM and 4
ores. Despite the large relative increase in computation time for IE compared to DC, which is even increasing for larger numbers
f replies, these times are not at all limiting the evaluation of IE data. As the inference problem remained feasible for even much
arger numbers of replies, the computational demand is not a crucial factor for the decision about which method to apply.

.1.2. Dependence of inference results on the number of replies
Fig. 4 shows the posterior marginals of the parameter 𝑤1 of the additive value function with two attributes estimated using

C and IE. The experiment and parameter inference was repeated 10 times to test the method for potential bias. The green dashed
urves display each repetition and, as evident from the figure, these individual estimates differ from each other reflecting variability
nherent to finite sample sizes. The solid black curve represents the parameter estimate combining samples generated in all the 10
epetitions. The true value of the parameter is shown as the blue dotted line. Combining the 10 repetitions results in parameter
stimates with little or no bias while the individual repetitions demonstrate the variability that can be expected from a single
xperiment with the indicated number of replies. Figure SI.4 in the supporting information complements Fig. 4 with the same
esults for the parameter 𝜎𝑣.

Fig. 5 compares marginal posterior characteristics of the parameter 𝑤1 of the additive value function with two, three and four
ttributes for discrete choice and indifference elicitation data. We obtain unbiased parameter estimates with decreasing uncertainty
or increasing numbers of replies. On the other hand, the marginal posteriors for IE are about three times less uncertain than those
or DC with only minor dependence on the number of replies.

SI.2.1.1 in the Supporting Information expands the results shown above to the parameters 𝑤1, 𝛼, 𝛽, 𝜎𝑣 and 𝜎𝑎 of the additive
Figs. SI.5 to SI.7), the additive-minimum–maximum (Figs. SI.8 to SI.11) and the transformed value functions (Figs. SI.12 to SI.15).
he ratios of the posterior standard deviations between discrete choice and indifference estimation (‘‘accuracy ratios’’) are mostly
10

n the range between 2 and 4 for all tested value functions and numbers of replies. They are somewhat smaller for the standard

https://doi.org/10.25678/0007TW
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https://cran.r-project.org/package=AlgDesign
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Fig. 4. Estimates of the posterior marginals of the parameter 𝑤1 of the additive value function with two attributes for two different numbers of replies using
iscrete Choice (a and c) and Indifference Elicitation (b and d). The solid black line shows the parameter estimate when combining 10 repetitions of the
xperiment while the green dashed lines represent the posterior marginals of individual repetitions. The blue dotted line represents the true value of the
arameter used to generate the synthetic data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)

eviation 𝜎𝑣 and the parameter 𝛽 of the transformed-additive value function than for the weight parameter 𝑤1 and the nonlinearity
arameter 𝛼. This factor of 3 in posterior uncertainty reduction indicates that indifference elicitation leads to a similar posterior
ncertainty with a ten times smaller number of replies (and still with a four times smaller number of replies for the parameters that
re only reduced by a factor of two).

.1.3. Sensitivity to uncertain preference and indifference point specification
This section presents results for varying degrees of uncertainty in preference modeled by the uncertainty in value quantified by

𝑣 (see Eqs. (1) and (18)) and of uncertainty in the specification of the indifference point quantified by 𝜎𝑎 (see Eqs. (12) and (22)).
ll analyses in this section are done with value functions with two attributes.

Sensitivity to 𝝈𝐯: Fig. 6 shows how the accuracy in the estimation of parameter 𝑤1 changes when the value of 𝜎𝑣 is increased
rom 0.05 to 0.40 for 49, 400 and 4225 replies. For the additive value function, the increase in the standard deviation of parameter
stimates is considerably higher for DC when the random error to the value function 𝜎𝑣 is increased. Note that a 𝜎𝑣 value of 0.4
ndicates a very large uncertainty as the values are scaled to the interval [0, 1] for attributes within the design ranges. But even for
uch a high uncertainty, IE performs significantly better than DC.
11
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Fig. 5. Comparison of marginal posteriors of the parameter 𝑤1 of the additive value function with two attributes (a), (b), (c); three attributes (d), (e), (f); and
four attributes (g), (h), (i) for DC and IE as functions of the number of replies. In each row, the left panel shows the posterior median and 95% credibility
interval for DC (light gray) and for IE (dark gray), the middle panel shows the standard deviations of the marginal posteriors and the right panel shows the
ratio of standard deviations of DC to IE. In the middle and right columns, the markers represent values obtained for the corresponding number of replies, the
lines are smoothed relationships to support interpretation.

Sensitivity to 𝝈𝐚: For three different numbers of replies, 49, 400 and 4225, sensitivity to 𝜎𝑎 was analyzed by inferring the model
parameters for 8 different values of 𝜎𝑎: 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and 0.40 (note that the attribute ranges for the design
layouts were scaled to the interval [0, 1]). Since the indifference point specification error, which is characterized by the parameter
𝜎𝑎, is only present for indifference elicitation, discrete choice experiment results are not sensitive to 𝜎𝑎. As expected and shown
n Fig. 7, the posterior standard deviation of 𝑤1, 𝜎𝑤1

, is increasing with increasing values of 𝜎𝑎 as we gain less information with
ncreasing elicitation uncertainty. Nevertheless, even for the very large value of 𝜎 = 0.4 it is still smaller than for DC. For more
12
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Fig. 6. Sensitivity to 𝜎𝑣: posterior standard deviation of 𝑤1 for the additive value function as a function of the value of 𝜎𝑣 used to generate the synthetic data.
Markers and lines have the same meaning as in Fig. 5.

Fig. 7. Sensitivity to 𝜎𝑎: posterior standard deviation of 𝑤1 for the additive value function as a function of the value of 𝜎𝑎 used to generate the synthetic data
(note that 𝜎𝑎 is the uncertainty in specifying the indifference point and is thus is only needed for IE).

realistic elicitation uncertainties of 𝜎𝑎 of up to 0.15 (an approximate 95% credibility interval would cover more than half of the
attribute range) we maintain the approximate gain in accuracy of about a factor of three.

3.1.4. Sensitivity to model structure errors
We test the performance of discrete choice and indifference elicitation for situations in which the assumption is wrong that the

parameterized family of value functions contains the value function that represents the decision maker’s preference perfectly. Our
test consists of two cases: inferring parameters of a linear (additive; Eq. (25)) value function when the preference data was generated
by using a non-linear (additive-minimum–maximum; Eq. (30)) value function and vice-versa.

Additive value function inferred for data generated with an additive-minimum–maximum value function: We compare
C and IE for inferring the parameters of the additive function with preference data generated with the additive-minimum function.
ig. 8 shows the results for the parameter 𝑤1 of the additive value function. As this figure shows, we cannot recover the true value of
1, which is a natural result when inferring parameters with a wrong model. It is an interesting result that the ratio of the standard
eviations of DC vs IE is smaller than for any of the inference results shown in the preceding sections. This is an indication that IE
s more sensitive, or also more discriminatory, regarding the shape of the value function.

Additive-minimum–maximum value function inferred for data generated with an additive value function: Figure SI.16 in
the Supporting Information shows the results for the parameters 𝑤1 and 𝛼 of the additive-minimum–maximum function. The results
confirm the consistency of both approaches, DC and IE: Since the additive function is a special case of the additive-minimum–
maximum function when 𝛼 equals zero, both approaches recover this value of zero and we re-gain the uncertainty ratio of about a
factor of three for the posterior standard deviations.

Given the difficulty of checking the validity of the model, it may be the best strategy to analyze the data with different, nested
model structures to identify the need for a higher model complexity. Besides using information criteria, such as AIC or BIC, as it
is often done in economics, it is then possible to check whether the coefficients are significantly different from their value for
the simpler model structure (in most cases, this means significantly different from zero). Our analyses demonstrated that this
13

strategy works also for indifference elicitation for the value functions used in this study. We may speculate that the ratio of the
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Fig. 8. Comparison of DC and IE for the parameter 𝑤1 of the additive value function when inferred using data generated with the additive-minimum value
function.

standard deviations between DC and IE evaluations of the same data may even be an indicator of structural model deficits. However,
confirming this speculation would need more investigation.

3.2. Empirical case study

For the decision problems A and B described in Section 2.6 we collected preference data from six respondents R1, . . . , R6. For each
choice question comprising two alternatives, the respondents were first asked to indicate their preferred alternative. Subsequently
the respondents were asked to adjust the (randomly selected) marked attribute to the value so that they are indifferent between the
two presented alternatives (see section SI.4 in the supporting information for examples from the questionnaires or our institutional
repository for the full versions https://doi.org/10.25678/0007TW). This data was used to compare DC and IE by inferring the
parameters of linear value functions. The results of parameter inference are presented in Section 3.2.1. In addition to preference data
we also recorded the time required for answering discrete choice and indifference reply questions. The time taken for answering the
questions are used to analyze the mental difficulty of processing the provided information and choosing an alternative or providing
an estimate of the indifference point. The timer was started when a question was presented to the respondent and once the respondent
made the choice of the preferred alternative the timer was stopped. This time was recorded as 𝑡DC. The timer was re-started from
0 and once the respondent provides the indifference reply the timer was stopped again. This time was recorded as 𝑡IE. The time 𝑡IE
lone would be an underestimation of the time the respondent takes to answer an indifference reply because the respondent became
lready familiar with the decision problem while choosing an alternative and he or she anyway needs to implicitly make a choice
f the preferred alternative to specify the indifference point. Hence, the total time 𝑡DC + 𝑡IE was used as a conservative estimate of
he time required for answering the indifference reply question. Results analyzing the difficulty of DC and IE questions relative to
ach other are presented in Section 3.2.2.

.2.1. DC vs IE: Parameter inference
Fig. 9 shows the comparison of posterior marginals of the weight parameter 𝑤Rent , of the marginal substitution rate

𝑐Traveltime/𝑐Rent , and for the standard deviation of the uncertainty in value, 𝜎𝑣, inferred from the preference data collected from
he respondents for the decision problem B, renting a flat, described in Section 2.6. The results for the remaining parameters and
or the decision problem A, buying a car, are included in section SI.2.2.1 in the Supplementary Information.

The weight parameter indicates the relative importance of rent compared to the other two attributes of travel time to the work
lace and energy consumption for heating for the given ranges of these attributes. It is very important to note that this relative
mportance is not universal but that it depends on the attribute range; it decreases with decreasing length of the attribute range. As
he parameters of the respondents represent individual preferences, we do not expect them to be equal across respondents. However,
e expect the results of DC and IE to be consistent for each individual respondent. Considering the large uncertainty of DC, this

eems to be the case at least for all respondents except respondent R5. However, having in mind the large variability in inferred
osteriors for small numbers of replies (see dashed lines in Fig. 4(a)), this could still be a random result. It would be interesting to
o such a comparison with a larger number of replies to investigate whether there are systematic differences between the results of
he different elicitation techniques.

The marginal substitution rate has the direct behavioral interpretation by how much the respondents are willing to increase their
ent to save a minute of travel time. Again, we see indications for potential inconsistent replies only for respondent R5.

The results for the standard deviation of the uncertainty in value, 𝜎𝑣, indicate a larger uncertainty for IE compared to DC. This
ould result from a larger sensitivity of IE to the shape of the value function that may not be ideally covered by the linear model. A
omparison of the ratios of the marginal posterior standard deviations shown in Fig. 10 with the larger ones for the synthetic case
tudy based on the correct model (Fig. 5) and the smaller ones for inference with an incorrect model (Fig. 8) would be a further
14
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Fig. 9. Posterior marginals inferred for 𝑤𝑅𝑒𝑛𝑡, for the marginal substitution rate −𝑐𝑇 𝑟𝑎𝑣𝑒𝑙𝑇 𝑖𝑚𝑒∕𝑐𝑅𝑒𝑛𝑡, and for 𝜎𝑣 of the additive value function for the six respondents
or the decision problem B: Renting a flat based on the replies for DC and IE.

Fig. 10. Ratios of standard deviations of posterior marginals of the weight parameters for DC and IE for the decision problem B: Renting a flat.

ndication in support of this hypothesis (see also discussion in Section 3.1.4). However, the nonlinear additive-minimum–maximum
odel did also not lead to much better results. Our number of replies is too small to clearly identify a potentially needed nonlinear

alue function.

.2.2. Difficulty of choice questions
Fig. 11 shows the ratio of 𝑡DC + 𝑡IE to 𝑡DC for the decision problem B: Renting a flat (see Fig. SI.25 in the Supporting Information

or the results for both decision problems). Here 𝑡DC is the time needed to chose the preferred alternative and 𝑡IE is the time taken
y the respondent to answer the indifference reply after he or she has already made a choice of the preferred alternative. Hence we
se 𝑡𝐷𝐶 + 𝑡𝐼𝐸 as a conservative estimate of time taken for the indifference reply. Overall, indifference replies took approximately
–4 times more time than discrete choice replies. This supports the hypothesis that indifference replies generally take longer time
han replies to discrete choice questions. However, the results shown in Fig. 11 also provide a quantitative measure of the degree
o how much more difficult indifference reply questions are in comparison to discrete choice questions. For both the empirical case
tudies, the accuracy ratio was found to be between 2–3 i.e. around 4–9 times potential reduction in the required number of replies
cross different respondents. Based on the collected preference data from our empirical case study, it can be concluded that the
igher elicitation effort for IE is well compensated by the higher achieved accuracy.

Additional analysis was done by identifying questions for which it is particularly easy for the respondents to choose the preferred
lternative. If all attribute comparisons between the two presented alternatives individually lead to favoring the same alternative, it
s particularly easy to select the preferred alternative, as no trade-off across the attribute dimensions is needed. We call these kind
f questions ‘‘easy’’ for DC and all the other ones that require such trade-offs ‘‘difficult’’. We expect that the response times for DC
ould be shorter for such ‘‘easy’’ questions compared to ‘‘difficult’’ questions, but that there is no similar effect for IE, as trade-offs
re always needed for IE. Our results, presented in section SI.2.2.2 of the Supporting Information confirm this expectation. These
ind of ‘‘easy’’ questions are a particular example of why we gain more information from IE than for DC as these DC replies do not
rovide any information about the shape of the value function for value functions that are monotonic in all attributes once it is
nown for all attributes whether an increase or decrease in the attribute leads to an increase in the value function. In such cases,
hese questions could be eliminated from the design to increase the efficiency of DC.
15
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Fig. 11. Ratio of total time 𝑡𝐷𝐶 + 𝑡𝐼𝐸 to 𝑡𝐷𝐶 as a representative measure of relative difficulty of an IE question to a DC question for the decision problem B:
enting a flat.

. Conclusions

We investigated the extension of discrete choice inquiries to the specification of the indifference point between two presented
utcomes by varying one attribute of one of the outcomes. This indifference elicitation concept has been described in textbooks
lready many decades ago (Keeney and Raiffa, 1976) but has not found widespread application in studies that are evaluated within
igorous statistical frameworks. We developed a statistical model for indifference elicitation that allows us to use this concept within
similar statistical framework as it is common practice for discrete choice inquiries. We used the same description of uncertainty

n the value function as it is done with discrete choice methods. However, as we need additional uncertainty in the specification
f the indifference point, the model becomes hierarchical and thus more demanding for inferring model parameters from elicited
ata. To cope with this problem, we implemented Bayesian inference with a Hamiltonian Markov Chain Monte Carlo approach for
ampling from the posterior. This limits the computational burden to an amount not relevant as a criterion for the selection of the
licitation methodology. We tested the suggested approach with a case study with synthetically generated data to check for potential
ias and to quantify the gain in uncertainty reduction when using the same number of replies or in reducing the number of replies
or achieving a similar uncertainty as when applying the discrete choice approach. In addition, we did a small empirical case study
o learn about the feasibility of the approach and the increase in elicitation effort for each question.

Our results demonstrate (i) the absence of bias of the suggested methodology, (ii) a reduction in the uncertainty of estimated
arameters by about a factor of three or the reduction of the required number of replies to achieve the same accuracy as with
iscrete choice by about a factor of ten (exact values depend on the value function, the number of replies, and value function
nd indifference point estimation uncertainties, but those orders of magnitude are quite stable within the investigated ranges of
umbers of replies and uncertainty; see extensive sensitivity analyses in the results section and in the Supporting Information), (iii)
he feasibility of the approach, and (iv) a median increase of time needed to reply to the indifference question of about a factor
f three. If the set of respondents is small, e.g. in the case of preference elicitation from experts in environmental management or
ealth economics, or if it is intended to be small to get prior information for designing an effective sampling strategy for a larger
cale study, the higher elicitation effort may be manageable and results in a similar accuracy of results with about one-tenths of the
umber of replies compared to discrete choice replies or higher accuracy for smaller numbers of replies reductions.

Key limitations of the indifference elicitation approach are that it requires at least one continuous attribute, the range of which
s large enough so that the indifference point to the other presented alternative can be reached and the willingness to reply to
ndifference questions by the respondents.

To gain more experience with the suggested approach, a larger scale study with the application of discrete choice and indifference
licitation would be very useful. Such a study could also make it possible to explore potential bias introduced by the difficulties of
uman judgment regarding indifference point specification.
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ppendix A. Notation

𝐚: attributes that characterize a system regarding the properties relevant for a decision.
𝐚(𝐴): attributes corresponding to the outcome 𝐴.

𝐄𝑣(𝐚,𝝍): additive uncertainty contribution to the value function.
𝑓𝑅: probability density function (pdf) of the continuous random variable 𝑅. Note that 𝑅 is sometimes omitted if clear from

the context.
𝐹𝑅: cumulative distribution function (cdf) of the random variable 𝑅. Note that 𝑅 is sometimes omitted if clear from the

context.
𝑛: number of attributes (dimension of the attribute space).
𝑁 : number of replies to choice or indifference questions. (For the statistical evaluation, this would be called sample size,

however, in discrete choice analysis sample size denotes the number of respondents. For the joint analysis of respondents
the number of replies is the sample size times the number of replies by each respondent. For individual evaluation of
respondents (as it is done in our empirical case study) the number of replies is equal to the number of replies by each
respondent.)

𝑃𝑅: probability distribution function of the discrete random variable 𝑅. Note that 𝑅 is sometimes omitted if clear from the
context.

𝑣(𝐚): value function representing preferences of a decision maker or stakeholder.
𝑣(𝐚,𝜽): parameterized value function; parameters will be estimated from replies of the decision maker or stakeholder to match

his or her preferences as closely as possible.
𝑉 (𝐚,𝜽,𝝍): uncertain value function (= 𝑣(𝐚,𝜽) + 𝐄𝑣(𝐚,𝝍)).

𝐰: weight parameters of all value functions.
𝛼: parameter of the additive-minimum–maximum value function (30).
𝛽: parameter of the transformed value function (31).
𝜽: parameters of non-specific value functions.
𝝍 : parameters of non-specific uncertainty models of the value function and the attribute specification.
𝜎𝑎: standard deviation of the chosen normally distributed error model of the attribute specification.
𝜎𝑣: standard deviation of the chosen normally distributed error model of the value function.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jocm.2023.100426. The complete
code and results can be found in our institutional repository at https://doi.org/10.25678/0007TW.
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